自动控制理论论文模板(10篇)

时间:2022-07-18 15:22:15

导言:作为写作爱好者,不可错过为您精心挑选的10篇自动控制理论论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

自动控制理论论文

篇1

中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2014)03-0219-02

自动化技术在社会生产和生活中具有广泛的应用,自动化专业教育具有巨大的市场需求。《自动控制原理》课程是自动化专业的主干课程之一,并且此课程是后续自动化专业课程的基础。该课程传授反馈控制系统的最基本概念以及反馈控制系统分析设计最基础的思路方法,是自控专业学生能力培养的基石。随着经济全球化和中国经济的快速发展,外企在中国投资和中国企业走向国际已经成为现实。这种现状使得高科技人力资源在不同国家流动的趋势越来越强。中国大学留学生数目以及中国高校毕业生使用英语在外企和国外工作的数目呈不断上升趋势,中国大学与英语国家的校级交流也越来越多,这些变化都使得中国大学教育对全英文专业课程教学的需求越来越大[1-3]。全英文《自动控制原理》课程就是为了适应这种教育国际化的形式而设置的。目前中国大学教育处于走向国际化的初步阶段,探索并交流适应现阶段形式的全英文课程教学方法提高全英文教学质量是非常必要的。

一、课程特点与教学对象分析

《自动控制原理》课程是一门理论性非常强的专业基础课程,面向电类专业中国本土学生和留学生开设。该课程对学生的数学基础知识要求比较高,课程用全英文开设,还需要学生具有较强的英文听力和阅读理解力,作业和实验报告等需要学生有较强的英语书面表达能力。该课程设有实验环节,在有留学生参与的实验小组进行系统分析与设计的团队工作,不仅需要学生有较强的实验操作能力还需要学生具有良好的专业英语口头沟通能力。《自动控制原理》课程是自控专业的基础课程,在大学三年级上半年开设,是其他自控专业课的基础,只有很好地理解和掌握控制原理的基础知识,才能继续学习好后续的其他专业课。目前我校留学生人数虽然呈上升趋势但绝对数量还不是很多,全英文教学班一般由本土学生和来自非洲、欧洲、美国、亚洲等不同地区的留学生组成。由于学生们的背景不同,学生的数学基础、英语程度、接受能力、思维习惯和特点都具有一定的差异。一般来讲,本土学生的数学基础较好一些,英语阅读能力较强,但因生活环境为中文,英语听力理解能力相对阅读能力弱一些;对于母语不是英语的留学生,因其有限的英语程度,在课程学习和交流中具有一定困难。从已开设的英文课来看,一般留学生的数学基础相对中国学生弱一些。对来自不同背景学生进行自控原理的教学,如何因材施教,具有一定的挑战性。

二、教学组织与方法

面向不同背景的学生来源开展《自动控制原理》的全英文教学,要保证提高教学质量,必须从师资配备、教学对象认识、教学组织、教材选择、教辅资料与软件工具选择、实验安排等方面全方位地合理安排。全英文教学应该从教学对象背景的需求出发,在注重知识传授、能力培养的同时,要特别注意教学交流质量的提高,以达到知识传授、能力培养的目的。

1.教学团队的素质。自控原理的全英文教学,涉及数学及专业知识的传授、使用英语的沟通,在教学对象来源差异较大的情况下,对教学团队的素质要求比较高。(1)教师英语能力基础及保持:全英文授课的教师,一般应具较强的责任心,具有较好的英语口语表达能力。尽管有些老师有海外学习经历,全英文任课老师由于一般工作在中文语境中,也要注意英语听说能力的保持。(2)专业知识及其应用能力:《自动控制原理》课程是一门比较传统和基础的课程,任课老师一般都学习过此门课程。因此老师对相应的知识点都比较熟悉,但对于课程知识的应用还需予以加强。教师应该有课程相关的比较全面系统的知识背景,不仅可以讲述课程的知识点,也能够讲述知识点之间的相互联系以及知识点的应用环境、应用方法及应用工具,使学生不仅获得课程的知识点,还获得关于知识应用方面的技巧。(3)面向教学对象的教学方法:课程教学的效果取决于课程教学的方法。一般教学方法由理论学习和课堂经验积累两种途径获得。教学方法没有绝对的好与不好,关键的是教学方法要适用于教学对象。因此除了一般教学方法的掌握,教师还要在教学实践中注意收集学生对教学的反馈意见,不断积累总结教学方法及其适用对象。(4)教师的组织与沟通能力:主讲教师是课程的负责人,全面负责助教、实验指导老师和学生之间的工作安排和沟通。教师应该在第一节课收集所有学生的联系信息,包括留学生的国籍,并向学生公布课程助教、实验指导老师的联系方式,保证课程参与者的双向沟通。

2.课程教材与辅助材料:(1)课程教材的选择要考虑到教学对象,选择难易适中的教材。在本课程的实践中,为了满足不同层次学生的需要,为学生推荐了一组具有不同特点的教学参考书。在参考书中有相对比较深的教材满足专业和英语基础比较好、好奇心上进心比较强的学生;也有参考书比较深入浅出,易于理解,满足基础相对弱的同学。考虑到中国本土学生将来也有可能在中国企业工作,本课程推荐了具有中文翻译版的英文原版经典教材,便于学生能在课后了解专业词汇的中文表达,也帮助英文程度差但具有一定中文语言能力的学生对课程的理解。另外本课程为学生提供控制原理主要贡献者的生平介绍,帮助学生理解一些控制原理产生的背景,让学生们学习该领域大师的创新精神。(2)教学辅助资料与工具的提供可以帮助学生理解复习课堂教学的内容。本课程为学生提供中英文对照专业词汇,帮助学生对课程的理解和掌握,并能使用英文专业词汇进行作业和实验报告的表达。自控原理是一门对数学要求比较高的课程,可以把一些课程常用的数学公式表,如拉普拉斯变换表等,作为辅助材料提供给学生。本课程还在课程网页上提供全部课程的英文录像,如果学生在上课时没有完全消化,可以在课后自己观看相关课程录像,理解和消化上课的内容。

3.课堂教学方法。课堂教学是课程知识传授的主要环节,直接影响到最后的教学效果。教师在英文课堂教学中,要注重以下环节:(1)任课老师的课堂表达:教师上课应注意循序渐进,深入浅出,板书要整洁明了。语言采用简单明了、易于理解的句型。考虑到班级里有英语听力不太好的学生,上课语速要适中,并配有相应的关键字板书或多媒体演示稿,以补充学生由于听力原因造成的信息损失。发放多媒体演示稿关键部分的纸质打印件,方便学生做课堂笔记。教师上课应该基础部分简单清晰、教学内容应有扩展性,同时注重介绍知识的应用环境,既要照顾到基础较差的学生,也应满足综合能力强的学生的需求。(2)课堂教学的互动与反馈:由于该课程理论性强,对数学基础要求高,大部分学生使用第二语言第一次接触新的概念,如果没有进行足够时间的预习很难在课堂上使用英语主动提出问题。而电类专业的学生学习任务比较繁重,一般没有时间做足够的预习。教师可以围绕课程内容,设计课堂讨论题目,采用分组课堂练习的形式,一般为二到三人一组,学生可以互相讨论,加强对所学概念方法的理解,教师在学生练习时,巡回检查,期间学生可以向老师询问不懂之处。这种形式的全英文互动,既减少了学生的表达压力,又能达到互动反馈教学效果的作用,非常受学生欢迎,教师也能及时发现学生难于理解的知识点。

4.课程实验。课程实验是课程教学的重要环节,学生通过实验可以加深对课堂知识的理解,并掌握理论知识的应用方法。为保证实验质量,首先要向学生提供清晰的实验指导书,在实验分组时应避免将留学生分在一组,而是将中国本土学生与外国学生搭配开来,加强留学生与中国学生相互交流学习,帮助留学生融入本土学习环境,克服由于外国学生对环境的不熟悉造成的工作障碍,顺利完成课程实验任务。实验报告也是课程实验的重要组成部分,要求学生对实验数据进行有效处理,对实验现象运用课程理论知识进行详细分析、解释。

5.课程学习质量的监控与评估。学生课程学习质量的监控分课堂学习评估、课程阶段学习评估和课程学体评估。课堂学习评估主要通过课堂练习来进行。教师通过学生课堂练习的情况,评估学生课堂学习的质量,改善课堂教学效果。课程阶段学习评估主要通过阶段小测验来进行,通过阶段小测验可以测试学生对一个阶段所学知识的综合运用能力。课程学体评估包括学生的课堂表现、作业情况、小测验情况以及实验情况和期末考试,是学生整个课程学习过程的综合评估。期末考试内容应该含概课程基础知识、课程知识灵活应用和课程知识综合运用等层次,以测试不同层次学生掌握课程知识的情况。

现阶段全英文专业课程教学在中国大学尚属于初步发展阶段,本文主要讨论全英文自控原理课程的教学特点与方法。论文分析了全英文课程班的学生组成和特点,阐述了自控原理全英文课程的教学质量保证的关键措施及经验,为中国大学全英文专业课程的发展提供参考。

参考文献:

[1]曾圆圆,项慨.C++全英文课程理论与实践的新方法[J].教育教学论坛,2012,(38).

[2]徐巍华.工学研究生课程的全英文教学实践[J].电气电子教学学报,2013,(2).

篇2

雷达系统根据其工作频率一般分为米波雷达、分米波雷达和厘米波雷达,其接收机通常是超外差形式的。分米波雷达和厘米波雷达由于其工作频率较高,一般都有自动频率控制(AFC)系统,控制本振频率自动跟踪发射频率的变化,或者控制发射频率自动稳定在本振频率对应的频率点上,保证雷达接收机的中频频率稳定。但是传统的模拟式单环路或双环路AFC系统由于受模拟电路本身的局限,使得AFC的跟踪速度慢、跟踪频率范围窄、精度低,甚至有可能出现错误跟踪的情况;此外,控制本振的自频控雷达由于在本机振荡器上加装了频率调整装置,影响了本振的频率稳定度,这对动目标雷达而言是难以接受的。米波雷达由于其工作频率较低,基本上没有自动频率控制系统,但是米波雷达的发射机工作频率和接收机本机振荡频率由于环境温度、电源电压和负载变化而发生一定的变化,其变化范围从几十千赫兹到数百千赫兹,通常在500~600kHz之间。虽然由此造成的中频频率变化量的绝对值不会超出中频放大器的通频带范围(中频放大器的通频带通常≤1MHz),但是数百千赫兹的变化量使回波信号不能得到最有效的放大,造成雷达接收机技术、战术性能降低,此时即使加装DSU(DigitalStableUnit)设备,也由于中频频率漂移的影响,使DSU的性能无法得到最有效的发挥。

应用锁相环频率合成技术实现雷达自动频率控制系统已经是比较成熟的技术方案,这种方案的应用解决了非相参雷达的自动频率跟踪与本振频率稳定度之间的矛盾,但是锁相环固有的大惯性、大步进间隔和非线性误差却严重地限制着锁相环自动频率控制系统的性能,使其无法满足高速、高频率分辨率、大带宽的要求。

DDS技术是近几年来迅速发展的频率合成技术,它采用全数字化的技术,具有集成度高、体积小、相对带宽宽、频率分辨率高、跳频时间短、相位连续性好、可以宽带正交输出、可以外加调制的优点,并能直接与单片机接口构成智能化的频率源。基于DDS技术的自适应米波雷达自动频率控制系统是新一代的自动频率控制(AFC)系统,它以直接数字频率合成技术(DDS)为基础,以单片机为控制核心,通过高速高精度脉内频率测量模块对雷达发射频率进行精确测量,然后由单片机控制DDS,对发射频率进行搜索和跟踪。因此它是一种易于实现的数字式智能化自适应频率控制系统。

图2DDS频率合成模块结构图

1系统组成及工作原理

基于DDS技术的自适应米波雷达自动频率控制系统主要由高速脉内频率测量模块、DDS频率合成模块、单片机和包括频率显示、控制键盘的人机接口模块组成,如图1所示。

系统采用高速高精度实时脉内频率测量技术,利用频率稳定度高达10-9的高稳恒温时标对频率进行倒计数法测量,由单片机对测量结果进行分析处理,并控制DDS频率合成模块,完成对发射频率的搜索和跟踪。系统中除了DDS输出后的滤波、放大电路采用模拟电路外,其它全部采用高速数字电路,并结合了单片机具有的可编程能力,使系统避免了传统模拟式AFC的缺陷,能够实现更加灵活的控制。

