时间:2022-07-26 15:37:11
导言:作为写作爱好者,不可错过为您精心挑选的10篇平行四边形面积教案,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
2、培养学生想象力、创造力,及用转化的方法解决新的问题的能力。
3、培养学生自主学习的能力。
4、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
三、教学难点:平行四边形面积计算公式的推导过程。
四、教学用具:长方形、平行四边形硬纸片、剪刀、直尺
教学过程:
一、引出主题:
师:大家知不知道我们学校正在将操场隔壁的地方改造为校园一角,专门留出两个空地作为我们同学们的学农小基地(在黑板上贴出两个图案,一块是长方形——甲地,一块是平行四边形——乙地)。下面我们就看一下这两块空地是什么形状的?学校啊,又决定将甲地分给四年级,乙地分给五年级负责除草,那么大家知道哪一个年级负责地方要大一点呢?
师:现在我们先看一下甲地。我们要求这块长方形地的面积,只要量出什么啊?
生:长方形的长和宽(点出长、宽)。
师:现在老师已经量出来长15米、宽10米,那么它的面积是什么?
生:(计算)150平方米。(要求学生回忆起长方形的面积公式,并运用公式计算出这个长方形的面积。)(板书:长方形面积公式)
师:同学们现在都能很熟练地计算出长方形的面积啦!那么,这块平行四边形地的面积是多少啊?我们该怎样计算呢?这就是今天我们要一起探讨的问题啦!(板书:平行四边形的面积)
二、动手操作(得出公式):
师:以前我们是用面积器量数出长方形有多少个小格子或是得出长方形的长和宽来用面积公式来算出了长方形的面积。那我们可不可以运用以前的知识或是我们的经验,想出计算这个平行四边形的面积的方法呢?有哪位同学已经想到办法来?
生:用剪刀沿着平行四边形的高剪,再拼成长方形,再用尺子量出底(长)18厘米,高(宽)10厘米。面积是180平方厘米。(让学生把操作展示给全班同学看)
师:这位同学很聪明,他是沿着高来剪,再拼成一个长方形。那老师现在再问你一个问题,你为什么要剪拼成长方形?
生:因为长方形的长和宽与原来平行四边形的底和高相等,而长方形面积我们会求。
三、得出结论:
师:沿着这条垂线把平行四边形剪成了一个三角形和一个梯形,把三角形移到梯形的一边,就变成了长方形。拼成的长方形的长与平行四边形的底相等,宽与平行四边形的高相等。因为长方形面积=长×宽(板书),所以我们推导出平行四边形面积=底×高(板书)。我们称这种方法为“割补法”(板书)。如果我们用s来表示平行四边形的面积,a来表示平行四边形的底,h来表示平行四边形的高,你能自己写出平行四边形的字母公式吗?
生:s=a×h
师:我们还可以将这条公式缩写为:s=a·h或者是s=ah。
四、巩固提高:
练习:一块平行四边形钢板,底为4.8厘米,高为3.5厘米。
它的面积是多少?(结果保留整数。)
课堂上,学生的一举一动,一个表情,一声叹息,都逃不过潘小明的眼睛。
一次,潘小明给学生上《平行四边形面积》一课。一开始上课,他就给每个学生发了一张印有一个平行四边形的纸,让学生想办法求纸上这个没有注明尺寸的平行四边形的面积,并探究平行四边形面积的计算方法。
如此开放的教学方法,如此大胆的教学设计,令在场的每一位听课教师都捏了一把汗:要是教学中出现什么问题,该怎么办?老师们仿佛看见了学生茫然、探究夭折、教程断裂的“悲惨”场景。
明确任务后,学生们根据自己的知识经验,用自己的思维方式积极地进行探究。8分钟后,学生们展示出自己的答案:①(7+5)×2=24(平方厘米);②7×5=35(平方厘米);③7×4=28(平方厘米)。
“怎么有这么多的答案,你们说说?”在潘老师的课上,学生是主体。很快,学生们通过讨论(生生互动)排除了做法①,而对做法②、③却久久争执不下。
这时,潘老师让采取这两种不同做法的同学大胆求证。采取做法③的学生展示了剪拼法来求证自己的做法;而采取做法②的学生认为平行四边形具有不稳定性,可以把它拉成一个长方形,这样,平行四边形的两条相邻的边就变成了长方形的长和宽。这时,很多学生领悟过来了,原来采取做法②的学生认为把平行四边形拉成长方形,只是形状改变,而面积没有改变(其实面积变大了)。
之后,潘老师利用课件演示了平行四边形“底不变,高改变”引起的面积改变。学生们终于明白了,原来平行四边形的面积同底和高有关!这一过程中,学生不仅掌握了计算公式,更重要的是化归了数学思想方法,特别是对割补转化、实行化归有了深切体悟。
“教师只有在教学前十分清楚学生已经知道了什么,尚未获得哪些学习经验,才能开始新知识的传授;只有清楚了解每一个学生的‘锚桩’(即起点)在哪里,才能使满载新知识的航船停靠。”这是潘小明在多年教学中的体会。他也因此形成了自己的课堂特色:每一次提问,出发点都是学生。
学生小组互助合作式教学是以导学稿为抓手,以发现问题、解决问题为主线展开的. 适宜的导学稿是引导学生自主学习、培养学生学习兴趣的有效载体. 优化导学稿编制是提升学生小组互助合作式教学质量的重要方面.
心理学研究表明,学生的发展有两种水平:一种是学生的现有水平,指独立活动时所能达到的解决问题的水平;另一种是学生可能的发展水平,即学生在他人帮助下能够达到的发展水平,两者之间的差异就是最近发展区. 教学应着眼于学生的最近发展区,为学生提供带有恰当难度的内容,调动学生的积极性,发挥其潜能,促成学生达到下一个发展阶段的水平,然后在此基础上进行下一个发展区的发展. 教学要想对学生的发展发挥主导和促进作用,教学设计就必须置于学生的最近发展区中,为此,教师必须深入研究学生,洞悉学生的最近发展区,优化导学稿编制.
