时间:2022-08-12 06:57:49
导言:作为写作爱好者,不可错过为您精心挑选的10篇自动化控制论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
2人工智能技术在电气自动化控制中的应用
2.1人工智能控制实现了数据的采集及处理功能
在电气设备的运行过程中,数据的采集和处理是了解电气设备自动化控制情况,发现运行过程中的问题和提出解决办法的重要依据。在传统的自动化控制中,由于技术水平和实际运行中的动态变化,数据的采集和传输无法做到准确和稳定,保存数据容易出现丢失的情况。人工智能技术的使用,可以保障电气自动化运行过程中对动态信息的及时收集和稳定传输,对相关数据的保存工作也更安全,这就提高了电气自动化的控制水平,充分保障了电气运行中的安全性和稳定性。
2.2人工智能控制实现了系统运行监视机报警功能
电气自动化控制是用电气的可编程控制器,控制继电器,带动执行机构,完成预期设计动作的过程。在此过程中,系统内部各部分之间的运行都要严格按照设计模型和函数计算的基础上进行,如果系统中的一点出现问题,就会造成整个自动控制系统的故障。在以往的自动化控制系统运行中,对系统内部各部分之间的运行数据和运行状态进行实时监测,对运行中的特殊情况进行及时的报警处理,帮助自动化系统及时处理可能出现的故障,提醒电气管理人员加强对电气系统的管理。
2.3人工智能控制实现了操作控制功能
电气自动化控制的主要特征之一就是通过计算机的一键操作,就可以实现对电气系统的整体控制,保障电气自动化运行符合现实的需要。传统的自动化系统的操作,需要靠人工对系统各个环节进行人工操作,从而促进自动化系统内部的协调和配合,这种方式既降低了自动化运行的效率,也增加了自动化系统的故障发生频率。人工智能技术对电气自动化系统的控制,是通过各种先进的算法,按照电气自动化的需求,对自动化系统进行自动化和智能化设计,从而实现对电气自动化控制系统的同时操作,大大提高了自动化控制的效率,减少了单独指令操作中容易出现的不协调情况的发生。
3人工智能技术在电气自动化控制中的控制方式
3.1模糊控制
模糊控制以模糊推理和模糊语言变量等为理论基础,并以专家经验作为模糊控制的规则。模糊控制就是在被控制的对象的模糊模型的基础之上,运用模糊控制器,实现对电气控制系统的控制。在实际控制设计过程中,通过对计算机控制系统的使用,使电气自动化系统形成具有反馈通道的闭环结构的数字控制系统,从而达到对电气自动化系统的科学控制。
3.2专家控制
专家控制是指在进行电气自动化控制过程中,利用相关的系统控制理论和控制技术的结合,通过对以往控制经验的模拟和学习,实现电气自动化控制中智能控制技术的实施。这种控制方式具有很强的灵活性,在实际运行中,面对控制要求和系统运行情况,专家控制可以自觉选取控制率,并通过自我调整,强化对工作环境的适应。
3.3网络神经控制
网络神经控制的原理就是基于对人脑神经元的活动模拟,以逼近原理为依据的网络建模。神经控制是有学习能力的,属于学习控制,对电气自动化控制中出现的新问题可以及时提出有效的解决办法,并通过对相关技术问题的分析解决,提高自身的人工智能水平。
2自动化控制系统在石油化工企业中的具体应用
目前,国内很多石油化工企业都应用了大量的自动化控制技术,这使得生产能效和安全性大幅度提升,给企业带来了巨大的经济效益。由于石油化工企业的生产过程中存在大量的可燃性和有毒气体,一旦发生火灾后果极其严重,所以必须采取稳定、可靠地火灾控制系统。FDGS是可燃性气体监测与火灾控制系统的简称,与传统的DGS控制系统相比,FDGS的优势更加突出,具体体现在该系统能够独立完成对危险气体泄漏和装置火灾的检测、分析及防控。对于石油化工企业而言,其生产过程具有一定的特殊性,这使得各个生产环节对SIL(安全设备的安全完整性等级)要求相对较高,所以构成FDGS系统的各个部分均必须符合SIL国际认证。FDGS系统不仅可以连续不间断地进行探测,而且还能发现装置所在区域内可能出现聚集的各种危险气体,如可燃气体、有毒有害气体等等,不仅如此,系统还可以最早发现火情,并针对实际情况提供手、自动装置灭火。通过该系统的应用,能够极大程度地提高石油化工生产现场的安全性。
(1)FGDS系统的构成
FDGS系统的主辅设备会分布在两个区域当中,一个区域是装置现场,即危险区域,另一个区域是中央控制室,即相对安全区域。系统中的各个传感器具备检测功能,终端执行器主要负责执行功能。危险区域内的主要仪器和设备包括:IR火焰检测器、感温感烟探头、气体检测器、HVAC系统、熔断检测、火灾报警控制盘等,除了以上的自动化检测装置之外,在生产现场还布置了大量的手报按钮,当遇到突发火灾事件时,可通过该按钮进行报警。
(2)系统的主要功能和作用
①FGDS系统具备连续不间断的探测功能,能够在早期发现各个区域内可能聚集的有毒气体以及可能出现的火情。②系统为灭火提供了手自动装置,并设置有声光报警器,不同颜色与声音代表着不同的危险,现场操作人员可按照报警时的颜色和声音对险情进行判断,据此采取应对措施。③具备执行控制欲连锁逻辑功能,可以提供事件石油化工企业中自动化控制的应用研究陈寿宝(中海油能源发展油田建设工程分公司,天津300459)摘要:本文首先阐述了石油化工企业应用自动化控制所需具备的条件,并在此基础上对自动化控制系统在石油化工企业中的具体应用进行论述。期望通过本文的研究能够对提高石油化工企业的生产能效有所帮助。关键字:石油化工;自动化控制;生产能效发生的顺序记录报告。
(3)系统设计方案
在对FGDS系统方案进行进行设计的过程中,要从全局的角度出发,对生产中的主要危险因素进行分析,并在此基础上确定最终方案。①火灾检测仪表选型。目前,市场中的火灾检测仪表种类十分繁多,每一种仪表的性能和应用场所均有所差别。为了达到最佳的效果,在选择仪表时,必须要结合生产现场的实际情况,同时,还要充分考虑防火分区的要求。按照我国现行GB50116-2013规范标准的规定要求,在选择火灾检测仪表时,应当满足如下以下几点要求:一是由于火灾发生的初期阶段会产生出烟和热,对于无明火辐射的场所应当选择感烟探测器。二是对于火灾发生后可能产生大量烟、热,且存在火焰辐射的场所,则应当选择感温感烟和火焰探测器。三是对于因温升过高可能引发火灾的场所,则必须选择感温探测器。②有毒及可燃气体检测仪表选型。在选择此类仪表时,应当以石油化工企业气体检测报警设计规范为依据,并确保所选的仪表满足以下规定要求:一是在工艺装置和储运设施的区域内应当安装可燃性气体检测器。二是对于使用有毒的装置和设施区域内,则应安装有毒气体检测器。三是如果可燃气体当中含有有毒气体,但有毒气体泄漏时达不到最高允许浓度时,应当安装可燃气体检测器。③安全性设计。由于FGDS系统归属于安全仪表系统的范畴,所以它的主要元件均应当选用故障安全型。如I/O应具备短路和断路检测功能;AI点则应具备异常电流检测功能;执行元件应当为励磁型;逻辑运算器要具备可靠地冗余和冗错功能。只有这样,才能确保整个系统的安全、稳定运行。
2自动化控制及安全联锁在化工安全生产中的应用
(一)自动化控制在化工安全生产中的应用
