期刊在线咨询服务,期刊咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

电气化铁道论文模板(10篇)

时间:2022-04-03 05:45:35

导言:作为写作爱好者,不可错过为您精心挑选的10篇电气化铁道论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

电气化铁道论文

篇1

(一)电气化铁道技术专业职业面向

电气化铁道技术专业培养掌握电气化铁道技术的基本理论和操作技能,能够胜任电气化铁路变电所、接触网的运行、检修和日常维护等岗位工作,适应电气化铁路发展需要的高素质技术技能型人才。通过现场调研、企业专家访谈和毕业生跟踪调查,本专业毕业生就业主要面向铁路局供电段,城际铁路、城市轨道交通企业,采用电气化铁道运输的工矿企业的供电部门,以及电气化铁路工程施工单位。主要就业岗位有接触网工、变配电值班员、变电所检修工、电力线路工。

(二)电气化铁道技术专业人才需求分析

根据《国家中长期铁路网规划》,到2020年全国铁路营业里程达12万公里,电气化铁路也由目前3万多公里增至6万多公里。据预算,未来8年全国铁路电气化铁道供电人才需求11万,年均1.38万。全国城市轨道交通企业未来3年电气化铁道供电人才缺口1.25万左右。从人才需求层次结构分析,研究生、本科生和高职大专生的需求比例大约为10%、30%和60%,因此高职大专生是铁路用人单位招聘的主要对象[1]。

二、基于岗位导向“三双、四模块、四阶段”人才培养模式构建

(一)“三双、四模块、四阶段”工学结合人才培养模式内涵

通过工作任务和岗位能力分析,电气化铁道技术专业所涉及的接触网检修、变配电值班、变电所检修、电力线路检修四工种对应的岗位任职要求各有不同,但必需掌握的基础知识相同。根据这四个岗位的任职要求,结合国家岗位职业资格标准,确定岗位导向“三双、四模块、四阶段”工学结合人才培养模式的内涵。

“三双”即为“双主体”“双导师”“双形式”。“双主体”,即校企“双主体”合作培养。以合作办学、合作育人、合作就业、合作发展为主线,创新校企合作办学体制、校企合作育人机制、校企合作双赢机制以及校企文化融合机制。与企业建立联合制定计划、联合组织教学、联合开发课程、联合聘请教师、联合评价质量等制度,充分发挥专业建设指导委员会的作用,确保企业全程参与专业建设。围绕学校和企业发展的共同点,建立实训基地共建共用、科技咨询与服务、竞赛培训与鉴定、顶岗实习实训、“订单式”“定岗定向式”人才培养等机制,促进校企深度融合,实现互利共赢。“双导师”,即校企“双教师”联合培养。建立校内教师与校外教师共同指导学生的“双导师”制度,采取“双教师”教学模式,成立“1+X+Y”课程组,由校内专职教师任课程负责人,多个校内专任教师和多个校外兼职教师组成课程组在顶岗实习、毕业设计、课程实训、3G实景课堂等方面开展教学活动。“双形式”,即采用理论教学与实践教学交替进行的教学组织形式。建立多岗轮换实践制度,在不同的合作单位或同一单位的不同岗位上完成专业综合实践,使学生对职业领域的多个岗位都具备一定的实践经验。

“四模块”,即课程体系由综合素质能力、职业基础能力、职业岗位能力和拓展能力模块构成。在课程体系的设计上,强化职业需求导向,突出学生综合素养和专业知识与能力培养,增加了以培养学生可持续发展为目标的专业拓展能力课程模块。

“四阶段”,即将三年的6个学期中的第3至第5个学期各分成2个小学期,这样总共有9个学期。其中第1~3学期为第一阶段,以文化基础知识和专业基础知识学习为主,同时安排学生到合作企业进行专业认识实习,开展专业基本技能项目训练;第4~7学期为第二阶段,以专业知识和专业单项技能、综合技能项目训练为主,并获取职业资格等级证书;第8学期为第三阶段,为拓展能力模块学习阶段;第9学期为第四阶段,为毕业设计和毕业顶岗实习阶段,通常为期半年。学校根据就业企业的分配安排学生对口进行顶岗实习,学生在顶岗实习期间结合企业真实课题完成毕业设计。

(二)基于工作过程系统化的“模块化、项目化”课程体系构建

按照工作过程系统化理念,由行业企业专家、专业建设专家、课程开发专家、教学改革专家和专业教师组成的专业建设和课程开发团队,从接触网检修与施工、电力线路检修、变电所检修、变配电值班等典型工作任务分析入手,制定四个岗位的知识结构、能力结构和素质结构,确定专业行动领域和学习领域课程,构建与专业培养目标相适应的“模块化、项目化”课程体系,如图1所示。课程体系包括综合素质课程、职业基础能力课程、岗位能力课程和拓展能力课程四个模块,岗位能力课程又分别由四个岗位的课程模块构成。课程结构采用项目式结构进行设计,每个项目就是一个完整的工作任务,课程内容融入国家职业资格标准和企业岗位标准,按照职业能力培养要求,突出项目式教学[2]。

(三)“教学做一体”的教学模式构建

基于工作过程系统化的“模块化、项目化”课程体系采用模块化结构,课程全部以项目式结构进行设计,比如《小型电子产品制作》是由直流稳压电源制作、小型防盗器制作、双声道音响制作、病房呼叫系统制作和电子脉搏计数器制作等5个项目构成。每个项目包括学时、学习情境描述、学习目标、学习内容、教学环境设备与材料、作品和考核评价、学习过程分析记录、学习感受与信息反馈等。为保障项目化课程教学,专业系部建设了一体化实训室11间和铁路供电综合实训站场1个,真正实现“做中教,做中学”;同时所有教室都能利用职教新干线,借助云平台实现“空间教学”。

三、“三双、四模块、四阶段”人才培养模式实施建议

(一)建立和完善适合人才培养模式的各种机制

借助铁路运输职业教育集团平台,主动与集团内企业共同制订计划、共同组织教学、共同开发课程、共同聘请教师、共同制订评价质量等,确保合作企业全程参与 专业建设,形成学校和企业两个教学主体。建立和完善实训基地共建共享机制、员工联合培训机制、专家和教师结对帮扶机制等,促进校企深度合作,实现互利双赢。

(二)构建基于岗位模块式课程体系

以岗位职业能力为依据,按照岗位及其工作任务,构建由综合素质课程、职业基础能力课程、岗位能力课程和拓展能力课程四个模块构成的课程体系[3],岗位能力课程又分别由四个岗位的课程模块构成。采用项目化课程结构开发课程,使知识与技能有机融合,项目与任务紧密结合,实现“边做边教,边做边学”。

(三)建立全过程、多方位教学质量监控体系

教学质量监控具体要通过教学质量评估、教学过程监控和校内专业评估等措施实现[4]。由教务处牵头,系部具体负责教学质量评估,评价指标包括课程考核、专业技能抽查、职业资格证获取率、实习实训效果、企业满意度、毕业生发展等。建立“学院、处室、系部、教研室”四级随堂听课,“督导室、系主任、同行、企业、学生”五方面评教,“期初、期中、期末”三个常规检查,所有信息共享的教学全过程监控制度和奖[dylW.NEt专业提供写作毕业论文的服务,欢迎光临wwW. DYlw.NEt]惩制度。组建专业评估委员会,从专业人才培养地位描述、专业调查、专业建设概况、专业教学师资、专业课程体系、专业教学设备设施、专业重点项目等方面开展校内专业评估。

参考文献:

[1]刘国联,何燕,张敏海.高职电气化铁道技术专业人才需求调研与人才培养建议[J].考试周刊,2013(91):152-153.

[2]汤光华,周哲民,匡芬芳,等.“工学交替、三层三贯穿”人才培养模式的探索与实践[J].成人教育,2013(9):53-55.

[3]任津瑶,贾明昭,刘燕,等.高职医学影像技术专业“能力递进式”工学结合人才培养模式构建[J].职业技术教育,2009(32):34-35.

篇2

0引言

西南交通大学有部分直接服务于铁路现代化建设的专业,其中“铁道电气化”专业作为教育部、铁道部的重点特色专业而一直受到重视。

分布于铁路沿线的牵引变电所,是电气化铁道供电的枢纽。随着我国电气化铁路和城市轨道交通的发展,变电所综合自动化技术水平的不断提高,对从事牵引变电所设计、运行、管理等方面的专业技术人才的需求数量增加,同时对其掌握知识的广度和深度特别是具有较强的实践动手能力方面提出了更高的要求。因此,在教学环节中,应加强学生理论和实践相结合的能力的培养。在教育部“示范性教学实践基地”基金支持下,2002年西南交大在峨眉校区建成一座集教学、实习、培训和科研为一体的模拟变电所实训基地。

1模拟变电所简介

我校模拟变电所分为两期建成:

I期是与实际变电所相同的开关控制屏柜和继电保护屏柜、中央控制盘、交直流电源盘、以及自行设计的模拟负载电量和故障盘。如图1所示。

Ⅱ期是模拟一段地方电力网或电气化铁路的环境下,一个调度中心使用远动监控系统控制的五个变电所,图2是这五个模拟变电所的一次接线图。该项目综合了地方与铁路、不同主变、不同接线类型的各种变电所,且负载的大小和相位均可调节,其中S”模拟变电所采用了WBH-891型电铁主变微机保护装置、WKH-891型电铁馈线微机保护装置、DQWC-03牵引变电所二次设备测试系统。

模拟变电所中被监控设备的位置状态信号、保护动作信号、预告信号、事故信号等遥信信号通过电缆与RTU (Remote Terminal Unit远方终端)的开关量输人/输出模块相连接,电流、电压等遥测信号将通过信号变送器柜,输人RTU的模拟量输人模块;控制中心下发的遥控命令,通过以太网传输,实现遥信、遥测、遥控的功能。远动监控系统结构图如图3所示。RTU是采用施耐德电气公司的PLC系列中模块式结构的Momentum,其编程软件Con-cept是一个基于Microsoft Windows环境的编程软件套件,具有很强的设计性、可扩展性;主站组态软件iFix支持工业标准,具有开放性、可组态性、兼容性及可开发性。

为了比较和研究,我系的教师正在进行一系列的科研开发,其目标是在模拟变电所二次系统中采用测控、保护一体化的分布式控制系统(DCS)实现变电所自动化管理,其结构图如图4。

2教学实践基地的开发

1)校内学生及现场工程技术人员,可对照变电所各种屏柜,提高阅读二次系统接线图、安装施工图的能力,通过开闭操作、设置故障等项目的训练,可以培养他们对现场运行中出现的故障的分析和处理能力,包括一次设备的故障范围的判断、二次系统的故障判断、查找和处理。

2)变电所基本电器及二次接线方面实训项目n个。如断路器结构、原理;断路器参数的测量与调整;变电所二次接线、电缆的数字编号法以及“相对标志法”的识别;二次接线盘后安装图及实际安装技术;变压器控制、保护盘结构、接线、检测、调试及整套保护联动实验(包括整定计算);在以上各盘设置不同故障(可达几百种)练习查找及消除故障的方法等。

