时间:2022-02-11 12:34:00
导言:作为写作爱好者,不可错过为您精心挑选的10篇数字签名技术论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
一、引言
20世纪90年代以来,经济全球化及竞争的日益加剧,国际旅游企业开始了广泛的战略联盟,如日本最大旅行社集团JTB与美国通运公司组建战略联盟,共同开发LOOK品牌。此浪潮也波及到中国,中国旅游企业纷纷组成饭店联合体、旅行社联合体、委托管理、旅游网站联盟等联盟形式,但其成效多有不同。
中国名酒店组织是由我国主要城市的著名高星级酒店及著名相关旅游企业组成的战略联盟,于1991年成立,是我国酒店业最早的联合体,发展至今取得了良好的社会与经济效益;2003年,浙江27家旅行社成立了“大拇指”、“走遍之旅”两大联合体,到如今成效甚微。究其原因,联盟成员的匹配性是一个不容忽视的重要因素,联盟成员的选择是建立旅游联盟的基础和关键环节,许多具体的失败都能通过恰当的成员选择过程而避免。
本文试以博弈论与战略资源的视角对旅游联盟成员匹配性进行深入的探讨。
二、博弈论视角的旅游联盟成员匹配性
以下是笔者建立旅游联盟的博弈模型,用以研究企业对共同资源的单方面掠夺行为。
假定:(1)市场上有两家企业1、2,企业1与企业2建立战略联盟,期限为T;(2)企业行为理性;(3)信息是完全的;(4)期限划分为n个阶段T1、T2、T3…Ti…Tn,若博弈进行到下一阶段,收益以因子r(r>1)向上调整;(5)每一阶段,双方可能轮流掠夺共同资源,但企业实施冷酷战略,即一方违约,联盟终结;(6)双方约定收益分成比例为p。
这是一个完全信息动态博弈模型(见图a和图b)。企业1和企业2都有两个行动选择,一是对联盟形成的共同收益不进行掠夺(不掠夺),即信守契约,博弈进行到最终阶段Tn时,双方按事前确定的比例p分配收益,企业1得prn,企业2得(1-p)rn。二是破坏契约,对共同收益进行掠夺(掠夺),假定在Ti阶段掠夺者获得共同收益的(i-1)/i,另一方获得1/i。图a和图b的支付函数中前面的符号代表企业1所得份额,后者代表企业2所得份额。假定在T1、T3、T5……阶段由企业1行动,在(掠夺,不掠夺)中进行选择。在T2、T4、T6……阶段由企业2行动。在T1企业1可以选择掠夺,结束博弈。这种情况下,全部收益由企业1独享,而企业2的收益为0。企业1也可以选择遵守契约,则博弈进入T2阶段同时收益以r(r>1)因子向上调整,即此时联盟获得了更多的收益。接下来由企业2行动,选择掠夺则获得共同收益的1/2。若企业2选择遵守契约,即不掠夺,博弈继续,从而进入T3阶段由企业1选择。如此,随着博弈的进行,联盟的共同收益越来越多。因为我们(5)的假定,双方实施冷酷战略,对于不合作的一方进行惩罚,所以在Tn阶段之前,任何一方在Ti选择掠夺,博弈就在Ti阶段结束。如果双方在Tn之前都不掠夺,则最终按约定比例p分享收益。
现在我们以逆向归纳法来研究一下这个模型的子博弈精练纳什均衡情况。首先我们假定在Tn阶段由企业2行动,由于前面(2)的假定企业行为理性,若要保证联盟的收益不被掠夺,那么企业2按最终约定所得的收益应该不小于进行掠夺所获得的收益。即需要满足(1-p)rn≥(n-1)rn-1/n,即p≤1-(n-1)/nr。
考虑到最后做出选择的不一定是企业2,现在我们分析假定由企业1在Tn阶段行动的情况。同样的道理,双方的契约要得到遵守,对于企业1来说在Tn需要满足prn≥(n-1)rn-1/n,即p≥(n-1)/nr.企业1与企业2所需要满足的条件进行联立,得(n-1)/nr≤P≤1-(n-1)/nr。
当n∞时(即企业1与企业2在T期内有无数次行动的机会),1/r≤P≤1-1/r。当r≥2时,p有解,且p取上述不等式的中间值(1/r+1-1/r)/2=1/2时最优。以企业最大化期望效用推导出来的在阶段Tn应满足的条件,其实可以推广到Ti任何阶段。所以,当p1/2时,该模型的子博弈精练纳什均衡为(不掠夺,不掠夺),均衡结果为“企业1、企业2始终不掠夺,一直到最后按比例p分成”。
它说明建立战略联盟的企业,均享未来共同收益的程度越大,成员企业遵守契约使联盟成功的可能性越大。均享收益,要求建立战略联盟的企业实力相当,至少在联盟内部地位应该平等。虽然大企业与小企业的战略联盟在市场上也十分常见,但他们之间由于不完全契约造成对共同收益潜在的掠夺倾向,加剧了联盟本身的离心力,是不稳定的,这样的联盟很难长期维持下去。
三、战略资源视角的旅游联盟成员匹配性
旅游联盟的类型从不同的角度可以有不同的分类方法,依战略资源的不同可以把旅游联盟划分为显性资源联盟(预订、销售、价格联盟)、混合型资源联盟(产品开发、市场开发联盟)和隐性资源联盟(管理联盟)。
1.显性资源联盟的成员匹配性
以显性资源为基础的预订、销售联盟的匹配性体现在:地理位置互补,服务类型、星级(档次)相似,则结成的战略联盟比较稳定,而且容易获得联盟效应。因为,服务类型相似使不同的联盟成员拥有共同需求的客源群体,星级(档次)相近又使这些客源群体的层次居于同一水平,地理位置不同则使各成员不至于为同一批客源争抢撕杀、恶性竞价,这样,联盟成员才能较为坦诚地互通市场信息、交换客户资料,联手为共同的客户提供价值一致的服务。中国信苑饭店网就是这样一个战略联盟体。它的成员酒店全部是通过国家旅游局颁发的三星级以上的涉外宾馆、酒店,主要分布在全国的重点城市,如五星级的位于北京的京都信苑饭店、四星级的位于上海的通贸大酒店、三星级的昆明金邮大酒店等,各成员酒店均系自主经营。他们在显性资源方面拥有相似的竞争优势:商务设施先进、商务服务功能出众、适合商旅人士下榻。所以,这些饭店能够组成一个联盟体,并获得较好的联盟效益。
2、混合型资源联盟的成员匹配性
以混合型资源为基础的产品(市场)开发联盟是以各成员在技术技能、操作流程、运行机制等方面的优势为基础,或者借鉴学习对方成员的上述竞争优势开发自己的新产品,或者进行综合利用,共同开发新市场。其成员匹配性体现在:位于不同的城市而技术技能不同,或位于同一城市而技术技能相近的旅游企业容易结成战略联盟,而且易取得更大的利益。杭州的杭州湾大酒店和上海的好望角大饭店之间的合作联盟就是前者的体现。上海好望角大饭店素以经营上海特色菜肴闻名,杭州湾大酒店餐饮部专程派人取经后,创新了一批特色菜肴,推出了上海菜系列,使得餐厅几乎天天爆满;上海的好望角大饭店也派员赴杭州湾学习浙江地方菜,也取得了可观的效益。
开发推广一项新的产品或服务,需要众多的人力、物力、财力资源,单体饭店显得势单力薄;要将新产品推向市场,为市场所广泛接受,单体饭店也显得力不从心,无法造成一定的声势和响应。如果一个城市的几家饭店联合起来,共同开发,分散风险,共同进行市场促销,则能取得一定的规模效应。众所周知,啤酒在饭店的销售尽管销量很大,但利润却较薄,葡萄酒则有较大的赢利空间。某一饭店希望在该城兴起饮用葡萄酒的风气,就举办了“葡萄酒节”,希望能够带动葡萄酒的消费。然而,孤掌难鸣,该饭店虽然在短期内增加了葡萄酒的销售量,但随即昙花一现,悄身退场,无法带来大规模的持久效应。但是,如果联合较多的饭店共同宣传和促销葡萄酒,该城市消费者的消费习惯可能就会改变,当饮用葡萄酒成为消费者普遍的爱好时,每一个饭店都将大大受益。可见,在同一城市,技术技能相似,结成战略联盟,容易共造市场氛围、共同推出新产品、共同开拓新市场,并且能够带动消费潮流,成为行业标准,从而增强竞争力。
.隐性资源联盟的成员匹配性
以隐性资源为基础的旅游联盟主要是管理联盟。对于饭店企业来说,它一般体现为管理合同的形式,即一方输出管理,另一方接受。无论是哪一方,它在选择联盟成员时,所考虑的匹配性一般是:服务类型相似、档次定位相近。商务型饭店一般聘请同样经营商务饭店的管理公司,而不会与擅长经营度假型饭店的管理公司结盟;一、二星级的经济型饭店一般考虑的联盟成员是中档次的管理公司或饭店集团,而不会聘请定位于高阶层客户的豪华型饭店的管理公司。
对于旅行社来说,由于对旅游地和旅行者的知识掌握方面区别比较明显,因此,旅行社之间的管理联盟更多地体现在知识互补和资源共享上。例如,美国的运通与广东国旅结成了战略联盟,运通为广东国旅提供员工培训、定期的网络在线服务、相关的技术支持和优秀的旅游产品与服务;广东国旅则提供其所掌握的关于国内旅游及国内消费者的状况、特征、规律等方面的知识。
四、结论
从博弈论与战略资源的视角我们都可以看出,经营实力相当(服务类型、技术技能可不同)的旅游联盟成员匹配性良好,联盟较稳定。经营实力悬殊的联盟成员存在对共同收益的掠夺倾向,小企业可能搭大企业的便车,大企业也可能以强势的谈判实力要求更高的利益分成,成员匹配性较差,从而导致联盟失效或解体。中国名酒店组织以很高的进入壁垒确保了成员的实力相当,使联盟稳定;而“大拇指”、“走遍之旅”两大联合体的成员中,大中小旅行社都有,构成复杂且退出壁垒低,故联盟很不稳定。
参考文献:
[1]柳春锋.旅游联盟成功运作关键影响因素研究[J].商业研究,2006,(6).