自动控制实际上就是依据规定指令或者程序自动进行化工生产的一种新技术,依据运行过程中的自动化程度可以合理的分为全自动化控制和半自动化控制两大类。这种新的控制技术可以合理的运用到机械制造、生产控制过程以及管理过程控制等多方面。我国运用这种自动控制技术,在化工生产过程中已经发展了几十年,主要包括创新和引进两种开发方式。在发展的过程主要经历了三个阶段,主要有手工操作、机械控制以及自动控制。自动控制技术从简单的生产系统逐渐发展成为复杂的生产系统[2]。目前,在国内大部分化工企业中,分散控制系统(DCS)、逻辑控制器(PLC)以及现场总线控制系统(FCS)应用的相对比较广泛。其中逻辑控制器和分散控制系统是比较常见的。逻辑控制器是一种可以进行存储的设备,一般来说是一类编程,可以适当作为内部存储程序,执行逻辑、执行定时、执行顺序控制以及执行计算和算数的过程是基本主要功能。主要控制形式为模拟输入、输出方式或者数字输出、输入方式。逻辑控制器的主要特点有:一是具有很大性价比,功能比较强;二是维修过程比较方便和简单;三是具有一定的抗干扰性和可靠性。主要适用于中小规模连续生产控制过程中以及间歇性生产的控制过程。一般来说,具有比较大规模的化工生产控制过程主要使用的是分散控制系统。主要特点就是可以适当的融合通讯、计算机、自动控制,从而很好的实现自动监控、自动生产、自动管理、自动操作以及分散控制,相比较于逻辑控制器来说,具有更加强大的功能,但是也具有很大的设备成本。分散控制系统的主要形式结构特点为多层分散、分散、自治合作以及危险分散,比较适合使用在化肥、石油以及大型空分制氧的生产过程中[3]。以上的运行系统应该保持与生产过程一致,从而全面实现自动控制,以便于可以科学、有效地进行设备的智能化、微型化、开放化、数字化的自动管理,这种现场总线控制系统逐渐成为未来化工企业生产与管理的主要发展方向[4]。
(二)安全联锁在化工安全生产中的应用
安全联锁实际上是属于一种安全技术,可以阻止排除安全隐患之前接触存在危险区域的行为,或者在出现接触危险区域的时候可以自动排除安全隐患。现阶段,在化工安全生产过程中比较常用的就是紧急停车系统,可以让设备在瞬间就能够停止运行,从而保证不会发生一定的安全事故,为了有效地增加系统的安全性,一般把紧急停车系统有机结合PLC系统、FCS系统、DCS系统,可以在系统出现压力、温度或者液位超过规定范围或者毒害气体超过标准的时候进行及时的报警,适当启动安全联锁作用。
2给排水系统
使建筑物内部的中水系统得到正常的运行是智能建筑中给排水系统的运行目标与任务,给排水系统的主要功能是将建筑物内水泵与排水泵、污水泵等运行状态进行监测与管理,使建筑内各水箱的水位保持在安全可靠的限制值当中。另外,给排水系统还会对给水系统的压力进行测量,使水位与压力保持在安全范围内,根据水位与压力的变化及时进行水泵的关闭与开启。
3照明系统
智能建筑中的照明系统是建筑物内主要的节能系统,节能减排主要体现在照明系统的运行之中。照明系统的协调程度与运行力度是建筑物自动化与智能化的重要体现。在智能建筑中,电能是不可缺少的,照明系统是除了空调系统之外最大的电能消耗系统。与传统的建筑管理方法相比,智能建筑中的自动化系统可以实现40%左右电能的节省。照明系统的节能,主要利用于自动化系统对于停车场、走廊与对门厅等照明进行开启与关闭控制,对建筑物内的照明回路进行分组控制,使用电量过大、电路负荷过多时进行自动切断,对办公室与厅堂这些地方的照明系统进行无人熄灯的自动控制。这些控制的实现可以利用计算机中设定的开关开启与关闭时间进行远程控制,门锁与红外线也是比较好的照明系统控制手段。
4电梯系统
电梯系统属于智能建筑中的交通系统,对电梯系统的自动化管理也是楼宇交通管理的重要内容。对于电梯而言,其本身具有全套的自动控制装置,但是,要使其成为智能建筑中楼宇自动化系统的一部分,要将电梯本身的控制装置与楼宇的自动化系统相联系,使其实现数据的共享,使建筑物的管理者可以对电梯的运行状况进行及时的掌握与分析,在有意外事故发生的时候,可以利用自动化系统对电梯进行有效的控制。
5保安监控系统
保安监控系统主要由三部分组成。第一,闭路电视监视系统。闭路电视监视系统主要是利用摄像机完成的,管理人员将摄像机安放在需要进行监控的各个区域之间,利用电缆这一中介将图像传达到建筑控制中心,使建筑物的管理人员可以对大楼内部的实时情况进行观察与管理。还可以利用现代化的计算机技术对这些上传的图像进行分析,使影视中的物体与烟雾等不安全因素得到确认,为事故的处理提供证据。第二,出入口控制系统。对建筑物的出入口进行控制,就是利用电子锁或者是门磁开关这些设备对建筑物的人群进行控制。将读卡机等设备安装在建筑物当中,使建筑物的进入具有一定的权限性,对进入到建筑物的对象与建筑物的开放时间进行控制,随时掌握人员的出入情况。第三,防盗报警系统。防盗功能的实现,是利用各种敏感软件的安装实现对建筑物内部空间的控制,比如说红外线与震动传感器等等,将其安装在重要的防盗部位,如果监测区域内出现异常,报警系统可以做出相应的反应,通过建筑物管理人员对异常情况进行及时的处理。
现在我国运行的电气工程自动化工程采取的控制系统一般有集中监控、DCS(分布式控制)两种。首先集中控制系统的优势在于,它将全部功能都安置在一个处理器中,在系统设计、维护以及运行等方面都比较简单。其劣势在于处理器承担的任务量较大;在此控制体系中,隔离器件闭锁和断路器联锁是运用硬接线进行连接,在设备扩容等方面比较困难,其操作难度也比较大。其次DCS系统是在集中控制系统的前提下设计并发展起来的,在现代电气工程自动化工程控制系统中获得较为广泛的应用。其劣势在于使用和传统仪表相似的模拟仪表,减少系统安全可靠性,在维修环节也比较困难,各个设计厂家没有规范而统一的标准,加重维修的成本,并且其价格比较高。
1.2电气工程自动化工程控制系统还不具备标准化端口
电气工程自动化工程控制系统接口到目前为止还没有统一、完善的标准,这种情况提升工程造价,阻碍数据资源共享的实现。自动化体系设计方案很重要,然而很多企业没有规范的方案,各个厂家和企业间硬件和软件交换数据有差异,导致企业间难以深入的交流和信息交换。同时电气工程自动化工程控制没有实现统一化,难以根据客户要求设计、建立规范、标准的电气工程自动化工程控制体系。
1.3电气工程自动化工程控制没有实现专业化
在电气工程自动化工程控制设计、安装以及操作等环节,相关工作人员的专业技术比较薄弱,需要进一步提高。此外我国电气工程自动化工程控制习题创新能力不足,一般产品属于中低档,需要提高其创新能力。
2构建电气工程自动化工程控制系统的发展对策
2.1建立一体化的电气工程自动化工程控制体系
要从各个环节建立起具有一体化的电气工程自动化工程控制体系。首先国家要按照电气工程自动化工程控制体系具有技术水平和技术特点,制定统一的产品规范。其次厂家和企业要加强交流,从设备精简、调试与维修以及技术合理性等多方面向规范化的方向进行制造和生产,让控制体系更科学。最后要研发出新型、操控更方便的一体化控制系统,可以运用社会性质和分工外包间的协作,让零部件的生产走商业化生产的路线,促进电子工程自动化工程控制体系的一体化。
2.2运用国际化生产标准
IEC61850是现在控制系统厂家所认可的国际标准,可以参照这个标准对控制体系进行研究和开发。另外可以运用微软公司所制定的标准技术,由于企业策划电气工程自动化工程控制系统时,PC系统是连接管理系统和控制系统的中间系统,其接口具有标注化,能够保证厂家和企业间实施软件和硬件的数据交换,妥善的解决由于通讯而产生的问题。
2.3引进和培养电气工程自动化工程控制系统的专业人才
随着电气工程自动化工程控制逐渐集成化和高智能化,对其制造人员、维修人员和安装人员都具有很高的要求,所以要引进和培养专业技术较强的人员。首先企业要培养具有实际操作能力的人才,他们要了解和掌握软件和硬件系统的操作。其次对安装人员记性专业技术进行培训,使之懂得安装的流程和技术。最后要更新技术人员的知识结构,可以引进人才,通过引进人才的“传帮带”,培养新人,促进他们在维修和系统保养等方面的学习,提高工程系统安全可靠性。