3)运动系统遥测、遥信信号源接线的校正及采集的遥测量的精度实验。

4)利用便携式计算机对遥控设备进行合、分实验,让学生了解远动系统是如何驱动被控设备动作。转贴于

5)利用一般的浏览器访问各RTU中PLC的网页,实时了解该PLC的运行、通信等状态的实验。

6)上位机各种功能的校核实验。通过该实验让学生了解调度员的工作职责、工作内容、iFix软件的各种功能的使用,从而对远动系统有更深层的了解。

7)利用组态软件Concept对PLC进行配置,使学生熟练掌握利用Concept按照所用的PLC型号及设计要求对PLC进行配置;利用Concept对PLC遥控、遥信和遥测功能的编程,使学生熟练掌握Concept编程方法。

8)自动化组态软件iFix系统的安装,熟悉掌握iFix系统软件的运行环境及其安装过程。

9)通过在iFix系统新增6#模拟变电所的实验,使学生了解iFix系统的可组态性及可扩展性。

10)进行继电保护单体测试及数据管理。

11)进行继电保护盘上测试及数据管理。

12)微机保护装置的调试与特性实验。

3实践意义

模拟变电所实训基地自1998年投入使用后,至今已连续培训了五届毕业生和一批现场工程技术人员,经总结,其实践意义在于:

1)为学生提供专业技能训练的条件与场所。能完成供变电工程、继电保护、变电所二次接线、微机监控技术等几乎全部专业课程的大量综合性实验,以及电气设备的实际操作技能、检修调试技术、查找故障及排除方法的实际训练。而且充分利用学校具有的学科优势,以模拟变电所为基地,配合学生专业课和专业基础课学习,开发如电工理论、电气装备、自动化、计算机应用、网络与通讯等领域的多个应用性、研究性实验;同时由于人员和设备的集中,能够按项目组织学生进行综合性实训,尽可能使学生参与以教师为主导的科研活动。

2)对于现场技术和施工人员,很重要的一点就是要能阅读二次回路图纸、熟练地掌握接线、配线工艺,能查找和处理运行故障和设计缺陷。通过实地培训,能大大的提高他们的读图、判断、查找、处理故障的能力。该基地于2000年为乐山电力股份有限公司培训和考核职工283人,取得良好的效果。

篇3

论文摘要:介绍了西南交通大学建成的教学用模拟变电所实训基地的结构、功能、特点、实践项目。使用表明,该基地具有国内领先技术水平,完善的教学、培训和科研的综合功能。由于采用最新的远程监控技术,该变电所可作为目前铁路牵引变电所技术改造的参考。

0引言

西南交通大学有部分直接服务于铁路现代化建设的专业,其中“铁道电气化”专业作为教育部、铁道部的重点特色专业而一直受到重视。

分布于铁路沿线的牵引变电所,是电气化铁道供电的枢纽。随着我国电气化铁路和城市轨道交通的发展,变电所综合自动化技术水平的不断提高,对从事牵引变电所设计、运行、管理等方面的专业技术人才的需求数量增加,同时对其掌握知识的广度和深度特别是具有较强的实践动手能力方面提出了更高的要求。因此,在教学环节中,应加强学生理论和实践相结合的能力的培养。在教育部“示范性教学实践基地”基金支持下,2002年西南交大在峨眉校区建成一座集教学、实习、培训和科研为一体的模拟变电所实训基地。

1模拟变电所简介

我校模拟变电所分为两期建成:

I期是与实际变电所相同的开关控制屏柜和继电保护屏柜、中央控制盘、交直流电源盘、以及自行设计的模拟负载电量和故障盘。如图1所示。

Ⅱ期是模拟一段地方电力网或电气化铁路的环境下,一个调度中心使用远动监控系统控制的五个变电所,图2是这五个模拟变电所的一次接线图。该项目综合了地方与铁路、不同主变、不同接线类型的各种变电所,且负载的大小和相位均可调节,其中S”模拟变电所采用了WBH-891型电铁主变微机保护装置、WKH-891型电铁馈线微机保护装置、DQWC-03牵引变电所二次设备测试系统。

模拟变电所中被监控设备的位置状态信号、保护动作信号、预告信号、事故信号等遥信信号通过电缆与RTU (Remote Terminal Unit远方终端)的开关量输人/输出模块相连接,电流、电压等遥测信号将通过信号变送器柜,输人RTU的模拟量输人模块;控制中心下发的遥控命令,通过以太网传输,实现遥信、遥测、遥控的功能。远动监控系统结构图如图3所示。RTU是采用施耐德电气公司的PLC系列中模块式结构的Momentum,其编程软件Con-cept是一个基于Microsoft Windows环境的编程软件套件,具有很强的设计性、可扩展性;主站组态软件iFix支持工业标准,具有开放性、可组态性、兼容性及可开发性。

为了比较和研究,我系的教师正在进行一系列的科研开发,其目标是在模拟变电所二次系统中采用测控、保护一体化的分布式控制系统(DCS)实现变电所自动化管理,其结构图如图4。

2教学实践基地的开发

1)校内学生及现场工程技术人员,可对照变电所各种屏柜,提高阅读二次系统接线图、安装施工图的能力,通过开闭操作、设置故障等项目的训练,可以培养他们对现场运行中出现的故障的分析和处理能力,包括一次设备的故障范围的判断、二次系统的故障判断、查找和处理。

2)变电所基本电器及二次接线方面实训项目n个。如断路器结构、原理;断路器参数的测量与调整;变电所二次接线、电缆的数字编号法以及“相对标志法”的识别;二次接线盘后安装图及实际安装技术;变压器控制、保护盘结构、接线、检测、调试及整套保护联动实验(包括整定计算);在以上各盘设置不同故障(可达几百种)练习查找及消除故障的方法等。

3)运动系统遥测、遥信信号源接线的校正及采集的遥测量的精度实验。

4)利用便携式计算机对遥控设备进行合、分实验,让学生了解远动系统是如何驱动被控设备动作。

5)利用一般的浏览器访问各RTU中PLC的网页,实时了解该PLC的运行、通信等状态的实验。

6)上位机各种功能的校核实验。通过该实验让学生了解调度员的工作职责、工作内容、iFix软件的各种功能的使用,从而对远动系统有更深层的了解。

7)利用组态软件Concept对PLC进行配置,使学生熟练掌握利用Concept按照所用的PLC型号及设计要求对PLC进行配置;利用Concept对PLC遥控、遥信和遥测功能的编程,使学生熟练掌握Concept编程方法。

8)自动化组态软件iFix系统的安装,熟悉掌握iFix系统软件的运行环境及其安装过程。

9)通过在iFix系统新增6#模拟变电所的实验,使学生了解iFix系统的可组态性及可扩展性。

10)进行继电保护单体测试及数据管理。

11)进行继电保护盘上测试及数据管理。

12)微机保护装置的调试与特性实验。

3实践意义

模拟变电所实训基地自1998年投入使用后,至今已连续培训了五届毕业生和一批现场工程技术人员,经总结,其实践意义在于:

1)为学生提供专业技能训练的条件与场所。能完成供变电工程、继电保护、变电所二次接线、微机监控技术等几乎全部专业课程的大量综合性实验,以及电气设备的实际操作技能、检修调试技术、查找故障及排除方法的实际训练。而且充分利用学校具有的学科优势,以模拟变电所为基地,配合学生专业课和专业基础课学习,开发如电工理论、电气装备、自动化、计算机应用、网络与通讯等领域的多个应用性、研究性实验;同时由于人员和设备的集中,能够按项目组织学生进行综合性实训,尽可能使学生参与以教师为主导的科研活动。

2)对于现场技术和施工人员,很重要的一点就是要能阅读二次回路图纸、熟练地掌握接线、配线工艺,能查找和处理运行故障和设计缺陷。通过实地培训,能大大的提高他们的读图、判断、查找、处理故障的能力。该基地于2000年为乐山电力股份有限公司培训和考核职工283人,取得良好的效果。

3)目前西南地区铁路已完全实现电气化,全区拥有牵引变电所200多座,其中大都为上世纪70~80年代所建,技术水平落后。而我校模拟变电所实训基地的建成,对其技术改造具有借鉴的意义,在应用新技术、新设备和进行技术创新方面起到示范的作用。

篇4

[作者简介]宋奇吼(1972- ),男,江西萍乡人,南京铁道职业技术学院铁道供电系主任,副教授,硕士,研究方向为高等职业教育。(江苏 南京 210031)李学武(1972- ),男,河南焦作人,郑州铁路职业技术学院电气工程系副主任,副教授,硕士,研究方向为高等职业教育。(河南 郑州 450052)

[课题项目]本文系交通职业教育教学指导委员会2011年全国交通职业教育科研立项项目“电气化铁道技术专业人才培养方案和课程标准的研究与实践”的研究成果之一。(项目编号:2011B31,项目主持人:宋奇吼)

[中图分类号]G717 [文献标识码]A [文章编号]1004-3985(2014)12-0026-03

为贯彻落实《关于全面提高高等教育质量的若干意见》(教高[2012]4号)、《教育部关于推进高等职业教育改革创新引领职业教育科学发展的若干意见》(教职成[2011]12号),以及教育部召开的“现代职业教育体系建设国家专项规划编制座谈会”精神,依据江苏省教育厅《关于组织申报2012年江苏省现代职业教育体系建设试点项目的通知》(苏教高[2012]5号),按照 “提升高职学校服务产业发展能力,探索高端技能型人才系统培养模式”的要求,苏州大学与南京铁道职业技术学院两校选择“电气工程与自动化(电气化铁道技术)”专业作为试点改革项目,采取“3+2”分段培养模式联合进行应用型本科层次高端技能人才培养的探讨与实践。

苏州大学与南京铁道职业技术学院基于两校战略合作的基础,充分利用行业优势、高职院校实训资源优势、应用型本科的学科优势,取长补短,实施人才培养全程合作,为贯通高职教育与应用型本科人才培养进行了有效探索。为适应江苏经济转型与升级,满足社会对本科层次应用型高端技能人才的需求,两校拟探索培养专业基础扎实、专业技能突出、综合素质优良、满足地方经济发展需要的本科层次应用型高端技能人才,以期为推动地方区域经济的发展发挥更大的作用。

一、高职本科分段培养的社会行业背景

1.轨道交通供电产业急需本科层次的应用型高端技能人才。我国正在从“制造业大国”向“创造大国”转变,迫切需要大量高层次应用型人才。我国高职教育虽然在发展规模、内涵建设和教学质量等方面有较大的提升,但在创新型人才培养方面存在不足,与社会和经济发展对高端技能人才的需求仍有较大的差距。进入21世纪以来,我国城市轨道交通事业进入历史最快发展时期,江苏省各城市地铁建设如火如荼,南京地铁更是跃居国内城市地铁行业前列。江苏省地处长三角,城市轨道交通发达,城市轨道交通产业已成为江苏省十大支柱产业之一。随着青奥会的临近,南京地铁建设也进入了高峰期。与此同时,中国铁路行业步入了黄金发展期,路网建设全面铺开,时速350千米动车组等世界一流的高速铁路技术装备大量使用,我国高铁技术水平和建设规模均处于国际领先水平。长三角地区从2006年7月京沪线电气化改造开通以来,先后建成开通了京沪高铁、沪宁城际、合宁城际、京沪线等重要电气化干线,电气化营业里程为892.3千米。电力牵引具有非常明显的技术经济综合优势,牵引动力电气化已成为铁路技术改革的方向,是实现铁路现代化的重要步骤。

