关键词:灰色预测模型 变形预测
摘要:针对GM(1,1)建模过程中背景值、时间因素两方面存在的不足,文中提出双重加权DPGM(1,1)预测模型,通过对背景值进行加权生成新的背景值,建立PGM(1,1)模型;在PGM(1,1)基础上考虑到时间因素在求解灰参数时进行第二次加权建立DPGM(1,1)模型。通过实例分析,比较GM(1,1)、PGM(1,1)、DPGM(1,1)三种模型在变形监测数据处理中的拟合和预测结果。表明,双重加权DPGM(1,1)模型拟合效果更好、预测精度更高。该模型具有前两种模型的优点,同时弥补了传统GM(1,1)的不足。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社