2探究PLC的可靠性
尽管PLC系统能够很好地与工业生产相融合,并在工业生产中发挥出强大的作用,有着很强的稳定性。但是如果受到特定条件的限制和影响,极有可能产生极其强烈的电磁波干扰,影响到程序的运算,使系统产生错误的操作指令,最终致使PLC的运转出现偏差。想要使得PLC控制系统变得更加可靠,应该从多个角度、多个方面、多个环节强化控制,才能够使其抗干扰能力得到系统性的提高。
2.1信号传输中断
首先机械设备发生故障会影响到信号的传输,出现中断现象,从而使得自动控制系统不能够接收到正确的指令,整个系统的运转出现停滞,自动控制系统发挥不出作用,无法对数据进行程序运算,难以执行系统发出的指令;其次如果触点没能够保证与接线严密的接触,这就会使得数据的传输出现中断,无法顺利到达数据库,这样一来数据就失去价值,不能够通过收集整理,来为决策提供科学的数据参考,同时也无法形成相关的数据统计;最后在信号传输出现中断的情况下,会导致机械出现触点抖动的现象,尽管相关的防御系统已经十分的完善,但是还是会受到系统扫描周期的限制,使得指令在计数累加的情况下出现偏差。还有各个阀门不能够正常的开闭,使系统运转处于混乱状态,最终导致系统呈现出极大的不稳定性。
2.2PLC在干扰下无法正常执行指令
当PLC受到干扰,指令传输就会出现故障,最终使得指令不能够得到标准执行;当控制变频器在启动的过程中出现故障,附带的电机无法正常运行;PLC无法对数字信号进行专业的处理,控制负载不能够得到妥善的解决。这些都是故障存在的原因,只有将这些问题有效的解决,系统才能够变得更加安全可靠。当PLC系统需要在高强度电磁干扰下正常运转和工作时,只能通过多线路分开供电的方式将动力电源与控制电源分离,如果条件允许,还可以利用具备屏蔽和隔离功能的变压器来完成供电,在线路构思时,应该在功率设置时就留有一定的余地,并运用稳压电源进行外接供电。
3从设计方案探究PLC控制系统可靠性
在信息技术快速发展的当今社会中,人们为了使得生活更加轻松,开始了对自动化的极力追逐,通过人们不懈努力,PLC系统已经从功能上实现了阶段性的优化,不仅能够将数字指令储存起来,使得整个控制流程集成化、模式化,还通过增添模拟量处理等附加功能实现运动以及过程的多方面控制。
3.1完善PLC报警系统
在对报警系统进行设计时,通过加入设计性的故障,以此来测试报警系统,当故障出现时,会通过文字的提示了解到发生的故障类型,故障的具置会显示在工艺流程图的指示灯上,为了避免指示灯故障影响到对机械运转状况正常的了解,还设置了专门的故障测试系统,当这一系统运行时,全部故障指示灯都会被点亮。为了将过去隐藏着的问题干净彻底的清除,应该加大人力、物力的投入力度,将相关的关键线路和重点环节进行仔细的核查。将指示灯分布在控制柜上,根据指示灯判断机械的运转是否正常。在这种情况下,要进行明确的界限划分,将指示灯在相对应的位置分布,当故障发生时能够对相关岗位上的主管人员起到及时的警示作用,方便责任人进行及时的应对,保证机械正常运转。
3.2强化PLC信号传输强度
确定相关的开关能够正常的闭合,保证变压器的稳定性,避免出现短路影响到信号传输,除此之外还能够避免接触不良的出现。加强PLC系统中分析系统的建设,使得信号在传输之后能够在数额方面得到体现,同时也能够在时长中得到体现,将各项指标的平均水平展示在主界面,通过模块建设使得分析功能更加多样化,不仅能够进行流向分析,还能够实现时段分析。
通常而言,在电气工程自动化控制达到智能化目的之前往往需要建立相应的模型,除此之外,在模型建立的时候还需要综合考虑到很多会直接或者间接影响模型的参数。鉴于此,通过模型来实现自动化控制归纳的说就是通过相关的动态方程来控制和反馈数据的,但是通过这种方式是无法保证在数据传输的期间不出现意外状况来影响数据的传输以及反馈,这样一来数据的及时性和准确性就无法得到保证了,使得理论结果与现实实践之间出现偏差也就不足为奇了,这会导致电气工程自动化控制的工作效率大大的降低。然而我们通过实践得出,引入智能化技术能够非常有效的跳过设计与建立模型这一环节,可以实现调节的自动化,从根本上降低了出现上述情况的可能性和风险,在很大程度上避免了那些不可控制的客观因素发生,提高了控制器的精确度和自动化的控制效率。
1.2确保电气工程自动化控制的统一。
传统的自动化控制器一般地说都是就某个模型对象来加以控制的,事实证明,这种方式对于单个的模型控制效果良好,但是无法统一而全面的控制电气工程自动化控制系统,这样一来就极易造成不同的模型之间各不相同。然而智能化电气工程的自动化控制就可以有效避免模型设计的这一环节,因此无法控制模型的复杂性这一问题就不复存在了,这不管是对于指定的对象或者非指定对象都能够保证控制上的一致性,从根本上确保了电气工程自动化控制的统一,这样一来不仅大大提高了自动化控制器的工作效率,工作质量也得到了质的提高。
1.3有效控制了电气工程自动化系统。
前面已经讲到,智能化技术能够控制和反馈对电气工程中所有设备的数据,与此同时还能够有效根据响应时间、下降时间和鲁棒性变化等参数来对电气工程自动化的控制程度实现自动调节,这样一来就可以节省了重新建立模型的时间,另外还可以在第一时间来处理因客观因素以及预警自动化控制过程中所造成的错误。这样及时的处理和高效的警惕大大降低了风险,节省了很多的人力物力财力的消耗,从而更好的实现了对电气工程自动化系统的有效控制。
2、智能化技术的有效应用
就目前而言,智能化技术在电气工程中主要应用表现为以下几个方面。
2.1模糊逻辑与控制。
一般地说,电气工程的自动化控制系统中都会含有一定数量的模糊控制器,它能很好的代替PID控制器。就目前而言,模糊逻辑的控制主要有M型与S型两种应用类型,但是有一点需要强调的是,这两种控制器都有各自的规则库,又可以叫做ifthem的模糊规则集。其中S型控制器的规则为if。X是G,y是H,则W=f(X,Y),这里所说的G与H指的都是模糊集,下面分别对这两种应用类型进行介绍。M型控制器主要由模糊化、知识库、推理机与反模糊化这四大部分所共同构成,主要用于实现变量的测量、量化、模糊化的目的,其隶属函数的形式也是多种多样的;知识库主要是由语言控制的数据库与规则库两个部分,其开发方式是将专家知识与经历置于控制及应用目标上。值得注意的是,在建模的过程中,一定要使用神经网络的推理机与模糊控制器对其加以操作;推理机同样也是模糊控制器中不可或缺的重要组成部分,它能够很好地模仿人类决策与推理模糊控制行为;反模糊化主要用来量化与反模糊化,它包括的技术种类也比较多,其中应用得最为广泛的当属中间平均技术与最大化的反模糊化这两种了。
2.2优化设计与诊断故障。
在过去的很长一段时间里,设计产品通常都是依靠实验或者传统手工检验来完成,通过这种方式所得方案往往不是最优方案。随着计算机技术的蓬勃发展以及在各个领域的广泛应用,越来越多的电气工程产品开始更多的选择使用CAD来进行设计。这样大大减短了产品的开发周期,如果在这个过程中很好地渗透智能化技术,可谓是如虎添翼,使其设计质量与效率得到大大的提升,专家系统的设计就是一个典型案例。不仅如此,智能化技术在优化设计还体现在遗传算法方面。众所周知,遗传算法是当前全世界范围内比较先进的计算法,其最大的优势之处在于计算精度高,因此在电气工程中得到了亲睐,而且在其中也起到了极其重要的作用。除此之外,故障和它的预兆在电气工程中的关系是错综复杂的,具有不确定与非线性的特点,这给我们的判断带来很大的困扰。