随着轨道交通行业的快速发展,轨道交通供电技术也同步发展,大量新设备、新工艺、新方法广泛使用,高端技术装备水平与现有人员较低素质之间的矛盾尤为突出,现场企业急需基础厚实、技能精湛的高端技能人才。目前在全国范围尤其是长三角地区,轨道交通供电产业的应用型高端技能人才不管在数量还是质量上均处于奇缺状态,人才招聘的普遍做法是相互高薪挖人,人才匮乏已经影响到轨道交通企业的正常安全运行。高职与普通本科分段培养项目能够很好地满足目前企业对应用型高端技能人才的迫切需求。

2.高职与本科分段培养的特点。第一,具有本科层次培养的特点。强调学科体系的完整,提倡宽口径、厚基础的培养目标,其优势是学生的自学能力和岗位迁移能力较强;缺点是学生的专业技能尤其是动手能力存在一定的欠缺。本科层次的学生毕业后一般从事管理工作,实际动手能力很难得到有效培养。

第二,具有专科层次培养的特点。以工作岗位所需的知识能力来构建课程体系,课程设置针对性较强,着重于学生职业能力的培养,其优势是学生的实际动手能力较强,能够实现毕业即可上岗的培养目标;缺点是学生知识面较窄,理论知识较为薄弱,岗位迁移能力弱。

第三,高职与本科分段培养的特点。高职与本科分段培养本科层次应用型高端技能人才,根据培养目标统筹制定对口专业理论知识与技能训练课程衔接贯通的教学体系,针对轨道交通供电系统的特点,采用“3+2”人才培养模式,培养学生具备扎实的理论知识,满足岗位所要求的分析能力和实践动手能力。在“3+2”培养模式中,专科阶段重在培养学生检修维护方面的知识和能力,本科阶段重在培养学生在设计、工程技术管理方面的知识和能力,由此构成本专科分段培养中,理论与技能衔接贯通的人才培养体系。专科阶段的三年学习,侧重培养学生的实践动手能力,前两年半时间主要通过校内学习使学生系统掌握轨道交通供电系统的原理、结构和检修维护方面的知识;后半年时间安排学生在轨道交通运营企业进行顶岗实习,并结合实际完成毕业论文,进一步提高学生的实践动手能力和工作适应能力,结合现场实际发现自身存在的不足。本科阶段两年的学习,以理论提升为重点,培养学生的分析、设计和管理能力,掌握文献检索、资料查询的基本方法,通过一年半的学习使学生具备一定的科学研究、技术开发的能力,最后半年安排学生的毕业实习、毕业设计。此阶段要求学生在完成顶岗实习和专科段毕业论文的基础上,进一步提高本专业技术领域的分析设计能力和较强的工程意识,具备一定的实际工作能力和决策能力,能够在轨道交通供电运营、勘测设计、施工、咨询、监理等企业从事技术与管理工作。

3.现有基础和特色。采取高职与本科分段培养本科层次的应用型高端技能人才,能有效整合江苏的教学资源,充分发挥高职教育与应用型本科教育各自的优势,培养高层次的职业技术人才,有利于职业教育的科学、健康发展,具有很强的现实意义。苏州大学与南京铁道职业技术学院采取“3+2”分段模式,培养本科层次的应用型“电气工程与自动化(电气化铁道技术)”高端技能人才,既符合地方经济发展的需求,又具有较强的可操作性。

二、高职本科分段培养目标

针对轨道交通供电系统的特点,充分利用基于工作过程的项目化课程改革成果,依托既有的深度校企合作办学模式,根据培养目标统筹制定对口专业理论知识与技能训练课程衔接贯通的教学体系,探索“3+2”本专科分段培养的高端技能人才培养模式,建成在国内具有示范效应的高职本科专业,提高学生的就业竞争力。

三、高职本科分段培养措施

1.构建本专科贯通的课程体系。本专业课程体系设置充分利用了行业优势、高职院校实训资源优势、应用型本科学的科优势培养的特点,将高职教育与应用型本科人才培养衔接起来。以“厚基础、重实践”为课程体系的建设思路,设置针对轨道交通供电企业的岗位群分析,根据企业现场的岗位群实际工作过程归纳出岗位典型工作任务,提炼学习情境,设置专业学习课程,借助本科院校完整的学科体系和深厚的师资力量,合理安排课程体系。

第一,基础课程和专业基础课程的设置。为避免教学资源的重叠和浪费,对于专科阶段和本科阶段均需开设的基础课程和专业基础课程,可在专科阶段开设并达到本科阶段的培养深度,本科阶段不再重复开设相应课程。

第二,专业课程的设置。在设置课程时,系统设计专业课程与教学内容,注重研究课程的内在联系,形成条块清晰而相互融合的课程体系结构。涉及本专业的专业课程可分为四类:电子技术课程、计算机应用技术课程、设备检修维护课程、设计管理课程,其中,设备检修维护课程和设计管理课程是专科阶段的核心课程,能够很好地体现高职与本科阶段贯通的办学思路,使学生掌握轨道交通供电系统的原理和结构,着重培养学生的维护、检修等实践动手能力;本科阶段通过设计管理课程的学习,培养学生的分析、设计和管理能力,使其具备实际工作能力和管理能力。

第三,实践课程的设置。针对轨道交通供电系统的特点,为了满足轨道交通行业供电技术管理岗位所要求的分析能力和实践动手能力,能够解决行业特有的技术多样性、具体性和综合性问题,重点突出了高职和本科阶段贯通的实践能力和综合素养的培养。

专科阶段三年的学习,要侧重培养学生的实践动手能力,以轨道交通供电行业岗位群所需的知识能力来构建课程体系,坚持“做中学”“做中教”,基于工作过程的项目化教学,依托深度校企合作等行之有效的人才培养模式来提高学生的实际动手能力。应通过校内学习,使学生系统地掌握轨道交通供电系统的原理、结构和检修维护方面的知识;安排学生在轨道交通运营企业进行生产实习,使学生了解轨道交通运营企业的文化,熟悉轨道交通运营企业的管理特点,并结合实际完成毕业论文,进一步提高自身的实践动手能力和分析能力以及工作适应能力。专科阶段的毕业论文以应用性为导向,选题类型以报告型观察型和实验型为主,以解决企业生产环节存在的小型课题,培养学生在实践中运用所学专业知识分析问题和解决问题的能力。

本科阶段两年的学习,前一年半以理论提升为重点,培养学生的科研能力,分析、设计和管理能力,掌握文献检索、资料查询的基本方法,通过设计课程的学习使学生具备一定的勘察设计、项目咨询管理的能力。最后半年安排专业生产实习、毕业设计。专业生产实习阶段要求学生在完成专科阶段生产实习和本科理论课程学习的基础上,进一步提高本专业技术领域系统的分析能力、管理能力和工程意识,使学生经过一定的工程实践训练,具有一定的实际工作能力和决策能力,能够胜任轨道交通供电运营、勘测设计、施工、咨询、监理等企业的技术与管理工作。本科阶段的毕业设计以学术性为导向,选题类型以理论型、综合型和评述型为主,结合本专业生产、科技的前沿和急需解决的新问题,注重理论应用创新、实验方法创新和手段创新、技术应用创新等,以培养锻炼学生的综合能力、自学能力、探索和钻研能力。

2.构建本专科贯通的专业实践条件。根据专业研究规划,整合现有资源,依托现有专业实践条件,不断加大实践条件的投入,改善专业实践条件。

3.提升服务社会能力。结合本专业特点,依托现有的深度校企合作,在社会需求导向基础上,开展应用性的科研并加快产业化进程,力争在3~5年形成一批具有行业影响力的应用层面的产业化研究成果。

四、高职与本科分段培养的特色

1.依托深度校企合作,以综合能力培养为主线,实施工学结合的人才培养模式。针对轨道交通供电系统的特点,依托华东地区轨道交通供电企业,实现混编师资团队、实训资源和校企文化三大资源有效共享,校企双方共同设计人才培养方案、实施人才培养和质量评价,采用从理论到实践再上升到理论最后再实践的螺旋式培养模式,使学生具备扎实的理论知识以及较强的实践动手能力。在专科阶段,侧重培养学生的实践动手能力,理论学习服务于能力培养,围绕“入学初期,走入铁路,感知职业;入学中期,深入铁路,熟悉工作;毕业前期,融入铁路,胜任岗位”三次实习,与专业课程一起构建职业素养与职业能力培养的递进平台。学生通过生产实习和毕业设计,带着问题进入本科阶段的学习,着重提高理论知识结构,培养分析、设计和管理的能力,在掌握文献检索、资料查询的基本方法后,通过课程设计、毕业实习、毕业设计,具备设计、开发和决策能力,达到高端技能人才的培养目标。

2.针对岗位的主要工作项目,进行基于工作过程的项目化教学模式改革。在高职教学中,本专业基于工作过程的项目化教学模式改革已取得成功经验,在此基础上,通过归纳提炼面向专业的就业岗位群的典型工作任务,形成专业学习课程,构建本专业课程体系,满足轨道交通供电行业对高端技能人才的需求。在专业主干课程教学实施中,以过程评价和企业第三方评价作为课程的主要评价依据。

3.实施高职本科双证书制度。在牵引供电安全与规则、变电所一次设备检修与维护、变电所二次设备检修与维护、电力线路、电工技术实习、综合实训等课程中,融入电工进网作业许可证(高压)内容,达到应知应会,帮助学生在毕业前获得电工进网作业许可证(高压)证书。

五、结语

当前,随着我国的社会进步和经济转型,高等职业教育的层次结构迫切需要上移,以适应区域产业转型升级和发展的需要。在现有的高职院校中进行部分本科职业教育的试点工作,探索高职本科分段培养本科层次高端技能型人才培养模式,实现高职与应用型本科人才培养的贯通衔接,对于培养高端技能型人才、拓展我国高职教育层次和完善职业教育体系,具有重要意义。

[参考文献]

[1]李斯杰.示范性建设后高职院校建设发展策略的思考[J].中国高教研究,20l0(11).

[2]鲁武霞,李晓明.高职专科与应用型本科衔接:内涵特性及内蕴价值[J].教育发展研究,2011(19).