教师基于学生的最近发展区编制导学稿,借助导学稿开展教学,有利于引导学生通过课外自学、课堂上的互助合作学习达成教学目标,使学生们“跳一跳,摘到苹果”,激发学生的学习热情;反之,脱离学生的最近发展区,盲目编制出的导学稿,往往不能有效地引导学生自主学习,甚至有的内容,学生虽然尽心竭力,但是仍不能领会,会挫伤学生的学习积极性.
2012年5月,在一所普通初中,笔者采用学生小组互助合作式教学模式上了一节公开课,内容是浙教版初二数学下册“5.3.1平行四边形的性质”,深有感触. 开课前一天,本备课组编制了如下导学稿,供学生们课前自学.
课题:平行四边形性质(1)
No.050301?摇 姓名______?摇?摇 第___小组
【学习目标】
1. 掌握平行四边形对边相等的性质和推论.
2. 运用平行四边形对边相等的性质和推论,解决有关平行四边形简单的计算与证明问题.
【重点与难点】
重点:平行四边形的性质定理――“平行四边形的两组对边分别相等”.
难点:平行四边形性质定理和推论的应用.
【基础部分】
1. 到目前为止,你知道平行四边形有哪些性质?请结合图1写出来.
2. (1)任意画一个平行四边形ABCD,量一量它的对边,你发现了什么?
(2)请证明你的发现.
已知:如图2所示,四边形ABCD是平行四边形,求证:AB=CD,AD=BC.
(3)归纳:平行四边形的两组对边______.
几何语言叙述:因为四边形ABCD是平行四边形,所以______.(?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇 )
3. (1)如图3所示,l1∥l2,AB,A1B1是夹在l1与l2之间的平行线段,AB与A1B1相等吗?请说明理由.
(2)若AB,A1B1是夹在l1与l2之间的垂线段(如图4所示),AB与A1B1还相等吗?请说明理由.
(3)归纳:①夹在两条平行线间的平行线段______.
②夹在两条平行线间的垂线段______.
几何语言可分别叙述为:
①(如图3所示)因为l1∥l2,AB∥A1B1,所以______. (?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇)
②(如图4所示)因为l1∥l2, ABl2,A1B1l2,所以______. (?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇)
4. 已知平行四边形相邻两边之比为3 ∶ 4,周长为28 cm,则这个平行四边形的四条边长分别为______.
5. 在?荀ABCD中,已知AC=3 cm,ABC的周长为9 cm,则平行四边形ABCD的周长为______.
6. 如图5所示,E是直线CD上的一点,已知?荀ABCD的面积为32 cm2.
(1)ABE的面积为______cm 2.
(2)若AB=4 cm,则AB和DE间的距离为_____cm.
【要点部分】
1. 如图6所示,E,F分别是?荀ABCD的边AD,BC上的点,且AF∥CE,求证:DE=BF.?摇
2. 如图7所示,在?荀ABCD中,∠B=30°,AD=3,CD=2.
(1)求AD与BC间的距离;
(2)求?荀ABCD的面积.
变式:(1)平行四边形的两邻边长分别为8和10,两条较长边之间的距离为4,求两条较短边之间的距离.
(2)如图8所示,在?荀ABCD中,AEBC于点E,AFCD于点F,若AE=4,AF=6,?荀ABCD的周长为30,求?荀ABCD的面积.
3. 已知点A(3,0),B(-1,0),C(0,2),以A,B,C为顶点在图9中画平行四边形,求第四个顶点D的坐标.
【拓展部分】
如图10所示,在?荀ABCD中,AB=6 cm,AD=4 cm,∠BAD的平分线交CD于点E,∠ABC的平分线交CD于点F,求线段EF的长.
【课堂小结】
本节课你学到了哪些知识?在探索知识过程中你用了哪些方法?请写下来.
【当堂检测】
1. 已知?荀ABCD的周长为16,若AB=5,则BC=________.
2. 如图11所示,?荀ABCD的周长为18 cm,AB=4 cm,AE平分∠BAD交BC边于点E,则EC等于(?摇 )
A. 1 cm?摇?摇?摇 B. 2 cm?摇?摇?摇?摇C. 3 cm?摇?摇?摇?摇D. 4 cm
3. 已知直线a∥b,夹在a,b之间的一条线段AB的长为6 cm,AB与直线a的夹角为150°,则夹在a,b之间的距离为______.
4. 在?荀ABCD中,AB=2,BC=3,∠B=60°,则?荀ABCD的面积为______.
5. 如图12所示,在?荀ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.
课前,笔者批阅了学生们交上来的导学稿,发觉学生们认真进行了课前自学,导学稿中的基础部分做得很认真.
上课伊始,笔者创设情境,调动起学生们的学习热情,明确本堂课的学习目标,开展学生小组展示活动.学生们兴趣盎然,认真参与小组对学、群学,学生们积极讨论遇到的疑难问题. 经过学生们的自主、合作探究,得出平行四边形的性质定理1及其两个推论,并运用已学的基础知识灵活解决了基础部分的问题4、问题5及问题6.
学生们从基础部分学习顺利地过渡到要点部分学习. 在大展示环节,在教师的引导下,“兵教兵”,学生们依旧非常投入. 讲解要点部分问题1时,学生们能运用新学的知识一题多解;讲解要点部分问题2时,学生们能灵活地运用所学知识解答,条理清晰;但当解答要点部分问题3时,学生遇到了很大的困难. 笔者看了各组学生的解答结果,发现学生们都没有完全做对,笔者就该题引导学生开展小组讨论、合作探究. 通过激烈的讨论与探究,学生们逐渐得出第四个顶点D的坐标有3种情况:(-4,2),(4,2),(2,-2).
大展示后,笔者引导学生进行了课堂小结和当堂检测,学生们表现积极,当堂检测结果良好,学生初步达成了本堂课的学习目标. 但是课后,学生们也提出了对要点部分问题3“第四个顶点D的坐标”的确定仍不甚理解,原因出在哪里呢?