一、引言
信息时代的高新技术流向传统产业,引起后者的深刻变革。作为传统产业之一的机械工业,在这场新技术革命冲击下,产品结构和生产系统结构都发生了质的跃变,微电子技术、微计算机技术的高速发展使信息、智能与机械装置和动力设备相结合,促使机械工业开始了一场大规模的机电一体化技术革命。
随着计算机技术、电子电力技术和传感器技术的发展,各先进国家的机电一体化产品层出不穷。机床、汽车、仪表、家用电器、轻工机械、纺织机械、包装机械、印刷机械、冶金机械、化工机械以及工业机器人、智能机器人等许多门类产品每年都有新的进展。机电一体化技术已越来越受到各方面的关注,它在改善人民生活、提高工作效率、节约能源、降低材料消耗、增强企业竞争力等方面起着极大的作用。
在机电一体化技术迅速发展的同时,运动控制技术作为其关键组成部分,也得到前所未有的大发展,国内外各个厂家相继推出运动控制的新技术、新产品。本文主要介绍了全闭环交流伺服驱动技术(FullClosedACServo)、直线电机驱动技术(LinearMotorDriving)、可编程序计算机控制器(ProgrammableComputerController,PCC)和运动控制卡(MotionControllingBoard)等几项具有代表性的新技术。
二、全闭环交流伺服驱动技术
在一些定位精度或动态响应要求比较高的机电一体化产品中,交流伺服系统的应用越来越广泛,其中数字式交流伺服系统更符合数字化控制模式的潮流,而且调试、使用十分简单,因而被受青睐。这种伺服系统的驱动器采用了先进的数字信号处理器(DigitalSignalProcessor,DSP),可以对电机轴后端部的光电编码器进行位置采样,在驱动器和电机之间构成位置和速度的闭环控制系统,并充分发挥DSP的高速运算能力,自动完成整个伺服系统的增益调节,甚至可以跟踪负载变化,实时调节系统增益;有的驱动器还具有快速傅立叶变换(FFT)的功能,测算出设备的机械共振点,并通过陷波滤波方式消除机械共振。
一般情况下,这种数字式交流伺服系统大多工作在半闭环的控制方式,即伺服电机上的编码器反馈既作速度环,也作位置环。这种控制方式对于传动链上的间隙及误差不能克服或补偿。为了获得更高的控制精度,应在最终的运动部分安装高精度的检测元件(如:光栅尺、光电编码器等),即实现全闭环控制。比较传统的全闭环控制方法是:伺服系统只接受速度指令,完成速度环的控制,位置环的控制由上位控制器来完成(大多数全闭环的机床数控系统就是这样)。这样大大增加了上位控制器的难度,也限制了伺服系统的推广。目前,国外已出现了一种更完善、可以实现更高精度的全闭环数字式伺服系统,使得高精度自动化设备的实现更为容易。
该系统克服了上述半闭环控制系统的缺陷,伺服驱动器可以直接采样装在最后一级机械运动部件上的位置反馈元件(如光栅尺、磁栅尺、旋转编码器等),作为位置环,而电机上的编码器反馈此时仅作为速度环。这样伺服系统就可以消除机械传动上存在的间隙(如齿轮间隙、丝杠间隙等),补偿机械传动件的制造误差(如丝杠螺距误差等),实现真正的全闭环位置控制功能,获得较高的定位精度。而且这种全闭环控制均由伺服驱动器来完成,无需增加上位控制器的负担,因而越来越多的行业在其自动化设备的改造和研制中,开始采用这种伺服系统。
三、直线电机驱动技术
直线电机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起"直线电机热"。
在机床进给系统中,采用直线电动机直接驱动与原旋转电机传动的最大区别是取消了从电机到工作台(拖板)之间的机械传动环节,把机床进给传动链的长度缩短为零,因而这种传动方式又被称为"零传动"。正是由于这种"零传动"方式,带来了原旋转电机驱动方式无法达到的性能指标和优点。
1.高速响应由于系统中直接取消了一些响应时间常数较大的机械传动件(如丝杠等),使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。
2.精度直线驱动系统取消了由于丝杠等机械机构产生的传动间隙和误差,减少了插补运动时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。
3.动刚度高由于"直接驱动",避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时也提高了其传动刚度。
4.速度快、加减速过程短由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述"零传动"的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达2~10g(g=9.8m/s2),而滚珠丝杠传动的最大加速度一般只有0.1~0.5g。
5.行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。
6.运动动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。
7.效率高由于无中间传动环节,消除了机械摩擦时的能量损耗,传动效率大大提高。
直线传动电机的发展也越来越快,在运动控制行业中倍受重视。在国外工业运动控制相对发达的国家已开始推广使用相应的产品,其中美国科尔摩根公司(Kollmorgen)的PLATINNMDDL系列直线电机和SERVOSTARCD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、较高的定位精度和平滑的无差运动;德国西门子公司、日本三井精机公司、台湾上银科技公司等也开始在其产品中应用直线电机。
四、可编程计算机控制器技术
自20世纪60年代末美国第一台可编程序控制器(ProgrammingLogical Controller,PLC)问世以来,PLC控制技术已走过了30年的发展历程,尤其是随着近代计算机技术和微电子技术的发展,它已在软硬件技术方面远远走出了当初的"顺序控制"的雏形阶段。可编程计算机控制器(PCC)就是代表这一发展趋势的新一代可编程控制器。
与传统的PLC相比较,PCC最大的特点在于它类似于大型计算机的分时多任务操作系统和多样化的应用软件的设计。传统的PLC大多采用单任务的时钟扫描或监控程序来处理程序本身的逻辑运算指令和外部的I/O通道的状态采集与刷新。这样处理方式直接导致了PLC的"控制速度"依赖于应用程序的大小,这一结果无疑是同I/O通道中高实时性的控制要求相违背的。PCC的系统软件完美地解决了这一问题,它采用分时多任务机制构筑其应用软件的运行平台,这样应用程序的运行周期则与程序长短无关,而是由操作系统的循环周期决定。由此,它将应用程序的扫描周期同外部的控制周期区别开来,满足了实时控制的要求。当然,这种控制周期可以在CPU运算能力允许的前提下,按照用户的实际要求,任意修改。
基于这样的操作系统,PCC的应用程序由多任务模块构成,给工程项目应用软件的开发带来很大的便利。因为这样可以方便地按照控制项目中各部分不同的功能要求,如运动控制、数据采集、报警、PID调节运算、通信控制等,分别编制出控制程序模块(任务),这些模块既独立运行,数据间又保持一定的相互关联,这些模块经过分步骤的独立编制和调试之后,可一同下载至PCC的CPU中,在多任务操作系统的调度管理下并行运行,共同实现项目的控制要求。