篇5

中图分类号:U225 文献标识码:A 文章编号:1674-098X(2014)03(c)-0077-02

太中银代建太原西南环铁路跨太长高速公路特大桥,位于北六堡至北格区间,与太中银铁路并行等高。太中银双线位于中间,下行线、上行线外侧分别相邻于西南环右线、左线。由于太中银电气化铁路已于2011年开通运营,而西南环左线181孔桥梁未能架设。为优质高效安全完成架梁任务,保证西南环线的工期,经建设、运营、施工、监理单位共同研究确定如下方案;将西南环右线用做太中银下行线,太中银下行线用做太中银上行线过渡行车(如下图1所示),为西南环左线架梁提供可靠条件。太中银铁路担当山西到宁夏的客货运输任务,线路运输繁忙,线路运行速度快,高达160 km/h,有效的施工天窗点短,而且接触网过渡工程施工结束前必须恢复既有接触网的正常行车状态以保证既有太中银铁路正常运营,因此在接触网过渡工程施工前,必须根据土建过渡施工方案和现场实际情况制订详细可行的接触网过渡施工方案,报送监理及业主单位,通过专家组审核论证后方可进行施工,同时确保运营单位后续的接管与维护。

1 接触网过渡方案基本原则和步骤

永临结合、节约投资、分束管理、方便施工、质量可靠、确保运营施工安全是制定过渡方案的基本原则。

1.1 熟悉图纸和现场

管理、技术人员在拿到设计图纸后,要实地踏勘现场,熟悉了解施工范围,既有接触网状态,地下管线分布情况。重点关注电分相位置和供电线上网杆号。设备产权归属,并尽快和相关设备管理单位签订安全协议。

1.2 做好与土建单位的沟通配合

土建过渡施工方案是制定接触网过渡方案的前提,要尽快获取土建单位的改造方案,同时做好现场交接桩工作,现场确认影响线路预铺架和线路拔接时既有接触网支柱。提前拆除,为土建施工创造条件。

1.3 主动联系铁路运输部门,签订施工配合协议

了解掌握施工区间天窗点时长及时段,为编制过渡方案提供依据。并根据运输部门要求提前报送封锁施工计划。

2 接触网过渡方案常用的几种方法

在站场和区间接触网改扩建施工中,由于专业的特殊性,接触网工程通常要为土建施工让路或创造条件,同时又不能影响铁路正常运输生产。过渡工程的成因主要是按图纸新建的接触网因各种原因无法架设或者应拆除的既有网又因行车需要无法拆除。通常情况下,我们将过渡方案归为四类即:软横跨过渡法;小锚锻过渡法;利用既有支柱或新立支柱倒锚过渡法;做临时接头延长线索等过渡施工方法。这些方法在一项工程中常常单独或结合使用。由于在线路拔接天窗施工时,接触网天窗比较短,而拔接当天工务、电务等施工人员众多,相互干扰大,因此总的原则是:尽量减少拔接封天窗内接触网工作量。

2.1 软横跨过渡法

因为既有支柱或新设支柱影响线路道岔预铺架或者线路拔接时影响线路的整体拔移,均需采用软横跨的方式进行施工,该方案是先进行临时软横跨的施工与安装,之后将所需移动接触网倒换至临时软横跨上悬挂定位,同时拆除既有接触网支柱。为土建施工提供场地。天窗点内拔接转线时,拔移调整软横跨上接触网,确保开通。过渡工程结束后,再按照设计图纸,在新立支柱上安装悬挂装置,将接触悬挂倒至新立支柱悬挂支撑上。之后进行倒锚施工拆除临时软横跨,完成施工内容。

2.2 增设小锚锻过渡法

当新建接触网无法架设或者新建接触网和既有网搭接配合土建线路拔移开通时。采用增加300米左右的小锚锻过渡施工,临时开通。这种方法简单易行,待土建任务结束,现场条件具备后再架设新接触网,拆除小锚锻完成施工。

2.3 利旧或新设支柱倒锚法

因接触网正线锚锻长度通常在1500 m以上,站线锚锻也在800 m至1000 m左右。当在道岔周边或咽喉区既有支柱影响土建施工时,在改变悬挂方式和定位方式后,利用旧支柱或新设支柱进行倒锚。在利旧时要核算支柱容量。倒锚完工后拆除影响土建施工的既有支柱。

2.4 延长线索过渡法

按设计要求应该拆除的接触网因行车需要(部分区段还在行车使用),或为土建提供场地需先行拆除一部分旧支柱,采用临时接头延长线索做临时下锚过渡。

3 制定接触网过渡方案

接触网过渡方案与该工程工期要求,现场条件、本专业所上的机械、劳动力安排,材料准备情况,天窗点时间长短及所批复天窗时段,土建工程过渡施工方案等因素息息相关。我们根据设计图纸、现场调查资料、土建过渡施工方案以及本专业拟上场人材机等要素,并依据分束管理,节约投资原则,以北六堡方向拔接区为例制定如下施工过渡方案,限于篇幅限制,其他的在这里就不一一叙述。

3.1 供电线上网位置的设置改变

接触网网上电压为27.5KV高压强电,铁路股道、相与相之间用电分相、电分段和绝缘子等绝缘材料隔离。铁路封闭给点时,有V停(单边停电)、垂停(即上下行同时停电)之分,因此了解供电线上网和电分相位置,确认停电范围,部署防护范围,接地点等就显得尤为重要。根据现场实际我们确定拔接后供电方式如图2所示(既有太中银上行电分相中心里程K972+150,下行电分相中心里程K972+550,西南环右线电分相里程与太中银下行相同)。太中银下行线路拨移至西南环右线后,利用西南环右线电分相;太中银上行线路拨移至下行后,利用既有下行电分相。过渡过程中保证上下行分别供电)。

3.2 接触网过渡方案

接触网过渡方案如下图3所示:

利用软横跨过渡方法 将拨接区130#至140#硬横梁吊柱改为固定绳形式悬挂接触网,线路拨接地段单独设置接触网锚段,以锚段关节形式与既有太中银接触网进行连接。

拨接完成后,两处拨移地段间太中银上行接触网(两个拨接点之间)断电并做临时接地极,为架梁创造条件。桥上既有14处上行非支影响铺架,采用降低补偿张力,将非支抬高至7.3 m进行处理并加装分段绝缘。过渡结束后调整接触网至既有状态。

3.2.1 太中银下行拔接准备

完成124#拉线基础灌制、制做拉线。将130#至140#的硬横梁吊柱改为软横跨固定绳接触悬挂,并设置好线路间绝缘。将太中银下行进站锚段关节开口,交叉方向进行倒接。

3.2.2 太中银下行拔接天窗

将下行进站关节中Ⅶ3锚段接触网拔移至下行过渡便线位置,使其处于工作状态。将下行进站关节中区间2锚段接触线抬高,使其处于非工作状态。同时细调接触网达到开通条件。

3.2.3 太中银上行拔接准备

利用延长线索过渡法将区间2锚段接长并倒锚至124#(此前已经核算容量满足要求),同时将该锚段的进站部分拔移至上行过渡线的位置,要调整该锚段使其处于非工作状态。此时该锚段已经脱离太中银太原方向下行供电臂,并与上行供电臂做可靠电气连接。

3.2.4 太中银上行拔接天窗

拆除区间1锚段,同时调整区间2锚段和Ⅶ3锚段形成过渡锚段关节。注意要使区间2锚段接触线处于抬高位置。调整拔接区段接触网使其达到开通送电条件。

北格方向的拔接与此类似,不再详细叙述。在北格和北六堡上下行拔接完成后,桥上原太中银上行接触网已经完全断电,两端设置永久接地线。满足桥梁架设条件。

4 结语

在铁路接触网改建施工中,或多或少都会有过渡工程的存在。本文简单总结了制定接触网过渡工程基本原则和步骤,概要性介绍了常用的四种过渡方法及其应用。同时利用上述的方法制定了太中银行车转线接触网过渡工程的实施方案。在工程实践中,接触网过渡工程的方法还有很多,具体方案的制定要考虑的因素也很复杂,但工程技术人员只要遵循上述步骤和方法,本着永临结合、节约投资、分束管理、方便施工、质量可靠、确保安全的基本原则,结合现场的实际情况,参照类似工程的经验,就可以制定出科学合理的过渡方案。接触网过渡工程方案论文现在已经很多,但作者希望本篇论文能为同行从业者提供一些借鉴和补充!

参考文献

篇6

中图分类号:U224文献标识码:A文章编号:1009-2374(2010)06-0172-02

随着我国现代铁路信号技术的发展,铁路信号设备大量采用电子元器件,以计算机联锁系统和区间无绝缘移频自动闭塞系统为代表的现代铁路信号系统在现场逐渐普及。但是从抗干扰的角度,上述系统更易受到来自于牵引供电系统的干扰。因此,铁路信号系统的抗干扰研究越来越引起重视。本论文主要分析牵引供电系统干扰信号的产生原因及干扰信号侵入信号系统的途径,并通过对干扰信号的分析,找到降低或抑制干扰信号的解决办法,并从现场设计及具体施工安装和使用维护的角度,提出相应的工程和技术措施,减少和避免牵引供电系统干扰对信号设备产生的危害,以确保铁路信号系统设备的正常运行,并为设备的现场维护及相关规范标准的制定提供一点参考。

一、高速电气化铁路牵引网供电方式及电磁干扰

(一)供电方式

我国电气化铁路采用工频交流制供电,接触网额定工作电压为25kV,电力牵引供电主要有AT(自藕变压器)、BT(吸流变压器)、直供和同轴电力电缆四种供电方式,不作赘述,简图如下:

(二)电磁干扰

所谓电磁干扰EMI(Electromagnetic Interference)是指任何能使设备或系统性能降级的电磁现象。主要有传导干扰和辐射干扰两种。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络。任何电磁干扰的发生都必然存在干扰能量的传输和传输途径(或传输通道)。通常认为电磁干扰传输有两种方式:一种是传导传输方式;另一种是辐射传输方式。因此从扰的敏感器来看,干扰藕合可分为传导藕合和辐射耦合两大类。而牵引供电系统各种供电方式的特点,决定了牵引供电系统产生干扰信号的种类,主要有传导性干扰信号、电磁辐射性藕合干扰信号两种。具体为:一是当牵引电流通过时,对周围信号系统的电子、电气设备产生电磁辐射;二是不平衡牵引电流沿轨道传导到信号设备,或牵引电流对直接驱动的机车电动机产生电磁噪声,并传导干扰信号到电源和机车上的机车信号电子设备上;三是牵引电流对相邻的信号电缆线路产生感应藕合,感应出干扰电压或电流。

二、电力牵引系统对信号系统的干扰

信号系统各个子系统基本上都是通过电缆线路把室内室外设备联系起来,室内室外设备间有一定的逻辑联锁关系,室内设备通过采集室外设备的状态,通过联锁计算,结合操作人员指令,产生驱动命令,通过驱动电路来对室外设备进行控制,从而确保行车安全和效率。信号系统设备的上述特点决定了干扰信号也只能通过以下途径进入到信号系统:(1)干扰信号通过钢轨、信号电缆、接地设备、设备外壳、设备电源等部位进入到信号系统,对信号系统的正常运行产生干扰;(2)牵引电流产生的干扰信号以空中幅射的方式,即以电磁波方式向空中幅射,对信号系统的电子设备产生干扰;(3)干扰源通过感应的方式祸合到电缆等信号设备中去。

由于几种牵引供电方式中牵引电流都不同程度地要以钢轨(大地)为回路,而我国现有的铁路信号系统中无论区间自动闭塞系统还是站内联锁系统,都是以轨道电路来检查列车占用情况并作为信息的传输通道。所以牵引电流回流与轨道电路共用的同一载体――钢轨是使信号系统受到干扰的一个最主要原因。同时,牵引电流的高电压和电力机车运行时产生的含有丰富谐波的大电流会对周围电磁环境产生严重的电磁干扰(EMI)。