[2]柳春锋.从战略资源看联盟类型[N].中国旅游报,2005-06-01.
[3]柳春锋.浅析我国经济型饭店的发展模式[J].商业研究,2004,(4).
[4]黎洁.兼并、收购、战略联盟——国外饭店集团发展的新动向[J].中外饭店,1998,(3).
[5]孙健,唐爱朋,宋晓萌.企业兼并与战略联盟模式选择的博弈分析[J].山东工商学院学报,2006,(1).
中图分类号:TH11 文献标识码:A文章编号:1007-3973 (2010) 02-096-02
1概述
数字签名技术是信息安全机制中的一种重要技术。已经广泛应用于电子商务和通信系统中,包括身份认证,数据完整性,不可否认性等方面,甚至在日常的电子邮件中也有应用。数字签名提出的目的就是在网络环境下模拟日常的手工签名或印章,它可以抵御冒充、篡改、伪造、抵赖问题。数字签名的安全特性是:不可否认性,不可伪造性。
数字签名算法一般采用非对称密钥密码体制来实现。常见的数字签名算法有:RSA,其安全性是基于求解离散对数的困难性;DSA,其安全性是基于对有限域的离散对数问题的不可实现性;ECDSA(椭圆曲线数字签名算法,Elliptic CurveDigital Signature Algorithm),其安全性给予椭圆曲线离散对数问题的不可实现性)等 。
在本文中首先介绍RSA和椭圆曲线域数字签名算法ECDSA签名与验证过程,然后比较两种算法在抗攻击性能,密钥大小,系统消耗,求解难度等方面的不同。
2基于RSA数字签名算法
RSA用到了初等数论中的一个重要定理-欧拉定理,其安全性依赖于数的因数分解的困难性。RSA的签名产生和签名认证过程如下 :
(1)随机选择两个素数p和q,满足|p|≈|q|;
(2)计算n=pq, (n)=(p-1)(q-l) ;
(3)随机选择整数e< (n),满足gcd(e, (n))=1;计算整数d,满足E*d1mod(n) ;
(4)p,q和 (n)保密,公钥为(n,e),私钥为d;
(5)对消息M进行数字摘要运算,得到摘要S;
(6)对摘要值S生成签名:V=Sd mod n;
(7)接收方验证签名:计算s=Ve mod n,并对消息M用同一数字摘要算法进行摘要运算,得到摘要值S。若S=s则通过签名认证。
3椭圆曲线数字签名算法(ECDSA)
设椭圆曲线公钥密码系统参数为(),其中是有限域,E是Fq上的椭圆曲线,G是E上的一个有理点,称为基点,G的阶为q(q为素数), a,b是椭圆曲线E的系数,h是一个单向安全的哈希函数。
已知:待签名消息M,域参数D=(q,f(x),a,b,G,n,h)及密钥对(x,y)ECDSA签名的产生 :
3.1签名算法
(1)选取一个随机或伪随机数 ;
(2)计算 ,且如果 r=0,则返回第一步;
(3)计算 ,若s=0则返回第一步;
(4)对消息m的签名为(r,s);
3.2验证算法
(1)计算 ;
(2)计算;
(3)计算,如果v=r则签名正确,否则验证失败。
4算法比较与分析
数字签名主要是利用公钥密码学构造的,RSA和ECC它们是基于不同的数学难题基础上的,而且不同的密码算法以及签名体制有不同的算法复杂度。RSA的破译和求解难度是亚指数级 的,国家公认的对于RSA最有效都是攻击方法是用一般数筛选方法去破译和攻击RSA;而ECDSA的破译和求解难度基本上是指数级 的,Pollard rho算法是目前破解一般ECDSA最有效的算法。
4.1RSA和ECDSA的密钥长度比较
表1RSA与ECDSA的密钥长度和抗攻击性比较
4.2RSA和ECDSA的优缺点的比较
ECC与RSA和离散对数系统的比较可知,160比特的ECC强度可大致相当于1024比特的RSA/DSA。这样,在相当安全强度下,ECC的较短的密钥长度可提高电子交易的速度,减少存储空间。下面对RSA和ECDSA在其他方便进行比较:研究表明,在同样安全级别的密码体制中,ECDSA的密钥规模小,节省带宽和空间,尤其适合一些计算能力和存储空间受限的应用领域,从而研究ECDSA的快速实现一直被认为有其重要的理论意义和应用价值。
注释:
张晓华,李宏佳,魏权利.椭圆曲线数字签名算法(ECDSA)软件仿真的研究[C]. 中国电子学会第十五届信息论学术年会暨第一届全国网络编码学术年会论文集(上).2008,1(Z) 607-611.
刘学清,李梅,宋超等.基于RSA的数字签名算法及其快速实现[J].电脑知识与技术,2009.
1概述
1.1概念与功能
数字签名是防止他人对传输的文件进行破坏.以及确定发信人的身份的手段该技术在数据单元上附加数据,或对数据单元进行秘密变换.这种数据和变换允许数据单元的接收者用以确认数据单元来源和数据单元的完整性,从而达到保护数据,防止被人进行伪造的目的。简单说来,数字签名是指用密码算法,对待发的数据进行加密处理,生成一段数据摘要信息附在原文上一起发送,接受方对其进行验证,判断原文真伪其签名思想是签名只能南一个人(个体)创建,但可以被任何人校验.
数字签名技术可以解决数据的否认、伪造、篡改及冒充等问题,满足上述要求的数字签名技术有如下主要功能:(1)发送者事后不能否认自己发送的签名;(2)接收者能够核实发送者发送的签名;(3)接收者不能伪造发送者的签名;(4)接收者不能对发送者的原文进行篡改;(5)数据交换中的某一用户不能冒充另一用户作为发送者或接收者
1.2数字签名与传统手写签名差别
(1)签署文件方面:一个手写签名是所签文件的物理部分,而数字签名不是,所以要使用其他的办法将数字签名与所签文件“绑定”。
(2)验证方面:一个手写签名是通过和一个真实的手写签名相比较来验证的而数字签名是通过一个公开的验证算法来验证:
(3)签名的复制:一个手写签名不容易被复制,因为复制品通常比较容易被鉴别来:而数字签名很容易被复制,因为一个文件的数字签名的复制品和原文件是一样的:所以要使用数字时问戳等特殊的技术避免数字签名的重复使用。
(4)手书签名是模拟的,且因人而异。数字签名是0和1的数字串,因人和消息而异。
一个安全有效的签名方案必须满足以下要求:1)任何人都可以验证签名的有效性;2)除了合法的签名者外,其他人伪造签名是困难的;3)对一个消息的签名不可复制为另一个消息的签名;4)签名的消息不可被篡改,一旦被篡改,则任何人都可以发现消息与签名的不一致;5)签名者事后不能否认自己的签名。
安全的数字签名实现的条件:发方必须向收方提供足够的非保密信息,以便使其能验证消息的签名,但又不能泄露用于产生签名的机密信息,以防止他人伪造签名。此外,还有赖于仔细设计的通信协议:
2原理
数字签名有两种:一种是对整体消息的签名,一种是对压缩消息的签名。每一种又可分为两个子类:一类是确定性(Deterministi)数字签名,其明文与密文是一一对应的,它对特定消息的签名不变化;一类是随机化的(Randomized)或概率式数字签名。
目前的数字签名技术大多是建立在公共密钥体制的基础上,其工作原理是:
(1)签名:发方将原文用哈希算法求得数字摘要,用签名私钥对数字摘要加密得数字签名,将原文与数字签名一起发送给接受方。
签名体制=(M,S,K,v),其中M:明文空间,S:签名的集合,K:密钥空间,V:证实函数的值域,由真、伪组成。
签名算法:对每一m∈M和每一k∈K,易于计算对m的签名s=Sigk(M)∈S
签名算法或签名密钥是秘密的,只有签名人掌握。
(2)验证:收方验证签名时,用发方公钥解密数字签名,得出数字摘要;收方将原文采用同样哈希算法又得一新的数字摘要,将两个数字摘要进行比较,如果二者匹配,说明经签名的电子文件传输成功。
验证算法:
Verk(S,M)∈{真,伪}={0,l1
3基于身份的数字签名
3.1优势
1984年Shamir提出基于身份的加密、签名、认证的设想,其中身份可以是用户的姓名、身份证号码、地址、电子邮件地址等。系统中每个用户都有一个身份,用户的公钥就是用户的身份,或者是可以通过一个公开的算法根据用户的身份可以容易地计算出来,而私钥则是由可信中心统一生成。在基于身份的密码系统中,任意两个用户都可以安全通信,不需要交换公钥证书,不必保存公钥证书列表,也不必使用在线的第三方,只需一个可信的密钥发行中心为每个第一次接入系统的用户分配一个对应其公钥的私钥就可以了。基于身份的密码系统不存在传统CA颁发证书所带来的存储和管理开销问题。
3.2形式化定义
基于身份的数字签名由以下4个算法组成,如图1所示。