课后,笔者与本备课组老师一起分析了这个问题,我们认为,引起这种情况的主要原因是:该题解答对学生的要求超越了学生当时的“最近发展区”. 课中,学生利用平行四边形的定义学习平行四边形的性质,而该题的解答涉及了平行四边形的判定,并要求学生分类讨论. 方法一,根据平行四边形的判定定理,当AB是平行四边形的一边时,分两种情况分别画出图形,得顶点D的坐标分别为(-4,2)和(4,2);当AB是平行四边形的一条对角线时,画出图形,得顶点D的坐标为(2,-2). 方法二,根据平行四边形的判定定理,分三种情况,画出图形,可知当AB,BC是平行四边形的一组邻边时,顶点D的坐标为(4,2);当AB,AC是平行四边形的一组邻边时,顶点D的坐标为(-4,2);当AC,BC是平行四边形的一组邻边时,顶点D的坐标为(2,-2). 由于学生还未学过平行四边形的判定定理,虽然导学稿上印有网格图,学生通过作图得出了顶点D的坐标,但是对于此时的学生来说,仍不甚理解,不能领会顶点D的坐标的求解过程. 教学实践表明,这个问题放在学生学习了平行四边形的判定定理之后解答,情形就完全不同了.
随着课程改革的不断深入,“预设”和“生成”这两个相互对立的概念融入到了我们的教学实践中。“预设”是指紧紧围绕教学目标、任务,预先对课堂环节,教学过程等一系列展望性的设计,“生成”是指实际教学过程的发生、发展与变化。课堂教学不是一个机械执行教案的过程,而是一个动态的、开放的、不断生成的过程,当教学预设与生成表现差异,甚至截然不同时,对教师而言将面临严峻的考验和艰难的抉择——课堂的尴尬与精彩,虚浮与真实。
如何让课堂亲近真实,用生成打造真实,我们必须要思考如何把握学习“预设”与“生成”。首先,预设既要备教材,又要备学生。教学需要预设,高质量的预设是教师发挥主导作用的重要保证,它有利于教师从宏观上、整体上把握教学过程,为了能在课堂上游刃有余,教师的课前预设就要尽量具体些,周密些。
那么如何进行高质量的教学预设呢?高质量的教学预设需要精心备教材,更需要备学生。教师课前钻研教材设计教案,本身就是应该的,特别是个性化地设计某个环节,是非常值得提倡的,问题是不能一味地钻研教材而忽视了学生这个主体。新课程标准明确指出:数学教学活动必须建立在学生认知发展水平和已有的知识经验基础上,这就要求教师在研究教材教法的同时要加强对学生的研究,教师要充分了解学生的认知基础及心理状态。根据学生的现实状况研究预设教学过程。那是一次苍白教学给予的顿悟,前些年上过的一节“平行四边形面积”的计算,其中的片段至今记忆犹新。
师:今天我一起来学习怎样计算平行四边形的面积,请同学们拿出老师发给你们的长方形和平行四边形(长方形长5厘米,宽3厘米,平行四边形底5厘米,高3厘米),请同学们想办法比较一下这两个图形的面积哪个大哪个小。
(学生开始以小组为单位比较,然后汇报)
生1:我把平行四边行沿着它的一条边剪开然后拼到平行四边形的右面,就变成了一个长方形,然后把长方形放在拼成的图形上一比,我发现这两个图开的面积一样大。
生2:我把平行四边形沿着它的一条高剪开然后平移到平行四边形的右面就变成了一个长方形,然后把长方形放在拼成的图形一比,我发现这个长方形和平行四边形的面积相等。
师:很好,我们今天就来学习平行四边形的面积计算公式。请同学们拿出老师发给你们的学具——一个平行四边形纸板。同学们动一下脑筋,看看可以把平行四边形转化成什么图形。
(学生开始以小组为单位操作,师巡视期间,曾多次询问能把平行四边形转化成什么图形)
接下来学生汇报自己的做法。大致和课的开始相同。我又用课件演示将平行四边形转化为长方形的过程,并强调什么叫平移,然后要求学生按课件演示的过程再做一遍。接下来就是讨论拼成的长方形和原来平行四边形之间的关系,总结面积计算公式。
课后我是这样反思的:我这样设计是想让学生通过数方格的方法比较出长方形和平行四边形的面积是相等的。然后说明,因为数方格求平行四边形的面积比较慢,也不方便,在此基础上激发学生学习平行四边形面积的欲望。谁知,学生并没有数方格,而是通过剪拼,比较的方法得出结论,还有一个学生居然说出了“平移”,觉得自己做的课件不就没用了吗?当时由于自己调控课堂的能力不足,教学机智的欠缺,导致课堂效率事倍功半,如今想想可以就着学生的回答,提出表扬和鼓励,然后,以学生的方法让还没有找到方法的学生试一试,必要时也可用课件,将教学的重点一下子转移到研究图形关系上来。让学生自己分析研究两种图形之间的内在关系,推导出平行四边形面积计算公式。使整个教学过程从有序(预设)到无序(生成),再到有序(采取相应的对策),主要是我们要转变教育观念,认识到课堂教学是一个师生互动、资源共生的过程,正确定位教师和学生的关系,树立以学生为主体的观念,放下“师道尊严”的架子,从讲台上走下来,加强自身的学习,与时俱进,提高自己的业务水平和教学策略,必能应对教学中出现的各种现象。
如明确教学目的;把握一节课中的重点、难点;安排课堂教学流程、制定严谨的教学结构;课堂练习设计以及教师对学生真诚的关爱等内容,在现在乃至将来,仍值得教师进行进一步的认识、理解。
二、要改进教师备课的现状和存在的问题
1.分析学生流于形式。考虑了学生“应该的状态”,而忽视了他们“现实的状态”。
(1)以教师的水平看学生,结果把学生看高了,课堂上学生“跳了又跳,还是摘不到果子”;学习新知识前把学生看成一张白纸,忽视了他们的生活经验,这又把学生看低了,课堂上学生“根本用不着跳,便摘到了果子”,从而不利于他们的发展。
(2)把学生看作是永恒不变的教育对象,忽视了地区的差异、城乡的差异、不同学校的差异、同一学校不同班的差异。
2.处理教材未能很好地发挥教师的主动性和创造性。对教学内容的处理大多只限于补充、调整一些习题,而很少更改例题;把着眼点放在理顺教材本身的知识结构上,而忽视了学生学习的内在需要,忽视了他们的学习心理。
3.制定目标时过分重视认知性目标,而忽视了发展性目标,即使有所涉及,也只是“走过场”,应付上级部门的检查。
4.设计教学过程时忽视了其生成性。把错综复杂、动态的教学过程以“剧本”的形式加以具体描述,所形成的教案是“直线型”的,对教学重点或难点可能发生的“教学资源”没有充分应对,一旦遇上便“置之不理”或“束手无策”。
5.撰写教案模式化。一些教师认为,一节课必须要有“旧知铺垫―学习新知―巩固练习―全课小结―布置作业”这几个环节,但笔者认为,有些课不需要“铺垫”,有些课则不一定要进行“巩固练习”,一切都应从学习的内容和学习的需要出发。
三、要执行课堂教学设计的主要策略