PCC在工业控制中强大的功能优势,体现了可编程控制器与工业控制计算机及DCS(分布式工业控制系统)技术互相融合的发展潮流,虽然这还是一项较为年轻的技术,但在其越来越多的应用领域中,它正日益显示出不可低估的发展潜力。
五、运动控制卡
运动控制卡是一种基于工业PC机、用于各种运动控制场合(包括位移、速度、加速度等)的上位控制单元。它的出现主要是因为:(1)为了满足新型数控系统的标准化、柔性、开放性等要求;(2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台;(3)PC机在各种工业现场的广泛应用,也促使配备相应的控制卡以充分发挥PC机的强大功能。
运动控制卡通常采用专业运动控制芯片或高速DSP作为运动控制核心,大多用于控制步进电机或伺服电机。一般地,运动控制卡与PC机构成主从式控制结构:PC机负责人机交互界面的管理和控制系统的实时监控等方面的工作(例如键盘和鼠标的管理、系统状态的显示、运动轨迹规划、控制指令的发送、外部信号的监控等等);控制卡完成运动控制的所有细节(包括脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等等)。运动控制卡都配有开放的函数库供用户在DOS或Windows系统平台下自行开发、构造所需的控制系统。因而这种结构开放的运动控制卡能够广泛地应用于制造业中设备自动化的各个领域。
目前日益流行的智能建筑(inteuigentbuidings)是建筑技术与计算机信息技术相结合的产物,是信息社会的需要,也是未来建筑发展的方向。智能建筑主要由楼宇自动化系统(buidingautomationsystem,缩写为bas)、通信自动化系统(cas)和办公自动化系统(oas)三大系统组成。其中,楼宇自动化系统是智能建筑中最基本和最重要的组成部分。楼宇自动化系统是利用计算机及其网络技术、自动控制技术和通信技术构建的高度自动化的综合管理和控制系统,将大楼内部各种设备连接到一个控制网络上,通过网络对其进行综合的控制,这些设备包括空调、照明设备、电梯、消防设备、安防设备等等。它确保建筑物内的舒适和安全的办公环境,同时实现高效节能的要求。
2现场控制系统fcs的出现以及在楼宇自控中的应用
上个世纪七八十年代,伴随着计算机可靠性提高,价格大幅下降,出现了由多个计算机递阶构成的集中、分散相结合的分布式控制系统(distributedcontrolsystem,简称dcs)。dcs是利用计算机技术对生产过程进行集中监视、操作、管理和分散控制的一种综合控制系统。它的测量变送仪表一般是模拟仪表,因此它属于一种模拟数字混合控制系统,这种系统较以前的各种控制系统有了较大的进步。dcs在工业自动化控制领域获得了广泛的应用,也开始应用到楼宇自动化控制领域。但是dcs存在如下一些缺点:
(1)安装费用高。采用一台仪表、一对传输线的接线方式,导致接线庞杂、工程周期长、安装费用高、维护困难;
(2)可靠性差。模拟信号传输精度低,而且抗干扰性差;
(3)系统封闭。各厂家的产品自成系统,系统封闭、不开放,难以实现产品的互换与互操作以及组成更大范围的网络系统。
上个世纪90年代以来,随着控制技术、计算机技术、通信技术的发展,出现了基于现场总线的控制系统(fcs),fcs克服了dcs的缺点,它是一种全数字化的、全分散的、全开放、可互操作和开放式互连的新一代控制系统。目前,现场总线技术已经成为自动化技术中的一个热点,备受国内外自动化设备制造商与用户的关注。fcs极大地简化了传统控制系统繁琐且技术含量较低的布线工作量,使其系统检测和控制单元的分布更趋合理。与传统的dcs(分布式控制系统)相比,fcs具有可靠性高、可维护性好、成本低、实时性好、实现了控制管理一体化的结构体系等优点。现场总线的出现,为工业自动化带来了一场深层次的革命,从而开创了工业自动控制的新纪元,被誉为自动化领域的计算机局域网。鉴于fcs的许多优点,控制专家们纷纷预言“fcs将取代dcs成为2l世纪控制系统的主流。”现在,fcs已经被应用到楼宇自动化控制领域。
2.1应用于楼字自动化领域的几种现场总线
由于诱人的市场商机和不同的应用领域的存在,世界一些大公司或公司联盟纷纷提出自己的现场总线协议标准。据不完全统计,目前国际上有40种宣称为开放型的现场总线标准。这些协议根据国际标准化组织(iso)的计算机网络开放式互连系统的osi参考模型来制定的。大多数现场总线只是用其中的一、二和七层协议。于是现场总线呈现杂乱纷呈的局面。在这些现场总线中不乏优异的现场总线,如can、modbus、profibus、lonworks、bacnet、devicenet等等。其中lonworks、bacnet、can、eib等现场总线在楼宇自动化领域获得了、较广泛的应用。尽管基于现场总线的fcs克服了dcs的许多缺点,但还是有一些不如人意的地方,最明显的缺点:多种现场总线并存而互不兼容,导致fcs的可互操作性只能在同一种现场总线系统中实现。后面将对fcs的缺点做进一步说明。
(1)lonworks
美国echelon公司1991年推出了lon(local0penationnetworks)技术,又称lonworks技术。它得到了众多计算机厂家、系统集成商、仪器仪表以及软件公司的大力支持,已经在楼宇自动化、工业自动化、电力系统供配、消防监控、停车场管理等领域获得广泛应用。具体地说lonworks具有以下优点:
①网络结构灵活、组网方便。它支持多种网络拓扑形式,包括总线型、星型、树型、自由拓扑型等,这样可适应复杂的现场环境,方便现场布线;
②支持多种传输介质。包括双绞线、同轴电缆、电力线、光纤、无线射频等;两种传输速率:78bps和1.25mbps,最大传输距离由网络拓扑形式和传输介质决定,一般可从500m到2700m。可接人的节点最多为32385个;
③完善的珏发工具。提供完善的系统开发环境,采用开放的neuronc语言,它是ansic语言的扩展;
④无主的网络系统。lonworks网络中各节点的地位相同,网络管理可设在任一节点处,并可安装多个网络管理器;
⑤开发lonworks网络节点的时间较短,也易于维护。lonworks采用的lontalk协议固化在echelon公司的neuron芯片中,这样可以节省开发lonworks网络节点的时间,也方便维护。
同其它现场总线一样,lonworks也有自身的缺点。首先,lonworks的实时性、处理大量数据的能力有些欠缺;其次,由于lonworks依赖于echelon公司的neuron芯片,所以它的完全开放性也受到一些质疑。尽管lonworks存在一些不足,但是lonworks的fcs还在楼宇自动化领域获得了广泛的应用。世界上有2万多家oem厂商生产lonworks相关产品,其中种类已达3500多种。目前世界上已安装有500多万个lonworks节点,lont~k协议也被接纳为欧洲centc247、centc205的一部分。自1996年以来,lonworks也开始在国内获得大量的应用。在建设部的支持下,国内一些研究所和企业开始陆续开发出基于lonworks的楼宇自动化控制系统,并在一些新建智能大厦和建设部智能化小区试点工程中得到应用。
(2)bacnet