Setup(系统初始化):输入一个安全参数k,输出系统参数param、和系统私钥mk,该算法由密钥产生机构PKG运行,最后PKG公开params,保存mk。Extract(用户密钥生成):输入params、mk和用户的身份ID,输出用户的私钥diD,该算法由PKG完成,PKG用安全的信道将diD返回给用户。Sign(签名):输入一个安全参数r、params、diD以及消息M,输出对}肖息M的签名盯,该算法由用户实现。Verify(验证):输入params、签名人身份ID、消息m和签名,输出签名验证结果1或0,代表真和伪,该算法由签名的验证者完成。其中,签名算法和验证算法与一般签名方案形式相同。
4数字签名在电子政务中的应用
4.1意义
数字签名的过程和政务公文的加密/解密过程虽然都使用公开密钥体系,但实现的过程正好相反,使用的密钥对也各不相同。数字签名使用的是发送方的密钥对,发送方用自己的私钥进行加密,接收方用发送方的公钥进行解密。这是一个一对多的关系,即任何拥有发送方公钥的人都可以验证数字签名的正确性。政务公文的加密/解密则使用接收方的密钥对,这是多对一的关系,即任何知道接收方公钥的人都可以向接收方发送加密公文,只有唯一拥有接收方私钥的人才能对公文解密。在实际应用过程中,通常一个用户拥有两个密钥对,一个密钥对用来对数字签名进行加密,解密;另一个密钥对用来对公文进行加密懈密,这种方式提供了更高的安全性。
4.2形式
4.2.1个人单独签名
由于政务公文的文件相对来说都比较大,所以一般需要先对所要传输的原文进行加密压缩后形成一个文件摘要,然后对这个文件摘要进行数字签名。一般由两个阶段组成:对原文的数字签名和对数字签名的验证。
(1)对原文的数字签名
先采用单向散列哈希算法对所要传输的政务公文x进行加密计算和压缩,推算出一个文件摘要z。然后,公文的发送方用自己的私钥SKA对其加密后形成数字签名Y,并将该数字签名附在所要传送的政务公文后形成一个完整的信息包(X+Y)。再用接收方的公钥PKB对该信息包进行加密后,通过网络传输给接收方。
(2)对数字签名的验证
接收方收到该信息包后,首先用自己的私钥SKB对整个信息包进行解密,得到两部分信息:数字签名部分Y和政务公文原文部分x;其次,接收方利用发送方的公钥PKA对数字签名部分进行解密,得到一个文件摘要Z;接着,接收方也采用单向散列哈希算法对所收到的政务公文原文部分进行加密压缩,推算出另外一个文件摘要z1。由于原文的任何改动都会使推算出的文件摘要发生变化,所以只要比较两个文件摘要z和z1就可以知道公文在传输途中是否被篡改以及公文的来源所在。如果两个文件摘要相同,那么接收方就能确认该数字签名是发送方的,并且说明文件在传输过程中没有被破坏。通过数字签名能够实现对原始报文的鉴别。
Abstract:Today’sapprovalofnewdrugsintheinternationalcommunityneedstocarryouttherawdatatransmission.Thetraditionalwayofexaminationandapprovalredtapeandinefficiency,andtheuseoftheInternettotransmitelectronictextcankeepdatasafeandreliable,butalsogreatlysavemanpower,materialandfinancialresources,andsoon.Inthispaper,encryptionanddigitalsignaturealgorithmofthebasicprinciples,combinedwithhisownideas,givenmedicalapprovalintheelectronictransmissionofthetextofthesecuritysolution.
Keywords:digitalsignature;encryptiontechnology;digitalcertificate;electronicdocuments;securityissues
1引言
随着我国医药事业的发展,研制新药,抢占国内市场已越演越烈。以前一些医药都是靠进口,不仅成本高,而且容易形成壁垒。目前,我国的医药研究人员经过不懈的努力,开始研制出同类同效的药物,然而这些药物在走向市场前,必须经过国际权威医疗机构的审批,传统方式是药物分析的原始数据都是采用纸张方式,不仅数量多的吓人,而且一旦有一点差错就需从头做起,浪费大量的人力、物力、财力。随着INTERNET的发展和普及,人们开始考虑是否能用互联网来解决数据传输问题。他们希望自己的仪器所做的结果能通过网络安全传输、并得到接收方认证。目前国外针对这一情况已⒘四承┤砑欢捎诩鄹癜汗螅际醪皇呛艹墒欤勾τ谘橹そ锥危媸被嵘兜脑颍诤苌偈褂谩U饩透谝揭┭蟹⑹乱敌纬闪思际跗烤保绾慰⒊鍪视榈南嘤θ砑创俳夜揭┥笈ぷ鞯姆⒄咕统闪斯诘那把亓煊颍胰涨肮谡夥矫娴难芯坎皇呛芏唷?lt;/DIV>
本文阐述的思想:基本上是参考国际国内现有的算法和体制及一些相关的应用实例,并结合个人的思想提出了一套基于公钥密码体制和对称加密技术的解决方案,以确保医药审批中电子文本安全传输和防止窜改,不可否认等。
2算法设计
2.1AES算法的介绍[1]
高级加密标准(AdvancedEncryptionStandard)美国国家技术标准委员会(NIST)在2000年10月选定了比利时的研究成果"Rijndael"作为AES的基础。"Rijndael"是经过三年漫长的过程,最终从进入候选的五种方案中挑选出来的。
AES内部有更简洁精确的数学算法,而加密数据只需一次通过。AES被设计成高速,坚固的安全性能,而且能够支持各种小型设备。
AES和DES的性能比较:
(1)DES算法的56位密钥长度太短;
(2)S盒中可能有不安全的因素;
(3)AES算法设计简单,密钥安装快、需要的内存空间少,在所有平台上运行良好,支持并行处理,还可抵抗所有已知攻击;
(4)AES很可能取代DES成为新的国际加密标准。
总之,AES比DES支持更长的密钥,比DES具有更强的安全性和更高的效率,比较一下,AES的128bit密钥比DES的56bit密钥强1021倍。随着信息安全技术的发展,已经发现DES很多不足之处,对DES的破解方法也日趋有效。AES会代替DES成为21世纪流行的对称加密算法。
2.2椭圆曲线算法简介[2]
2.2.1椭圆曲线定义及加密原理[2]
所谓椭圆曲线指的是由韦尔斯特拉斯(Weierstrass)方程y2+a1xy+a3y=x3+a2x2+a4x+a6(1)所确定的平面曲线。若F是一个域,ai∈F,i=1,2,…,6。满足式1的数偶(x,y)称为F域上的椭圆曲线E的点。F域可以式有理数域,还可以式有限域GF(Pr)。椭圆曲线通常用E表示。除了曲线E的所有点外,尚需加上一个叫做无穷远点的特殊O。
在椭圆曲线加密(ECC)中,利用了某种特殊形式的椭圆曲线,即定义在有限域上的椭圆曲线。其方程如下:
y2=x3+ax+b(modp)(2)
这里p是素数,a和b为两个小于p的非负整数,它们满足:
4a3+27b2(modp)≠0其中,x,y,a,b∈Fp,则满足式(2)的点(x,y)和一个无穷点O就组成了椭圆曲线E。
椭圆曲线离散对数问题ECDLP定义如下:给定素数p和椭圆曲线E,对Q=kP,在已知P,Q的情况下求出小于p的正整数k。可以证明,已知k和P计算Q比较容易,而由Q和P计算k则比较困难,至今没有有效的方法来解决这个问题,这就是椭圆曲线加密算法原理之所在。
2.2.2椭圆曲线算法与RSA算法的比较
椭圆曲线公钥系统是代替RSA的强有力的竞争者。椭圆曲线加密方法与RSA方法相比,有以下的优点:
(1)安全性能更高如160位ECC与1024位RSA、DSA有相同的安全强度。
(2)计算量小,处理速度快在私钥的处理速度上(解密和签名),ECC远比RSA、DSA快得多。
(3)存储空间占用小ECC的密钥尺寸和系统参数与RSA、DSA相比要小得多,所以占用的存储空间小得多。
(4)带宽要求低使得ECC具有广泛得应用前景。
ECC的这些特点使它必将取代RSA,成为通用的公钥加密算法。比如SET协议的制定者已把它作为下一代SET协议中缺省的公钥密码算法。
2.3安全散列函数(SHA)介绍
安全散列算法SHA(SecureHashAlgorithm,SHA)[1]是美国国家标准和技术局的国家标准FIPSPUB180-1,一般称为SHA-1。其对长度不超过264二进制位的消息产生160位的消息摘要输出。