1.客观分析教材,深入了解学生,找准教学的起点。人教版第九册“一般应用题”:一个服装厂计划做660套衣服,已经做了5天,平均每天做75套,剩下的要3天做完,平均每天应做多少套?根据对四年级和五年级两班学生的调查发现,不需任何提示,绝大部分的学生都能独立完成例题。基于这个事实,假如我们将教学目标定在学生会做上,就太肤浅了。实际上,编者的意图是以例题为信息载体,以引导学生掌握分析问题、解决问题的方法,即培养解应用题的能力。同时,还要注意培养学生反思自己的学习过程和结果的意识、能力,要有自觉验算的意识,并努力掌握验算方法。只有经过这些方法的训练,才能为进一步探究复杂的应用题做好知识、能力、方法上的准备。
2.运用“原创思维”,筛选学习资源,推动教学进程。当学生面临问题时,首先有一段含有价值判断的“似真推理”,窥测方向,然后才是带有一定逻辑意义的行动,并用可以言传的方式表现出来。我们把学生面临问题时最初的思考方向称为“原创思维”,它是新课程理念下课堂教学中非常重要的学习资源,现以《平行四边形面积计算》一课的教学为例,加以说明。
(1)在格点图上出示平行四边形,创设问题情境:凭你现有的经验,你觉得怎样才能求出这个平行四边形的面积?学生经过最初的价值判断后,引发了丰富的“原创思维”: ①受长方形面积计算方法的迁移,认为“邻边×邻边”;②经验比较丰富或通过其它渠道得到信息,认为“底×高”;③把平行四边形变成长方形后再来求面积;④可以用小方格来摆出它的面积;⑤其它方法。
(2)教师根据课堂上出现的实际情况,组织学生进行分组学习。(安排好桌位,提供给学生探究的材料,并提出探究的要求。)
对第一种可能出现的情况:提供三个平行四边形,相邻的两条边一样长,但面积明显不同。(每生一份)
要求:根据你的猜想,请算一算这个平行四边形的面积。
对第二种可能出现的情况:提供若干个平行四边形,要求证明:“平行四边形的面积=底×高”的道理何在?
对第三种可能出现的情况:同样也提供若干个平行四边形,要求:请想办法求出手中的平行四边形的面积。
对第四种可能出现的情况:提供(1)、(2)、(3)号三个平行四边形,其中,(1)号:底4厘米,高1厘米;(2)号:底4厘米,高2厘米;(3)号:底5厘米,高3厘米。
要求:用面积单位为一平方厘米的小方块尝试摆出这三个平行四边形的面积。
教师在各组独立探究的过程中,巡视指导,及时调控。同时,允许学习快的小组参与其他小组的活动,或指导、或质疑。这样,不同的想法在课堂上产生了碰撞,并开始逐渐融合。最后,各小组进行学习情况汇报,师组织辨析,并引发争论……
经过思考,同学们发现:虽然“出发点”不同,但最终都聚焦为一点,即运用“化归”的数学思想,把平行四边形转化为长方形,并利用长方形面积计算、推导出平行四边形的面积。
在这样的教学方式下,教师关注的不仅仅是知识的获得,最重要的是以学生借助平行四边形面积公式的推导过程为“载体”,拓展学习内容,改变学习方式,尊重学生人格,并提高他们的创新能力。
3.学习提高,刻苦锤炼“隐性”基本功。一直以来,人们都把写一手漂亮的粉笔字、讲一口流利的普通话、有较强的教学设计能力作为一名教师的教学基本功。但随着教育形势的不断发展以及课程改革的不断深入,对教师教育基本功含义的理解又有了扩展,其中包括了教学中动态生成的调控能力、对学生的语言评价能力、对课堂环境的营造能力,等等。如果把前者称为显性基本功,那后者则可以称为隐性的基本功。随着新课程的不断实施,后者逐渐发挥了越来越重要的作用。
面对课堂教学过程中的生成性资源,教师的隐性基本功主要表现为:不仅是知识的“呈现者”、对话中的“提问者”、学习的“指导者”、学业的“评价者”、纪律的“管束者”,更重要的是课堂教学过程中呈现出的各种信息资源的“重建者”。教师在面对各种资源时,要学会筛选,以去掉无用的信息,并利用、重组有用的信息,从而推动教学进程。
4.智慧引领,使教师的主导作用更加适应学生主体的要求。常有学生感叹:“老师在课堂上只给我们压力,不给我们魅力。如果老师的课堂教学充满魅力,我们何尝不愿意好好听呢?”是呀!教师在课堂上给学生多的是压力、是纪律的约束、是制度的约束、是规矩的约束、是习惯势力的约束,缺少的就是魅力:缺少思想的魅力(只有编者的、作者的、参考书的思想);缺少文化的魅力(课堂上无文化魅力的语言,无诗一般的语言,少一份人文气息);缺少情感的魅力(“感人心者,莫乎于情”,课堂上激动学生的是情,打动学生的是情,震撼学生的仍然是情。“亲其师而信其道”亲其师而乐其课也);缺少艺术的魅力(停留在技术的层面,如何导入新课、如何提问、如何评价学生、如何板书、如何布置作业等都已成为了一套固定模式,千人一面,连表扬学生的方式都一样);缺少个性的魅力(本来人如其面,千姿百态各不相同,犹如白花园中的花朵:牡丹雍容华贵,芍药娇嫩鲜艳,月季月月吐新,迎春花小而灿烂。可是我们的课堂神州960万平方公里竟然惊人的相似。)因此,我们希望严谨的教师创造出严谨的课堂,豪放的教师创造出豪放的课堂,灵秀的教师创造出灵秀的课堂,幽默的老师创造出幽默的课堂。
二、抛“砖”引玉,激发质疑
著名学者弗赖登塔尔说过:“反思是数学的重要活动,是数学活动的核心和动力。”学生的错误不可能单纯依靠正面的示范和反复的练习得以纠正,必须有一个“自我否定”过程,而“自我否定”又以自我反省作为前提。通过教师的主动呈现“错误”资源,让学生转换角色,主动找错、议错、改错的反思过程,从中吸取教训,深刻记忆。
三、顺水推“舟”,深化思维
苏霍姆林斯基说过:“教学的技巧并不在于能预见课堂的所有细节,而在于根据当时的具体情况,巧妙地在学生不知不觉时做出相应的变动。”在课堂教学中,学生回答问题时出现错误是很常见的事。那么,如何处理学生的错误是对教师教育教学能力的一种检验。教师处理得好,就很容易激发学生学习的兴趣;教师处理得欠妥时,就会挫伤学生学习的积极性。因此,教师要能慧眼识真金,让学生充分发挥思维,引导学生对自己的思维过程做出修正与改进,灵活地整合教学预案,就会使课堂锦上添花,从而取得意想不到的效果。
[中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2017)08-0045-01
关于教学预设与生成关系的话题,今天再度提出来,旨在探讨在小学数学教学中教师如何科学地把握课堂的去向,如何更好地贴近教学预设,如何激发学生的潜能,调动学生学习的积极性,让学生在课堂上活力四射。
【案例一】师:这里有2个完全一样的三角形,你能把它们拼成什么图形?