bacnet是作为世界上第一个楼宇自动控制网络的数据通信协议。它代表了智能建筑发展的主流趋势。bacnet不是软件或硬件,也不是固件,严格地说,bacnet并不是现场总线,而是一种网络协议,即通信规则。为不同商家产品的系统之间进行信息交流提供平台和支持。bacnet详细阐述了系统组成单元相互分享数据实现的途径、使用的通信介质、可以使用的功能以及信息如何翻译的全部规则。bacnet采用了etherent、arcnet、ms/tp、ptp、lontalk五种网络技术进行通信。可根据系统通信是和通信速度选择不同的网络技术。相对其它现场总线,bacnet标准最大的优点是可以与etherent、lonworks等网络进行无缝集成。不过bacnet主要为解决不同厂家的楼宇自控系统相互间的通讯问题设计,并不太适用于智能传感器、执行器等末端设备。bacnet标准已在全球得到了广泛的应用,全球生产和经营楼宇设备和楼宇自控设备的主要厂商均支持bacnet标准。bacnet在不到10年的时间内就从一个行业学会标准迅速成为楼宇自控领域中唯一的iso标准。虽然我国是wto和iso成员国,但是bacnet在我国建筑领域中的应用范围还是相对较小,而且在工程中采用的bacnet产品和技术也基本上全部是从国外引进的,还没有真正意义上的国产化bacnet相关产品。
(3)can
can总线最初是德国bosch公司为汽车监控控制系统设计提出的,现在它已经成为一种国际标准,在电力、石化、空调、建筑等行业均有应用。can具有以下优点:
①采用8字节的短帧传送,故传输时间短、抗干扰性强:
②具有多种错误校验方式,形成强大的差错控制能力。而且在严重错误的情况下,节点会自动离线,避免影响总线上其它节点;
③采用无损坏的仲裁技术;
4can芯片不但价格低而且供应商多。
can缺点是:can总线上最多可挂接110个节点,这不完全能满足整个智能建筑的需要。不过可以通过利用中继器进行扩展,相对其它一些现场总线,can总线技术比较简单,can相关产品的开发费用也远远低于其它现场总线技术产品的开发费用。因此,很早国内就有一些企业推出了基于can总线的楼宇自控的相关产品。如狮岛、索龙集团开发出了$2000楼宇自控系统。
(4)eib
eib是欧洲安装总线(europeaninstallationbus)的缩写。它在1990年被提出,经过十多年的发展,成为欧洲最有影响的建筑智能化现场总线标准,在欧洲得到了进300家厂商的支持。1999年eib被引进中国的智能化建筑领域,并在上海同济大学建立了eib认证技术培训中心。在短短的几年里,国内的会展中心、博物馆、办公大楼、别墅等场所的灯光、窗帘、空调等控制和安防系统方面获得了广泛应用,如厦门国际会展中心、大连国贸中心、浙江人民大会堂等。国内的eib项目基本上被abb公司和simens公司所垄断。
3以太网开始进入楼宇自控领域
以太网发展至今已有20年历程,作为局域网组网的主要技术,以其简单、价廉、高带宽、维护方便以及不断发展等优点一直在局域网领域中牢牢占据着统治地位。近年来,以太网技术获得了快速地发展。交换型和全双功以太网的出现,克服了传统以太网的共享公共传输媒体和半双功传输的弱点,实现了站点独占传输媒体并同时收发数据,也减少了网络上的数据碰撞。以太网的标准不断更新和扩展,目前的以太网不仅在物理层(包括拓扑结构、传输速率、传输媒体),并且在数据链路层与原来的传统以太网标准有了很大的进步,以太网标准系列已扩展成20余个。现在已太网不但由局域网向着接入网和城域网领域发展,同时开始进入工业控制和楼宇自控领域。新的ieee802.3af标准开始对以太网供电作出了规定,它消除了以太网技术进入现场控制领域的一个严重障碍。目前,3com、华为、dlink等公司开始提供符合ieee802.3af标准的交换机产品。另外,一些现场总线的协会或组织也开始提出基于其现场总线的开放式以太网标准,即工业以太网标准,如odva(开放devicenet供货商协会)和ci(contolnet国际组织)的ethernet/ip标准、ff(现场总线基金会)的hse(hig}lspeedethemet,高速以太网)、profibus国际组织的profinet。支持这些工业以太网标准的交换机、网卡等产品也开始出现,如moxa公司的eds-508系列工业以太网交换机(支持ethernet/ip)、北京航天华辉自动化技术有限公司的anybus-sio/100m(支持ethemet/ip和modbus/tcp)等。美国vdc(venturedevelopmentcorp.)调查报告指出,ethemet在工业控制领域中的应用将越来越广泛,市场占有率将从2000年的ll%增加到2005年的23%。
伴随着以太网技术在工业控制领域的成功应用,以太网技术也必将越来越多地渗透到楼宇自控领域。目前,以太网多用于基于现场总线的楼宇自控网络集成到智能建筑中的信息网(如图l所示),在一些新开发的楼宇自控系统中,以太网直接进入了控制层,如北京楼宇自动化中心开发的基于以太网的enc-2001ip智能建筑测控系统。enc-200lip控制系统的结构如图2所示。一般的空调、照明等系统通过enc参量控制模块集成到以太网上;带有rs232或rs485接口的系统通过网关转换模块集成到以太网上;ip电话以及ip摄像机直接连接到以太网上。
在楼宇自控网络中采用基于现场总线的fcs的优点是:
①可靠性、实时性好。现场总线为工业控制设计
图1楼宇自控网络集成到信息网的,有屏蔽、接地与防爆等措施,同时其实时性也比采用csma/cd的以太网的时实性好;
②用户的投资成本低。现在,开放的现场总线技术已经比较成熟,有很多公司提供的相关产品可供选择。其缺点是:实现现场总线无缝接人以太网复杂,当多种现场总线共存在一个系统中时,集成起来更复杂,系统的扩展性差。
在楼宇自控网络中采用以太网的优点是:实现了从管理层(信息网)到现场设备控制层(控制网)的“一网到底”,即实现人们期望的通信协议的兼容和统一;这样系统扩展起来也比较方便;与智能建筑中其它系统(信息网通信自动化系统和办公自动化系统)集成起来更加容易。其缺点是:首先,目前开发基于以太网的控制系统产品的难度较大,开发费用和成本相对还是较高,用户可以选择的厂商也很有限,垄断利润较高,研发成本还没有被消化,这些都导致产品价格过高。其次,以太网的实时性、可靠性等方面还有待进一步完善。
4结束语
就目前而言,不管是应用在楼宇自控网络中的基于现场总线的fcs还是以太网,都有其优点和缺点。随着时间的推移和技术的进步,它们也必将会被进一步完善。据统计,我国目前有从事楼宇自动化业务的企业3000家以上,产品供应商约3000家。另外,随着我国绍济的快速发展和人们生活水平的不断提高,建筑和社区的数字化建设正在兴起,fcs和以太网都必将在楼宇自控领域中获得更广泛的应用,在今后相当长的时间内,两者在竞争的同时也将继续并存。
参考文献
1郭维均.俞洪.《智能建筑基础》中国计量出版社.2001:6
2陈秋良.自动控制技术.《现场总线控制系统综述》2001;20
3李光辉.缪希仁.现场总线技术及在低压电器领域中的应用.电工技术杂志,2002
4郝晓弘.马向华.现场总线控制系统一新一代控制系统.《工业控制计算机》2001;14
5阳宪惠.《现场总线技术及其应用》清华大学出版社,1999
6张振昭.许锦标.万频.《楼宇智能化技术》北京机械工业出版社。1999
0前言
天津市河北区金泰供热中心建于2001年,是一所当年立项,当年设计,当年施工,当年竣工并投入运行的大型集中供热中心,该供热中心设计供热面积490万平方米,承载天津市供热总体规划中的最大一片集中供热区域。该项目的建设取代了小锅炉房12个,为规划新建的200万平方米的居住区和现有的300万平方米住宅区供暖,采用了较为先进锅炉集散控制系统和变频调速,拥有先进的技术设备和巨大的扩展功能。