SHA是一种数据加密算法,该算法经过加密专家多年来的发展和改进已日益完善,现在已成为公认的最安全的散列算法之一,并被广泛使用。该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。散列函数值可以说时对明文的一种“指纹”或是“摘要”所以对散列值的数字签名就可以视为对此明文的数字签名。
3数字签名
“数字签名”用来保证信息传输过程中信息的完整和提供信息发送者的身份认证和不可抵赖性。数字签名技术的实现基础是公开密钥加密技术,是用某人的私钥加密的消息摘要用于确认消息的来源和内容。公钥算法的执行速度一般比较慢,把Hash函数和公钥算法结合起来,所以在数字签名时,首先用hash函数(消息摘要函数)将消息转变为消息摘要,然后对这个摘
要签名。目前比较流行的消息摘要算法是MD4,MD5算法,但是随着计算能力和散列密码分析的发展,这两种算法的安全性及受欢迎程度有所下降。本文采用一种比较新的散列算法――SHA算法。
4解决方案:
下面是医药审批系统中各个物理组成部分及其相互之间的逻辑关系图:
要签名。目前比较流行的消息摘要算法是MD4,MD5算法,但是随着计算能力和散列密码分析的发展,这两种算法的安全性及受欢迎程度有所下降。本文采用一种比较新的散列算法――SHA算法。
4解决方案:
下面是医药审批系统中各个物理组成部分及其相互之间的逻辑关系图:
图示:电子文本传输加密、签名过程
下面是将医药审批过程中的电子文本安全传输的解决方案:
具体过程如下:
(1)发送方A将发送原文用SHA函数编码,产生一段固定长度的数字摘要。
(2)发送方A用自己的私钥(keyA私)对摘要加密,形成数字签名,附在发送信息原文后面。
(3)发送方A产生通信密钥(AES对称密钥),用它对带有数字签名的原文进行加密,传送到接收方B。这里使用对称加密算法AES的优势是它的加解密的速度快。
(4)发送方A用接收方B的公钥(keyB公)对自己的通信密钥进行加密后,传到接收方B。这一步利用了数字信封的作用,。
(5)接收方B收到加密后的通信密钥,用自己的私钥对其解密,得到发送方A的通信密钥。
(6)接收方B用发送方A的通信密钥对收到的经加密的签名原文解密,得数字签名和原文。
(7)接收方B用发送方A公钥对数字签名解密,得到摘要;同时将原文用SHA-1函数编码,产生另一个摘要。
(8)接收方B将两摘要比较,若一致说明信息没有被破坏或篡改。否则丢弃该文档。
这个过程满足5个方面的安全性要求:(1)原文的完整性和签名的快速性:利用单向散列函数SHA-1先将原文换算成摘要,相当原文的指纹特征,任何对原文的修改都可以被接收方B检测出来,从而满足了完整性的要求;再用发送方公钥算法(ECC)的私钥加密摘要形成签名,这样就克服了公钥算法直接加密原文速度慢的缺点。(2)加解密的快速性:用对称加密算法AES加密原文和数字签名,充分利用了它的这一优点。(3)更高的安全性:第四步中利用数字信封的原理,用接收方B的公钥加密发送方A的对称密钥,这样就解决了对称密钥传输困难的不足。这种技术的安全性相当高。结合对称加密技术(AES)和公开密钥技术(ECC)的优点,使用两个层次的加密来获得公开密钥技术的灵活性和对称密钥技术的高效性。(4)保密性:第五步中,发送方A的对称密钥是用接收方B的公钥加密并传给自己的,由于没有别人知道B的私钥,所以只有B能够对这份加密文件解密,从而又满足保密性要求。(5)认证性和抗否认性:在最后三步中,接收方B用发送方A的公钥解密数字签名,同时就认证了该签名的文档是发送A传递过来的;由于没有别人拥有发送方A的私钥,只有发送方A能够生成可以用自己的公钥解密的签名,所以发送方A不能否认曾经对该文档进进行过签名。
5方案评价与结论
为了解决传统的新药审批中的繁琐程序及其必有的缺点,本文提出利用基于公钥算法的数字签名对文档进行电子签名,从而大大增强了文档在不安全网络环境下传递的安全性。
本方案在选择加密和数字签名算法上都是经过精心的比较,并且结合现有的相关应用实例情况,提出医药审批过程的解决方案,其优越性是:将对称密钥AES算法的快速、低成本和非对称密钥ECC算法的有效性以及比较新的算列算法SHA完美地结合在一起,从而提供了完整的安全服务,包括身份认证、保密性、完整性检查、抗否认等。
参考文献:
1.李永新.数字签名技术的研究与探讨。绍兴文理学院学报。第23卷第7期2003年3月,P47~49.
2.康丽军。数字签名技术及应用,太原重型机械学院学报。第24卷第1期2003年3月P31~34.
3.胡炎,董名垂。用数字签名解决电力系统敏感文档签名问题。电力系统自动化。第26卷第1期2002年1月P58~61。
4.LeungKRPH,HuiL,CK.HandingSignaturePurposesinWorkflowSystems.JournalofSystems.JournalofSystemsandSoftware,2001,55(3),P245~259.
5.WrightMA,workSecurity,1998(2)P10~13.
6.BruceSchneier.应用密码学---协议、算法与C源程序(吴世终,祝世雄,张文政,等).北京:机械工业出版社,2001。
7.贾晶,陈元,王丽娜,信息系统的安全与保密[M],北京:清华大学出版社,1999
8.陈彦学.信息安全理论与实务【M】。北京:中国铁道出版社,2000p167~178.
9.顾婷婷,《AES和椭圆曲线密码算法的研究》。四川大学硕士学位论文,【馆藏号】Y4625892002。
下面是将医药审批过程中的电子文本安全传输的解决方案:
具体过程如下:
(1)发送方A将发送原文用SHA函数编码,产生一段固定长度的数字摘要。
(2)发送方A用自己的私钥(keyA私)对摘要加密,形成数字签名,附在发送信息原文后面。
(3)发送方A产生通信密钥(AES对称密钥),用它对带有数字签名的原文进行加密,传送到接收方B。这里使用对称加密算法AES的优势是它的加解密的速度快。
(4)发送方A用接收方B的公钥(keyB公)对自己的通信密钥进行加密后,传到接收方B。这一步利用了数字信封的作用,。
(5)接收方B收到加密后的通信密钥,用自己的私钥对其解密,得到发送方A的通信密钥。
(6)接收方B用发送方A的通信密钥对收到的经加密的签名原文解密,得数字签名和原文。
(7)接收方B用发送方A公钥对数字签名解密,得到摘要;同时将原文用SHA-1函数编码,产生另一个摘要。
(8)接收方B将两摘要比较,若一致说明信息没有被破坏或篡改。否则丢弃该文档。
这个过程满足5个方面的安全性要求:(1)原文的完整性和签名的快速性:利用单向散列函数SHA-1先将原文换算成摘要,相当原文的指纹特征,任何对原文的修改都可以被接收方B检测出来,从而满足了完整性的要求;再用发送方公钥算法(ECC)的私钥加密摘要形成签名,这样就克服了公钥算法直接加密原文速度慢的缺点。(2)加解密的快速性:用对称加密算法AES加密原文和数字签名,充分利用了它的这一优点。(3)更高的安全性:第四步中利用数字信封的原理,用接收方B的公钥加密发送方A的对称密钥,这样就解决了对称密钥传输困难的不足。这种技术的安全性相当高。结合对称加密技术(AES)和公开密钥技术(ECC)的优点,使用两个层次的加密来获得公开密钥技术的灵活性和对称密钥技术的高效性。(4)保密性:第五步中,发送方A的对称密钥是用接收方B的公钥加密并传给自己的,由于没有别人知道B的私钥,所以只有B能够对这份加密文件解密,从而又满足保密性要求。(5)认证性和抗否认性:在最后三步中,接收方B用发送方A的公钥解密数字签名,同时就认证了该签名的文档是发送A传递过来的;由于没有别人拥有发送方A的私钥,只有发送方A能够生成可以用自己的公钥解密的签名,所以发送方A不能否认曾经对该文档进进行过签名。
5方案评价与结论
为了解决传统的新药审批中的繁琐程序及其必有的缺点,本文提出利用基于公钥算法的数字签名对文档进行电子签名,从而大大增强了文档在不安全网络环境下传递的安全性。
本方案在选择加密和数字签名算法上都是经过精心的比较,并且结合现有的相关应用实例情况,提出医药审批过程的解决方案,其优越性是:将对称密钥AES算法的快速、低成本和非对称密钥ECC算法的有效性以及比较新的算列算法SHA完美地结合在一起,从而提供了完整的安全服务,包括身份认证、保密性、完整性检查、抗否认等。
参考文献:
1.李永新.数字签名技术的研究与探讨。绍兴文理学院学报。第23卷第7期2003年3月,P47~49.
2.康丽军。数字签名技术及应用,太原重型机械学院学报。第24卷第1期2003年3月P31~34.