雷达开机后,系统首先工作于搜索模式:单片机控制DDS频率合成模块输出本振频率的最低值,与从发射机耦合过来并经过衰减后的发射脉冲频率混频,取出下变频后的中频信号,经过频率测量模块测量后将结果送入单片机,单片机若判断频率测量结果不是规定的中频频率值,则控制DDS频率合成模块将输出的本振频率按规定的步长(通常是频率测量系统的频率分辨率)调高,重复此过程,直到频率测量系统测量得到的频率值为规定的中频频率值为止。若搜索过程中本振频率达到上限时仍未搜索到规定的中频频率值,则返回到本振频率最低值,重新开始新一轮的搜索。系统一旦搜索到规定的中频频率值就进入跟踪状态。

在跟踪状态,频率测量模块对每一个发射脉冲频率与本振频率下变频得到的中频脉冲频率进行实时精确测量,在发射脉冲结束时将测量结果送入单片机。单片机立即根据测量结果计算出响应的本振频率调整量,并控制DDS频率合成模块调整输出频率,保证在目标回波信号到达接收机时,本振信号已经调整到与该发射脉冲频率对应的频率点上,使目标回波信号下变频后的频率值为准确的中频频率值,从而保证目标回波信号能够得到最有效的放大。

跟踪模式实质上是一个自适应的控制过程:某一发射脉冲的频率比前一发射脉冲的频率升高(降低)在本振频率不变的条件下,中频频率升高(降低)频率测量模块的测量结果升高(降低)单片机得到测量结果后控制DDS频率合成模块,使之输出的本振频率相应升高(降低)中频频率降低(升高)到规定值。

2硬件结构

2.1DDS频率合成模块

DDS频率合成模块以DDS芯片AD9854为核心,包括滤波电路、放大电路和与单片机的接口电路,图2是其组成框图。

AD公司推出的AD9854是DDS芯片中的典型代表之一,它具有300MHz的内部时钟,4~20倍的内部可编程倍频器使外部输入的时钟信号频率可以从15MHz到75MHz,另外具有100MHz的并行接口总线,内置正交双通道DAC输出,具有多种编程工作方式,能产生线性调频信号和非线性调频信号等复杂信号。

AD9854采用CMOS结构,工作电压为3.3V,而单片机AT89C51工作在5V电压下,其总线电平是5V的TTL电平,为保证AD9854的正常工作,必须经电平转换后再与AD9854接口,AD9854的时钟信号也必须经过电平转换后送到AD9854的时钟引脚。AD9854有正交双通道DAC输出,每一个通道都是反相的互补输出,经MAX436放大后滤波,然后再经MAX436放大到雷达要求的本振电平。两路输出中的一路用于和发射脉冲混频,将下变频后的中频信号送到频率测量模块进行频率测量,系统已经知道DDS频率合成模块输出的本振频率,测量出发射脉冲的中频频率就能计算出发射频率;另一路作为接收机的本振信号。

根据奈奎斯特采样定律,当DDS系统的时钟为300MHz时,其输出频率的上限是150MHz,在工程应用中通常只使用到时钟频率的40%,即120MHz。某型米波雷达的本振频率上限略高于120MHz,经查阅AD9854的数据手册,其输出频率能够达到理论的150MHz;同时经实验证实,AD9854能够在雷达本振频率上限值处稳定工作,且输出信号质量完全可以满足雷达系统对本振的要求。

2.2高速高精度脉内频率测量模块

高速高精度脉内频率测量模块采用倒计数法进行频率测量,主要由下变频混频器、滤波整形电路、计数器T0、计数器T1和时序控制电路组成。图3是其结构的组成框图,图4是倒计数法频率测量的时序图。

倒计数法测频是用被测信号的N个周期形成一个计数门时间T=N·Tx,在T时间内由时标F0计数,这样一来测频就相当于测量门宽T,T的最大量化误差是T0,Tx的最大量化误差是T0/N。

某型雷达的发射脉冲的宽度是13μs,考虑到其发射机是单级振荡式发射机,每个脉冲在起振和停振的过程中振荡不稳定,因此取中间的10μs作为测频区间。该型雷达的第一中频频率为30MHz,在正常工作时,发射脉冲与本振信号下变频的输出频率应该是准确的30MHz,在10μs的测频时间内应有300个脉冲,即可取N=300;高稳定的时标的频率是100MHz,T0=10ns,相应的Tx的最大误差是T0/300=1/30ns,据此可计算出测频的分辨率是30kHz,相对于雷达中频放大器接近1MHz的带宽而言,此指标完全能够满足雷达系统的要求。用频谱分析仪实际测得的系统跟踪误差如表1所示。

表1实际测得的系统跟踪误差表

发射频率/MHz147.000147.500148.000148.500149.000149.500

本振输出频率/MHz116.999117.495118.008118.492118.990119.493

跟踪误差/kHz-1-5+8-8-10-7

发射频率/MHz150.000150.500151.000151.500152.000152.500

本振输出频率/MHz119.995120.490120.990121.510122.005122.500

跟踪误差/kHz-5-10-10+10+50

模块的工作过程是:当雷达触发脉冲到来时,时序控制电路打开计数器T,发射脉冲随后到来,经下变频、滤波、整形后转换成TTL方波作为计数器T的时钟。当计数器T计到第32个脉冲时,时序控制电路打开计数器T0,T0开始对高稳定时标计数;当计数器T计到第332个脉冲时,时序控制电路关闭计数器T和T0,并通知单片机已经完成一次频率测量,单片机取走测量结果,并对硬件电路复位,准备下一个周期的测量。

2.3高稳定度恒温时钟模块

本机振荡器的频率稳定度是影响雷达接收机性能的关键性指标。由于DDS频率合成方法的输出频率稳定度仅仅取决于其时钟的频率稳定度,因此选用频率稳定度高达10-9的恒温晶体振荡器作为整个系统的时钟。恒温晶体振荡器输出的100MHz高稳正弦波经放大后整形为标准的TTL方波,一路作为频率测量模块的时间标准,另一路经F161分频为25MHz的TTL方波,经电平转换后作为AD9854的外部时钟信号,利用AD9854内部的可编程倍频器倍频12倍使AD9854工作在300MHz的内部时钟频率下。高稳定度恒温时钟模块组成框图如图5所示。

3软件结构

单片机是整个系统的控制核心,可以充分利用软件可编程控制的优势对系统进行灵活有效的控制。图6是单片机的软件框图。

通电以后单片机首先进行初始化,然后设置DDS模块的工作模式等参数,再进行时序控制电路的复位并对所有计数器进行清零操作。随后单片机不断查询测量完成信号。当时序控制电路在雷达触发脉冲的作用下完成一次测量时?熏就通过该信号通知单片机,单片机一旦查询到测量完成便立即读入测量结果。然后进行分析,是标准中频频率时不进行本振频率的调整,直接准备下一脉冲周期的测量,若不是则计算所需的频率调整量,控制DDS频率合成模块进行频率调整,然后再准备下一脉冲周期的测量。

篇3

厂址位于XX市西郊雷锋大道7公里处,占地面积620亩。为加速实施全省农业结构的调整,先后从美国﹑法国﹑埃及﹑日本及国内10多个省市科研育种单位引进优质果茶品种资源158个,优质果茶种苗40多万株,建成果茶母本园150亩。每年可向社会提供优质果茶苗木200多万株,果茶母(接)穗1万公斤以上,生产优质果茶产品1000吨以上。

果茶场也是省城第一座以品茶、园艺、垂钓为主题的农业观光园。这里空气清新,景色怡人。春有草莓、樱桃、“明前”茶;夏有枇杷、苹果、葡萄、桃、李、杨梅、无花果与瓜类;秋有板栗、柿、枣、梨、猕猴桃;冬有柑桔、橙类等。一年四季。百果飘香,是个名副其实的“百果园”。

该厂第二期工程将于2003年完成,面积将扩至1000多亩。年生产优质果茶苗木将达到1000万株,优质果茶产品产量也将成倍增加,更多的农业高新技术将落户该场。果茶苗木和产品的生产、检测、采后处理、加工和多种农业观光设施将全部完善和配置。届时,一个全新的高科技生态农业示范、观光园将会展现在你的面前。

百果园是农业高科技的结晶,而滴灌系统是其中的重中之重。百果园现建成的620亩果园,全部由从以色列引进的先进滴喷灌系统控制,该园地势起伏较大,最高处海拔达86.60m,最低处64.72m,传统灌水方式很难进行,而先进的滴灌系统由于对地形的适应能力强,而且特别适应山地丘陵地区,所以滴灌正好大施其能,由低处水库中取水,经过过滤加压,然后由遍布全园的各种管道把带有肥料、除虫剂的水准确地送到每片需水地园中,保证果树的正常需水。不过其系统自动化程度不高,全园仅能使用微机控制电磁阀的开启,不能精确实现作物的轮灌、对灌水时间和灌水量还不能实现有效的控制,有望进一步提高。

2滴灌系统

滴灌就是滴水灌溉技术,它是利用低压管道系统,使滴灌水成点滴地、缓慢地、均匀而又定量地浸润作物根系最发达的区域,使作物主要根系活动区的土壤始终保持在最优含水状态。滴灌不同于传统的地面灌溉湿润全面积土壤,因此滴灌有节约灌溉用水量、促进作物生长和提高产量的作用,是一种很有发展前途的局部灌水技术。

百果园主要种植柑桔、葡萄、水蜜桃、茶等低矮果树,如果采用其它灌水方法,不仅浪费水资源,而且很难保证满足果树的需水量,而滴灌具有省水节能、省工省地省肥、操作简单,易于实现自动化、对土壤地形适应性强、保护和保持生态环境等优点,所以滴灌成为了百果园地首选。

2.1百果园滴灌系统的组成

百果园滴灌系统主要由水源、首部枢纽、输配水管网和尾部设备灌水器以及流量、压力控制部件和测量仪表等组成,如图所示。全园滴灌系统组成示意图:

1.水源2.水泵3.供水管4.蓄水池5.逆止阀6.施肥开关7.灌水总开关8.压力表

9.主过滤器10.水表11.支管12.微喷头13.滴头14.毛管(滴灌带、渗灌管)

15.滴灌支管16.尾部开关(电磁阀)17.冲洗阀18.肥料罐19.肥量调节阀20.施肥器21.干管

2.1.1水源

江河、湖泊、水库、井、渠、泉等水质符合微灌要求的均可作为水源,百果园采用从园中的水库中取水。

2.1.2首部枢纽

百果园的首部枢纽包括泵组、动力机、肥料罐、过滤设备、控制阀、进排气阀、压力表、流量计等。其作用是从水库中取水增压并将其处理成符合微灌要求的水流送到系统中去。百果园中采用五级加压式离心泵,在水库中取水,现取现用,计划建一水塔蓄水。

2.1.3输配水管网

输配水管网的作用是将首部枢纽处理过的水按照要求输送分配到每个灌水单元和灌水器。包括干、支管和毛管三级管道,毛管是微灌系统末级管道,其上安装或连接灌水器。微灌系统中直径小于或等于63毫米的管道常用聚乙烯(PE)管材,大于63毫米的常用聚氯乙烯(PVC)管材。百果园中干、支管采用PVC管和UPVC管,毛管采用PE管。

2.1.4尾部设备

尾部设备是微灌系统的关键部件,包括微管和与之相联的灌水器(小微管、滴头、微喷头、滴灌带、渗灌头、渗灌管等)插杆等。灌水器将微灌系统上游所来的压力水消能后将水成滴状、雾状等施于所需灌溉的作物根部或叶面。

2.2百果园滴灌灌溉系统

灌溉系统的第一期工程是由以色列的普拉斯托公司负责承建,全园采用先进的滴、喷灌相结合的微灌节水技术,是我国南方发展节水农业的典范,其具体情况见下:

2.2.1设计原则

滴灌灌溉系统设计除了满足节水、节能、省力等之外,通常应遵循以下主要原则:

①必须满足果园果树生长对水分的要求;

②灌溉系统设计应结合耕作实际,便于操作;

③应使所选择的灌水方法既能满足作物的灌溉要求,又不因灌溉而造成病害、虫害的发生;

④在尽可能的情况下,灌溉系统设计时应考虑施肥及喷药装置;

⑤在尽可能的情况下,应使灌溉系统在满足灌溉要求的同时,工程建设的综合造价最小。

2.2.2设计步骤

2.2.2.1资料的收集在系统设计时,必须掌握以下资料:

①地形资料:根据实际情况测绘大比例尺地形图,其中包括果园的平面布置、道路、水源位置、高差等。

②土壤资料:主要是土壤理化性质、地下水埋藏深度和土层厚度等。土壤理化性质主要包括土壤类别、干容重、含盐情况、土壤田间持水率等。

③气象资料:区域年均降雨量及季节分布、平均气温、极端气温(包括最高、最低气温)、最大冻土层深度、无霜期、蒸腾蒸发资料等。

④水源资料:水源属性(个人或集体)、种类、水源位置、水质、含沙情况、水位、供水能力、利用和配套情况等。若水源为机井时,还应调查机井的静水位和动水位,当地下水水位较浅时,一定要调查清楚地下水位及其周年变化规律。若水源为渠水时,应调查清楚水源的含泥沙种类、含沙量、水位、供水时间、可能的配水时间等。同时,还应特别注意水源的保证率问题,不论是只用于果园的水源还是与周围大田混用的水源,都应考虑这个问题。