三、信号系统抑制干扰信号的施工工艺

要降低或减轻牵引供电系统对信号系统的干扰,应该从牵引供电系统本身入手,在设备选型、设计计算、工程措施的方面入手,减少干扰信号的输出。本部分重点探讨信号系统抑制干扰信号的施工工艺和工程措施。

(一)设备选型

1.在供电方式的选择上尽量采用BT、AT或同轴电力电缆供电方式,使牵引电流主要经回流线、正馈线或外导体流回牵引变电所,提高供电回路的对称性,降低接触网感应电流的影响。

2.在牵引变电所中安装并联电容补偿装置,以降低谐波干扰。这样一方面可以起到滤波作用,另一方面可以改善功率因数。

3.选择合理的机车类型或在机车上采取措施。在机车上安装并联补偿电容和滤波装置,在电力机车变压器二次侧安装3次和5次独立支路,在改善功率因数的同时可以滤去3次和5次谐波。

(二)牵引供电系统减少干扰信号的工程措施

1.在采用直供方式供电时架设架空回流线。利用接触网线与架空回流线间的互感作用,提高供电回路的对称性,使大部分回流电流经由架空回流线流回牵引变电所。

2.设有轨道电路的区段,吸上线、保护线、接地线及线路间的横向等电位连接线严禁与直接与钢轨相连,应连接至扼流变压器中心端子;当采用无绝缘轨道电路时,吸上线、保护线、接地线及线路间的横向等电位连接线只能通过空心线圈中点连接。

(三)施工工艺

在施工工艺要求方面,严格按设计及工艺标准施工是工程质量达标的先决条件,在现场施工和维护中,采用如下措施,能有效的减少干扰的影响:

1.室内屏蔽电缆、数据线等线缆的屏蔽网采用悬浮方案。不与综合地线相连,通过法拉第电笼与线缆屏蔽网的双重屏蔽,有效防止感应及辐射的干扰;使联锁微机逻辑地悬浮,防止因为地电位升的影响造成计算机逻辑错误。

2.加强钢轨连接线及箱合引接线和各种类型的电缆施工工艺,从而减轻干扰。施工细节问题都要严格要求,打轨道眼的距离长短、轨道眼眼径的误差、螺丝的松紧、垫片不垫、屏蔽网剥出的长短等看似很小的问题,都会影响到信号设备的正常工作状态。

3.为确保牵引电流纵向不平衡系数不得大于5%。凡通过交流牵引电流的钢轨,其轨端接续线应采用焊接式的多股铜线,其截面积不应小于50mm2。条件不具备时,应采用一根铜焊接线和一根塞钉式接续线并联运用,不得采用两根塞钉式接续线并联运用代替一塞一焊。

4.计算机联锁系统内部各微机之间的通信全部通过光缆进行连接,提高系统的抗干扰性及防雷性能,保证系统有高的运行稳定性。

5.在工作中要尽量保证钢轨接续线完好,紧固扼流箱中点连接线(连接板)以及扼流箱连接端子,使其接触良好。工务轨端鱼尾板螺栓紧固,供电接触网杆塔火花间隙良好,地线不能直接与钢轨相连,以便尽量减少轨道电路的横向不平衡,降低牵引电流不平衡对轨道电路的干扰。

6.在相敏轨道电路的接收端串联电阻,增加25Hz信号发送功率,使室外变压器端子达到送受电端电压标准,且确保一送多受区段各受电端电压调整平衡,极叉正确,并保证室内轨道继电器端电压不超标,防止因为干扰造成继电器的错误吸起或落下。

7.贯通地线严禁以电缆钢带连接或代替(这种情况经常发生在支线电缆接地时,施工人员怕麻烦直接用电缆护套连接贯通地线),避免贯通地线接地不良地点高电流通过钢带。另外用电缆护套代替地线时,当机车启动时接触网发生断线、短路或绝缘破损时会有很高的电流通过护套入地,对电缆造成损坏或腐蚀。有时直击雷击中钢带时也会造成电缆烧毁。

8.在交流电气化铁路区段,信号设备外缘距接触网带电部分的距离小于5m的均应接地。

四、结语

今后,随着我国高速、准高速、客运专线等线路在路网中的比例逐渐增加,各种高新技术设备不断在铁路现场应用,所以对电气化干扰的研究要更加深入和重视,加大新型高速、准高速铁路等电子信息和控制设备的抗干扰性能研究力度,以适应我国铁路不断发展的情况需要。

参考文献

篇7

电气化铁路接触网绝缘子表面积污, 在恶劣天气下引起污秽闪络,造成大面积、长时间停电故障,是频发性事故之一。陇海线邵岗集站、新月线焦作―柏山区间接触网2007年8月至2009年1月发生4次大面积连续污闪跳闸,多次发生零散跳闸,长时间中断供电,对运输干扰很大。断路器反复受冲击导致寿命下降,多处接触网绝缘子闪络击穿,严重影响牵引供电设备安全。

调查发现,邵岗集、焦作至柏山区间分别靠近瑞霖复合肥厂(以下简称瑞霖厂)、多氟多化工股份责任有限公司(以下简称多氟多公司),导致上述跳闸均由两厂排放的污秽造成。

1 化工污秽区段状况及跳闸特点

1.1 污秽源距铁路过近

《GB/T 16434-1996高压架空线路和发、变电所环境污区分级及外绝缘选择标准》规定:离化学污源和炉烟污秽300m以内为大气特别严重污染地区,是污秽等级最高的Ⅳ级。经测量,瑞霖厂排污烟囱距铁路78m,多氟多公司排污源距铁路36m。均为大气特别严重污染地区,应采取最严格的治污措施。

1.2 所排污秽具有腐蚀性

瑞霖厂主要排放物为SO2和含Cd、As、Hg、F废气,多氟多公司主要排放物为含氟废气,均为有毒有害物质,严重影响环境。污闪接触网金属构件腐蚀严重(见图1),周边植被异常枯萎。

图1 污闪接触网金属构件腐蚀情况

1.3 污染物排放筒高度较低

瑞霖厂排污烟囱高15m,多氟多公司采用无烟囱排放污染物。

1.4 污闪绝缘子表面脏污不明显

污闪绝缘子表面积灰不多,附着物多为白色颗粒,脏污现象不明显,巡视不易发现。

1.5 频繁跳闸持续时间长

邵岗集站接触网2007年8月24日连续跳闸10次,中断供电58分钟,9月27日跳闸9次,中断供电38分钟。焦作至柏山间接触网2008年2月24日连续跳闸9次,2009年1月31日跳闸4次。每次大面积跳闸均伴随雨雾天气,少则数小时,多则十几个小时。

1.6 绝缘子污闪范围大

距污染源约300m范围内,接触网绝缘子均发现闪络烧伤。300m~500m范围内绝缘子也有污秽吸附,但污秽积累速度减慢,由于清扫及时,未发生污闪故障。

1.7 跳闸均发生在雨雪雾等恶劣天气

2 绝缘子污闪分析

2.1 污闪形成机理

一般而言,干燥状态下绝缘子表面沉积的污秽物电阻很大,在雾、露、毛毛雨或者环境湿度较高的时候,污秽物中含有的可溶盐成份溶解,产生正负离子,可在电场力作用下定向运动,相当于在绝缘设备表面形成了一层导电膜,产生较大的泄漏电流。

由于绝缘子表面材质的不同、形状结构的变化、表面污层分布不均匀、污层润湿程度不同等因素的影响,泄漏电流在设备表面上的分布不均匀。在电流密度比较大的地方,热效应显著,污秽物中含有的水分被蒸发,在绝缘设备表面形成干燥带。由于干燥带中的污秽物绝缘电阻值很高,压降很高。当干燥带某处的场强值超过起晕场强时,就会发生不稳定的沿面局部放电现象,呈间歇脉冲状态。当放电火花熄灭时,由于此时已形成明显的干燥带,泄漏电流燥带的高电阻限制到很小的值,泄漏电流的烘干作用几乎终止,大气的潮湿会使干燥带重新湿润,从而在场强较高处又产生新的放电火花。

由于绝缘子的泄漏距离较小,如果绝缘子脏污比较严重、表面充分受潮,就会出现较强烈的局部放电现象,泄漏电流脉冲幅值较大,可达数十或数百毫安。这种间歇脉冲状放电现象的发生和发展也是随机的、不稳定的,在一定的条件下,局部电弧会逐渐沿面伸展并最终完成闪络,即污闪。

2.2 影响污闪因素

2.2.1 脏污与湿润

电压、气候、污秽是绝缘子污闪的三个要素,脏污、湿润是构成污闪的两项基本条件,二者缺一不可。绝缘子的泄漏电流最大值随等值盐密的增加成线性关系,随相对湿度的增加成非线性关系。

2.2.2 天气影响

中到大雨时水滴较大,降速较快,对污染绝缘子有冲洗作用,净化积污明显,不易发生污闪故障。而在雾天,浓度越大,泄漏电流值越大,更易发生污闪事故。

3 防范对策

对于一般的高积灰、高盐密污秽,防污闪技术措施主要有:提高绝缘水平(调爬及采用防污型绝缘子)、使用防污闪涂料、加强清扫。对于化工污秽,没有现成经验,我们先后尝试了多种方法。

3.1 绝缘整治

3.1.1 加强绝缘清扫,污闪可大大减少

在雨雾等湿润天气前清扫绝缘可有效避免污闪,但受天气预报准确率、检修天窗控制严格等影响,很难及时清扫绝缘子,故采取大大缩短清扫周期的方法。将检规规定的6~12个月清扫周期改为干燥季节每月清扫,雨雾季每半月清扫后,多氟多公司附近接触网污闪故障大大减少。

3.1.2 更换合成绝缘子,污闪周期可以延长

硅橡胶合成绝缘子有优异的憎水性和憎水迁移特性,同时由于等效直径小,泄露电流也就小于瓷及玻璃绝缘子,故具有相对较强的耐污闪能力。但当硅橡胶表面污层过厚,憎水性难以迁移至污层表面,在长时间的潮湿条件下,憎水性呈现逐渐减弱甚至暂时消失,导致绝缘子性能大大降低。多氟多公司附近接触网更换合成绝缘子后,在不清扫的情况下,污闪发生的周期从半个月延长至三个月左右。

3.1.3 更换大爬距绝缘子,防污闪能力略有提升

瑞霖厂附近接触网按重污区设计,原采用爬距1400mm绝缘子,后更换为爬距1600mm绝缘子,实践证明防污闪效果不理想。

3.1.4 加装绝缘子防尘罩,防污闪作用不大

为减少降落吸附在绝缘子上的污秽,在多氟多公司附近接触网棒式绝缘子有电侧第一与第二瓷裙间安装大半径防污罩,防污闪效果不理想。

3.1.5 涂刷长效憎水涂层,在化工污秽区不适用

RTV涂料优异的耐污闪性能是设备爬距不能满足要求时所采用的一种补救措施,主要用于变电站电瓷设备上。在多氟多公司附近接触网绝缘子上涂刷RTV涂料,其后4个月为无雨期未发生污闪,但在首场小雨时再次污闪。其原因是化工污秽具有较强腐蚀性,RTV涂料易受到破坏。