3.胡炎,董名垂。用数字签名解决电力系统敏感文档签名问题。电力系统自动化。第26卷第1期2002年1月P58~61。
4.LeungKRPH,HuiL,CK.HandingSignaturePurposesinWorkflowSystems.JournalofSystems.JournalofSystemsandSoftware,2001,55(3),P245~259.
5.WrightMA,workSecurity,1998(2)P10~13.
6.BruceSchneier.应用密码学---协议、算法与C源程序(吴世终,祝世雄,张文政,等).北京:机械工业出版社,2001。
中图分类号:TP309.2文献标识码:A文章编号:1007-9599 (2011) 05-0000-02
Information System Security Solutions
Qi Shifeng
(Computer Sciences School,Panzhihua University,Panzhihua617000,China)
Abstract:Security is inevitable for every information system.This paper provides solutions to the information system security by using the relevant technologies such as firewalls externally,and internally authority administration,data encryption,digital signatures and so on.Practice has proved these solutions and their reference value.
Keywords:Information System;Authority;Data encryption;Digital Signatures
一、引言
信息系统的迅速发展和广泛应用,显示了它的巨大生命力;另一方面也体现了人类社会对信息系统的依赖性越来越强。但信息系统的安全是一个不可回避的问题,一者信息系统管理着核心数据,一旦安全出现问题,后果不堪设想;再者现在信息系统大多运行环境是基于TCP/IP的,众所周知,TCP/IP协议本身是不安全的,因此必须充分考虑信息系统的安全性。信息系统的安全问题已成为全球性的社会问题,也是信息系统建设和管理的主要瓶颈。
二、一种解决方案
信息系统的安全包括很多方面,一般说来,可以分为外部安全和内部安全两方面。对外的安全主要是防止非法攻击,本方案通过第三方防火墙来实现。内部的安全主要是保证数据安全,本方案提出两个方面的解决:①权限管理;②数据加密。
(一)防火墙技术
防火墙是一种综合性的技术,它是一种计算机硬件和软件的结合。顾名思义,防火墙就是用来阻挡外部不安全因素影响的内部网络屏障,其目的就是防止外部网络用户未经授权的访问,它实际上是一种隔离技术。工作原理如图1所示。
图1防火墙工作原理
(二)权限管理
构建强健的权限管理系统,对保证信息系统的安全性是十分重要的。基于角色的访问控制(Role-Based Access Control,简称RBAC)方法是目前公认的解决大型企业的统一资源访问控制的有效方法。其显著的两大特征是:
1.减小授权管理的复杂性,降低管理开销。
2.灵活地支持企业的安全策略,并对企业的变化有很大的伸缩性。
一个完整的权限管理系统应该包括:用户、角色、资源、操作这四种主体,他们简化的关系可以简化为图2。
图2 权限管理四种主体关系图
RBAC认为权限授权实际上是Who、What、How的问题。可简单表述为这样的逻辑表达式:判断“Who对What(Which)进行How的操作”是否为真。
本方案权限管理采用“用户―角色―功能权限―数据对象权限”权限管理模式管理权限。具体参见图3。
图3 权限管理模型
图3所示的权限管理模型实现过程如下:
1.划分用户角色级别:系统管理员根据用户岗位职责要求对其功能权限进行分配和管理。
2.划分功能控制单元:功能控制单元即权限控制的对象。功能控制单元根据功能结构树按层次进行划分。
3.权限管理实现:例如,当新员工加盟时、系统首先为其分配一个系统账号,当给他分配岗位时、便自动有了该岗位对应角色的权限。当然如果该用户有本系统的一些单独的功能使用权限,可以提出申请经批准后由系统管理员分配。
(三)数据安全保证
1.实现技术
(1)数据加密。数据加密技术是指将一个信息(或称明文)经过加密钥匙及加密函数转换,变成无意义的密文,从而达到使非法用户无法获取信息真实内容。另一方面接收方则将此密文经过解密函数及解密钥匙还原成明文。常见的对称密钥加密算法有DES加密算法和IDEA加密算法,用得最多的公开密钥加密算法是RSA加密算法。
(2)数字签名。数字签名技术是在公钥加密系统的基础上建立起来的。数字签名就是附加在数据单元上的一些数据,或是对数据单元所作的密码变换。这种数据或变换允许数据单元的接收者用以确认数据单元的来源和数据单元的完整性并保护数据,防止被人(例如接收者)进行伪造。用来模拟现实生活中的签名或印章。
2.实施策略
本方案中,系统的数据安全保证主要是依靠上述的数据加密技术和数字签名技术来实现,具体的实施策略如图4所示。
图4 混合加密和数字签名联合使用的实施策略
在图4中,将其数据安全保证实现过程分为四步:数据加密、数据签名,验证入库、数据解密。
(1)数据加密:当需要将核心信息放入数据库时,信息发送方随机生成本次通信用的DES或IDEA密钥K,用密钥K加密压缩的明文M得到密文Cm,用系统的RSA公钥加密密钥K得到Ck,再将Cm和Ck合成密文C。
(2)数字签名:信息发送方对数据加密时生成的密文C进行MD5运算,产生一个消息摘要MD,再用自己的RSA私钥对MD进行解密来形成发送方的数字签名Cd,并将Cd和C合成密文Cc。
(3)验证入库:数据库服务器收到Cc后,将其分解为Cd和C。用发送方的RSA公钥加密Cd得到MD,然后对C进行MD5运算,产生一个消息摘要MD1。比较MD和MD1,如果相同,将合成密文C放入仓库,否则不与入库。
(4)数据解密:对于有权访问核心数据的用户,系统将向其提供RSA私钥,访问时首先从数据检出合成密文C,将C分解成Cm和Ck;并用系统提供的RSA私钥对Ck解密得到密钥K,用密钥K对Cm解密得到明文M。
三、小结
“三分技术,七分管理”是技术与管理策略在整个信息安全保障策略中各自重要性的体现,没有完善的管理,技术就是再先进,也是无济于事的。本文提出的这种信息系统安全的解决方案,已成功应用于系统的设计和开发实践,与应用系统具有良好的集成。当然这种方案并不一定是最好或最合理的保证信息系统安全的解决方案。但希望能够抛砖引玉,使各位同仁在此类问题上找到更合理更安全的解决方案。
参考文献:
[1]向模军.基于QFD的新产品开发决策支持系统研究与实现[C].硕士论文.成都:电子科技大学,2007
[2]唐成华,陈新度,陈新.管理信息系统中多用户权限管理的研究及实现[J].计算机应用研究,2004,21(3):217-219
[3]祖峰,熊忠阳,冯永.信息系统权限管理新方法及实现[J].重庆大学学报:自然科学版,2003,26(11):91-94
关键词:信息安全;圆锥曲线数字签名;登录系统安全
中图分类号:TP309 文献标识码:A文章编号:1009-3044(2008)35-2463-01
A Secure Login Resolution Scheme
LONG Yong1,CAI Chang-xu2,CAI Chang-shu3
(1. Yunnan Energy School,Qujing 650001,China;puter and Information Department of Qujing Normal University,Qujing 650011,China;3.Yunnan E-government Network Management Center,Kunming 650031,China)
Abstract: The common information system login method adopts only user name and password to authenticate the users.In order to avoid the drawbacks of conventional methods which is vulnerable to the attacks of record keyboard, dictionary guess, SQL injection and so forth, the thesis design a novel scheme adopting Hash algorithm and Conic Curve Digital Signature technology. It can meet the security requirement of authentication, information integrity, non-repudiation.