⑤百果园作物种植资料:其中包括作物的种类、种植密度(其中最主要的是行距和株距)等。

⑥百果园的环境资料:包括百果园周围的地形、交通和供电等。

2.2.2.2灌水方法的选择灌水方法选择适当与否,除了影响工程投资外,还直接影响着灌溉系统的效益发挥和灌溉保证率。因此,应根据作物种类、作物的种植制度、种植季节、水源情况、果园设施情况、工程区社会经济情况等,合理地选择相对投资较省、灌溉保证率较高且有利于果园果树生长的灌水方法。百果园灌溉系统的灌水方法采用以滴灌为主,滴喷灌相结合的方式。

2.2.2.3滴灌系统布置,百果园滴灌系统的管道分干管、支管和毛管等三级,布置时干、支、毛三级管道要求尽量相互垂直,以使管道长度和水头损失最小。通常情况下,园内一般出水毛管平行于种植方向,支管垂直于种植方向。

2.2.2.4滴灌灌溉制度的拟定

①灌水定额:是指作为滴灌系统设计的单位面积上的一次灌水量,如果用灌水深度表示,可用式(4-8)计算,即

H——计划湿润层深度(米),一般蔬菜0.20-0.30米深根蔬菜或果树0.3-1.0米;

p——土壤湿润比,70%-90%。

②设计灌水周期:滴灌设计灌水周期是指按一定的灌水定额灌水后,在作物适宜土壤含水率的条件下,保障作物正常生长的可能延续时间T,用式(4-9)计算,即

③一次灌水延续时间:一次灌水延续时间是指把设计灌水定额水量,在不产生径流的条件下,均匀分布于果园田间所用的灌水时间,用式(4-10)计算,即

i.轮灌区数目的确定:(a)对于固定式滴灌系统,轮灌区数目可按式(4-11)计算:(b)对于移动式滴灌系统,则有:

ii.一条毛管的控制灌溉面积:(a)对于固定式滴灌系统,毛管固定在一个位置上灌水,控制面积为

f=SeL(4-13)

式中f——每条毛管控制的灌溉面积(平方米)

L——毛管长度(米),移动式滴灌系统中为出流毛管长度。

(b)对于移动式滴灌系统,一条毛管控制的灌溉面积为

2.2.2.5滴灌系统控制灌溉面积大小的计算在灌溉水源能够得到充分保证的条件下,滴灌面积的大小取决于管道的输水能力。对于水源流量不能满足整个区域需要时,滴灌面积为

2.2.2.6管网水力计算滴灌系统各级管道布置好以后,即可从最末端或最不利毛管位置开始,逐级推算各级管道的水头损失(包括沿程水头损失和局部水头损失)。在设计中,同一条支管上的第一条毛管最前端出水孔处水头与最末一条毛管最末端出水孔处水头之间的差值,不超过滴头设计工作压力的20%,流量差值不超过10%;对于采用压力补偿式滴水器时,仅要求区域内滴头流量差值不超过10%,并据此确定支、毛管的最大设计长度;在滴灌中,由于管网中水流压力通常小于0.3兆帕,所以多选用PVC塑料管道。管道中水流在运动过程中的压力损失通常包括沿程阻力损失和局部阻力损失。工程设计中塑料管道的沿程阻力损失常选用式(4-16)、(4-17)计算,局部阻力损失常用式(4-18)计算。①沿程阻力损失hf

当管道有多个出水口时,管道的沿程阻力应考虑多口出流对沿程阻力的折减问题,多口出流折减系数k,对应计算公式

②局部阻力hj

工程设计中为了计算方便,局部阻力损失也常按沿程阻力损失hf的10%估算。

2.2.2.7管道系统设计包括各级管道的管材与管径的选择、各级固定管道的纵剖面设计、管道系统的结构设计。

①管材的选择:可用于灌溉的管道种类很多,应该根据滴灌区的具体情况,如地质、地形、气候、运输、供应以及使用环境和工作压力等条件,结合各种管材的特性及适用条件进行选择。一般情况下,对于地理固定管道,可选用钢筋混凝土管、钢丝网水泥管、石棉水泥管、铸铁管和硬塑料管。钢管易锈蚀和腐蚀,最好不要选用。随着材料工业的发展,地埋管道多选用塑料管。选用塑料管时一定要注意,不同材质的塑料管在几何尺寸相同的情况下可承受的工作压力相差甚远,特别是在使用低密度聚乙烯管(PE管)时,一定要注意管壁的厚度是否达到了能承受系统所要求压力的厚度,若没有达到,千万不能使用,否则将会埋下隐患,造成运行时管道发生爆破,甚至导致整个管道系统瘫痪。用于滴灌地埋管道的塑料管,最好选用硬聚氯乙烯管(UPVC管)。对于口径150毫米以上的地埋管道,硬聚氯乙烯管在性能价格比上的优势下降,应通过技术经济分析选择合适的管材。塑料管经常暴露在阳光下使用,易老化,缩短使用寿命。因此,地面移动管最好不采用塑料管。

②管径的选择:当轮灌编组和轮灌顺序确定之后,各级管道在每一轮灌组所通过的流量即可知道。通常选用同一级管道在各轮灌组中可能通过的最大流量,作为本级管道的设计流量,依据这个设计流量来确定管道的管径。若某一级管道,其最大流量通过的时间占管道总过水时间的比例甚小,也可选取一个出现次数较多的次大流量,作为管道的设计流量来确定管径。同一级管道的不同管段通过的最大流量不同时,可分段确定设计流量。(a)支管管径的确定:支管是指直接安装竖管和滴头的那一级管道。支管管径的选择主要依据灌溉均匀的原则。管径选得越大,支管运行时的水头损失就越小,同一支管上各滴头的实际工作压力和灌水量就越接近,灌溉均匀度就越接近设计状况。但这样增大了支管的投资,对移动支管来说还增加了拆装、搬移的劳动强度。管径选得小,支管投资减少,移动作业的劳动强度降低,但由于运行时支管内水头损失增大,同一支管上各滴头的实际工作压力和灌水量差别增大,结果造成果园各处受水量不一致,影响滴灌质量。为了保证同一支管上各滴头实际出水量的相对偏差不大于20%,国家标准GBJ85-85规定:同一支管上任意两个滴头之间的工作压力差应在滴头设计工作压力的20%以内。显然,支管若在平坦的地面上铺设,其首末两端滴头间的工作压力差应最大。若支管铺设在地形起伏的地面上,则其最大的工作压力差并不见得发生在首末滴头之间。考虑地形高差Z的影响时上述规定可表示为

许的水头损失即为从式(4-20)

可以看出:逆坡铺设支管时,允许的hw的值小,即选用的支管管径应大些;顺坡铺设支管时,因Z的值本身为负值,其允许的hw的值可以比0.2hp大些,也就是说因支管顺坡铺设时,因地形坡降弥补了支管内的部分水力坡降,选用的支管管径可适当的小些。当一条支管选用同管径的管子时,从支管首端到朱端,由于沿程出流,支管内的流速水头逐次减小,抵消了局部水头损失,所以计算支管内水头损失时,可直接用沿程水头损失来代替其总水头损失,即h''''f=hw,式(4-20)可改写为

滴头选定后,满头的设计工作压力可从滴头性能表中查得。两滴头进水口高程差(实际上就是两滴头所在地的地面高差)可以从系统平面布置图中查取。则h''''f即可求出。利用公式h''''f=FfLQm/db,在其他参数已知的情况下反求管径d,d就是该支管可选用的最小管径的计算值。因管材的管径已标准化、系列化。因此,还需按管材的标准管径将计算出的管径规范取整。对滴灌系统的支管,考虑到运行与管理的方便,最大的管径一般不超过100毫米,并且应尽量使各支管取相同的管径,至少也需在一个作业区中统一。对于固定管道式滴灌系统,地理支管的管径可以不同,但规格不宜太多,同一条支管一般最多变径两次。(b)支管以上各级管道管径的确定:一般情况下,这些管道的管径是在满足下一级管道流量和压力的前提下按费用最小的原则选择的。管道的费用常用年费用来表示。随着管径的增大,管道的投资造价(常用折旧费表示)将随之增高,而管道的年运行费随之降低。因此,客观上必定有一种管径,会使上述两种费用之和为最低,这种管径就是我们要选择的管径,称之为经济管径。经济管径中对应的流速称为经济流速。图4-7就是用最小年费用法计算经济管径的原理示意图。用这种方法确定管径概念清楚,但计算相当繁琐,往往需要分别计算出多种管径的年投资和年运行费,比较后再确定。随着科学技术的进步,计算机技术的飞速发展,许多优化设计方法,如微分法、动态规划法等已在管道灌溉管网的设计中得到应用,具体方法可参阅有关书籍。对于规模不太大的滴灌工程,也可用式(4-22)、式(4-23)的经验公式估算管道的直径:

应该指出的是,由于管道系统年工作小时数少,而所占投资比例又大。因此,一般在灌溉系统压力能得到满足的情况下,选用尽可能小的管径是经济的,但管中流速应控制在2.5~3米/秒以下。

③管道纵剖面设计:管道纵剖面设计应在系统平面市置图绘制后进行,设计的主要内容是确定各级固定管道在平面上的位置及各种管道附件的位置。管道的纵剖面应力求平顺,减少折点,有起伏时应避免产生负压。

ⅰ埋深及坡度:地埋管的埋深指管径距地面的垂直距离,埋深应根据当地的气候条件、地面荷载和机耕要求确定。一般管道在公路下埋深应为0.7~1.2米;在农村机耕道下埋深为0.5~0.9米。地埋管的坡度主要视地形条件而定,同时也应考虑地基好坏及管径大小。一般在地形条件许可的情况下,管径小、基础稳定性好的管道坡度可陡一点;反之应缓些。总的来说,管道坡度不得超过1:1,通常控制在1:1.5~1:3以下。

ⅱ管道连接及附件:地埋管道的连接多采用承插或黏接的形式,转向处用弯头,分水处用三通或四通接头,管径改变处采用异径接头,管道末端用堵头。为方便施工和安装,同类管件应考虑其规格尽量统一。

为了按计划进行输水、配水、管道系统上应装置必要的控制阀。白果园中为了实现灌水的有效控制,设置了30多个电子阀.而且各级管道的首端还设了进水阀或水分阀;当管道过长或压力变化过大时,设置节制阀。为保证管道的安全运行,还安装一些附设装置。自压系统的进水口和各类水泵吸水管的底端应分别设置拦污棚和滤网,管道起伏的高处应设排气装置,自压系统进水阀后的干管上设高度高出水源水面高程的通气管,管道起伏的低处及管道末端设泄水装置,管道可能发生最大水锤压力处设置安全阀。

2.3评价

从整体上来看,XX白果园的滴灌系统是建设的比较完善的一套滴水灌溉系统,设计施工都符合现代滴灌的要求,是一套先进的现代化滴水灌溉系统,而且产生了很好的经济效果。不过当时考虑到经济条件的限制,其毛管采用了单行直线布置,灌水均匀度不高,鉴于对多种毛管布置形式的比较分析,笔者认为百果园应改进为双行毛管平行布置;而且其控制系统自动化程度不高,全园仅能使用微机控制电磁阀的开启,不能精确实现作物的轮灌、对灌水时间和灌水量都不能实现有效的控制,故需进一步对其控制系统加以设计改进。正在建设的二期工程应该吸收一期工程中的好的经验,改进一期工程中的不足,特别是应该实现灌水的全自动控制。

3灌溉自动化控制系统

灌溉中的滴灌系统,能很方便实现自动化控制,灌水的自动化控制能有效的实现节水灌溉,也是农业实现现代化的要求。对微灌的自动化控制,根据控制系统运行的方式不同,一般可分为手动控制、半自动控制和全自动控制三类:

①手动控制系统

系统的所有操作均由人工完成,如水泵、阀门的开启、关闭,灌溉时间的长短,何时灌溉等等。这类系统的优点是成本较低,控制部分技术含量不高,便于使用和维护,很适合在我国广大农村推广。不足之处是使用的方便性较差,不适宜控制大面积的灌溉。

②全自动控制系统

系统不要人直接参与,通过预先编制好的控制程序和根据反映作物需水的某些参数可以长时间地自动启闭水泵和自动按一定的轮灌顺序进行灌溉。人的作用只是调整控制程序和检修控制设备。这种系统中,除灌水器、管道、管件及水泵、电机外,还包括中央控制器、自动阀、传感器(土壤水分传感器、温度传感器、压力传感器、水位传感器和雨量传感器等)及电线等。