1完善供热中心DCS控制系统
1.1中心控制系统介绍
金泰供热中心根据目前锅炉配置情况,中心DCS控制采用2个操作员站、1个工程师站,锅炉房公共部分及每台锅炉均设置了少量重要检测点的后备仪表(公共部分的循环泵入口压力、出口压力、室外温度、总管出水温度、总管回水温度、总管出口流量、各台炉出口温度、出口水压、出口流量、炉膛温度、炉膛负压、声光报警)和手操器(包括鼓、引风手操、炉排手操、分层手操、循环泵手操),以保证投运行试车和设备检修期间,仍能够保证锅炉的基本运行。
计算机集散控制系统采取了多可靠性措施,操作员站采用性能稳定的工业PC机,且为冗余设计,在运行中任何一个操作员站或任何一条网络线出现故障,都不会影响锅炉的正常运行和操作。而DCS系统用于完成现场信号采集、回路调节、逻辑联锁、顺序控制等基本操作功能的现场控制。
1.2中心DCS控制示意图
图1、图2具体描绘了集散控制的基本组成结构及金泰供热中心的现况:
图1集散控制系统基本结构
1.3采用DCS控制的优点
(1)人机界面好,便于操作管理
(2)系统高度的安全可靠;
(3)能达到最优化管理;
(4)远距离控制与管理;
(5)利用充分的数据信息,科学节能运行;
(6)系统构成方便灵活,不仅易于扩展,而且维修简单;
(7)能与计算机和常规模拟仪表兼容,继承它们的优点。
1.4发展潜力及完善措施
1.4.1全面完善中心DCS软硬件系统以发挥出最大效力
DCS系统以直观的人机界面著称,通过CRT图形动画显示,可以直观的了解锅炉及各设备的运行情况,便于正常启动、合理操作和故障的排除,具体做法如下:
(1)完善、接入锅炉的基本数据采集元件,如:炉膛压力(压力传感器)、温度(热电偶)、出入水温度(温度传感器或热电阻),烟氧含量、出水流量(超声波流量计)等,并且利用SUPCONJX-300X集散控制系统的组态软件开发出相应的监视画面,以达到实时监控功能。
图2金泰供热集散控制示意
(2)增加远红外设备成像系统和室外温度记录装置,使新增设备与DCS共用平台对接,这样可以充分在设备运行期间24小时对所有电气设备进行监控记录,并且,通过室外温度记录装置,在DCS中记录全年室外温度T0,以便正确调节及总结规律。确保正常运行和人员合理配置。
(3)全面优化SUPCONJX-300X集散控制系统软件平台,利用其系统组态(SCKey组态软件)、图形化组态(SCControl工具)、报表制作(SCForm软件)、实时监控(AdvanTrol软件)等多功能综合开发人机界面,增大DCS控制的直观性,以便于使操作更合理。并且实现运行记录报表化打印,避免人工虚假填写。
(4)在DCS控制系统中,完善目前运行的投自动功能。根据室外温度的变化和每天时段的不同,计算机自动改变锅炉出口水温的给定值,自动调整炉排转速、调煤比,调整引风机保持炉膛负压始终维持在给定值附近,使锅炉维持在最佳或次最佳的燃烧状态。然而此状况目前不太稳定,原因在于锅炉燃烧水温反馈之间根据室外温度的不同有一段不定的滞后时间,故造成风煤比处于动态调节,导致费煤,热效率不高,为解决此问题,必须采用模糊控制及人工智能,排除中间干扰环节,以达到平稳、有效的燃烧控制。
(5)完善控制与连锁功能。目前引风机、鼓风机及炉排、热水循环泵为集中控制室与机旁两地控制。锅炉除渣机、灰渣水泵、软水加压泵及换热循环泵为机旁就地控制。上煤系统为集中控制室与机旁两地控制。另外,在联锁方面采取先引风后鼓风,再炉排的顺序开机联锁,停机则反之。循环泵至少一台启动后,锅炉才能投入运行;当所有循环泵停机时,锅炉停炉。当运行锅炉出口压力极低或锅炉水温极高时,自动停炉联锁。循环泵及炉排事故停机时,声光报警。引风机、鼓风机、炉排采用变频调速,由计算机自动调节。此类控制并无疑义,只是在集中显示方面尚未体现,维修人员巡视量大,所以采用中央调度集中监控设备起停及正常运转是必要的,这就需要在控制室DCS系统中完善上位机系统,从而节约人力。
1.4.2完善人工智能控制
锅炉供热控制系统比较复杂,影响因素比较多,各因素之间相互影响、相互制约。而且锅炉系统热容性大、惰性强、安全性能要求高。因而就目前而言锅炉控制完全依赖于自动化控制难度非常大,也是不现实的。为此要求我们采取在自控的基础上增加人工智能部分。在自动控制状态下,利用人的智能解决自控系统不能很好判断的和处理的问题。用人工的知识经验与自控系统相互配合共同搞好锅炉控制。例如:煤在锅炉中的燃烧在本自控系统中占有非常重要的地位。但不同的煤种、不同发热量的煤、不同挥发分含量的煤、不同颗粒大小的煤可直接导致不同的锅炉燃烧状况。但煤样经过人工分析后,操作人员就可以在自动控制燃烧的状况下,通过微机人工适当地调整炉排和鼓引风转数,而且还可以随着锅炉内的负压值和含氧量的不断变化,必要时修正鼓引风机转数。
1.4.3完善DCS控制系统上位数据处理,发挥控制室的中央控制功能
中央控制室是一个集中控制的地方,在此处,可以实现控制系统的集中管理,为此在目前现状的基础上必须完善上位控制管理系统,以便实现控制的更加直观有效。从而扩大控制承载功能,为实现从锅炉本体燃烧控制到无人职守热力站换热的整体控制作扩展。整体控制上位系统方案如图3所示:
1.4.4完善DCS控制系统对各换热站的分布式控制
各热力站分散控制、中控室集中监控、总体协调。即各热力站根据本小区供热的负荷变化和室外温度变化,独立的进行本站一次网供水电动调节阀门(近端)或增压泵(远端)的调节控制,在本站进行监控的同时,将本站的一次网供给水、压力、温度、热量,二次网供回水温度、压力以及室外温度等参数送往中央控制室;中央控制室根据各热力站送来的工况信息和环境信息,对全网的水力平衡和热力平衡状况进行分析,根据负荷要求以具体的方式向热源发出热源质、量调节的申请,同时对各热力站发出协调命令,以维持大网的水力平衡。
对热力站控制对象进行分析,目前各换热站的控制主要是一次网侧供水流量的调节控制,其次是二次网侧的循环泵转速控制和起停控制。
目前金泰供热中心下属26个热力站,将来根据设计承载能力,还有更多的热力站并入该中心。
完善目前中心对下属站的分布式控制结构;
金泰热中心目前采用的是西门子监控系统软件,但只做了部分试点工程,根据试点分站,我们对中心控制系统进行了设想完善,其结构图4:
图4系统总图
整个系统结构采用两台冗余的服务器,两个操作员站,一个管理工作站,一个工程师站及网络设备、UPS、大屏幕投影仪等。系统运行后,两台服务器一主一备同时运行,实时连接所有的RTU站,并时时存储所有数据,操作员站上可以看到所有RTU站的数据,并能够进行远程操控,通过工程师站可以对RTU程序进行远程下载、调试、修改。自带的OPC通讯协议与第三方监控系统提供了方便的数据交换功能,先进的远程通讯,可以通过调制解调器和通讯网络方便的进行系统远端访问。详细介绍见软件说明。
DesigoInsight的系统结构是以模块化计算机网络为基础,并使用工业级标准的操作系统、通讯网络和协议。
该系统的网络全面支持系统的数据交集、控制及图形用户面等系统功能。应用标准的软件和硬件,该网络能够支持多种广域网,可以将所有的节点连接成为一个整体的系统。网络协议为TCP/IP,通过系统应用程序可直接生成界面。同时该系统支持用全功能的图形操作界面通过标准的拨号方式进行远程组态和操作。
增设仿真模拟系统;