Key words:information security;conic curve digital signature;system login security
1 前言
在大部分的C/S与B/S的登录页面中,都仅仅采用了用户名和密码两项来作为登录用户身份的验证,用户名和密码还直接就以明文的形式存储在数据库中,更有甚者,还只有密码一项来验证用户身份,且密码以明文的形式存储在数据库中。这样的系统都是极度不安全的,黑客打开数据库、记录合法用户的键盘敲击、或者字典猜测都很容易获取登录页面的用户名和密码。对于用户名推荐使用与部门或用户没有任何关联的符合一定复杂性的随机字符来最为用户名,不得使用Administrator、Admin等。黑客输入得到的用户名和密码就可以登录系统肆意进行相关的工作了。采用用户名加密码的哈西值组合,密码项就没有直接存储在数据库中,黑客打开数据库是找不到登录用户的密码项的,这样的安全性大大强于用户名和密码项的组合,但是它还不能抵抗字典猜测攻击,更危险的是,如果没有对用户名和密码框的输入进行非法字符的过滤,这样的系统还是很容易受到SQL注入攻击的,而SQL注入攻击是一种攻击效果非常好的攻击方法。
2 解决方案
为了保证登录页面的安全,必须采取更好的解决方案。本文针对常规解决方法的不足,设计了如下的安全登录解决方案:采用单向哈西用户名+用户授权文件+授权文件完整性校验+数字签名技术来解决登录的安全问题。登录的实际帐户在数据库在不存储实际名,而是存储帐户名的哈西摘要值,使用SHA-1,建议使用SHA-256。不同的用户角色授权文件不同,授权文件可以是任意格式的文件。完整性校验采用SHA-256算法,数字签名算法采用CCDSA算法[1]。CCDSA算法的参数选取采用文献[1]中的选取过成。数字签名算法不采用国际上流行算法如RSA,ECDSA,可以在一定的程度上避开了常见密码算法的已有攻击算法。本登录方案从源头上杜绝了SQL注入攻击,安全性极高。
登录的输入项目有:1)用户名;2)导入的授权文件,用户的私钥。
本登录方案的登录过程如下:
1) 登录用户输入符合一定复杂性要求的用户名。
2) 计算用户名的SHA-256哈西值,查找数据库中有无此哈西值存在,若存在说明此用户是一个存在的合法用户,否则退出登录。
3) 登录的用户导入登录的授权文件,用SHA-256计算哈西摘要值,在数据库中查找有无此授权文件的哈西值存在,若存在,则说明用户的授权文件是完整的,没有受到非法的篡改,否则退出登录。
4) 登录用户导入自己的私钥对计算出的授权文件哈西值进行圆锥曲线数字签名。
5) 登录的后台对授权文件的哈西摘要值的数字签名验证数字签名的合法性,若是合法的数字签名,则用户就可以最终登录入后台管理系统进行相关的操作了,否则退出登录。
3 结束语
数据加密技术是对信息进行重新编码,从而达到隐藏信息内容,非法用户无法获得信息真实内容的一种技术手段。网络中的数据加密则是通过对网络中传输的信息进行数据加密,满足网络安全中数据加密、数据完整性等要求,而基于数据加密技术的数字签名技术则可满足审计追踪等安全要求。可见,数据加密技术是实现网络安全的关键技术。
二、数据加密相关信息
2.1数据加密的方法
加密技术通常分为两大类:对称式和非对称式
对称式加密,被广泛采用,它的特点是文件加密和解密使用相同的密钥,即加密密钥也可以用作解密密钥,这种方法在密码学中叫做对称加密算法,对称加密算法使用起来简单快捷,密钥较短,且破译困难。对称加密的优点是具有很高的保密强度,可以达到经受较高级破译力量的分析和攻击,但它的密钥必须通过安全可靠的途径传递,密钥管理成为影响系统安全的关键性因素,使它难以满足系统的开放性要求。对称密码加密算法中最著名的是DES(Data Encryption Standard)加密算法,它是由IBM公司开发的数据加密算法,它的核心是乘积变换。如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫非对称加密算法。非对称密码的主要优点是可以适应开放性的使用环境,密钥管理问题相对简单,可以方便、安全地实现数字签名和验证, 但加密和解密花费时间长、速度慢。非对称加密算法中最著名的是由美国MIT的Rivset、Shemir、Adleman于1977年实现的RSA算法。
2.2 数据加密的标准
最早、最著名的保密密钥或对称密钥加密算法DES(Data Encryption Standard)是由IBM公司在70年展起来的,并经政府的加密标准筛选后,于1976年11月被美国政府采用,DES随后被美国国家标准局和美国国家标准协会(American National Standard Institute,ANSI)承认。 DES使用56位密钥对64位的数据块进行加密,并对64位的数据块进行16轮编码。与每轮编码时,一个48位的”每轮”密钥值由56位的完整密钥得出来。DES用软件进行解码需用很长时间,而用硬件解码速度非常快。幸运的是,当时大多数黑客并没有足够的设备制造出这种硬件设备。在1977年,人们估计要耗资两千万美元才能建成一个专门计算机用于DES的解密,而且需要12个小时的破解才能得到结果。当时DES被认为是一种十分强大的加密方法。另一种非常著名的加密算法就是RSA了,RSA算法是基于大数不可能被质因数分解假设的公钥体系。简单地说就是找两个很大的质数。一个对外公开的为“公钥”(Prblic key) ,另一个不告诉任何人,称为“私钥”(Private key)。这两个密钥是互补的,也就是说用公钥加密的密文可以用私钥解密,反过来也一样。
三、数据加密传输系统
3.1 系统的整体结构
系统的整体结构分为以下几个模块,首先是发送端的明文经过数据加密系统加密后,文件传输系统将加密后的密文传送给接收端,接收端接收到密文以后,用已知的密钥进行解密,得到明文。
3.2 模块设计
3.2.1 加解密模块
(1)DES加解密模块。DES加解密模块的设计,分为两个部分:DES加密文件部分和DES加密演示部分。DES加密文件部分可以实现对文件的浏览,选中文件后对文件进行加密,加密后的文件存放在新的文档;DES加密演示部分输入数据后可以直接加密。(2)RSA加解密模块。RSA加解密系统,主界面有三个模块,分别为加密、解密和退出;加密模块对明文和密钥的输入又设置了直接输入和从文件读取;解密模块可以直接实现对文件的解密。
3.2.2 文件传输模块
(1)文件浏览:用户手动点击浏览按钮,根据用户的需要,按照目录选择要传输的文件,选中文件。(2)文件传输:当用户点击发送文件时,文件就可通过软件传给客户端。点击客户端按钮,软件会弹出客户端的窗体,它包含输入框(输入对方IP地址)和按钮(接收和退出),通过输入IP地址,就可实现一台电脑上的文件传输。
四、数据加密在商务中的应用
在电子商务发展过程中,采用数字签名技术能保证发送方对所发信息的不可抵赖性。在法律上,数字签名与传统签名同样具有有效性。数字签名技术在电子商务中所起的作用相当于亲笔签名或印章在传统商务中所起的作用。
数据签名技术的工作原理: 1.把要传输的信息用杂凑函数(Hash Function)转换成一个固定长度的输出,这个输出称为信息摘要(Message Digest,简称MD)。杂凑函数是一个单向的不可逆的函数,它的作用是能对一个输入产生一个固定长度的输出。 2.发送者用自己的私钥(SK)对信息摘要进行加密运算,从而形成数字签名。 3.把数字签名和原始信息(明文)一同通过Internet发送给接收方。 4.接收方用发送方的公钥(PK)对数字签名进行解密,从而得到信息摘要。 5.接收方用相同的杂凑函数对接收到的原始信息进行变换,得到信息摘要,与⑷中得到的信息摘要进行比较,若相同,则表明在传输过程中传输信息没有被篡改。同时也能保证信息的不可抵赖性。若发送方否认发送过此信息,则接收方可将其收到的数字签名和原始信息传送至第三方,而第三方用发送方的公钥很容易证实发送方是否向接收方发送过此信息。
然而,仅采用上述技术在Internet上传输敏感信息是不安全的,主要有两方面的原因。 1.没有考虑原始信息即明文本身的安全; 2.任何知道发送方公钥的人都可以获取敏感信息,而发送方的公钥是公开的。 解决1可以采用对称密钥加密技术或非对称密钥加密技术,同时考虑到整个加密过程的速度,一般采用对称密钥加密技术。而解决2需要介绍数字加密算法的又一应用即数字信封。
五、 结论
上述内容主要介绍了数据传输过程中的加密处理,数据加密是一个主动的防御策略,从根本上保证数据的安全性。和其他电子商务安全技术相结合,可以一同构筑安全可靠的电子商务环境,使得网上通讯,数据传输更加安全、可信。
参 考 文 献
[1]黄河明.数据加密技术及其在网络安全传输中的应用.硕士论文,2008年
[2]孟扬.网络信息加密技术分析[J].信息网络安全,2009年4期
[论文摘 要]电子商务是新兴商务形式,信息安全的保障是电子商务实施的前提。本文针对电子商务活动中存在的信息安全隐患问题,实施保障电子商务信息安全的数据加密技术、身份验证技术、防火墙技术等技术性措施,完善电子商务发展的内外部环境,促进我国电子商务可持续发展。
随着网络的发展,电子商务的迅速崛起,使网络成为国际竞争的新战场。然而,由于网络技术本身的缺陷,使得网络社会的脆性大大增加,一旦计算机网络受到攻击不能正常运作时,整个社会就会陷入危机。所以,构筑安全的电子商务信息环境,愈来愈受到国际社会的高度关注。