③半自动控制系统

系统中在灌溉区域没有安装传感器,灌水时间、灌水量和灌溉周期等均是根据预先编制的程序,而不是根据作物和土壤水分及气象资料的反馈信息来控制的。这类系统的自动化程度不等,有的一部分实行自动控制,有的是几部分进行自动控制。

为了对先进的滴灌自动化控制系统有具体认识和了解,下面我们将对滴灌的自动化控制作详细介绍:

3.1滴灌首部控制枢纽

滴灌自动化系统的基本控制方法有:时间控制、水量控制和反馈控制三种。时间控制系统是按预定好的时间放水或关水;水量控制系统是按照设计的配水量放水或关水;反馈控制系统是根据灌区内湿度感受器的反应,然后将信号传送到首部控制枢纽部分来关水或放水。滴灌系统更便于完全实现自动化,这在地多人少、劳力紧张的边远地区,沙漠地带的防护林区,铁路路基沿线,经济力量雄厚的城郊蔬菜种植区显得特别重要。目前,国外发达国家在滴灌区普遍使用了计算机管理系统,并通过专用的滴灌系统软件来控制和检测作物生长、土壤状况和气象趋势,取得了良好的效果。大大提高了现代化的土壤水分、作物生长测定技术的可能性和实用性,具有农艺上的综合性,为人们充分利用现代化仪器设备在滴灌系统中应用提供了巨大的潜力。滴灌系统软件根据作物对水分的需求和土壤墒情制定出合理的灌溉计划和作物管理计划。

3.2作物生产管理计划制定

控制软件系统应能提供一套科学的管理系统,它通过提高作物产量和品质以及减少用水量来提高水分利用效率,能给农民及有关用户提供一套针对灌溉方案制定作物生产管理的先进、完善的管理系统,用户能够使用它获得他们的每一块农田的土壤水分状况图,方便的数据资料存取能够得到每一块农田的准确土壤水分含量,还能够确定准确的日水分利用量,能够给每块农田制定出合理的灌溉管理决策,能够根据每一块农田各自的灌水量需求对不同农田进行灌溉优先排序,以便制定优化灌溉计划使农场或用户获得整体最高产量。

控制软件系统应能允许灌溉管理者根据作物水分需求和作物对灌溉的反应制定合理的灌溉计划,作为一个完整的灌溉计划和作物生产管理软件包,它能够对灌溉决策的制定和作物管理进行数据资料存储、运算处理、显示输出。土壤水分数据资料主要由中子探测仪、石膏电阻块和张力计测定获得。天气数据资料由自动气象站获得,作物生长资料如籽粒大小(直径)、株高和叶片硝酸盐含量等可直接田间测定,根据相应的作物响应,作物生长资料结合土壤水分资料能够制定出合理的灌溉计划,通过实际调查能够提高作物产量、品质和水分利用效率的管理技术能够详细地验证作物生长、土壤水分和气候之间的关系,因此能很好地解决一些灌溉管理和作物生长问题,其中包括过量灌溉导致的灌溉水排渗问题、肥料向根部以下淋溶损失问题以及为了达到高产稳产目标的籽粒重和穗粒数或结果率的控制管理问题。

3.3滴灌系统灌溉计划制定

滴灌系统灌溉计划一般是指确定何时进行灌溉及应该的灌溉量,灌溉计划的应用可消除代价巨大的不可预测的农业灾害,如在作物生长临界期由于土壤类型和作物自身生长能力,不同的农田具有不同的土壤水分亏缺量和日水分利用量,因此不同的农田需要不同的灌溉计划。农民通过土壤水分测定技术利用软件处理和显示不同层次土壤水分特征,能加深对发生于土壤内的各种过程的理解,以便进行更精细的灌溉计划和灌溉管理决策的制定,以确保土壤水分总是保持作物生长所需的最佳含水量。

当土壤水分和被作物利用的水分的准确数量被测定后,通过软件可以计算下一次滴灌的日期和准确的灌水量,它将考虑当前每天水分利用状况、天气变化和历史资料来帮助管理者制定以后的灌水计划。它把农田从最干到最湿分为不同等级。了解需要灌溉补充的水量有助于协调不同用户之间和同一用户内部的水分供给,充分了解雨后何时开始灌溉能使农民最大限度地利用自然降水,而把灌水过多和灌水不及造成地危险减到最小。

3.4土壤水分时间图和深度图的应用

3.4.1时间图时间显示某一指定土壤容积含水量、根区土壤含水量或作物响应随时间的变化。时间图的基本显示:直线表示根区土壤含水量的饱和点和需灌溉补充点;供给的和有效的灌溉和降雨情况;箭头指示预测的灌溉日期;关于水分饱和点、需灌溉补充点、当前和过去的土壤水分测定值及计划安排的灌水日期和灌水量的总结表;作物生长及其对灌溉管理技术措施的响应;该软件所做的时间图可进行大小调整,通过调整纵坐标轴上的最大值和最小值及横坐标上的日期范围能够把图形中用户想要的区域或作物生长期内的某特定阶段的图形放大。图形能够进行叠加来同时比较不同地点的田块或不同年份的数据。当季和前季的作物的生长,土壤水分和天气资料的叠加图形比较灌溉管理达到高度的协调一致。用户可以选择任何关键数据来建立相互作用关系图。

3.4.2深度图深度图显示土壤容积含水量沿土壤剖面随深度的变化而变化的情况,通过该软件和现代化仪器结合能够迅速直接测定和分析土壤水的剖面分布情况。根区吸收水分模式可以在深度图中看到,对深度图分析能使农民确定每一种农作物包括块根作物在土壤剖面中被研究的土壤体积范围和土壤剖面的每一深度层的作物利用的水分数量、土壤紧实度、土壤质地变化、高石灰岩含量、地下水位和盐分等问题能够通过对根部活动的仔细分析而发现。深度图也可以用来确定渗入和排出土壤剖面的水分的运动状况及深度和数量,从中能够给定灌溉饱和点和需灌溉补充点的准确设计值。灌溉或降水后从土壤的根区排出的水分数量能够通过深度图准确测定,根据可以调节灌溉所用时间以避免水分从土壤剖面排出而损失,控制土壤剖面排出水的数量将防止地下水水位地升高和土壤养分的淋溶损失,同时也将降低灌水及滴灌水及抽水的成本。深度图是一个非常有用的工具,能够解决在不同类型土壤中灌溉水的水平和垂直运动的关键问题,通过分别绘制灌溉前和灌溉后距滴管不同距离的各个点的土壤水分含量图可比较灌溉水的运动状况,用户能够利用研究所得的结果来减少水分和肥料排渗,同时确保作物根系能够一直得到适量的水分。

3.5软件的程序特点

3.5.1程序结构滴管软件的数据存储于一个树状结构,这使得制定灌溉方案是查询数据资料非常方便。管理人员可能负责管理几个农场或几块农田,每个农场或农田可能有许多检测点,每一个检测点都有一套不同时间收集的实际测定的读数记录。输入的数据经过计算机软件处理,能显示有关每一单个田块的详细资料,还能够向农民分别显示每一年的作物种植的详细资料。能够显示农场的每个监测田块或某一年份的每一监测点的情况,指明灌溉饱和点和需灌溉补充点,当前作物日水分使用情况,土壤水分平衡和预测出的三次灌溉的日期,土壤水分含量和作物日用水量的测定值,对未来作物在整个生长季节的长期的用水量作出估算。显示某一具体的时期的每一深度层的土壤水分含量的读数记录和根区的总水分含量,同时显示土壤水分需要量,中子仪测定并估算的日水分使用量。利用滴灌软件可进行数据资料综合分析,从中总结重要的信息形成报告,以帮助制定每日的管理决策方案。同时也可以编辑出前几个生长季的作物生长、水分管理。土壤等数据资料,并进行综合分析,为以后的灌溉方案制定提出更合理更完善的评价标准。该软件程序的所以结构层次能为所选择的农场、监测点和某一日期建立报告。报告分为五种:深度图、时间图、记录读数报告。监测点报告和灌溉计划报告。用户可以根据自己的需要已及自己微机系统对程序进行修改编译,选择公制和英制计量单位进行数据资料综合分析,将田间测定得到的数据读数记录自动粘贴到没一个具体的农场栏、监测点栏和日期栏。每一个监测点的测定日期,时间及估计的水分日利用量能够在粘贴之前输入。

3.5.2数据输入在读数记录屏幕中可以人工录入和显示田间实际收集的数据,如土壤水分张力计的读数、作物籽粒大小。有关作物的数据可以测定得到,作物生长参数与土壤水分含量相关联可以确定作物生长期的水分需求量。气候数据资料可以人工输入或由气象站自动装载。天气数据参数的个数没有限制,它可以与任一个作物生长测定值和任一水平的土壤水分含量相关联制作相互作用关系图。从气象数据资料中可以得到蒸发损失的总水分量的数据并且把它与测定的日水分使用量相比较来调整该地区的作物灌溉计划。

3.5.3软件的数据处理利用滴管软件可以计算使土壤剖面达到灌溉饱和点所需的准确时间数。同时计算自从播种或其他生长时期(如发芽、开花等)以来的天数,使土壤水分能够与过去多年的作物生长资料数据参数同步分析,以确定作物水分利用效率。使用作物累积日水分方程。能够很好地评估作物总产量,尤其是对于玉米、小麦和棉花。可以通过作物-水分方程和气象资料估算理论产量。通过速率方程,计算作物生长速率。计算作物当前日水分利用量占整个生长季日水分利用量地比例。同时也可计算不同水分含量地土壤水分变化速率,这些速率地变化表明土壤紧实问题和土壤干旱地程度。滴灌软件可以分析某一作物在生长季内日水分利用状况地资料。结合现代先进地土壤水分测定仪器使用,该软件能够指导我们最有效地利用有限的水资源获得最大农业效益。例如能够确定每次灌溉的准确时间和灌水量。同时减小过量灌溉和水分不足对产量的影响。建立各种不同作物之间水分利用及水分利用效率的差异;建立如不同品种、土壤紧实情况、不同的耕作史等不同条件下水分利用及水分利用效率的差异;建立现代耕作技术和传统耕作技术条件下的水分利用效率的关系。确定灌溉和降水的利用效率,用以观察分析根系吸收水分模式。有助于合理管理地下水和盐化问题,能够减少土壤养分的淋溶损失问题。建立土壤水分含量、作物长势及天气状况的数据库以使作物产量和质量获得持续稳定的提高,使高效农业可持续发展。

3.6灌溉自动化控制系统

要实现灌水的自动化,必须有自动灌溉控制器,该装置由土壤湿度传感器、控制器和电磁阀组成,能够按土壤墒情和作物需水特性实施自动灌溉(沟灌、喷灌、滴灌、渗灌),达到高产、高效、和节水的目的。适用于庭院花圃、苗圃、果园、菜地和农地。随着经济发展,庭院花圃、苗圃水分的自动灌溉倍受欢迎。它能省水省事,使花木生长更好。一亩庭院花圃、苗圃地投资1.0-1.5万元,可以建立自动灌溉控制系统。自动灌溉控制系统可以实现科学灌溉,节能、省水,使菜地和农地产量和质量明显提高。智能化,精准化灌溉技术是伴随着计算机应用技术、传感器制造技术、塑料工业技术的提高而逐步实现的

自动化计算机灌溉控制系统大约在80年代初由雨鸟公司、摩托罗拉等几家公司开发、研制成功,并投入使用。由于技术复杂、应用难度大,价格高昂,这种控制设备最早应用于高尔夫球场灌溉系统的控制上。90年代,计算机工业的硬件、软件飞速发展,使得灌溉系统中央计算机系统操作难度越来越小,功能越来越丰富,价格也逐渐降了下来。这种系统在园林绿化上用得也越来越多了起来,雨鸟公司针对不同用途,研制、开发出了中央计算机控制系统:Maxicom

智能化灌溉中央计算机控制系统具有如下功能:

①动采集各种气象数据,计算并记录蒸发蒸腾量ET;

②根据前一天的ET值自动编制当天灌溉程序并实施灌溉;

③可由连接的土壤湿度传感器、风速传感器、雨量传感器等干涉程序,启动、关闭、暂停灌溉系统;

④连接流量传感器可自动监测、记录、警示由于输水管断裂引起的漏水及电磁阀故障;最大限度利用管网输水能力;

⑤运行程序而不起动灌溉系统(干运行),测试程序合理性,不合理时预先修改;

⑥自动记录、显示、储存各灌溉站的运行时间;自动记录、显示、储存传感器反馈数据,以积累资料,修改程序,修改系统等。

⑦频繁灌溉功能:可将设计好的灌水延续时间分成若干时段,以便提供足够的土壤入渗时间,减少坡地或粘性土地地面径流损失。

⑧一套中央计算机系统可控制无数台田间控制系统(称为卫星站),一套中央计算机控制系统可控制小到一个公园,大到上百个公园,甚至全城的所有灌溉系统。

⑨储存数百套灌溉程序;一台田间控制器(卫星站)可使4个轮灌区独立灌溉或同时灌溉。

⑩手动干涉灌溉系统:可在阀门上手动启、闭系统,可在田间卫星站上手动控制系统,也可在计算机上手动启、闭任何一站,任何一个电磁阀。可控制灌溉系统以外的其它设备,如:道路或公共场所灯光,大门、喷泉、水泵等