生:平行四边形,长方形,大三角形。
师:对于拼成的长方形,你发现了什么?
生1:它是由2个直角三角形拼成的,一个直角三角形的面积是长方形面积的一半,能够得出三角形的面积=底×高÷2。
师:从拼成的平行四边形中能得到这个结论吗?
生2:可以的,平行四边形的面积=底×高,所以一个三角形的面积=底×高÷2。
师:大家都很聪明,现在会计算三角形的面积了吗?
【案例二】师:我们已经知道长方形、正方形、平行四边形等面积的计算方法,你还想计算谁的面积呢?
生:梯形,圆形,三角形……
师:很好!今天我们就先研究三角形的面积。你打算怎样研究呢?
生1:把长方形沿对角线剪开,得到2个完全一样的三角形,所以三角形的面积等于长方形的面积的一半,长方形的长是三角形的底,长方形的宽是三角形的高,得出一个三角形的面积=底×高÷2。
生2:我们是把2个完全一样的锐角三角形拼在一起,发现能拼成一个平行四边形。平行四边形的面积=底×高,那么一个三角形的面积=底×高÷2。
【思考】
1.预设应贴近学情
教学预设是什么?是剧本,是脚本,是师生教学活动的基本框架。从上述两个案例中不难发现,这两份“剧本”的定位是不一样的,因此在推进“剧情”发展的过程中呈现的态势也大相径庭。
案例一中,教师给定学具,让学生在既定的框架中操作,这样的实践只能算是经过,而不是经历,更谈不上学生感知的积累和视野的拓展,学生很难获得深刻的感悟。案例二则给予学生很多的机会,学生既可以在剪纸中,也可在折纸中、拼图中获得知识。不一样的实践,会有不一样的感受,在这种学习情境中,学生的感知必定丰富。
从学情入手,从引导学生反思处着力,教学A设就会为有效学习助力,成为快乐学习的基本保障。
2.预设应关注探究
精心设计是教好数学的基本保证,精简设计是教学智慧的体现。因此,教学预设要更多地关注学生的探究活动,让学生在解读一个个数学现象中发现知识的真谛。
在案例二中,教师的放手体现了教学的智慧,教学预设不再是教学的紧箍咒,它加速了学生智慧火花的碰撞,有利于学生探索热情的再现。这种灵活多变的、富有弹性的教学掌控,让数学教学流淌着智慧的灵光,更为学生的自主学习、创造性学习提供了坚实的平台。
案例一的教学,从表面上看,学生能够动手实践了,在活动中也有发现了,但教师提供的实践素材是固定的,是单一的,这样一来,学生的选择是有限的,思维的空间也是狭窄的,学生被动执行操作指令的痕迹是明显的。这样的学习不是真正的自主学习和合作学习。
3.生成应充满灵气
学生是人,有自己的情感、思考和待人接物的态度。因此,教学应在预设的架构上进行适度、适宜、灵活的删减,使之更加符合课堂教学,贴近教学走向,让课堂充满和谐与灵动。
如案例二的后续还出现了这样的对话“我有一个新发现,把三角形的顶角部分剪下来后可得到梯形,再沿梯形的中位线剪开,也能拼成平行四边形!”“不对!你剪下的那部分放哪了呢?”……学生有直觉思维,它是一种灵感,也是一种创新。因此,给学生充分交流的机会,让争辩使学生的感知越加清晰,让交流使学生的思维得以碰撞。
此类试题首先提供一定的材料,或介绍一个概念,或给出一种解法等,让学生在理解材料的基础上,获得探索解决问题的方法,从而加以运用去解决实际问题。在教学中通过这类问题的训练,可以强化学生认识新知,让学生通过类比、联想,去分析转化、探索归纳等。
例1 (2013年山东菏泽中考题)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”。“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”)。已知等边三角形的边长为2,则它的“面径”长可以是__________(写出1个即可)。
本题侧重于考查学生的阅读理解能力和对知识的迁移能力。通过对新概念的理解,知道问题的关键点是“等分面积”。从分析图形,我们会发现符合条件的“面径”不止一条。为了解题方便,联系等边三角形的性质,不难发现以下两种比较简单的解题思路:一是利用等边三角形的轴对称性将其面积二等分;二是利用平行线构造相似三角形,利用相似三角形面积之比等于相似比的平方,可以将面积问题转化为边长之间的关系。
二、重视图形变换操作,开拓学生的空间想象能力
教师教学时应精心设计教案,要从简单的操作情形出发,认真比较、发现规律。通过联想、类比进行的简单应用,这样有利于提高学生的辨证观点,彰显了在数学问题解决的教学过程中,既要注重发挥学生的主体作用,又要重视教师主导作用的发挥,二者相辅相成。
例2 (2013年青海西宁中考题)在折纸这种传统手工艺术中,蕴含着许多数学思想,我们可以通过折纸得到一些特殊图形。把一张正方形纸片按照图①~④的过程折叠后展开。(1)猜想四边形ABCD是什么四边形;(2)请证明你所得到的数学猜想。
本题是一道操作探究题,主要考查了轴对称、平行四边形、菱形的判定。教学时教师应引导学生观察图形,学生易猜想四边形ABCD是平行四边形或菱形,再启发先怎样去判断你们的猜想,学生会利用平行四边形的定义证出该四边形是平行四边形,然后根据一组邻边相等证出该平行四边形是菱形。解决与图形的折叠有关的问题时,一般需要关注折叠中的对应角或对应边之间的相等关系,并利用这种关系解决问题。
三、注重知识的生成过程,提高学生的辨证能力
教师应当改变那种害怕浪费课堂时间,片面追求提高学生方法运用能力的做法,应当结合教学内容,设计出有利于学生参与动态知识生成过程认知的教学环节,把知识的形成过程、方法的探索过程、结论的推导过程、公式定理的归纳过程等充分暴露在学生面前,让学生的动态知识生成过程成为自己探索和发现的过程,从而提高辨证唯物主义的观点。