一、电子商务中的信息安全技术
电子商务的信息安全在很大程度上依赖于技术的完善,包括密码、鉴别、访问控制、信息流控制、数据保护、软件保护、病毒检测及清除、内容分类识别和过滤、网络隐患扫描、系统安全监测报警与审计等技术。
1.防火墙技术。防火墙主要是加强网络之间的访问控制, 防止外部网络用户以非法手段通过外部网络进入内部网络。
2.加密技术。数据加密就是按照确定的密码算法将敏感的明文数据变换成难以识别的密文数据,当需要时可使用不同的密钥将密文数据还原成明文数据。
3.数字签名技术。数字签名技术是将摘要用发送者的私钥加密,与原文一起传送给接收者,接收者只有用发送者的公钥才能解密被加密的摘要。
4.数字时间戳技术。时间戳是一个经加密后形成的凭证文档,包括需加时间戳的文件的摘要、DTS 收到文件的日期与时间和DIS 数字签名,用户首先将需要加时间的文件用HASH编码加密形成摘要,然后将该摘要发送到DTS,DTS 在加入了收到文件摘要的日期和时间信息后再对该文件加密,然后送回用户。
二、电子商务安全防范措施
网络安全是电子商务的基础。网络安全防范技术可以从数据的加密(解密)算法、安全的网络协议、网络防火墙、完善的安全管理制度、硬件的加密和物理保护、安全监听系统和防病毒软件等领域来进行考虑和完善。
1.防火墙技术
用过Internet,企业可以从异地取回重要数据,同时又要面对 Internet 带来的数据安全的新挑战和新危险:即客户、推销商、移动用户、异地员工和内部员工的安全访问;以及保护企业的机密信息不受黑客和工业间谍的入侵。因此,企业必须加筑安全的“壕沟”,而这个“壕沟”就是防火墙.防火墙系统决定了哪些内容服务可以被外界访问;外界的哪些人可以访问内部的服务以及哪些外部服务可以被内部人员访问。防火墙必须只允许授权的数据通过,而且防火墙本身必须能够免于渗透。
2. VPN技术
虚拟专用网简称VPN,指将物理上分布在不同地点的网络通过公用骨干网联接而形成逻辑上的虚拟“私”网,依靠IPS或 NSP在安全隧道、用户认证和访问控制等相关技术的控制下达到与专用网络类同的安全性能,从而实现基于 Internet 安全传输重要信息的效应。目前VPN 主要采用四项技术来保证安全, 这四项技术分别是隧道技术、加解密技术、密钥管理技术、使用者与设备身份认证技术。
3.数字签名技术
为了保证数据和交易的安全、防止欺骗,确认交易双方的真实身份,电子商务必须采用加密技术。数字签名就是基于加密技术的,它的作用就是用来确定用户是否是真实的。数字签名就是通过一个单向哈希函数对要传送的报文进行处理而得到的用以认证报文是否发生改变的一个字母数字串。发送者用自己的私钥把数据加密后传送给接收者,接收者用发送者的公钥解开数据后,就可确认消息来自于谁,同时也是对发送者发送的信息真实性的一个证明,发送者对所发信息不可抵赖,从而实现信息的有效性和不可否认性。
三、电子商务的安全认证体系
随着计算机的发展和社会的进步,通过网络进行的电子商务活动当今社会越来越频繁,身份认证是一个不得不解决的重要问题,它将直接关系到电子商务活动能否高效而有序地进行。认证体系在电子商务中至关重要,它是用户获得访问权限的关键步骤。现代密码的两个最重要的分支就是加密和认证。加密目的就是防止敌方获得机密信息。认证则是为了防止敌方的主动攻击,包括验证信息真伪及防止信息在通信过程被篡改删除、插入、伪造及重放等。认证主要包括三个方面:消息认证、身份认证和数字签名。
身份认证一般是通过对被认证对象(人或事)的一个或多个参数进行验证。从而确定被认证对象是否名实相符或有效。这要求要验证的参数与被认证对象之间应存在严格的对应关系,最好是惟一对应的。身份认证是安全系统中的第一道关卡。
数字证书是在互联网通信中标志通信各方身份信息的一系列数据。提供了一种 Internet 上验证用户身份的方式,其作用类似于司机的驾驶执照或身份证。它是由一个权威机构CA机构,又称为证书授权(Certificate Authority)中心发行的,人们可以在网上用它识别彼此的身份。
四、结束语
安全实际上就是一种风险管理。任何技术手段都不能保证100%的安全。但是,安全技术可以降低系统遭到破坏、攻击的风险。因此,为进一步促进电子商务体系的完善和行业的健康快速发展,必须在实际运用中解决电子商务中出现的各类问题,使电子商务系统相对更安全。电子商务的安全运行必须从多方面入手,仅在技术角度防范是远远不够的,还必须完善电子商务立法,以规范飞速发展的电子商务现实中存在的各类问题,从而引导和促进我国电子商务快速健康发展。
参考文献
[1] 劳帼龄.电子商务的安全技术[M].北京:中国水利水电出版社,2005.
电子商务所具有的广阔发展前景,越来越为世人所瞩目。但在Inter给人们带来巨大便利的同时,也把人们引进了安全陷阱。目前,阻碍电子商务广泛应用的首要也是最大的问题就是安全问题。电子商务中的安全问题如得不到妥善解决,电子商务应用就只能是纸上谈兵。从事电子商务活动的主体都已普遍认识到电子商务的交易安全是电子商务成功实施的基础,是企业制订电子商务策略时必须首先要考虑的问题。对于实施电子商务战略的企业来说,保证电子商务的安全已成为当务之急。二、电子商务过程中面临的主要安全问题
从交易角度出发,电子商务面临的安全问题综合起来包括以下几个方面:
1.有效性
电子商务以电子形式取代了纸张,那么保证信息的有效性就成为开展电子商务的前提。因此,要对网络故障、操作错误、应用程序错误、硬件故障、系统软件错误及计算机病毒所产生的潜在威胁加以控制和预防,以保证贸易数据在确定的时刻、确定的地点是有效的。
2.真实性
由于在电子商务过程中,买卖双方的所有交易活动都通过网络联系,交易双方可能素昧平生,相隔万里。要使交易成功,首先要确认对方的身份。对于商家而言,要考虑客户端不能是骗子,而客户端也会担心网上商店是否是一个玩弄欺诈的黑店,因此,电子商务的开展要求能够对交易主体的真实身份进行鉴别。
3.机密性
电子商务作为贸易的一种手段,其信息直接代表着个人、企业或国家的商业机密。如信用卡的账号和用户名被人知悉,就可能被盗用而蒙受经济损失;订货和付款信息被竞争对手获悉,就可能丧失商机。因此建立在开放的网络环境电子商务活动,必须预防非法的信息存取和信息在传输过程中被非法窃取。三、电子商务安全中的几种技术手段
由于电子商务系统把服务商、客户和银行三方通过互联网连接起来,并实现了具体的业务操作。因此,电子商务安全系统可以由三个安全服务器及CA认证系统构成,它们遵循共同的协议,协调工作,实现电子商务交易信息的完整性、保密性和不可抵赖性等要求。其中采用的安全技术主要有以下几种:
1.防火墙(FireWall)技术
防火墙是一种隔离控制技术,在某个机构的网络和不安全的网络(如Inter)之间设置屏障,阻止对信息资源的非法访问,也可以使用防火墙阻止专利信息从企业的网络上被非法输出。
2.加密技术
数据加密技术是电子商务中采取的主要安全措施,贸易方可根据需要在信息交换的阶段使用。在网络应用中一般采取两种加密形式:对称加密和非对称加密,采用何种加密算法则要结合具体应用环境和系统,而不能简单地根据其加密强度来做出判断。
(1)对称加密
在对称加密方法中,对信息的加密和解密都使用相同的密钥。也就是说,一把钥匙开一把锁。这种加密算法可简化加密处理过程,贸易双方都不必彼此研究和交换专用的加密算法,如果进行通信的贸易方能够确保私有密钥在交换阶段未曾泄露,那么机密性和报文完整性就可以得到保证。不过,对称加密技术也存在一些不足,如果某一贸易方有n个贸易关系,那么他就要维护n个私有密钥。对称加密方式存在的另一个问题是无法鉴别贸易发起方或贸易最终方。因为贸易双方共享一把私有密钥。目前广泛采用的对称加密方式是数据加密标准(DES),它主要应用于银行业中的电子资金转账(EFT)领域。DES对64位二进制数据加密,产生64位密文数据。使用的密钥为64位,实际密钥长度为56位(8位用于奇偶校验)。解密时的过程和加密时相似,但密钥的顺序正好相反。
(2)非对称加密/公开密钥加密
在Inter中使用更多的是公钥系统,即公开密钥加密。在该体系中,密钥被分解为一对:公开密钥PK和私有密钥SK。这对密钥中的任何一把都可作为公开密钥(加密密钥)向他人公开,而另一把则作为私有密钥(解密密钥)加以保存。公开密钥用于加密,私有密钥用于解密,私有密钥只能由生成密钥对的贸易方掌握,公开密钥可广泛,但它只对应于生成该密钥的贸易方。在公开密钥体系中,加密算法E和解密算法D也都是公开的。虽然SK与PK成对出现,但却不能根据PK计算出SK。公开密钥算法的特点如下:
用加密密钥PK对明文X加密后,再用解密密钥SK解密,即可恢复出明文,或写为:DSK(EPK(X))=X。
加密密钥不能用来解密,即DPK(EPK(X))≠X
在计算机上可以容易地产生成对的PK和SK。
从已知的PK实际上不可能推导出SK。加密和解密的运算可以对调,即:EPK(DSK(X))=X
常用的公钥加密算法是RSA算法,加密强度很高。具体做法是将数字签名和数据加密结合起来。发送方在发送数据时必须加上数字签名,做法是用自己的私钥加密一段与发送数据相关的数据作为数字签名,然后与发送数据一起用接收方密钥加密。这些密文被接收方收到后,接收方用自己的私钥将密文解密得到发送的数据和发送方的数字签名,然后用方公布的公钥对数字签名进行解密,如果成功,则确定是由发送方发出的。由于加密强度高,而且不要求通信双方事先建立某种信任关系或共享某种秘密,因此十分适合Inter网上使用。