3.2 污染源治理

3.2.1 瑞霖排污设备改造后效果显著

据瑞霖厂提供的由环保部门出具的污染物排放检测报告,满足《大气污染物综合排放标准》(GB16297-1996)二级排放标准。考虑到其排气筒距线路很近且高度过低,我们要求其加高烟囱,利用高空气流扩散快的特点,污染物向更高、更广的范围扩散,稀释排放废气,减轻局部地区大气污染。厂方将烟囱加高到55m,两年来,未发生污闪故障,效果显著。

3.2.2 多氟多排污依旧,污闪仍在

多氟多公司拒不承担治污责任,排污依旧,也未采用高烟囱稀释法。在按半月为周期清扫绝缘子的情况下,污闪故障仍有发生。

4 结束语

目前,电气化铁道进入快速发展期,沿线化工污秽导致接触网绝缘子污闪故障必然大量发生,这种电气化铁路的特有故障将大大降低牵引供电的可靠性,严重影响运输安全。缩短污秽区绝缘子清扫周期,有明显防污闪效果,但频繁作业投入很大;其它加强绝缘的方法效果欠佳;污染源治理作为防污闪治本之策,应坚决要求执行。

建议铁路主管部门联合环保部门,加强对电气化铁道沿线化工污秽源的控制。禁止在铁路近距离内(建议距500m以上)新建化肥厂、化工厂、钢铁厂、铝厂等可能导致污闪的化工污秽源,对既有导致接触网污闪的化工污秽源强制进行治污改造。

参考文献:

篇8

学校名称:东南大学

专业名称:电气工程及其自动化

专业简介

东南大学电气工程系的前身为国立东南大学电机工程系,创建于1923年,至今已有80多年办学历史。1995年起,电气工程系以电气工程及其自动化专业类招收本科生,不再细分专业,实行宽口径培养。1999年,根据教育部颁布的新专业目录,电气工程系制订了全新的本科教学计划,全面实行电气工程及其自动化宽口径的培养方案。

专业优势与特色

完善的符合中国国情的宽口径专业教学计划

1999年以来,东南大学电气工程系对国内外著名大学电气工程专业的教学计划和培养方案进行了广泛调研,根据中国国情和东南大学的传统和特色,对培养方案进行了两次修订。在不断完善通识教育的基础上,注重个性化培养的大电气工程专业培养方案,不断转变观念,树立符合时代要求的教育思想,培养的人才既要有“知识”又要有“能力”,更要有使知识和能力充分发挥的“素质”;从终身教育观念出发,努力加强和拓宽学科和专业基础,做到基础扎实、知识面宽、适应性强;在加强素质教育的同时,积极鼓励学生的个性发展。重基础,重实践,重能力。

结构合理、高水平的师资队伍

电气工程专业现已建立起了由学术带头人、主要学术骨干组成的年龄结构、学历结构、学缘结构和职称结构较为合理的梯队,中青年教师已成为教学科研的主力军,队伍比较稳定。为了提高教学水平和教学质量,采取了青年教师岗前培养制度、试讲制度、参加校首次开课教师培训和青年教师授课竞赛制度等一系列有效的措施,促进了年青教师的尽快成长。还采取了一些行之有效的措施,如:主干课程必须由高级职称教师领衔授课;晋升高级职称要满足对本科生主讲课程门数和教学工作量的要求,教学效果评价和考核达到优良;教学研究成果和论文与科研同等对待;严格执行教师手册中的条例和规定等;积极动员并鼓励青年教师在职攻读博士学位,并努力创造条件将年青教师送到海外深造,有效地提高了学历层次,改善了学缘结构,调动了积极性;充分发挥老教师的传、帮、带作用,提倡名师、名教授上讲台。通过上述措施,使东南大学电气工程专业具有了一支结构合理的、高水平的师资队伍。

起点高、素质高的学生队伍

电气工程专业在东南大学是录取分数最高的专业之一,专业的生源很好,新生起点高、素质高。另外,东南大学对新生采取了有效的激励机制。包括招生时高分学生的高额奖学金制度;培养过程中滚动式奖学金制度;毕业时优秀学生选择职业的竞争机制;第一年后可以换专业的制度;教学计划中规定可扩大选课自由、自主选择课程组;教学内容、方法以及考试方法中调动学生积极性的措施;课程设计、生产实习、毕业设计优秀成绩由学生自报、大组答辩确定;实行因材施教,优秀生导师制及筛选制度;免试研究生报名、考核、面试制度,并在选拔过程中加大获得省市竞赛奖、、创新成果等所占的权重,等等。这些激励机制,使得许多优秀新生对东南大学电气工程专业很向往,更加保证了优质生源。

重视实践能力,特别是创新能力的培养

东南大学在电工电子教学实验方面实力很强,其电工电子教学实验改革在全国享有盛誉,有很大的影响。东南大学电气工程专业在学生的教学实践环节也充分发挥了这一优势。这为培养学生的实践能力,特别是培养学生的创新能力提供了十分有利的条件。

科学规范的教学质量保障体系

东南大学全校及电气工程系都有一套相当完善的教学管理制度,大学生手册和教师手册中的各项制度、规定齐全。行政领导班子注重教学工作的基础性地位,分工明确,协调配合。教务线和学生管理线协调配合,抓好学风建设,严格执行校规校纪,确保正常教学秩序。注重教学文件建设,各类文件齐备。充分发挥教研室、教学委员会、学位委员会、学术委员会的作用,各司其职。充分利用计算机和网络等先进技术,提高教学管理水平和质量。

学校名称:上海交通大学

专业名称:电气工程与自动化

专业简介

上海交通大学电子信息与电气工程学院下设电气工程系、自动化系、计算机科学与工程系、电子工程系、信息检测技术及仪器系以及电工电子实验中心。目前,电气工程系有电气工程与自动化本科专业1个;有电力系统及其自动化、电机与电器、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术二级学科5个,其中,电力系统及其自动化为上海市重点学科;电气工程一级学科具有博士学位授予权,并建有博士后流动站;有电力工程新技术教育部重点实验室。2004年,在教育部一级学科排名中,上海交通大学电气工程学科综合排名第五。

专业优势与特色

“宽口径、厚基础、重实践”的电气工程创新人才培养体系

随着经济和科学技术的发展,社会对工程技术人才需求的格局发生了很大变化,一些工程技术问题的解决往往需要多学科多专业知识的交叉及综合,也更需要多样化、适应性强的人才。创新行为来源于不同的知识结构,创新性人才的培养已成为世界一流大学人才培养的共同目标。

基于上述理念,上海交通大学在1998年开始在对电气工程专业整合、实施宽口径电气工程与自动化专业人才培养的实践基础上,以及1999年至2001年举办的电气信息工程(EIE)试点班教学实践基础上,又于2003年开始对本科生实施按院招生按类培养模式。参照国际著名大学同类本科教学体系,构建了包含厚实的公共基础课程模块、宽口径的大电类学科基础课程模块、以电气工程一级学科为核心的专业主干课程和专业方向前沿与特色课程模块,以及贯穿始终的创新实践教学模块在内的人才培养体系。相应的课程设置反映了电气工程与自动化专业的立体化模块知识结构:理论基础模块知识、电工电子技术模块知识、计算机与信息处理模块知识、电力系统模块知识、电气设备与控制系统模块知识,体现了本专业以强电为主,强弱电结合、软件与硬件结合,抽象(电磁场)与形象(机电装置)结合,器件、设备与系统三位一体的模块知识结构特点。创新实践教学模块将实验教学、集中实践教学环节与课外的科技竞赛、大学生科研训练项目等有机结合起来。形成了包含实践-技能层、基础-提高层、综合-创新层和科技-研究层的多层次立体化实践教学体系,多方位提高学生的创新意识和实践能力。

从2003级开始,学生进校后的前两年在统一的大平台上进行基础课程学习及能力训练,经过一年半时间的学习后,学生根据个人专业志向并按一定要求选择专业,继续后面的专业课程学习。

高水平的师资队伍

电气工程与自动化专业长期坚持引进和培养并举建设教师队伍的原则,坚持教授必须承担本科生的教书育人工作。在本专业教学中采用校院系三级统一调配师资,打破院系界限、学科教研室界限,实现师资队伍的优化组合,由教学经验较为丰富、学术造诣较深的教授或副教授领衔组成课程组。近五年来,电气工程系绝大部分教授均为本科生上课,一些资深教授和博导通过指导毕业设计、指导课外PRP研究项目等形式参与本科生人才培养工作。

全方位教学管理、质量监控与服务体系

上海交通大学拥有一套完整的本科教学管理体系,该体系对教学全过程实行规范化管理,涉及本科专业设置、培养计划制订、课程建设、招生录取、教学管理条例、学生学籍管理及学生工作管理、教师工作规范条例、教师聘任条例、任课教师职责、教务员工作条例、监考职责以及教学事故认定和处理办法等等。在本科教学质量监控体系中,对教学全过程实行严格、规范的定期监控管理。

深入开展教学改革,促进人才培养质量的提高

学院除执行全校公共基础大平台课程体系外,还构建了由14门学科基础课程及4门独立设课的实验课程组成的大电类(电气信息类)基础课程教学大平台,这些课程的学习为学生今后的发展奠定了坚实的基础。电气工程与自动化专业通过课程优化整合形成了9门专业核心课程,即《电机学》、《电气工程基础》(一)(二)、《电力电子技术基础》、《数字信号处理》、《电机控制技术》、《电力系统继电保护》、《电气与电子测量技术》、《电力系统自动化》。结合电气工程一级学科专业培养特色,除了设置一级学科方向公共课程外,还灵活设置了多个二级学科专业前沿和特色以及跨学科选修课模块,并提供多种课程设计以及电气设备实验和系统综合实验等。

从2001级学生开始,学校实行学分制管理模式,提供学生更大的自主学习选择空间。在电气工程与自动化专业教学培养计划(如2005级)中,强调宽口径模块化专业培养模式,淡化了专业方向,对学生选不同的专业特色课程以及课程设计没有强制性规定,学生可以结合本人特长和兴趣,自行设计知识模块构成。在多项集中实践教学环节中,更加注重培养学生的创新能力和社会实践能力。

在电气工程与自动化专业的教学计划中,确立了《信号与系统》、《数字信号处理》、《通信原理概论》等课程为双语教学课程。此外,《基本电路理论》、《机电能量转换》、《自动控制原理》、《电力电子技术基础》等课程为部分学生选修的双语教学课程。双语教学采用英文教材、英文作业、英文试卷。

为了突出学生实践能力和创新能力培养,除部分课内实验分布于理论课程的整个教学过程外,该专业还将重要的基础课程实验、实践环节以及课程设计等独立设课,有专门的教学计划和任课教师,进行单独考核、单独计算学分和成绩。第8学期的整个一学期集中开展毕业设计工作。通过实验教学及创新实践环节,培养了学生设计和进行实验以及对实验数据进行分析、整理的能力;发现、定义和解决实际工程问题的能力;应用必要的技术和现代化工具的能力;团队合作与领导能力;书面和口头表达能力;科学思维能力;创新研究能力。