自动化中央计算机控制系统主要由中央计算机,集群控制器(CCU),田间控制器(卫星站),电磁阀构成。中央计算机可装置在任何一个地方。比如:一套中央计算机系统控制50个公园的灌溉系统。中央计算机可安装在市园林局认为合适的位置。CCU安装在各个公园内。中央计算机与CCU之间的通讯,可采用有线连接(近距离),无线连接,电话线连接或移动通讯方法连接。一台CCU最多可连接28个田间控制器。CCU与田间控制器之间同样可选上述数种通讯方式。由中央计算机到终端电磁阀的工作过程为:中央计算机编程,并将程序下达到CCU。CCU将各轮灌区灌溉控制程序再发到相关田间控制器。田间控制器依中央计算机制作的程序启闭各轮灌区电磁阀。如下图所示:

中央计算机上的初始程序由控制人员编制,之后,计算机每日自动收集由气象站采集的气象数据,计算ET值,并不断对原有程序自动修改。如遇传感器传来异常信息(如降雨,过分干燥,系统漏水...),自动中断或暂停程序,待异常情况排除后,继续恢复程序运行。

如果将智能泵站连接到中央计算机控制系统上,则效果会更好。这样从水泵到电磁阀之间复杂的系统将由一个高度智能化的系统管理起来,可做到最大限度地节水、节能,最大限度地保护系统设备运行,避免灌溉系统常发生的下列几种问题:

①过量灌溉或灌水不足,浪费水资源或不能满足植物需水;

②管网破裂,漏失水;

③系统运行压力不合理;

④水泵运行效率低下;

⑤地形起伏不平时或土壤入渗率低产生地面径流,浪费宝贵的水资源;

⑥降雨时,灌溉系统照常灌溉;

⑦管理、维护成本高。

3.7百果园灌溉的自动化控制设计

百果园一期工程灌水基本实现了半自动化控制,可以使用电脑控制各电磁阀的开启。我们可在其基础上加以改进与提高,使其实现灌水的全自动化,具体见下:

3.7.1控制原理

自动化控制采用电子技术对田间土壤温湿度、空气温湿度等技术参数进行采集,输入计算机,按最优方案,控制各个阀门的开启及水泵的运行状态,科学有效地控制灌水时间、灌水量、灌水均匀度,为项目区作物提供一个良好的地、水、肥、气、热条件,促使其高产、稳产。同时进行控制软件及优化灌溉制度的研究,最终形成灌溉专家决策系统。另外,通过变频器控制改变电机转速,调节管道压力,为管道、滴灌等其他灌溉工程的自动化提供依据。具体包括以下几个方面:

①田间土壤含水量、盐分、地温、空气温度、湿度、降水、风速、管道压力等参数的自动化采集

②自动化控制设计安装

③监控软件设计

④变频系统设计,通过改变水压力,为微喷、滴灌等工程的自动化提供依据

⑤系统运行管理模式评价,包括系统评价、灌水指标、灌溉制度等

3.7.2控制系统的组成

欲实现真正意义上的全自动控制,需要控制田间参数及对象很多,例如土壤湿度、盐分、空气温度、相对湿度、降水量、风速、管道压力、阀门开启、水泵电机旋转等,都要送入控制器。考虑到要控制的对象较多,又要满足良好的人机界面要求,可以采用工业控制计算机作为整个控制系统的核心,来协调各部分的工作。

系统的组成如下图所示,整个系统的工作主要工控机和变频器两部分来控制,其中变频器主要用于控制水泵电机的旋转,工控机主要用来采集田间土壤及气象指标,按照设定的程序,控制各地块中电磁阀的开启,并通过变频器控制电机的运行状态,协调整个系统的工作。

3.7.3监控软件监控软件是工控机能够完成控制功能的重要基础,监控软件设计的好坏直接关系到整个系统的质量和可靠性。根据项目要求及滴灌的特点,笔者建议百果园采用雨鸟公司的“Maxicom”中央控制系统,该软件只需用户输入各地块种植作物种类及种植日期,系统便会自动计算当前作物所处生育期,确定出各自要求的土壤状况及气象信号,控制水泵电机的运行状态及阀门的开启,自动完成整个灌水过程,完全不需要人工干预,实现全自动控制。

该控制软件在此所完成的主要功能及特点如下:

①自动采集田间数据:系统根据软件中所预先设定的时间,自动地采集土壤湿度、温度风速、雨量等参数,进行相应的处理后,实时显示在屏幕上。

②作物生育期的判断:当管理人员输入各地块所种植的作物及种植日期后,系统便根据计算机时钟自动计算出各种作物已种植的天数,判断出作物所处的生育期,自动查找资料库中所存的原始资料,确定出当前作物最适宜的土壤含水量及灌水定额。

③滴灌的全自动控制:系统采集田间及气象数据后,将当前各地块土壤含水量与作物适宜含水量相比较,若土壤实际含水量小于作物要求下限值,便自动开启该地块的第一个电磁阀。进行灌溉。达到所需灌水定额后,自动关闭第一个电磁阀,同时开启下一个电磁阀,直到完成整个地块的灌溉任务。灌溉过程中,若出现温度过低、风速过大以及降雨过程等天气时,系统会自动暂停当前的灌溉任务,并保存当前状态。当气象条件满足时,继续进行未完成的任务。

④形式多样的控制方式:全自动控制外,系统还允许管理人员采用半自动、手动等控制方式。全自动方式只需运行人员输入各地块的作物信息,系统便会根据作物、土壤、气象等条件自动完成灌溉的全过程,无需人工干预。所谓半自动方式,是指系统允许用户根据实际情况控制开停机。用户可人为启动某个阀门,或某个地块,甚至是所有地块均轮灌一次。当然这些操作全部都是通过键盘或鼠标来完成的,而且在工控机屏幕上均有明显的提示。所谓手动方式是指人工去开启各个电磁阀,笔者建议百果园选用美国雨鸟公司生产的电磁阀:手动、电动两用阀门,既可手动,又可电动,使用非常方便。当手动打开某个电磁阀时,喷头出水,主干管道压力开始下降,系统会自动通过变频器升高水泵电机转速,维持管道压力的恒定,直到完成灌溉任务。

⑤丰富的办公自动化功能:系统在运行过程中,可自动生成各种定时、日、月、年报表,并通过打印机打印出来。其内容包括各种气象及土壤参数,可从各报表中得到土壤湿度变化曲线、日最高风速、月平均气温、全年总降水量等原始资料,为用户研究当地的气象及土壤变化情况提供翔实的依据。

⑥良好的可维持性:可维护性是衡量软件质量好坏的重要指标之一,在编写本系统时我们也充分考虑了这一点,例如用户在种植一类新作物时,可能系统的资料库中并没有该作物,便无法确定其适宜土壤含水量和灌水定额。此时,用户可按自定义按钮,通过鼠标各键盘输出这些参数,系统便会根据用户所定义的数值运行。另外,用户还可很方便地修改灌水定额、管道压力等参数,满足实际情况的需要。

⑥友好的人机界面:系统中大部分界面均为示意图形,实时显示各传感器送来的数值及系统当前的运行状态,一目了然。需要用户操作的部分全部为中文界面,工作人员无需学习便可完成所有操作。另外,在任一界面下,用户都可以通过按帮助按钮得到相应的提示,指导用户完成相应的功能。

3.7.4效果

百果园通过增加自动化控制系统后,灌水时间、灌水量和灌溉周期等完全根据果树某些需水参数自动启闭水泵和自动灌溉,人的作用仅仅是调整控制程序和检修控制设备。既提高了水的有效利用率,又节省了人力,同时也提高了果树的产量,可以产生良好的经济效果。

3.8第二期工程的设想

正在建设第二期工程计划今年完工,第二期工程的滴灌系统我建议基本上参照第一期工程建设,也采用滴喷灌相结合的方式,其水源计划应采用水塔蓄水,用以缓解枯水期水库少水的矛盾,该可以区采用先进的电脑全自动控制方式,实行精确灌水,管道布置采用固定式(干管、支管)和移动式(毛管)的有机结合。二期工程应该吸收一期工程中的好的经验,改进一期工程中毛管布置形式的不足,还特别是应该增加灌水的全自动控制部分,实现灌水的全自动化,精确控制作物的有效灌水。

4存在的问题及建议

通过对滴灌系统的学习与认识,笔者系统的学习了滴灌这种先进的果园节水灌溉方法,在实践的基础上深化了理论,并对滴灌和滴灌系统有一些不成熟的认识与建议。

4.1滴灌的优缺点

4.1.1百果园滴灌的优点

4.1.1.1水的有效利用率高,在滴灌条件下,灌溉水湿润部分土壤表面,可有效减少土壤水分的无效蒸发。同时,由于滴灌仅湿润作物根部附近土壤,其他区域土壤水分含量较低,因此,可防止杂草的生长。滴灌系统不产生地面径流,且易掌握精确的施水深度,节水效果达50%-90%。

4.1.1.2环境湿度低,滴灌灌水后,土壤根系通透条件良好,通过注入水中的肥料,可以提供足够的水分和养分,使土壤水分处于能满足作物要求的稳定和较低吸力状态,灌水区域地面蒸发量也小,这样可以有效控制保护地内的湿度,使果园中作物的病虫害的发生频率大大降低,也降低了农药的施用量。

4.1.1.3提高作物产品品质,由于滴灌能够及时适量供水、供肥,它可以在提高农作物产量的同时,提高和改善农产品的品质,使果园的农产品商品率大大提高,经济效益高。

4.1.1.4滴灌对地形和土壤的适应能力较强,由于滴头能够在较大的工作压力范围内工作,且滴头的出流均匀,所以滴灌适宜于地形有起伏的地块和不同种类的土壤。同时,滴灌还可减少中耕除草,也不会造成地面土壤板结。

4.1.2百果园滴灌的缺点

4.1.2.1滴灌的滴头很容易堵塞和磨损,产生灌水的不均,严重影响节水效果。

4.1.2.2滴灌的各管道的压力有所差异,会产生局部压力过高而使管道容易损坏,滴头的压力不均甚至会产生雾化,损坏滴头,浪费水资源。

4.1.2.3滴灌一般仅润湿作物根系区土体的一部分,所以作物根系的发展可能限制在围绕每一滴头的湿润区,这样容易产生作物根系的腐烂,进而引起作物倒伏。

4.1.2.4滴灌的管道布置要充分利用当地地势与地形,在原则的基础上加以灵活运用,如干管的布置、毛管的布置,取水方式等。

4.2滴灌的建议

4.2.1百果园应加强灌水的自动化控制,保证各种果树的精准灌水,实现精确的节水灌溉

4.2.2滴灌的水量应该有保证,应该建一水塔蓄水,确保枯水期各种果树的需水要求

4.2.3滴灌的毛管布置应采用单行带环形状态管布置和双行平行布置相结合,确保果树灌水均匀度。

4.2.4滴灌技术的应用应该和其他节水灌溉技术相结合,互相补给,更好的发挥优势。

篇4

论文关键词:劳资关系;改善;思路

处罚意味着主体违反了某种受强制保护的规则后的社会代价,或者说是报应的成本。我们现在主要讨论的是用人单位对劳动者的处罚,即资本对于劳动力的控制的表现形式。

一、劳资关系存在的问题

目前用人单位处分劳动者的合宪性、合法性、人道性、合理性以及科学性都不同程度的存在问题,作为两个利益并不完全重叠甚至相对对立的利益范畴,实务中的不规范现象亟待解决,这是我国各种使用劳动力的经济实体所面临的共同的人力资源的管理难题。

1、处罚的范围存在的问题。在我国的各类企业中,企业对员工实施罚款司空见惯。

2、处罚的依据存在的问题。《企业职工奖励条例》、《国营企业辞退违纪职工暂行规定》、《关于〈企业职工奖惩条例〉若干问题的解答意见》、《全民所有制公司职工管理规定》、《关于贯彻执行〈企业职工奖惩条例〉的实施办法》以及劳动部关于《企业职工奖惩条例》有关条款解释的复函作为企业处罚劳动者的依据,但是由于年代久远,其不适应性早已成为不争的事实。

3、处罚合理性存在的问题。《奖惩条例》第十二条规定,对职工的行政处分分为:警告,记过,记大过,降级,撤职,留用察看,开除。在给予上述行政处分的同时,可以给予一次性罚款。但是没有严格的实施界限,企业自由裁量的范围较大,有的企业只是选择性的将这些惩罚措施变通使用,甚至有的企业与行政处罚法中的人身罚,行为罚、申诫罚、经济罚的处罚方式混同,这些模仿国家机关工作人员的内部处分条例有着明显的行政痕迹,且各企业中普遍存在奖惩不对称的问题。