3.数字签名
数字签名技术是实现交易安全核心技术之一,它实现的基础就是加密技术。以往的书信或文件是根据亲笔签名或印章来证明其真实性的。但在计算机网络中传送的报文又如何盖章呢?这就是数字签名所要解决的问题。数字签名必须保证以下几点:接收者能够核实发送者对报文的签名;送者事后不能抵赖对报文的签名;接收者不能伪造对报文的签名。现在己有多种实现数字签名的方法,采用较多的就是公开密钥算法。
4.数字证书
(1)认证中心
在电子交易中,数字证书的发放不是靠交易双方来完成的,而是由具有权威性和公正性的第三方来完成的。认证中心就是承担网上安全电子交易认证服务、签发数字证书并确认用户身份的服务机构。
(2)数字证书
数字证书是用电子手段来证实一个用户的身份及他对网络资源的访问权限。在网上的电子交易中,如双方出示了各自的数字证书,并用它来进行交易操作,那么交易双方都可不必为对方身份的真伪担心。
5.消息摘要(MessageDigest)
消息摘要方法也称为Hash编码法或MDS编码法。它是由RonRivest所发明的。消息摘要是一个惟一对应一个消息的值。它由单向Hash加密算法对所需加密的明文直接作
这篇论文.用,生成一串128bit的密文,这一串密文又被称为“数字指纹”(FingerPrint)。所谓单向是指不能被解密,不同的明文摘要成密文,其结果是绝不会相同的,而同样的明文其摘要必定是一致的,因此,这串摘要成为了验证明文是否是“真身”的数字“指纹”了。四、小结
1引言
移动通信技术发展日新月异,3G,E3G,4G这些标志通信技术里程碑的名词。通过手机彩信功能,现在可以传输文字,图片,音乐和视频等多媒体信息。彩信丰富了我们的日常生活,和此同时彩信中夹杂病毒和一些不良信息的现象不段出现。通信平安新问题已成为制约移动网络应用的一个瓶颈,并且随着移动通信网络的迅猛发展,日益变得突出。借鉴互联网领域的数字签名技术,本文探索通过非对称密钥体制来实现手机彩信的通信平安。
2非对称密钥体制
有对称和非对称两种密钥体制。在对称密钥系统中,加密和解密采用相同的密钥。因为加解密钥相同,需要通信的双方必须选择和保存他们共同的密钥,各方必须信任对方不会将密钥泄密出去,这样就可以实现数据的机密性和完整性。对于具有n个用户的网络,需要n(n-1)/2个密钥,在用户群不是很大的情况下,对称密钥系统是有效的。但是对于大型网络,当用户群很大,分布很广时,密钥的分配和保存就成了新问题。因此在移动通信中不可以采取对称密钥体制。
非对称密钥体制的基本思想是加密密钥和解密密钥不相同,由其中一个密钥推导另一个密钥在计算上是不可行的。一对彼此独立、但又在数学上彼此相关的密钥KP、KS总是一起生成,其中KP公开,称为公钥,KS保密,称为私钥。加密算法E和解密算法D是分开的。非对称密码体制的特征如下摘要:
(1)用公钥加密的数据,只能由和其对应的私钥解密,而不能用原公钥解密;反之,用私钥加密的数据,只能由和其对应的公钥解密,而不能由原私钥解密。即,设加密算法为E,解密算法为D,KP是公钥,KS是KP对应的和私钥,明文为X,则有摘要:Dkp[Eks(X)可以得出明文X,而Dks[Eks(X)则无法得出明文X。
(2)非对称钥体制不存在对称秘钥体制中的密钥分配新问题和保存新问题。M个用户之间相互通信只需要2M个密钥即可完成。
(3)非对称秘钥体制支持以下功能摘要:
(4)机密性(Confidentiality)摘要:保证非授权人员不能非法获取信息;
(5)确认(Authentication)摘要:保证对方属于所声称的实体;
(6)数据完整性(Dataintegrity)摘要:保证信息内容不被篡改;
(7)不可抵赖性(Non-repudiation)摘要:发送者不能事后否认他发送过消息。
3一种双向认证的方案摘要:
首先需要在移动运营商架设一台证书服务器。证书服务器有自己的公钥KCP和私钥KCS,同时证书服务器也有一张自签名的顶级证书,以防止它的公钥被黑客替换。在用户申请开通服务时,证书服务器为用户颁发一张数字证书,并对证书进行数字签名,以防止证书内容被篡改。颁发证书的时候为用户创建了公钥KUP、私钥KUS,其中KUS由用户保存且保密,KUP公开。
移动运营商架设一台或多台AAAServer(Authentication,Authorization,Accounting,认证、授权、计费服务器),它负责认证、授权和计费。AAAServer有自己的私钥KSS、公钥KSP和加密算法D、解密算法E。同时,它也拥有一张证书服务器颁发的数字证书。
用户开机或者请求某种业务时,发起相应的认证过程,即向AAAServer发送认证开始请求。AAAServer收到请求后,向用户发送证书请求,要求用户出示数字证书。然后用户将自己的数字证书发送给AAAServer。
AAAServer收到证书后,有三件事情需要证实摘要:
(1)该数字证书是移动运营商数字证书服务器所颁发;
(2)该数字证书未被篡改过;
(3)该证书确实为出示证书者所有。
对于前面两项,AAAServer只需验证数字证书上证书服务器的数字签名即可得到证实。具体方法是用证书服务器的公钥KCP解密数字签名,然后再用公开的单向散列函数求证书的散列值,并比较二者,假如相同,验证通过,不相同,验证失败。
为了证实该证书确实为证书出示者所有,AAAServer生成一个大的随机数R,并使用用户的公钥KUP(数字证书中包含KUP,因此服务器无需预先存储用户公钥,也无需查找数据库,这有利于加快处理速度)将R加密,得到EKup(R)。为了防止R在传输过程中被黑客截获并修改,使得合法用户得不到正确的认证。AAAServer先使用一个公开的单向散列函数H功能于R,得到H(R),然后用服务器的私钥KSS对H(R)进行加密(数字签名)。最后将Ekup(R)+Ekss[H(R)发送给用户。客户收到Ekup(R)+Ekss[H(r)后,首先应该验证R在传输过程中是否被篡改过。方法如下摘要:首先,客户端使用AAAServer的公钥KSP解开Ekss[H(R),即摘要:DKsp(Ekss[H(r))=H(R)
再用客户端私钥KUS解密Ekup(R),即摘要:
Dkus[Ekup(R)=R’,
然后再用公开的单向散列函数H(必须和AAAServer使用的H相同),求R′的散列值H(R′)。假如在传输过程中R被篡改过,即R′≠R,那么根据散列函数的性质,必然有摘要:H(R′)≠H(R),从而发现R被修改过这一事实。
假如上面的操作证实R未被修改,那么客户端接下来的工作是设法将解密得到的R′不被篡改地传回AAAServer,以便AAAServer进行鉴别。为了防止在将R′传回给AAAServer的过程中,被黑客捕捉并篡改,使得合法用户不能通过认证。在回传R′时,先对R′施以单向散列函数H,得到R′的一个散列值H(R′)。然后使用用户的私钥KUS对H(R′)进行加密(数字签名),最后将R′和加密后的H(R′)一起,即R’+Ekus[H(R’)回传给AAAServer。这里R′可以明文传输,无需加密,因为R是随机数,每次都不一样,黑客即使获得R′也不能对认证过程构成威胁。
AAAServer收到R’+Ekus[H(R’)后,验证过程如下摘要:
首先验证R′是否等于R。假如R′=R,说明该证书确实为其出示者所有,对用户的认证获得通过。
假如R′≠R,有两种可能,即要么用户提供的证书是假的,要么R′在传输过程被人篡改过。要检查R′是否被修改过,AAAServer只需验证用户的数字签名即可摘要:
假如R′被篡改为R″(R″≠R′),则必然有H(R″)≠H(R′),从而可以发现R′在传输过程中被修改过。
假如经过前面验证,R′在传输过程中没有被修改,且R′≠R,这说明用户所出示的数字证书非法,用户认证失败。
至此,AAAServer对客户端认证完成。反方向的客户端对AAAServer的认证类似,不再详述。
当双向认证完成后(事实上,可以是客户端被认证合法之后),AAAServer向SMS(SubscriberManagementSystem,用户管理系统)发送用户通过认证,并请求该用户的业务信息。SMS收到请求后,查找该用户的业务信息,并发送给AAAServer。AAAServer据此对该用户授权、计费。
4方案性能分析
本认证方案采用了单向散列函数、非对称密码体制、数字证书、数字签名等信息平安技术。认证服务器无需存储用户公钥,也不需要查找相应数据库,处理速度快。
(1)有效性(Validity)摘要:在本认证方案过程中,要求用户出示了由移动运营商证书服务器颁发的数字证书,并对证书进行了三项验证,确保证书的有效性(为移动运营商证书服务器所颁发)、完整性(未被修改过)和真实性(确实为该用户所有)得到验证。在AAAServer方,我们认为没有必要向客户端出示其证书。客户端知道合法的AAAServer的公钥,只需验证自称是AAAServer的一方拥有该公钥对应的私钥即可,因为世界上有且仅有合法的AAAServer知道该私钥。
(2)完整性(Integrity)摘要:在认证消息传输过程中,我们始终坚持了消息可靠传输这一原则,对认证消息采取了保护办法。一旦认证消息在传输过程中被修改,消息到达对方时将被发现。
不可否认性(Non-repudiation)摘要:本方案中所有认证消息都采用了发送方数字签名,使得发送方对自己发送的消息不可否认。