上海交通大学通过“211工程”、“985工程”投入大量资金建成了6个国家级重点实验室,以及一批国家部委、上海市、国家863重点(开放)实验室和国家工程研究中心,建成了具有国内先进水平的国家级教学示范中心——大学物理实验教学示范中心、国家工科基础课程教学基地——电工电子教学基地等。电气工程系建有电力工程新技术教育部重点实验室、上海市高压电器检测中心。通过校企联合,电气工程系还建成了上海交通大学——德州仪器TI联合实验室、上海交通大学-施耐德电气联合实验室、上海交通大学——嘉兴联胜联合实验室。此外还有电工电子实验中心、电力系统动模实验室、高电压实验室、电机实验室、电力电子与电力传动实验室等专业基础和专业实验室。重点实验室、联合实验室和专业实验室的建设为加强学生的实践能力培养奠定了重要物质基础。

在不断完善校内实践基地的同时,积极通过“产学研”结合建立长期稳定的校外实习基地。让学生直接参与供电公司、变电所等的管理,了解和接触生产实际,学到了校内课堂上无法学到的东西。目前,电气工程与自动化专业已建立了石洞口电厂、新安江水电站、上海电 机厂、闵行电厂、吴泾电厂、施耐德(中国)有限公司、思源电气有限公司、上海市电力公司、上海外高桥电厂等多个校外教学实践基地,这些实习基地的建设为电气工程与自动化专业学生的实习提供了有利的条件。

学校名称:重庆大学

专业名称:电气工程与自动化

专业简介

重庆大学电气工程专业1936年成立,1952年进行了专业调整,1955年增设电机与电器专业,改革开放后又增设了高电压与绝缘技术、电气技术、电磁测量等专业。1998年按照电气工程及其自动化专业招收和培养学生,2001年改为电气工程与自动化专业,现有电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、建筑电气与智能化等5个专业方向。该专业是重庆大学电气工程学院唯一的本科专业。

目前,重庆大学电气工程学院拥有国家工科电工电子基础课程教学基地、国家电工电子实验教学示范中心,电气工程一级学科为国家重点学科,拥有电气工程一级学科博士学位授权及博士后流动站,建有“输配电装备及系统安全与新技术”国家重点实验室及3个省(市)级重点实验室,拥有“高压输变电设备安全运行科学与新技术”教育部创新团队。专业现有专任教师109人,本科生1889人,全日制硕士研究生470人,博士研究生153人。

专业优势与特色

专业目标明确,课程体系设置既有先进性又切合实际。密切结合国家和地方重大教改项目,不断探索和实践专业人才培养模式、教学内容体系改革及专业建设,其成果获得国家教学成果一等奖1项、二等奖2项。

学科优势明显,师资水平高。依托国家重点学科、国家重点实验室、国家教学基地、国家实验教学示范中心,初步形成了教学、科研、学科建设三位一体、人才交融、协调发展的格局,提供了高水平本科人才培养的支撑条件。

注重产学研结合,培养高质量专业人才。毕业生供不应求,社会需求现状和预期好,为国民经济建设做出了积极贡献,深受用人单位欢迎。

学校名称:西安交通大学

专业名称:电气工程与自动化

专业简介

西安交通大学电气专业起源于1908年,是国内最早创立的电机专业,1917年从专科改为本科,1998年以前设有电机电器及其控制、高电压与绝缘技术、电力系统及其自动化、工业自动化等4个专业,1998年根据教育部颁布的引导性专业目录名称,将上述专业合并为电气工程与自动化专业,设有6个专业方向。

目前,该本科专业所在学院拥有电机与电器、高电压与绝缘技术、电力系统及其自动化、电力电子与电力传动、电工理论与新技术5个二级学科,2007年电气工程一级学科被评为首批国家重点学科,拥有电力设备电气绝缘国家重点实验室。在教育部2006年以及此前的第一次一级学科排名中,西安交通大学电气工程学科均综合排名第二。该专业现有专职教师109人,本科生1432人(包括本硕连读生178人),工学硕士研究生669人,博士研究生164人。

专业优势与特色

长期以来,该专业秉承西安交通大学“起点高,基础厚,要求严,重实践”的办学传统,形成了以下优势与特色:

专业建设与教学改革水平目前处于国内领先地位,充分发挥了示范辐射作用。从1996年开始,该专业先后主持了4项国家级教改项目,围绕电气信息类专业人才培养方案、教学内容和课程体系改革、电气工程类教改成果整合、专业规范制定等方面开展研究,获得2项国家级教学成果二等奖,所取得的教学成果被全国许多所大学应用。拥有1名全国教学名师和2名省级教学名师。

拥有电气工程(一级学科)国家重点学科和电力设备电气绝缘国家重点实验室,学科优势明显,提供了高水平本科人才培养的支撑条件。

拥有国家工科电工电子基础课程教学基地、国家电工电子实验教学示范中心。通过“基地”与“中心”的建设,促进了实验教学体系的改革和优化,科学构建了三层次的实验教学体系,开出了一批新实验,增加了设计性和综合性实验的比例,在实验中注重培养学生的工程意识和创新精神。电气工程与自动化专业的学生在科技创新活动和全国性的科技竞赛活动中,取得了一批优秀成绩, 教材建设和课程建设成果突出。该专业编写出版了《电路》等5部“十五”国家级规划教材和2部“十一五”国家级规划教材。所编写的教材被许多高校采用,在全国具有广泛影响;拥有电力电子技术、电路、工程电磁场、电工电子技术等4门国家级精品课程。

学校名称:华北电力大学

专业名称:电气工程及其自动化

专业简介

1958年建校时,原北京电力学院就设置了电气工程专业,其首先设置的4个专业中就包括了电力系统自动化和继电保护与自动远动技术两个专业(从哈尔滨工业大学搬迁而来)。随着教学改革的不断深入,专业名称几经改变。1998年,华北电力大学按照教育部新的专业目录中的“电气工程及其自动化”专业招收和培养学生,下设电力系统及其自动化、继电保护与自动远动技术、高电压技术、城市供用电、电力电子技术、电力市场、电气技术7个专业方向。

电气与电子工程学院拥有1个国家级重点学科,5个省部级重点学科和电气工程博士后流动站,具有一级学科博士和硕士学位授予权。拥有2门国家级精品课程和多门省部级精品课程。学院现有教师338名,其中,中国工程院院士1名、国家杰出青年基金获得者1名,长江学者讲座教授1名,国家百千万人才2名。学院有博士生导师22名,教授75名,副教授106名。教师师德良好,教学和科研水平较高,结构合理。

专业优势与特色

该专业具有如下优势与特色:面向电力行业,有明确的培养目标;师资队伍结构合理,重视青年教师培养;依托电力行业,有完善的实验与工程实践条件;产学研结合紧密。

学校名称:西南交通大学

专业名称:电气工程及其自动化专业

专业简介

西南交通大学电气工程及其自动化专业始于1949年7月成立的“电气运输”专业。1962年,发展为“电气化铁道供电”和“电力机车”2个专业。1981年,“电气化铁道供电”专业更名为“铁道电气化”专业。1985年,“电力机车”专业更名为“电力牵引与传动控制”专业。1996年,按照培养厚基础、宽口径,知识、能力与综合素质协调发展的人才培养模式,按大类培养将“铁道电气化”和“电力牵引与传动控制”2个专业纳入“电气工程及其自动化”专业。目前,该专业设有“电力系统及其自动化”、“铁道电气化”、“电力牵引与传动控制”、“磁浮与城市轨道交通自动化”4个专业方向。

电气工程及其自动化专业为国家级特色专业建设点,拥有2门国家级精品课程、电气工程基础国家级实验教学示范中心、“轨道交通电气化与自动化”国家教学团队和1名国家教学名师。拥有国家重点学科“电力系统及其自动化”、国家重点(培育)学科“电力电子与电力传动”、四川省重点学科“电工理论与新技术”和铁道部重点学科“铁道牵引电气化与自动化”,拥有“电气工程”一级学科博士学位授予权和博士后科研流动站,建有“磁浮技术与磁浮列车教育部重点实验室”、“铁道电气化与自动化铁道部重点实验室”和“四川省轨道交通电气化与自动化工程技术研究中心”,拥有“磁浮技术与磁浮列车”教育部创新团队。

目前该专业所在的电气工程学院拥有教师188人,本科生1336人,全日制硕士研究生670人,博士研究生81人。

专业优势与特色

以国民经济建设和社会需要为导向,主动适应轨道交通发展需要,面向轨道交通电气化与自动化,培养高素质人才。专业培养目标明确,规格要求合理,行业优势明显,师生认可程度高。

坚持教育教学改革和质量工程建设,构建了多层次个性化人才培养体系,在人才培养模式、课程建设、教材建设、教学团队建设等方面取得了优良的成果,形成了优质的教学资源。

“重基础,强实践,求创新”构筑和实践了全方位多层次实践教学新体系,采用“以软带硬、资源共享”的建设理念,坚持“产、学、研”结合,加强国际交流与合作,建成了以个性化实验和科研项目实践为主的个性化、创新实践平台,建立了专业人才工程实践能力和创新能力培养的长效机制。

专业生源质量好,毕业生就业率高。毕业生在我国铁路电气化、电传动机车和车辆的发展建设中作出了重要贡献,得到社会和用人单位的广泛认可。

学校名称:山东大学

专业名称:电气工程及其自动化

专业简介

山东大学电气工程及其自动化专业始建于1946年,是该校工学门类中历史较悠久的学科之一。1952年设立发电厂及电力系统专业,后改称电力系统及其自动化专业。1956年设立电机电器专业,后改称电机及其控制专业。1978年设立继电保护及自动远动技术专业。1980年设立电气技术专业。1998年,将电力系统及其自动化专业、电机及其控制专业、继电保护及自动远动技术专业和电气技术专业等4个专业合并成现在的电气工程及其自动化专业。

山东大学电气工程学科是“211”和“985”重点建设学科。2007年电力系统及其自动化二级学科成为国家重点培育学科。目前山东大学电气工程学院拥有省级重点学科2个,省级重点实验室1个,省级工程技术研究中心4个。

2006年电气工程及其自动化专业成为山东省特色专业,2007年电气工程及其自动化专业成为国家第一类特色建设专业。

电气工程学院现有博士研究生导师15人,硕士研究生导师42人,长江学者特聘教授1人,长江学者讲座教授1人,进入国家“百、千、万人才工程”一二层次的学者1人,教育部新世纪优秀人才2人,省级有突出贡献的中青年专家3人,山东大学教学名师3人。

师资队伍构成:教授23人,副教授39人,其他高级专业技术职务10人,其中具有博士学位的40人(占48.2%),分别毕业于清华大学、西安交通大学、哈尔滨工业大学、沈阳工业大学、山东大学等高校,其中三分之一教师有海外研修经历。

近年来该专业出版教材、专著和译著等40余部,完成国家、省部和企业科研项目100多项,获得国家级发明奖和科技进步奖5项,省部级科技奖励30多项。自该专业设立以来为国家培养了近万名工程技术人才,为国家电力事业的发展做出了重要贡献。