4、处罚的程序存在的问题。虽然我国《劳动法》第4条规定:“用人单位应当依法建立和完善规章制度,保障劳动者享有劳动权利和履行劳动义务。”但总的来看,我国劳动法律对用人单位如何“依法”制定内部规章制度规定的较为简略,对于内部规章制度的调整缺乏一整套的法律规范,如应遵循哪些原则、应包括哪些内容、如何保证法定程序得到遵守、违法责任等问题,我国目前的劳动立法都存在着空白。

5、惩罚的救济存在的问题。对于劳动者而言,劳动仍然是谋生的手段,而不是可有可无的活动。因此劳动者只能通过与生产资料相结合,以获得生活的条件。而对于生产资料的所有者,其不存在谋生的问题,而存在获利与否的问题。

6、处罚的主体存在的问题。劳动者实施处罚的主体,是指法律规定有权设定处罚规章以及执行处罚的主体或部门。

二、缩小处罚范围

首先,因为经济惩罚手段一方面会对员工心理造成冲击,一方面企业和劳动者对当时情景是很难进行举证的,在这种劳资纠纷中,事实很难澄清,容易引起劳资矛盾。其次,本文前面已经分析了企业员工管理处罚系统的具有可替代性的。再次,应当立即让罚款和经济性处罚淡出用人单位对劳动者处罚的范畴,严禁侮辱歧视性的处罚手段。我国劳动法应当明确禁止用人单位对劳动者采取罚款和经济性处罚措施。最后,应当吸收行政处罚法的处罚原理禁止用人单位对劳动者的同一个错误行为进行两次处罚,并规定雇员错误免除处罚的期限。

三、再造对劳动者处罚的流程

篇5

(二)人为因素。人为因素主要分为两种,一种是当人际关系出现不融洽现象时,有人利用毁坏计算机中重要信息,或对计算机中的相关数据进行篡改、删除的手段进行恶意报复,达到制造麻烦的目的的有意行为;另一种是指计算机操作或管理人员由于自身技术水平较为低下,在对计算机的操作过程中产生了错误操作导致计算机安全配置不当等无意行为。但无论是有意还是无意,在众多可能的人为因素面前,计算机仍然面临着许多安全威胁。

(三)相关法律规定不完善。相关法律体系的不健全现象无法为计算机安全管理提供有效的保障,即使国家已经对其加以关注,制定了相关的法律,但这些法律法规还是存在着许多漏洞,许多不法分子仍然在法律的制约下轻而易举的钻了空子。因此,国家还需对计算机安全保护的问题加以重视,使不法分子没有可乘之机。

(四)系统运维管理不规范。计算机的运行维护管理主要包括制度、机构建设、人员三个方面。制度管理主要是使得计算机操作人员或管理人员在对计算机进行操作时有理可循,有据可依,不会使计算机系统出现无序运行的现象,避免安全漏洞的产生;机构建设管理则是在计算机系统安全出现问题时可以将其有效解决的重要途径,对于防止问题频发起着关键作用;内部人员对单位计算机的操作情况极为熟悉,因此加强内部人员的管理是防止人为因素中有意破坏行为的关键。但在许多单位都存在着系统运维管理不规范的行为,把握不好制度、机构建设与人员管理三者的关系,对计算机安全产生威胁。

二、计算机控制自动化中的安全管理技术

(一)网络加密。计算机网络加密技术是对重要信息数据进行保护的重要手段,在信息传递的过程中采用乱码的形式,之后再进行信息数据的还原。其主要包括算法与密钥;两种元素,算法用来生成密文,密钥用来解密、编码。

(二)隐通道技术。运用隐通道可以实现由低安全级别向高安全级别主体发送信息,且不易被检查与控制,用户可以以反向思维进行信息传递。隐通道技术的运用可以有效的预防重要信息、数据、文件的泄露。

(三)水印技术。在不影响原内容的情况下,通过某些算法将需要隐藏的信息加印到原内容载体上,这种水印技术的运用能够有效的避免非法盗取信息的现象发生,也是进行数据信息保护的重要研究发展方向。

(四)防火墙技术。防火墙技术为网络通信进行访问控制,对每一个连接进行检查,防止网络遭到外界的干扰。在防火墙使用的过程中一定要保证使用方法的准确性与防火墙设计的合理性,只有这样才能保障网络的安全性,才能将不安全服务进行屏蔽,降低风险,提高网络环境的安全度。

三、计算机安全管理工作中的防范措施

(一)提高管理人员素质。在计算机的安全管理工作中人的作用是非常关键的,对于相关管理人员进行工作技能的培训,加强对其思想道德、职业道德的培养,使其加强对计算机安全管理工作的重视。计算机安全管理工作是不可以仅靠控制自动化来完成的,因此发挥人的主观能动性对计算机安全进行管理是非常必要的。

篇6

1.污水处理可能对三峡库来说还算是一个新星的行业,在三峡库区新建的污水处理厂中,大部分设置了自动化控制系统,力求对整个污水处理过程实行全面监控。但由于这项工作尚处在实践摸索阶段,与国外水平相比存在较大差距,主要问题是:

(l)主要控制设备功能不稳定,特别是在线仪表的准确性和稳定性来看,不能完全达到由计算机控制的要求。

(2)自控水平低,距智能化自动控制还有很大差距。

(3)运行条件变化范围大,某些工艺环节尚在不断调整。

(4)运行操作人员尚不能对工艺进行全方位控制操作。

由于以上条件限制,大多数污水处理厂的自控系统只能发挥监视和对部分设备进行远程控制的功能。长寿污水处理厂针对以上问题,自2003年5月试运行到现在来看,根据实际运行,并通过对部分设备的改造和完善,加之对现场运行操作人员的技术培训,使中控室具有集中控制、监视、现场故障报警等功能。操作人员可在中控室进行操作,为安全稳定运行提供了保障。

2.长寿排水公司自控概况

长寿污水处理厂处理长寿区20万人生活污水及工业废水,我厂监控系统采用工业以太网集中控制系统。此系统包括1个监控中心(中控室)、6个现场PLC站(模拟屏PLC0、配电间站PLC1加药间站PLC2、脱水间PLC3、PLC4站和紫外光PLC5站)。配电间站主要控制提升泵站、格栅井、沉砂池、氧化沟、二沉池、回流泵站、剩余泵站、贮泥池的自动运行;模拟屏站主要对模拟屏的数据处理控制;加药间站主要是对加药间的自动控制;脱水间2个站分别对1号和2号脱水机进行自动控制,紫外光站是对紫外光消毒系统进行控制。中控室则对全厂设备的控制操作及监视。现场分站采用的PLC可编程控制系统是美国AB公司以太网系统。

3.对设备的改造与完善

长寿污水处理厂从试运行以来,由于现场电气及机械设备存在一些问题,直接影响了自控系统的正常运行。根据存在的问题,结合实际运行情况及工艺要求,对自动化控制系统的现场控制设备进行了部分技术改造。

3.1对现场一些设备进行改造

由于我厂增加了一台脱水机和PLC柜,为了把新增的这台脱水机PLC柜的运行信号联到中控室,避免重新进行布线。使用交换机联接两台脱水间PLC柜,通过一根信号线接到中控室交换机。改造现场和配电机曝气机的二次控制回路,解决了中控室不能控制曝气机启停的问题。

1号2号氧化沟的变频曝气机由于控制转换开关处在开关柜

控制和机旁控制方式时,变频器模拟量4~20mA电流输入电路断开,使得不能输入变频器运行频率,变频器控制失效,不能运行。经考虑,短接模拟量电流输入的转换开关控制回路。

变频器频率信号(模拟量)、运行信号(开关量)没有输出给

PLC,使得上位机无法判断曝气机是否运行。过后经自动化人员改进后,只给出变频器频率信号(模拟量),运行信号可有可无(开关量)。

3.2对PLC源程序的修改、优化

试运行中,我厂由于采用的是巡检制度,将各分散值班点集中到中心控制室值班操作。所以必须对比较重要的报警参数根据实际情况做进一步的修改。通过对PLC可编程控制器的源程序进行修改、编译,主要是启停液位、报警液位、逻辑控制、出水流量、加药间液位、提升泵站液位差等。不仅实现了设备按工艺流程运行的要求,而且机械设备运行的准确性、安全性有了很大提高,电气故障大为减少。故障点检查也很方便,大大降低了电气设备的故障率,使现场自动运行更加稳定。更主要的是为自动化控制的顺利实现创造了条件。

另外对高压配电系统和一套独立的监控系统,如出现任何故障不仅有指示灯光报警,而且还配有语音报警系统,使值班人员一目了然,可清楚地判断故障发生的部位并做及时处理,避免事故的发生。

3.4安装视频监视系统的

为了让操作人员真正在中控室控制全厂、监视全厂、管理全厂,长寿污水处理厂于2002安装了BAXALL系列摄像机视频监视系统。它配合原有的自控仪表,对进水粗格栅、细格栅、提升泵、排砂泵、搅拌机、砂水分离机、氧化沟曝气机、二沉池、回流泵站、剩余污泥泵站、脱水间、办公室等10多个场所的现场情况,进行24小时全天候监视。

这套视频监视系统运行可靠。在中控室里,通过对摄像机的遥控。可以监视全厂20多个部位工艺设备的运行情况。如果按工艺流程在现场巡查一遍,需要30分钟左右,而通过视频监视系统,几分钟就可以对全厂工况浏览一遍,大大提高了工作效率。

3.5提升泵站和格栅井的控制

污水提升泵站安装两台潜水泵一用一备,在上位机设定常用/备用,按如下原理进行控制:

当泵站内水位达到1.70m时,一台泵启动;

当水位降至0.80m时,水泵停机,并发出报警信号。

粗、细格栅分别有时间控制/液位差控制,2种控制方法,我厂现在用的是时间控制。

格栅井安装粗、细格栅机两台,运行依据其前、后超声波液位差计测得的水位差进行控制。

当粗格栅机前,后超声波液位差计测得的水位差超过20cm,粗格栅机、皮带轮输送机自动开机。

当粗格栅机前,后超声波液位差计测得的水位差降至10cm,粗格栅机、皮带轮输送机自动停机。

当细格栅机前,后超声波液位差计测得的水位差超过30cm,细格栅机、螺旋输送机,压榨机自动开机。

当细格栅机前,后超声波液位差计测得的水位差降至20cm,细格栅机、螺旋输送机,压榨机自动停机。

粗格栅、细格栅还可以通过在上位机设定运行、停止间隔时间的方式定时开启停止。当格栅每运行15分钟后停15分钟。皮带输送机、螺旋输送机与格栅联动,及格栅运行时,同时运行。

两组涡流沉砂池,每组涡流沉砂池内安装一台搅拌机和排砂泵,搅拌机长期运行。排砂泵把池底的污物抽送至砂水分离器。排砂泵每运行10分钟后停20分钟,时用,砂水分离器与排砂泵同时工作,以上设备均可在中心控制室监控。

3.6氧化沟的自动控制

本工程氧化沟设两组,日处理污水能力40000m3/d,每组氧化沟设计日处理能力2万m3/d。每组氧化沟PDSL-325(C)型倒伞型表面曝气机三台,其中1#,3#机组为恒速,逆时钟方向运转,单台机组充氧量为119kgO2/h;2#机组为变频调速,顺时针方向运转,单台机组充氧量为23~119kgO2/h,电机功率均为55KW;每组氧化沟安装两台溶解氧检测仪(DO仪)和一台污泥浓度检测仪(MLSS仪),一台DO仪和MLSS仪安装在接近出水口处,另一台DO仪安装在缺氧区。另一组氧化沟设备与该组氧化沟对称,倒伞型表面曝气机的运行按照氧化沟内溶解氧值(DO值)进行自动控制,其DO值以接近出水口处的DO仪的测定值为准。

当DO值在0.2mg/L<DO值<1.2mg/L范围内时三台电机都开启;当DO值在1.2mg/L<DO值<3.0mg/L范围内时开一台恒速机和一台变频调速机;其中变频调速机的调速频率分为五段(频率随着DO值减小而增大);当DO值在3.0mg/L<DO值<4.0mg/L范围内时只开一台恒速机。如果DO值不在以上范围内那么开一台恒速机和一台变频调速机(频率固定)。

氧化沟内设一台污泥浓度(MLSS)测定仪,将MLSS测定仪测定值传送至中控室,用于调节活性污泥回流泵站及电动套筒阀的运行。

氧化沟内安装的各检测仪器(如DO仪、MLSS仪)的数据,由PLC1进行采集。然后PLC1将采集的数据通过控制层网络送至中控室用于控制相关设备运转。

3.7回流泵站的自动控制

污泥回流泵站安装潜水轴流泵两台,按如下原理进行控制:

在泵站出水侧及吸水侧(套筒阀井处)各设一台超声波水位计,出水侧设两个水位,一个正常水位7.8m,一个报警水位8.4m,吸水侧设四个水位,一个正常水位5.30m,一个启动水位5.00m,一个高限报警水位5.80m,一个低限报警水位4.40m;

当两个氧化沟的污泥浓度同时高于3000mg/L时,开启1台污泥回流泵,如果其中任何一个氧化沟的污泥浓度低于3000mg/L时只开启2台污泥回流泵。

本控制程序能使两泵交替工作(统计工作时间),负荷均等,从而延长二泵工作寿命。

3.8剩余泵站和贮泥池的自动控制

本泵站安装100QW70-7-3型潜水排污泵一台,其工作原理如下:

当贮泥池液位低于2.0m时,剩余污泥泵自动开启。当贮泥池液位高于4.5m时,剩余污泥泵站剩余污泥泵根据液位计信号自动停止运行,贮泥池液位在中心控制室显示及报警。另外,当贮泥池水位计超过贮泥池设定的最高水位或最低0.5m时,水泵亦由中控室控制自动切断水泵电源,泵站停止工作。

贮泥池安装超声波液位计,当液位为1.5m时,向脱水间PLC发出污泥泵停泵停止运行信号。

3.9加药间的自动控制

溶解、溶液池为两组,每组2m;每组内安一台搅拌机,和超声波液位计一套,工况一用一备;

溶解池加料加水后,搅拌机工作15分钟,搅拌机停车,溶液池的液位预报警(液位现场确定);

当一格溶解池最低液位时(液位现场确定),自动关停药液输出电磁阀同时开启另一溶液池的电磁阀;

FeCl3液按照出水流量计信号自动调节频率,手动调节冲程控制投加量,使其出水水质达到国家一级排放标准。

3.10紫外光的自动控制

紫外光消毒采用的是德国威得高系统,控制方式采用的是液位控制,并由液位控制出水的电动阀门自动行动,使液位始终保持在1.7m,紫外光灯启动±5%左右。

3.11脱水间的自动控制

脱水间加药池设有一液位探头,当液位低于设计标准时,脱水机停止。

脱水机的控制主要还是以人工控制为主,操作人员在PLC柜在启停各个设备。

3.12现场仪表的控制

我厂的主要仪表有:液位计、进水PH值、溶解氧、污泥浓度、COD在线仪、浊度仪、出水流量计(其中大部分的在线仪表都自带得有温度计)。显示的具体形式以具体数值显示为主,操作人员可直观地读取各种数据。

3.13高压配电系统监视功能

此功能主要是对高压配电及供电系统的开关是合是断,通过在上住机(CRT)显示来提示有关人员。具体显示以示意图的形式实现。

3.14时间累计、故障次数和报警功能

主要功能是对所有设备运行的时间进行统计。报警功能是对设备运行出现的故障都有灯光和声音提示,准确及时地提示操作人员哪台设备出现了故障。故障出现时,运行设备立即停止运行。此部分功能的实现,为有关人员确定设备大修时间及日常保养次数提供了依据。

4.自控系统的使用效果

4.1快速准确地反映运行异常情况

当现场现出任何的异常情况,可通过监控系统和上位机系统一目了然的看出问题。有设备出现故障、上位机同时报警并停止该设备的运行,相应地计算机作故障情况记录,方便设备故障排除、管理、维护等。

4.2促进了职工技求素质的提高

实行自控,运行人员合并值班操作,对职工素质的要求也相应地变为复合型,这就进一步激发了职工特别是青年职工学文化、学技术的积极性。

篇7

对于电气及自动化信息类专业学生来讲,控制类相关课程具有重要地位,主要包含“自动控制理论”、“现代控制理论”、“运动控制理论”、“仪表及过程控制”、“计算机控制”等相关课程。“自动控制理论”和“现代控制理论”课程是研究自动控制系统的共同规律,为自动控制系统的分析和综合提供基本理论、基本方法的一门专业基础课该课程,是一门重要的控制类专业的基础课,具有较强的理论性,对于工程实践具有重要的指导作用,因而受到人们的广泛重视。目前不只是控制类专业,越来越多的非控制类专业也都把自动控制理论作为一门重要的专业基础课来学习。但是“自动控制理论”、“现代控制理论”课程数学计算和理论分析比重大,是本科生遇到的最抽象、难度最大的课程之一,加之未接触专业课,没有具体应用的物理模型,仅以数学模型为基线讲,学生往往会认为“自动控制理论”与专业无关而无学习兴趣,这是多年来常规教学始终感到困惑的原因。而后续“运动控制理论”、“仪表及过程控制”、“计算机控制”专业课是以电动机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。如何讲授“强理论性”课程,使学生真正认识到学好理论可获得对电气信息类多门专业课的理论支撑,从而学好后续专业课程是教学改革的主要目的。需结合“自动控制理论”、“现代控制理论”专业基础理论课程与“运动控制理论”、“仪表及过程控制”,“计算机控制”专业课程的问题进行深入的分析与研究,从教学内容、方法及形式、教材建设、实践教学等方面进行全方位、多层次的改革探索和实践,将对教学质量和人才培养方面有明显效果。

本项目探讨了如何更新和重组控制理论相关课程的教学内容,保证教学内容的系统性、先进性和实用性,以适应形势发展的需要。提出如何学习和掌握这些课程,包含“自动控制理论”、“现代控制理论”、“运动控制理论”、“仪表及过程控制”、“计算机控制”等控制类课程的教学内容的一些方法和措施。

一、教学内容、方法及形式改革

1.教学设计

近年来,不断更新观念,压缩精简陈旧过时的教学内容,加强现论及现代方法的内容,很好地解决先修课程和后续课程的衔接问题,避免内容的重复,进一步优化课程体系。建立一套适应性强的包括理论讲授、计算机辅助设计、实践教学和强化训练等方面在内的全方位教学新体系。

2.教学方法

将课堂教学、实验教学、课程研讨、网络教学等有机地结合起来,并充分利用多媒体教学手段提高教学效率、创造视觉的新感受、激发学生的学习兴趣和热情。内容取材时,不仅体现控制理论课程内知识点之间的内在联系,还体现课程群之间的相互关系。

3.教学手段

在教学组织过程中,积极采用现代信息技术改进传统的教学手段,在多媒体教学、网络课程等方面努力探索。统一制作“自动化概论”、“自动控制理论”、“现代控制理论”、“运动控制理论”、“过程控制理论”、“计算机控制”电子教案和CAI课件,并将授课课件在课程网页上,可供学生课余预习、浏览、复习等。另外,教学大纲、授课计划、实验指导书、学习指导以及教材和参考文献均可通过网络方便查阅。在课程开始即公布授课教师的信箱和电话号码等联系方式,密切授课教师与同学之间的联系,使学生有问题可及时获得老师的辅导答疑,也可通过网上答疑相互交流,打破班级与时间的束缚,在平行班级中实行听课和答疑共享。

4.教学改革与教学研究

精简教材和教学内容,教学组定期进行集体备课,加大对该课程与前后各门课程之间的衔接研究,避免内容上的重复,使其与其他相关课程融合为一个有机的整体。建设可用于大多数工科专业的“控制理论”平台课程。不断改进和完善本课程的新体系结构,充分体现其基础性、应用性、前沿性和系统性;配合新的教材和课程体系,研究并建立配套的新实验体系,强化自主性、设计性、综合性和创新性;以MATLAB软件为基础,构造开放式小车倒立摆综合实验平台,将分析、设计、仿真、虚拟实验、模拟实验融为一体;开发先进的多媒体课件,将MATLAB平台和虚拟实验融入到教学过程中,使教学更为直观生动,更具趣味性和吸引力;完善了课程网站,完成了课程辅助教材的修改和编写,各类题库建设、网络统计功能、远程教学管理系统、虚拟实验内容的扩展及网络版的开发等;使其真正成为学生自主学习、师生互动、双向交流的园地;教考分离,采用试题库出题,统一考试,流水阅卷,考后进行详细的试卷分析。

二、实践教学改革

实践性教学环节是学生能力培养中的重要环节。工科学生除要掌握一定的工程技术知识外,还要有较强的实际动手能力。

1.改革实验课教学,建立体化实验教学体系

实验教学是“控制理论”课程的重要组成部分。通过实验不仅能够培养学生分析问题和解决问题的能力,验证所学理论,而且对所学内容能够提出一些新的见解。为了适应教学改革的需要,在实验室建设方面的指导思想是:将传统的模拟实验与MATLAB环境下的仿真实验相结合,将基础理论验证类实验与自主型、综合型、设计型实验相结合,将基本实验与创新实验相结合,建立一个立体化的实验教学体系,从而满足不同阶段实践教学的需要,为激发学生的创新意识提供硬件平台。

由于实验课内容和形式的多元化,大大激发了学生做实验的主动性、积极性和创新性,学生可以通过预约或上网自主地开展多项实验,进行理论验证、性能分析和综合设计,对提高学生的实践能力和本课程的学习都将起到良好的作用。

课程组织形式与教师指导方法,对于教学大纲规定的必做实验,由任课教师和实验教师共同指导完成;对于设计性、综合性、创新性实验,学生自己利用课余时间完成,可以预约指导教师给予宏观上的指导。

2.积极开展大学生科研实训活动、参与教师科研项目

引导学生积极参加大学生科研实训项目,吸引有兴趣的学生参与教师的科研活动,培养学生严谨的科学态度、创新意识、创业和团队合作精神,提高学生初步的科学研究能力以及工程实践能力,培养学生获取知识及撰写论文的能力。

三、控制理论专题授课方案

根据“自动控制理论”、“现代控制理论”、“运动控制理论”、“仪表及过程控制”课程大纲的要求,在适当时候,以某一专题讲座的方式授课。将各种教材进行比较、处理、揉合,组织成各个专题,以高质量、高水平、高效率来达到最佳教学效果。由于专题授课具有综合性、整体性和探讨性,使其信息量得以加大,知识在综合和分析中得到延伸,既提升授课内容,使之浓缩为精华,又吸引了学生的注意力和参与兴趣。

四、应用现代教育技术

开发研制了计算机辅助教学课件。教学课件以教材为蓝本,包含简明、清晰的授课讲义、重点、难点、例题演示、控制系统计算机仿真和控制系统分析计算等内容,既有课本内容的直接再现,又增加很多有助于讲解理论和计算方法的表现手段。课件以计算机为载体,既可用于课堂教学,又可通过上网,供学生进行自学和课后复习使用。控制理论的分析方法有很多图解法,如频域分析、根轨迹法、状态空间法等。利用计算机强大的计算能力仿真能力和丰富的色彩,可轻而易举地准确绘制出清晰美观的画面。采用动画技术后,图形的来龙去脉可用动态演示。计算机的图形演示与教师的讲授相结合,使教学内容形象化、具体化和生动化,增进学生的理解,提高学生的学习兴趣。

计算机仿真技术在实验教学中的应用为实验教学带来极大的方便。仿真实验具有建模方法简单、参数调整方便、结果可视性好等优点,克服常规实验内容单调、缺乏变化、元器件制约参数调整以及实验设备数量有限等不足。在教学中适当介绍并应用MATLAB软件,并设计出计算机辅助实验教学软件包,提供一个方便易用的图形用户界面,将MATLAB控制工具箱的相关功能集成一体。

网络教学平台开发。网络教学能真正体现学生的主体作用。在网络中,学生可以利用网络的交互性、检索性等特点来选择自己需要的内容进行独立学习。学生可以在任何时间进行自主学习,并且与教师在网上交流,探讨问题,在教学中发挥积极作用。

五、建立科学、有效的教学信息回馈

坚持洛阳理工学院本科毕业班所有学生中,实施“‘控制理论’相关课程的学习调查”制度。不定期进行相关问卷,包含这门课程是否易学、学习难点、学习方法、是否能学以致用等几个方面的内容,充分了解学生学习这门课的基本情况,为课程改革提供必要的依据,收到良好的效果。

六、结束语

在新世纪中,控制类学科将具有更加光明的前景,控制类研究内容将具有挑战性,研究的范围将更加广阔,电气自动化专业控制类课程的内容将不断地发展和更新,电气自动化专业控制类课程设置及教学内容改革研究也将进一步进行下去。

参考文献:

[1]王瑛.控制理论实验开放式教学的探索[J].实验室研究与探索,2002,

4(21):15-17.