在实施对话教学中,生生对话更能促进学生思维的发展。在没有教师参与的对话活动中,学生不再畏惧教师的权威而拘谨,在宽松的氛围中有了自由、大胆表达的机会。学生在独立思考中,放松心情,驰骋思维,对问题的想象无拘无束,酝酿着独特的想法并准备对话。在小组交流与分享过程中,会有平淡的对话,也会有激烈的辩论,同学们虽然都会急于表达自己的独特观点,但也会认真倾听伙伴的想法,在不同的思维碰撞中,通过吸纳别人的意见,或坚持自己的观点,或修正自己的看法,达到不断更新自我认识的效果。学生在充满智慧的对话过程中,不仅收获对知识的理解,更是享受一种平等交流的快乐,感受到同学间的心灵沟通和彼此信任。在生生对话的课堂里,学生不再自我封闭,而是善于思考、表达和敢于质疑,在宽松的对话中理解知识、内化知识。如教授“平行与垂直”中“平行”概念的时候,学生画出几组两条不同位置关系的直线,教师引导学生分类,在分类过程中,观察图形“=”,有的学生认为这两条直线不会相交,有的学生认为会相交。此时,教师把不同观点的同学分成正方和反方两队,让双方都充分说明自己的观点是正确的,并展开对话。
2.教师与文本的对话
在对话教学中,教师与文本成为平等的主体,文本总带有编者的意图和思想,教师在认真钻研文本的同时,也带有自己的特殊体验和情感,使自己的教学源于文本,又高于文本。由于网络快餐文化的便捷,下载、模仿、拼凑教案等现象已成为很多教师正常化的工作。教学实践中,没有深入地解读教材,哪能有精彩的预设与生成,更谈不上有高效的课堂教学。因此,提高课堂的有效性应从深入解读教材、与教材深层的对话开始。讲授人教版五年级上册“平行四边形的面积计算”时,教材中呈现让学生通过数方格的方法求出平行四边形的面积,特别指出不满一格按半格算。如果教师以此照搬文本教学,势必影响学生探究效果,调查中发现,大多学生不明白为什么不满半格能按半格算。其实,编者的意图是让学生通过数方格,启发学生用转化的方法推导平行四边形的面积计算公式,但这样的文本,很难让学生联想到沿着平行四边形的高剪开拼成一个长方形。因此,教师与文本的对话就在于创造性地使用教材,让文本更好地为学习服务。教学中,教师让学生用数方格的方法求出平行四边形的面积,但不出现不满一格按半格算的提示语,而是改为问题:哪个同学能用好方法快速数出平行四边形的面积?这样的问题设计就逼着学生先数满格的,再数不满格的,而不满格的面积不一样,怎么办呢?学生细心观察后发现,原来图形中藏着秘密,最左上角的不满格移到最右上角的不满格的位置上,刚好拼成一个满格,这个发现就是移拼的转化方法。应用这个方法,学生观察整个左边的不满格都可以与右边的不满格拼成满格,但拼成的是一个不规则的图形,难于快速算出面积。再次观察后发现,如果沿平行四边形的高剪开,把左边的方块移到右边,就可以拼成一个长方形,再数方块就是最便捷的方法,学生对转化思想有了进一步的理解。最后,学生用所带的平行四边形图形进行剪拼实践,通过操作、观察、交流、推导,自主得出平行四边形面积=底×高的结论。这样的教学,教师并没有改变编者的意图,只是稍微改变文本的表述,却取得了显著的效果。因此,课堂教学中,教师不要把教材当权威,不要简单地认为学生都会想到把平行四边形沿着高剪开拼成长方形。可见,只有教师与文本的深入对话,根据学生的认识水平,合理并创造性地使用教材,才能使学生在最近发展区有效探索,提高学习质量。
4.学生与文本的对话
文本自己是不会说话的,但文本是有思想的,它是经过精挑细选的人类知识的精华,对学生传授知识、发展思维、培养能力具有重大的意义,而这种意义只有学生对文本的深入解读、丰富体验、深刻领悟,才能真正为学生所接受,文本也才能真正体现其内在价值。小学数学教材中的“你知道吗?”是实验教科书新增设的栏目,它是教学内容的延伸,是传承数学文化的有效载体。人教版六年级上册“比的应用”教学中安排了“你知道吗?”的内容,介绍了“黄金比”:你听说过“黄金比”吗?当一个物体的两个部分之间的比大致符合“黄金比”——0.618:1时,会给人以一种优美的视觉感受。如果学生只知道黄金比这个词,那就误读了教材的知识功能,更谈不上数学美的价值所在。学生在文本的启发下,通过网络查询、咨询家长,发现“黄金比”在日常生活中随处可见,不仅欣赏到蒙娜丽莎画像、古希腊女神维纳斯塑像的黄金比例的艺术品,还发现巴特农神庙、古埃及胡夫金字塔等建筑作品都隐含着神奇的黄金比,这就是与文本对话的价值。但是,生活中一般人很难达到维纳斯女神“黄金比”这样优美的身材,一般人的躯干与身高比都低于0.618这个数值,大约只有0.58——0.60左右,智慧的人们发明了让女人穿高跟鞋来改变比值,使得躯干与身高的比值更接近黄金分割的标准0.618,产生美的效果,从而人为地创造美。学生通过对文本的深入对话,不仅对比的知识有了深刻的理解,更是对数学美的充分挖掘。
二、对话教学中应注意的问题
1.对话不是简单的问答
作为课堂教学中的师生对话,不能简单地理解为师生问答,课堂中很多的师生问答并非真正的教学对话。真正的师生对话,是蕴含师生间的倾听和表达,是师生间敞开心扉的精神世界,从而获得心灵的交流和思想的分享。对话中不仅表现在提问和回答,更表现在倾听与独白、交流与辩论、欣赏与评价等方面。这是对话教学在“质”方面的要求。
2.对话并非越多越好
教学中的对话无论是作为一种理念,还是作为一种方法,必须为学习服务。组织对话教学应考虑教学内容而合理使用,对简单明了的知识、书上能直接找到答案的知识不宜运用对话教学,避免对话的滥用而导致形式主义。这是对话教学在“量”方面的要求。
我们常说:“孩子们小小的脑袋中,藏着个大大的世界。”每个孩子生长的环境各不相同,在课堂教学过程中所激发出的潜能也各不相同,所以虽然老师“精心布防”设计教案,教学过程中学生依旧会“节外生枝”。我认为,这样的“节外生枝”是好事,因为它能更多地激发出学生的智慧,同时也激发出教师的智慧。那么当学生出现了预设之外的“节外生枝”,身为教师的我们要如何应对呢?怎样促进这些“课堂生成”的出现,更多地激发出学生的智慧呢?