专业办学的主要特点

篇9

1.引言

在一些国家,比如说以德国、美国为代表的发达国家在1960年前后中,就将计算机以及通信技术大量的应用在铁路生产管理中。并且随着因特网的快速发展,还会不断地将新的技术应用在铁路中,使之不断走向综合化、信息化,使铁路朝着管理自动化、智能化铁路方向发展。其中,以美国的太平洋联合集团、德国铁路公司为代表。它们正在快速发展综合调度、列车运行控制和各种业务系统,在欧美为用户提供了铁路运输,并在传统系统上开发了用户自我服务系统,实习了公司于用户的面对面的交流和联系,通过先进的电子商务系统 ,为用户提供方便并且快捷的优越服务[1-2]。

中国铁路系统企业信息化建设整体上还处于初级发展水平。信息化人均投资很低,信息化建设缺乏合理规划,尚未覆盖主要业务和管理流程,尤其是信息资源的开发利用还刚刚起步,难以做到优化企业内外资源配置[3-4]。但是大多数企业有着利用信息化提高企业竞争力的强烈愿望和决心,构成了建设企业信息化发展的动力。所以铁路系统结合自身业务的特点,分布分批的投入信息化建设,当前重点还是在与日常生产经营过程中,息息相关的路网管理、调度、供电保障等子系统,为保证铁路的信息兼容性和整体性,在规划建设各信息系统的时候,开展信息系统的规划和实施研究,具有重要意义。

2.系统实现

2.1 系统的开发技术

本系统web服务端采用php语言,浏览器端采用html、javascript、css、ajar、jquery等语言,保证了系统的开放性、兼容性和跨平台性。并采用mysql数据库[5],由于mvc的低耦合性、高重用性和可适用性,以及php codeigniter框架灵巧、简化的特点,本系统依托于codeigniter框架采用mnc模式进行开发[5]。系统采用了三层体系架构,

·表现层:表现层采用了html、ajax、css、javascript等技术组成了具有良好用户体验的页面。表现层用于显示数据和接收用户输入的数据,为用户提供一种交互式操作的界面。用户只需安装浏览器和给定的网络地址就可以访问本系统,用户不用担心系统的升级维护的问题,减少了用户的开支。

·业务层:业务逻辑层处于数据层和表现层的中间,起到了承上启下的作用,它是系统架构中体现核心价值的部分。它的主要任务是业务规则的制定、业务流程的实现等与业务需求有关的系统详细设计。

·数据层:数据层简单的说解释实现数据表的增加、删除、查询、修改的操作。数据层采用mysql关系数据库。起到了存储数据的作用,当有数据请求时该层可以将数据发回至表现层。

2.2 系统目标

·建立全路供电专业资源计划体系,集成、开发一套实用供电专业各层级运行管理的应用子系统。实现班组、车间和供电段、铁路局、铁道部以及其他相关单位的铁路供电综合管理信息平台。

·建立全路统一的供电专业生产指挥系统,实现生产管理网络化,方便供电专业各级管理者实时了解设备运行状态、人员状况、检测质量、作业过程监控、外部环境等信息,为快速准确下达生产计划、调度命令等提供信息化平台。

·系统建设要依据铁路信息化总体规划,统一网络结构、统一代码体系、统一系统平台,实现升级、维护、服务的统一管理。

3.接触网运行检修系统

接触网检修系统结合当前牵引供电专业管理业务流程实现检测检修管理的网络化、信息化[6]。可以大大提高工作效率,提高检测检修数据的共享性、实时性和规范性。接触网专业巡视、检测检修、运行管理全部纳入其中,最终实现“数据日常输入、 自动生成统计报表、系统智能分析”,全方位提高牵引供电专业管理水平,使牵引供电运行于检修实现网络化、

息化、标准化、无纸化,减轻信息收集分析的负担。

由于codeigniter对mvc的良好分离,可以在model层对整个核心数据库处理的方法进行封装,方便其他系统模块进行调研,controller层作为model层和view层之间的传递资源的中介,最终由view层把信息展示给用户。

接触网运行检修系统主要的功能模块:年度检修计划制定、月度检修计划制定、各类检测检修台账,分工单以及值班日志、工作票、一杆一表一图。

·年度检修计划制定

安全技术科,根据接触网设备制定(客专/普速)年度检修计划,检测检修计划包含检修项目、单位、年度检修设备数量、以及每个月该项目在当月的检修区间站场和检修数量等。检测检修设备的数量、检修周期、单位等均由设备履历系统提供。

·月度检修计划制定

接触网月度巡视工作时由工区按照规定中接触网巡视制度的要求去执行,系统将会自动制度计划:每十天一次昼间巡视,每季度一次夜间巡视,每月一次乘车巡视并且用不同的字体来描述(昼巡、夜巡、登乘)。查看计划时,可以看到各个网工区各月的巡视计划的列表,点击查看详情,还可以查看计划的具体情况。以最后一次巡视的时间为节点,往后推超出周期未巡视时要有提醒。

·各类检测检修台帐

工区根据安全技术科制定的年度检测检修计划,对接触网进行检测检修。针对检测项目填写相应的台帐。系统根据年度检修计划以及对应的台帐统计各类项目的完成情况。

分工单以及值班日志、工作票

工作票由施工一天前发送到工区进行作业、在值班日志中有系统直接反映工作票的详细信息。记事以及工作内容则由工区填写。

·一杆一表一图

根据检测检修台帐、以及杆号、公里标对照表用简图的形式反映整条线路的检修情况、简图上标注哪些位置的杆号进行过检修、关联检修台帐以及杆号照片。

每次变更设备时需由工区修改“杆号设备配置核心库”,并留下修改日志,同时在下一年度开放特定时间内提示人工修改设备履历。

4.结论

本文主要分析南昌供电段对电气化铁路接触网检修的现状以及趋势,在此基础上对系统进行了开发框架的选择,选取了一套便捷、易用的管理信息系统对接触网检修、运行提供了一个实时、透明的信息平台。

本论文主要完成了以下方面的工作:

1)通过和供电段各业务科室的沟通,了解了南昌供电段的主要业务的流程;

2)针对各科室的具体需求,对系统的开发框架进行了选择,并且对整个系统的方案进行了总体的设计;

3)分析了web应用的安全性问题,利用数据库的安全特性实现了系统的安全访问控制过程;

4)将系统部署在南昌供电段的中心机房并试运行。

参考文献:

[1]供电所管理信息系统建设的难点与对策[j].山西电力 2006.

[2]卢文艳. 铁路信息化建设与应用现状[j]. 电力信息化, 2007年第5卷.

[3]毛克胜. 牵引供电管理信息系统设计[d]: [硕士学位论文]. 西南交通大学, 2004.

[4]田少杰. 中国铁路信息化发展. 郑州铁路职业技术学院学报, 2008年3月.

[5]王石. 杨英娜.精通php+mysql应用开发[m]. 北京: 人民邮电出版社,2007

篇10

京沪线卞庄分区所、沙河集分区所在运行中偶尔会发出3001、3002分相隔开分合信息,但是询问电调电调未对开关进行操作。现场调查分相开关信号电缆过长(约1.6公里),且在经过跨河桥时与电务及其他电缆在保护线槽内共同铺设。

1控制信号回路通断的辅助开关断开时,误发分合信号产生原因分析

1.1控制电缆直流回路负母线存在两点接地或负母线间绝缘不良,使信号回路正负电源不经辅助开关导通,发出分合信号。

1.2控制电缆中存在感应电,致使信号回路负母线带电,感应电势随时间变化至负半波,满足二极管的工作条件时二极管对三极管发出脉冲信号,使连接在三极管发射极上的信号灯亮发出分合信息。

1.3控制电缆中信号回路负母线在辅助开关后串入交流电,其电势随时间变化至负半波,满足二极管的工作条件时二极管对三极管发出脉冲信号,使连接在三极管发射极上的信号灯亮发出分合信息。

2误发分合信号原因查找

2.1针对湖南科明绝缘不良报警值低的现象,将报警值调高后仍未报绝缘不良,由此基本可以排除信号电缆绝缘不良引起。

2.2交流电串入原因排除,甩开分区所端控制、信号电缆,甩开贯通线供分相开关机构箱交流电源,将电缆对地放电后,测量信号电缆中仍有28V交流电,由此可以排除机构箱内交流电串入可能。

2.3将电缆对地充分放电后,测量电缆绝缘芯线对地及线间绝缘电阻均大于2MΩ,由此可以排除绝缘不良,及其他交流电源串入,引起误发分合信号。

2.4通过将以上三种原因排除后,可以断定信号电缆中串入的交流电为感应电。

3感应电势计算公式

B为磁感应强度;Φ为感应磁通;N为感应线圈的匝数(因为是平直导线取1);A为导线靠磁场侧半球面积

R为控制电缆距导线的距离(近的取7.85m远的取11.1m,因为受路基条件限制,波动范围在0.3m左右,因为开关都在正线所以侧面限界值取3.1m)

为空气的磁导率,因为空气中磁感应强度和磁场强度基本相等,所以空气的磁导率取1根据上式将机车在区间运行时,上下行供电臂中通过的电流带入感应电计算公式,就可以得出机车通过时电缆中产生的感应电势。(当机车运行至分相处时,电缆中的感应电最大;距分相较远时,电流I1产生的磁场会抵消掉一部分,电缆中的感应电势相对较小)。

其他高压线路对控制电缆的感应电干扰同样按照上述内容,对复杂线路要综合进行考虑和计算。

3常用消除控制电缆中感应电对信号影响的办法

3.1在信号电缆负电回路串接电阻,通过电阻分压减弱施加在稳压二极管上的感应电压,消除感应电压对开关位置信号的干扰。

3.2在信号回路的正负电源间接一个电容,利用电容隔直通交的特性,使信号回路正负电源间感应电势相同,从而使加在稳压二极管两端的交流电势相同,使稳压二极管不会再因正负电源回路的感应电势不同,误发分合信号。

4两种方法比较

4.1方法一较简单,原理上只要找一个足够大的电阻(一般取经验值10KΩ)来分担回路中感应电势即可,但是因为反应开关变位时采用的设备不同而存在差异。目前采用的反应开关的位置信号的设备有光控开关、位置继电器等,无论是采用哪种设备都要考虑串接电阻与回路电阻的匹配即开关正常分合时,不能因串接电阻分压造成开关位置变位无法正常显示。当采用光控继电器时还要考虑到光控继电器内部连接在发光二极管回路的电阻,如果二极管对于工作电压要求较高时,串接电阻消除信号回路感应的方法就不可取了。

4.2方法二相对于方法一来说更为可靠也更便于实施。电容量计算及其允许通过电流的相关公式如下:

通过上式可以看出选择的电容容量和C及U有关,通过电容的电流和U及XC有关。通过以上逻辑关系可以得出如下结论:光控继电器正负信号线间并联的电容容量可以随意选则,只要其耐压大于感应电压即可使用。为防止信号回路正母线与机构箱内的交流电源由于某种原因短接致使电容击穿,正负母线短路产生故障,要求并接电容器的耐压略高于机构使用的交流电压或者直接根据电缆的耐压选择相同耐压等级的电容进行并接,从节约费用方面考虑一般选择容量为1uf的电容器。

5结束语

通过以上分析和处理方法的对比,建议今后处理类似问题无论从成本还是改造方面考虑,采用第二种方法,使所内和远动终端均能准确反应开关位置信号。