篇8

随着控制系统复杂性的增加,不确定因素的增多,要求各控制理论分支有进一步的发展,弥补各理论分支的缺点与不足,以满足更高的控制性能指标。现有的控制理论在线性系统控制中大都能取得良好的控制效果,但对离散、非线性复杂系统领域的研究大都刚刚起步,或处于初级阶段,远未达到人们的期望。而实际工业生产过程的模型一般都很复杂,通常具有非线性、分布参数和时变等特性。因此将控制理论的研究领域推广到非线性复杂系统有重要的实际意义。另外与宏观复杂系统控制相对的量子控制(Quantum Control)也正在作为一个全新的学科领域蓬勃崛起,它的发展也依赖于完善的控制理论和优化控制策略。近年来随着微电子、半导体、计算机等技术的快速发展也强有力的推动了自动控制理论的发展。

一、现代控制理论的产生及其发展

控制理论作为一门科学,它的产生可追溯到18 世纪中叶的第一次技术革命,1765年瓦特发明了蒸汽机,应用离心式飞锤调速器原理控制蒸汽机,标志着人类以蒸汽为动力的机械化时代的开始,后来工程界用控制理论分别从时域和频域角度讨论调速系统的稳定性题,1872年劳斯(Routh E J)和1890年赫尔维茨(Hurwitz)先后找到了系统稳定性的代数据,1932年奈奎斯特(Nyquist H)发表了放大器稳定性的著名论文,给出了系统稳定性的奈奎斯特判据。美国著名的控制论创始人维纳(Wiener N)总结了前人的成果,认为客观世界存在3大要素:物质、能量、信息,虽然在物质构造和能量转换方面,动物和机器有显著的不同,但在信息传递、变换、处理方面有惊人的相似之处,1948 年发表了《控制论—或关于在动物和机器中控制和通讯的科学》,书中论述了控制理论的一般方法,推广了反馈的概念,确立了控制理论这门学科的产生。

1.经典控制理论。第一代称为“经典控制理论”时期,时间为20 世纪40~50 年代。它研究的主要对象多为线性定常系统,主要研究单输入单输出问题,研究方法主要采用以传递函数、频率特性、根轨迹为基础的频域分析法,它的控制思想首先旨在对机器进行“调节”,使之能够稳定运行,其次是采用“反馈的方式,使得一个动力学系统能够按照人们的要求精确地工作,最终实现对系统按指定目标进行控制。”

2.现代控制理论。第二代称为“现代控制理论”时期,时间为20 世纪60~70 年代。经典控制理论对线性定常系统可产生良好的控制效果,但是它对多输入多输出、时变、非线性系统的控制却力不从心。所以50 年代末60 年代初,学者卡尔曼等人将古典力学中的状态、状态空间概念加以发展与推广,将经典控制理论中的高阶常微分方程转化为一阶微分方程组,用以描述多变量控制系统,并深刻揭示了用状态空间描述的系统内部结构特性如可控性、可观性,从而奠定了现代控制理论的基础。

3.第三代控制理论。以上所提的经典控制理论和现代控制理论都是建立在数学模型之上的,所以统称为常规(传统)控制。它们为了控制必须建模,但许多实际系统的高维性及系统信息的模糊性、不确定性、偶然性和不完全性给基于数学模型的传统控制理论以巨大的挑战。是否可以改变一下思路,不完全以控制对象为研究主体,而以控制器为研究对象;是否可以用人工智能的逻辑推理、启发式知识、专家系统解决难于建立数学模型的问题呢?智能控制的出现正源于这一思想。1967年Leondes 和Mendel 首次正式使用“智能控制”一词,1971 年傅京孙教授指出,为了解决控制问题,用严格的数学方法研究新的工具来对复杂的“环境2对象”模型进行建模和识别以实现最优控制,或者用人工智能的思想建立对不能精确定义的环境和任务的控制设计方法,这两者都值得试一试,而重要的是把两种途径密切结合起来协调的进行研究。沿着这一思想出发,现代控制理论将微分几何、微分代数、数学分析与逻辑推理、启发式知识建立和发展了智能控制理论相结合从而形成第三代控制理论大系统理论和智能控制理论。

篇9

中图分类号:TP13-4 文献标识码:A 文章编号:1009-914X(2014)01-0310-01

随着控制系统复杂性的增加,不确定因素的增多,要求各控制理论分支有进一步的发展,弥补各理论分支的缺点与不足,以满足更高的控制性能指标。现有的控制理论在线性系统控制中大都能取得良好的控制效果,但对离散、非线性复杂系统领域的研究大都刚刚起步,或处于初级阶段,远未达到人们的期望。而实际工业生产过程的模型一般都很复杂,通常具有非线性、分布参数和时变等特性。因此将控制理论的研究领域推广到非线性复杂系统有重要的实际意义。另外与宏观复杂系统控制相对的量子控制(Quantum Control)也正在作为一个全新的学科领域蓬勃崛起,它的发展也依赖于完善的控制理论和优化控制策略。近年来随着微电子、半导体、计算机等技术的快速发展也强有力的推动了自动控制理论的发展。

一、现代控制理论的产生及其发展

控制理论作为一门科学,它的产生可追溯到18 世纪中叶的第一次技术革命,1765年瓦特发明了蒸汽机,应用离心式飞锤调速器原理控制蒸汽机,标志着人类以蒸汽为动力的机械化时代的开始,后来工程界用控制理论分别从时域和频域角度讨论调速系统的稳定性题,1872年劳斯(Routh E J)和1890年赫尔维茨(Hurwitz)先后找到了系统稳定性的代数据,1932年奈奎斯特(Nyquist H)发表了放大器稳定性的著名论文,给出了系统稳定性的奈奎斯特判据。美国著名的控制论创始人维纳(Wiener N)总结了前人的成果,认为客观世界存在3大要素:物质、能量、信息,虽然在物质构造和能量转换方面,动物和机器有显著的不同,但在信息传递、变换、处理方面有惊人的相似之处,1948 年发表了《控制论―或关于在动物和机器中控制和通讯的科学》,书中论述了控制理论的一般方法,推广了反馈的概念,确立了控制理论这门学科的产生。

1.经典控制理论。第一代称为“经典控制理论”时期,时间为20 世纪40~50 年代。它研究的主要对象多为线性定常系统,主要研究单输入单输出问题,研究方法主要采用以传递函数、频率特性、根轨迹为基础的频域分析法,它的控制思想首先旨在对机器进行“调节”,使之能够稳定运行,其次是采用“反馈的方式,使得一个动力学系统能够按照人们的要求精确地工作,最终实现对系统按指定目标进行控制。”

2.现代控制理论。第二代称为“现代控制理论”时期,时间为20 世纪60~70 年代。经典控制理论对线性定常系统可产生良好的控制效果,但是它对多输入多输出、时变、非线性系统的控制却力不从心。所以50 年代末60 年代初,学者卡尔曼等人将古典力学中的状态、状态空间概念加以发展与推广,将经典控制理论中的高阶常微分方程转化为一阶微分方程组,用以描述多变量控制系统,并深刻揭示了用状态空间描述的系统内部结构特性如可控性、可观性,从而奠定了现代控制理论的基础。

3.第三代控制理论。以上所提的经典控制理论和现代控制理论都是建立在数学模型之上的,所以统称为常规(传统)控制。它们为了控制必须建模,但许多实际系统的高维性及系统信息的模糊性、不确定性、偶然性和不完全性给基于数学模型的传统控制理论以巨大的挑战。是否可以改变一下思路,不完全以控制对象为研究主体,而以控制器为研究对象;是否可以用人工智能的逻辑推理、启发式知识、专家系统解决难于建立数学模型的问题呢?智能控制的出现正源于这一思想。1967年Leondes 和Mendel 首次正式使用“智能控制”一词,1971 年傅京孙教授指出,为了解决控制问题,用严格的数学方法研究新的工具来对复杂的“环境2对象”模型进行建模和识别以实现最优控制,或者用人工智能的思想建立对不能精确定义的环境和任务的控制设计方法,这两者都值得试一试,而重要的是把两种途径密切结合起来协调的进行研究。沿着这一思想出发,现代控制理论将微分几何、微分代数、数学分析与逻辑推理、启发式知识建立和发展了智能控制理论相结合从而形成第三代控制理论大系统理论和智能控制理论。

篇10

一、自动控制的基本概念

在现代科学技术的许多领域中,自动控制技术得到了广泛的应用。所谓自动控制,是指在无人直接参与的情况下,利用控制装置操纵受控对象,使被控量等于给定值或给定信号变化规律去变化的过程。控制装置和受控对象为物理装置,而给定值和被控量均为一定形式的物理量。自动控制系统由控制装置和受控对象构成。对自动控制系统的性能进行分析和设计则是自动控制原理的主要任务。

二、自动控制系统的基本构成及控制方式

1.开环控制控制装置与受控对象之间只有顺向作用而无反向联系时,称为开环控制。2.闭环控制。控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对控制过程的影响,这种控制称为闭环控制,相应的控制系统称为闭环控制系统。3.反馈控制。反馈控制是在外部的作用下,系统的被控量发生变化后才做出相应调节和控制的,在受控对象具有较大时滞的情况下,其控制作用难以及时影响被控量,进而形成快速有效的反馈控制。

三、自动控制理论发展简述

虽然现代控制理论的内容很丰富,与经典控制理论相比较,它能解决更多更复杂的控制问题,但对于单输入、单输出线性定常系统而言,用经典控制理论来分析和设计,仍是最实用最方便的。

真正优良的设计必须允许模型的结构和参数不精确并可能在一定范围内变化,即具有鲁棒性。这是当前的重要前沿课题之一,。另外,使理论实用化的一个重要途径就是数学模拟和计算机辅助设计。总之,自动控制理论正随着技术和生产的发展而不断发展,而它反过来又成为高新技术发展的重要理论根据和推动力。它在工程实践中用得最多,也是进一步学习自动控制理论的基础

四、自动检测技术

自动检测是学一个重要分支科学,是在仪器仪表的使用、研制、生产、的基础上发展起来的一门综合性技术。1. 自动检测的任务:自动检测的任务主要有两种,一是将被测参数直接测量并显示出来,以告诉人们或其他系统有关被测对象的变化情况,即通常而言的自动检测或自动测试;二是用作自动控制系统的前端系统,以便根据参数的变化情况做出相应的控制决策,实施自动控制。2. 自动检测技术主要的研究内容:自动检测技术的主要研究内容包括测量原理、测量方法、测量系统、及数据处理。3.测量系统:确定了被测量的测量原理和测量方法后,就要设计或选用装置组成测量系统。目前的测量系统从信息的传输形式看,主要有模拟式和数字式两种。

1.术的基本概念。检测技术是以研究自动检测系统中的信息提取、信息转换以及信息处理的理论和技术为主要内容的一门应用技术学科。 广义的讲,检测技术是自动化技术四个支柱之一,从信息科学角度考察,检测技术任务寻找与自然信息具有对应关系的种种表现形式的信号,以及确定二者间的定性、定量关系;从反映某一信息的多种信号表现中挑选出在所处条件下最为合适的表现形式,以及寻求最佳采集、变换、处理、传输、存贮、显示等方法和相应的设备。信息采集是指,自然界诸多被检查与测量量中提取有用信息。 信息变换是将所提取出的有用信息进行电量形式幅值、功率等的转换。信息处理的任务,视输出环节的需要,可将变换后的电信号进行数字运算、模拟量-数字量变换等吃力。 信息传输的任务是在排除干扰的情况下经济的、准确无误的把信息进行远、近距离的传递。虽然检测技术服务的领域非常广泛,但是从这门课程的研究内容来看,不外乎是传感器技术、误差理论、测试计量技术、抗干扰技术以及电量间互相转换的技术等。提高自动检测系统的检测分辨率、精度、稳定性和可靠性是本门技术的研究课题和方向。自动检测技术已成为一些发达国家的最重要的热门技术之一,它可以给人们带来巨大的经济效益并促进科学技术飞跃发展,因此在国民经济中占有极其重要的地位和作用。自动检测系统是自动测量、自动计量、自动保护、自动诊断、自动信号等诸多系统的总称.在上述系统中,都包含有被测量,敏感元件和电子测量电路,它们之间的区别仅在于输出单元。如果输出单元是显示器或记录器,则该系统叫做自动测量系统;如果输出单元是计数器或累加器,则该系统叫做自动计量系统,如果输出单元是报警器,则该系统是自动保护系统或自动诊断系统;如果输出单元是处理电路,则该系统是部分数据分析系统、自动管理系统或自动控制系统。2.感器与传感器的分类 。2.1传感器。传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。2.2传感器的组成。传感器的功用是一感二传,即感受被测信息,并传送出去。传感器一般由敏感元件、转换元件、转换电路三部分组成。最简单的传感器由一个敏感元件组成,它感受被测量时直接输出电量,如热电偶。有些传感器由敏感元件和转换元件组成,没有转换电路,如压电式加速度传感器,其中质量块是敏感元件,压电片是转换元件。有些传感器转换元件不只一个,要经过若干次转换。

三、传感器的分类

目前传感器主要有四种分类方法:根据传感器工作原理分类方法;根据传感器能量转换情况分类法;根据传感器转换原