一、畅所欲言,激活思维
在教学“平行四边形面积”的计算时,老师发给学生一张平行四边形的纸,让学生量出所需的边长,尝试计算该平行四边形的面积,并思考平行四边形面积的计算公式。结果,出现了两个比较集中的答案:(1)相邻两边相乘(7×5)得35平方厘米;(2)底与高相乘(7×4)得28平方厘米。教师让学生在四人小组内进行讨论,再让“底乘高”的学生先展示其想法,并进行直观演示,将平行四边形割补平移成长方形,想以此让用相邻两边相乘的学生对先前错误想法进行自我否定。
然而,第二种做法的学生也提出了质疑:“我们也是把平行四边形转化成长方形,而且只要将平行四边形拉一拉就成了长方形了,然后再计算出它的面积的,怎么不可以呢?”这出乎我们的意料,但确实是一个属于学生自己的、值得探究的问题。教师灵机一动,干脆装糊涂:“他们的想法也是挺有道理的!那35平方厘米和28平方厘米都对。”“底乘高”的学生可不干了,提出疑问:“同一个平行四边形的面积大小怎么会是不同的呢?”大家纷纷要求“相邻两边相乘”的学生说道理。第二种做法的学生拿着平行四边形木框架边演示边说着理由。刚开始,还真把人给“蒙”住了,渐渐的,有学生发现:在拉动的过程中,不仅形状变了,而且面积大小也变了。“底乘高”的学生代表运用这个框架进行了论证:如果平行四边形的面积等于相邻两边相乘是正确的,那么这些平行四边形的面积就都是35平方厘米了。可我们用肉眼都能看出它们的面积是不相等的呀,所以平行四边形的面积不等于相邻两边相乘。
正是课堂中教师让双方代表都“畅所欲言”,学生的“拉成长方形”的想法得到了充分展示,从而激发了学生之间激烈的思维碰撞,使学生对公式的理解、对化归思想的体会才能如此深刻。没有这种经过曲折过程而获得的成功,学生就不会有学习的自信和力量。教学过程应该是教师与学生、学生与学生之间的多向互动的过程;给不同观点的学生一个“畅所欲言”的平台,我们才能及时捕捉到各种教学信息,使之成为宝贵的教学资源,促进学生的思维发展。
二、放慢脚步,善待错误
我们对学生的差错,不能轻率否定,也不能置之不理,而应予以宽容。德国哲学家黑格尔指出:错误本身是“达到真理的一个必然的环节”。教师需要做的是如何将学生差错中的不利及消极因素转化为有利的、积极的、合理的因素,多给学生“先尝试―出差错―再完善”的机会。例如《角的度量》:
师:用量角器怎么量出角的度数呢?大家想不想自己试试?
生初次尝试用量角器量角1(40°)后逐一展示汇报,并说想法。
生1:角的大小是由角的两边张口的大小决定,所以我想用量角器量张口。
师:那你看出这个角是多少度了吗?
生1:(挠挠头)看不出来。
生2:我也是这样想的,但我觉得不能用这条直边量,应该用这条弯边量,因为刻度都在弯边上。
师:那你觉得这个角是多少度?
生2:70°。
生3:我觉得用直尺的时候,都要从0刻度开始量起,所以量角也要把角的顶点对准量角器的0刻度。
师:那你觉得这个角是多少度?
生3:90°。
生4:我感觉量角器上有很多线条,这些线条都汇集在这个点上,所以我要把角的顶点对准量角器的这个点来量。
师:那你觉得这个角是多少度?
生4:140°。
生5:我觉得不可能,这是个锐角,应该是40°。
师:刚才大家自我创新的量法都挺有道理的,可是,同一个角怎么会量出这么多不同的度数呢?到底怎样使用量角器呢?