为了进一步搞好大网的全网质量双调,我们在本项目中引入了RISE仿真系统,在物理上热网仿真系统处于中央控制室计算机网络的上位机工作站中,处于我们系统控制方案的最上层,它可以不仅提供热网控制的仿真指导、故障诊断,也可以通过中控SCADA的控制系统,直接参与热网的质量双调、全网控制。
仿真系统的功能作用如下:
根据热网的设计参数而建立的原始热网模型,在安装、调试时,计算负荷及相应的二次网侧流量、一次网流量、阀门开度,以减少调试的时间。
提供热网的水压趋势图,向操作员提供在室外温度变化、负荷变化时,进行各种质、量调节后热网的水压趋势,以使操作员提前了解调节方案的结果。避免热网水力、热力失衡、系统振荡。
在热网负荷变化时,向操作员提供操作控制指导,以供操作员选择。
通过中控监控系统的控制程序直接参与控制,提供优化的控制方案。
根据热网的物理模型,对现有工况进行分析,以诊断非正常的工况、故障等,如堵、漏、热力站水力失衡等。
离线对操作员进行热网运行操作培训,在不干扰热网运行的前提下,高效率对操作员进行仿真培训。
2完善中心及各分站的变频控制
2.1采用变频控制节能分析
风机,是传送气体装置。水泵,是传送水或其它液体的装置。就结构和工作原理而言,两者基本相同。现先以风机为例加以说明。
2.1.1对风机进行控制,属于减少空气动力的节电方法
它和一般常用的调节风门控制风量的方法比较,具有明显的节电效果。由图5可以说明其节电原理:
图中,曲线(1)为风机在恒定转速n1下的风压一风量(H―Q)特性,曲线(2)为管网风阻特性(风门全开)。假设风机工作在A点效率最高,此时风压为H2,风量为Q1,轴功率N1与Q1、H2的乘积成正比,在图中可用面积AH2OQ1表示。如果生产工艺要求,风量需要从Q1减至Q2,这时用调节风门的方法相当于增加管网阻力,使管网阻力特性变到曲线(3),系统由原来的工况点A变到新的工况点B运行。从图中看出,风压反而增加,轴功率与与面积BH1OQ2成正比。显然,轴功率下降不大。如果采用变频器调速控制方式,风机转速由n1降到n2,根据风机参数的比例定律,画出在转速n2风量(Q-H)特性,如曲线(4)所示。可见在满足同样风量Q2的情况下,风压H3大幅度降低,功率N3随着显著减少,用面积CH3OQ2表示。节省的功率N=(H1-H3)×Q2,用面积BH1H3C表示。显然,节能的经济效果是十分明显的。
由流体力学可知,风量与转速的一次方成正比,风压H与转速的平方成正比,轴功率N与转速的三次方成正比。采用变频器进行调速,当风量下降到80%时,转速也下降到80%,而轴功率N将下降到额定功率的51.2%,如果风量下降到60%,轴功率N可下降到额定功率的21.6%,当然还需要考虑由于转速降低会引起的效率降低及附加控制装置的效率影响等.即使这样,这个节能数字也是很可观的,因此在装有风机水泵的机械中,采用转速控制方式来调节风量或流量,在节能上是个有效的方法。
2.1.2水泵的节能原理
许多补水泵都维持恒压的情况下改变给水量(流量Q)从图6可知:当流量Q1降至Q2若不改变水泵转速,扬程将升至B工作点,其功率可用H2*Q2来计算,对应面积BH20Q2。原A工作点功率Q1*HT图上面积AHTOQ1,两者所耗功率变化不大,如果我们降低转速至(2)即可节能Q2*H2-Q2*HT=Q2(H2-HT),图DBH2HT的面积即是节能值。再如流量变至Q3若仍以额定转速运行,所需功率Q3*H1,浪费能量为FCH1HT。
图6
与风机节能原理相同水泵电机输出功率正比于转速三次方关系,用变频器进行调速,流量下降,可保持恒压HT。若转速下降至额定转速的80%,轴功率下降至额定功率的51.2%,流量下降至Q3,若使扬程恒定,可使转速下降到额定转速的70%,此时,轴功率是额定值的34.3%,节能达65.7%,经济效益十分明显。
2.2变频器节能数据示例
下面举例说变频器应用在锅炉采暖系统上的节能效果。80T热水锅炉所用电机容量如下:
引风机:380KW鼓风机:90KW循环泵:315KW
炉排:1.5KW给水泵:15KW(一用一备)
本变频控制柜可保证在供热锅炉正常工作的基础上,同时达到节电、节煤以及环保的目的。
电机总容量=380+90+315+1.5+15=801.5KW
本锅炉视为供热水的条件下每天工作24小时、每月30天,本变频控制柜在起炉高额区和恒温运行区的综合节电率约在35%左右,由此:
(1)每月节电总量=801.5KW×35%×24×30=201974.4度,按每度电以0.6元计算,则:80T炉的节电资金:0.6×201974.4度?=121184.64元/每月。
(2)每月用煤量约为2400吨,按5%节能率计算:每月节煤量:2400T×5%=120吨,现按每吨煤400元计算,每月节煤资金:400元×120吨=48000元,每月节电节煤总额:121184.64?+48000=169184.64元。
2.3采用变频控制优点
(1)采用变频调速,消除了大电动机启动时对电网电压的波动影响。
(2)采用变频调速,消除了大电动机大电流启动时的冲击力矩对电机损坏。
(3)采用变频调速,延长了电机、管网和阀门的使用寿命,减轻了维修人员的工作量,降低了维修费用。
(4)提高了系统自动装置的稳定性,为系统的经济优化运行提供了可靠保证;系统的运行参数得到改善,提高系统效率。
综上所述,供热中心及各分站采用和恢复变频控制是必要的,同时要求操作人员熟练掌握工作原理,以便正确操作合理维护设备。
3增加供热系统管理信息化网络平台
3.1按需构建VPN网络
VPN有三种解决方案,分别是:远程访问虚拟网(AccessVPN)、企业内部虚拟网(IntranetVPN)和企业扩展虚拟网(ExtranetVPN)。针对金泰中心要进行企业内部各分支机构的互联,认为使用IntranetVPN是很好的方式。
VPN(VirtualPrivateNetwork)通称为虚拟专用网。虚拟专用网指的是依靠ISP(Internet服务提供商)和其它NSP(网络服务提供商),在公用网络中建立专用的数据通信网络的技术。VPN兼备了公众网和专用网的许多特点,将公众网可靠的性能、丰富的功能与专用网的灵活、高效结合在一起,是介于公众网与专用网之间的一种网。
3.2VPN网络的整体方案
3.2.1网络设计结构
供热总公司与各中心及其下属分片区采用星型结构通过光纤介质接入网通公司的IP城域网,组成VPN专用网实现互访。出于对数据传输安全性的考虑,利用专用的路由器且要求网通公司利用IP城域网的交换设备划分虚拟局域网(VLAN),使公司各点组成一个独立的VLAN,成为真正意义上的VPN。各中心通过交换机组成以太网,通过路由器和总公司连接构成VPN网络平台。
3.2.2网络拓扑结构网
根据应用软件的使用要求,整个系统设立三台服务器。一台Web服务器,一台物流管理系统专用服务器,一台收费管理系统专用服务器。总公司内部工作站通过四台万兆WS-4024交换机连接,为避免局域网内部业务科室的工作站通过互联网感染病毒,把需要连接互联网的工作站划分一个VLAN都统一接到TP-LinkSF3124P交换机上,考虑到在局域网内部不同VLAN之间的通信量比较大,如果每一个数据包的传输都通过路由器,则随着网络上信息量的不断增大路由器将不堪重负,并会成为整个网络的瓶颈。所以把TP-LinkSF3124P交换机接到具有三层交换技术的Cisco3550交换机再和Cisco3700路由器相连,从而减轻路由器的工作压力。总公司路由器通过CiscoPIX515E防火墙和主干光纤连接,以防止病毒的侵入。各分公司的局域网由Cisco2600路由器和主干光纤连接,这样构成了热力公司的VPN网络平台。