对量角器这个新的测量工具,孩子们有着极大的好奇心。根据已有的知识经验,他们摆弄出了各种不同的量法,前三种同学的方法错了,他们是怎么想到这样量的呢?他们是从哪里受到了启发呢?错中有什么可取之处吗?经过逐一采访,这四种方法还真不是空穴来风,虽然是错误的方法,但从中我们看到了孩子们对已有知识、经验的运用和创新,这是多么的难能可贵。“从已有知识中受到启发进行新知识的研究”这一数学思想对学生来说是终身受益的。这是一个真实反映孩子们学习探究的“心声”的环节,从他们的错误方法中找到正确的知识切入点,然后逐步引导、纠正、领悟,进而掌握测量的方法,这样才能真正走进孩子心里。身为教师的我们,在要求孩子多问几个为什么的时候,更要放慢自己的脚步,用心思考、倾听孩子们的心声。
三、小题大做,大放光彩
一次数学小测验中,出现了这样一道题“1.25×(0.8+0.4)×2.5”,有近70%的学生是这样进行简算的:“1.25×(0.8+0.4)×2.5=1.25×0.8+0.4×2.5=1+1=2。”学生是受到题中数据(1.25、0.8、0.4、2.5)的诱惑,误用了乘法分配律。我打算评讲时,重在提醒学生不要贪图简便而上当,然后告诉学生正确的简便计算应该是“1.25×(0.8+0.4)×2.5=1.25×1.2×2.5=(1.25×3)×(0.4×2.5)”就可以了,可静下心仔细想想:这仅仅是数据的诱惑问题吗?孩子们对简算的运算定律背得头头是道,真正在进行简算时能否把这些运算定律运用到位呢?这道题就只能用这种简算方法,难道就真的不能用乘法分配律吗?通过这道题,我们要带给孩子的到底是什么?带着这些疑问,我想把这个错例“小题大做”一番。
师:出示乘法分配律字母表示式:a×(b+c)=a×b+a×c,乘法分配律是指一个数与两个数的和相乘,我们可以用这个数分别与两个加数相乘,然后把它们的结果加起来,结果是不变的。可这道题,是不是一个数和两个数相乘?
生:不是。
师:所以,这道题不符合乘法分配律,而我们贪图简便,却把乘法分配律硬套了上来,造成了犯规。
师:那么,这道题中到底有没有可以用乘法分配律的地方呢?
生1:我觉得前面这个部分可以用乘法分配律
1.25×(0.8+0.4)×2.5
=【1.25×(0.8+0.4)】×2.5
=【1.25×0.8+1.25×0.4】×2.5
生2:我觉得后面这个部分可以用乘法分配律
1.25×(0.8+0.4)×2.5
=1.25×【(0.8+0.4)×2.5】
=1.25×【2.5×0.8+2.5×0.4】
甚至有同学出现了这样的想法:把1.25×2.5看成一个数
1.25×(0.8+0.4)×2.5
=1.25×2.5×(0.8+0.4)
=1.25×2.5×0.8+1.25×2.5×0.4
通过这样一个错例,学生深刻感受到,数学是非常严谨的,它的每一步都是有充分依据的。在这个过程中,让学生体验到:先观察整体,整体不行,局部可以吗?以此培养学生从整体进行思考,灵活运用知识解决问题的能力。通过这道错例,我们要给孩子的不仅是帮助孩子发现错误,纠正错误,在以后遇到此类计算题目时不重复错误,更重要的是给学生思维空间,培养学生发现问题、探究解决问题的能力,让错题成为具有思考价值的好题。
四、提供支架,自主构建
坡度教学设计就是在课前设计不同层次的练习,给学生奠定基础,为新课内容难点的分解做准备。然而,构筑坡度是发生在学生尝试、探究活动之前,且全班学生都走在同一坡度上,具有很大的局限性,教师能不能在学生尝试探究活动的过程中,根据学生的学习需要,现场给学生搭建一些“支架”,满足不同层次学生的需要呢?
例如《除数是整十数的笔算除法》这节课,课一开始,教师出示:“玩具飞机每个售价30元,现有82元钱,能够买几个?”让学生自己尝试列竖式计算。结果出现了以下几种情况:
第一种 第二种 第三种
师:三种不同的竖式计算,有可能都是正确的吗?
生:(异口同声)不可能!
师:你能知道其中哪个答案肯定是错的?为什么?
生:27肯定是错的,因为买一个玩具要30元,82元钱最多能买2个。
师:这样看来,在第一、第二两个除法竖式中,都是商2的,所以都是正确的,大家觉得如何?
学生四人一小组进行讨论后进行了全班交流:
生1:我们认为第二个除法竖式是正确的,第二个除法竖式是错的。如果像第一个那样写,那就变成了可以买20个玩具了。
师:(问板书第一个竖式的学生)你这样商“2”是想表示可以买20个玩具吗?
生1:不是的。我想表示可以买2个玩具。
师:是呀,我也觉得你是想表示2个的,因为我发现你在“2”的后面没有添“0”。
生2:虽然他没有在“2”的后面添“0”,可是,他把“2”商在了十位上,十位上的“2”就表示20。
生3:我也认为第一个除法竖式错了。因为除到哪位商就写在哪位,这里已经除到了个位,所以,应该商在个位上。
对于什么叫“这里已经除到了个位”,可能还有些同学还不是很明白,教师也假装没听明白,说:“什么叫已经除到了个位了呢?”于是,继续请该生指着板书进行详细讲解。
生3:8除以30不够商1,所以要看82。82除以30可以商2,我们已经除到了个位,所以,2就要写在个位上。
当学生自觉地调动起各自已有的知识经验尝试计算时,有些学生商正确了,也有些学生心里想着商是2,可是到底把2写在哪个位上感到困惑,甚至有学生完全商错了。在学生遇到困惑和障碍时,就有了教师提供“支架”的需要。教师针对第一个竖式,提出疑问:“你这样商2是想表示可以买20个玩具吗?在该生作出“我想表示可以买2个玩具”的回答时,教师给予同情:是呀,我也觉得你是想表示2个的,因为我发现你在2的后面没有添0。然而,就是这一态度模糊的“理解支撑”,引起学生的不满,激起学生进一步深入思考:“这样在十位上商2到底可不可以呢?”就这样,通过学生间的想法交流和思维碰撞,学生不仅知道了商应该写在哪个数位上,而且知道了为什么应该商在该数位上的道理了,实现了对先前做法的自我否定,获取了新知识。在学生学习过程中由教师提供暂时性的支持,并通过学生自己的努力,建构出真正属于自己所理解、领悟、探索到的知识。
总之,课堂教学无处不生成,如何抓住这些课堂生成,使它成为数学课上具有思考价值的问题,更好地为学生服务,这些都对我们教师提出了更高的要求。因此,身为教师,我们不但要读透教材,更要读懂学生,面对课堂现场,灵活选择合适的题材,创设有趣的、具有思维挑战性和数学思考价值的问题情境。让学生积极主动地参与到探究、发现、解决问题的学习活动中,在自主、探究、合作的学习活动过程中,实现知识、思维和情感的全面、和谐、可持续地发展。
参考文献: