配合比设计论文模板(10篇)

时间:2022-08-22 07:54:33

导言:作为写作爱好者,不可错过为您精心挑选的10篇配合比设计论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

配合比设计论文

篇1

(1)满足公路桥梁抗压强度和抗折强度要求,提高桥面的耐久性能;

(2)使配制的钢纤维混凝土有较好的和易性,方便和满足施工要求;

(3)充分发挥钢纤维混凝土的特点,合理确定钢纤维及水泥用量,最大限度地降低工程成本。

二、原材料质量要求

钢纤维:表面应洁净无锈无油,无粘结成团现象,保证钢纤维与混凝土的粘结强度,尺寸和抗拉强度符合技术要求;单根钢纤维丝的最低抗拉强度800N/㎜2,掺加量不超过70㎏/M3。

水泥:采用32.5级或42.5级普通硅酸盐水泥。

碎石:应采用石质坚硬、清洁、不含风化颗粒、表面粗糙,近立方体颗粒的碎石。

细集料:宜采用天然中粗砂或机制砂。细集料的洁净程度,天然砂以小于0.075㎜含量的百分比表示,机制砂以砂当量或亚甲蓝值表示,其质量必须满足规范的要求。

水:无污染的自然水或自来水。

外加剂:宜选用优质减水剂,对抗冻性有明确要求的钢纤维混凝土宜选用引气型减水剂。

三、钢纤维混凝土配合设计步骤

钢纤维混凝土配合比设计与普通混凝土配合比设计一样,一般采用计算法。可按下列步骤进行:

(1)根据强度标准值或设计值及施工配置强度提高系数确定试配抗压强度和抗折强度。

(2)按试配抗压强度计算水灰比,一般应控制在0.45-0.50之间。可按普通水泥混凝土抗压强度、水泥标号、水灰比的关系式求得。

(3)根据试验抗折强度,按规定计算钢纤维体积率。一般体积率选1.0~1.5%。

(4)根据施工要求通过试验确定单位体积用水量(掺用外加剂时应考虑外加剂的影响)。

(5)根据试验确定合理砂率(现场应根据材料品种,钢纤维纤维体积率,水灰比等适当调整),一般应控制在1.1-1.6%之间.

(6)按体积法计算材料用量确定试验配合比。

(7)按配合比进行拌和物性能检测,调整确定施工配合比。

四、钢纤维混凝土的拌和

(1)必须使用滚动式混凝土拌和设备。当钢纤维体积率较高,拌和物稠度较大时,应对拌和量进行控制,一般应不超过设备拌和量的60%。

(2)注意拌和料的投放顺序,一般按水泥、钢纤维、细集料、粗集料、水的顺序进行,先进行干拌后再加水湿拌,同时,钢纤维应分2-3次投放,保证钢纤维在拌和机内不结团,不弯曲或拆断。

(3)应根据拌和物的粘聚性、均匀性及强度稳定性要求通过试拌确定合理的拌和时间。先干拌后湿拌,一般按干拌时间不少于80秒,湿拌时间不少于100秒(总拌和时间必须控制在300秒以内)。

五、钢纤维混凝土的施工与养护

(1)清除垃圾,清洁桥面,洒水湿润,浇洒水泥浆(水泥浆可按重量比水:水泥=1∶1配制)。

(2)检查桥面铺装钢筋网片摆放位置的正确性及钢筋网片的搭接情况。

(3)钢纤维混凝土卸料后应用人工摊铺找平,振捣密实,振平板粗平(不宜使用振动梁拉动找平),振平板每次重叠1/2。

(4)用钢管提浆滚滚动碾压数遍,使用提浆滚滚平提浆,避免钢纤维外露。

(5)使用3米长铝合金方尺从钢模板一侧向外刮平(精平),每次刮平时方尺应交叉1/3以上。

(6)钢纤维初凝后人工拉毛处理,使桥面粗糙。

(7)混凝土完成初期可喷洒养生剂,喷洒均匀,表面无色差,初凝后使用土工布覆盖洒水养生,保持土工布湿润。土工布覆盖养生7天,洒水养生14天。

(8)如果桥面铺装钢纤维混凝土为C60时,因混凝土标号较高,水泥凝固快,应集中设备、人员突击施工,力争使钢纤维混凝土从拌和到精平完成的时间控制在4小时以内。

六、钢纤维混凝土质量控制

(1)钢纤维的质量检验

一是钢纤维的长度偏差不应超过标准长度的10%,每批次至少随机抽查10根以上;

二是钢纤维的直径或等效直径合格率不得低于90%,可采取重量法检验,每批次抽检100根,用天平称量,卡尺测其长度,要求得到的等效平均值满足规定;

三是钢纤维的抗拉强度检验,要求其抗拉强度不低于380MPA;

四是钢纤维的抗弯拆性能,钢纤维应能经受直径3㎜钢棒弯拆90°不断,每批次检验不少于10根;

五是杂质含量,钢纤维表面不得有油污,不得镀有有害物质或影响钢纤维与混凝土粘接的杂质。

(2)原材料的检验

必须满足上述原材料的质量控制标准,应按照公路工程施工技术规范的要求进行检验。

(3)钢纤维混凝土的检验

应重点检验钢纤维混凝土的和易性、塌落度和水灰比等,同时必须现场目检钢纤维在混凝土的分布情况,发现有钢纤维结团现象应延长拌和时间。

七、注意事项

(1)由于钢纤维混凝土拌和时对水灰比的控制有严格要求,不宜在阴雨天气或风力较大的条件下进行施工。应选择晴好天气时进行,遇雨必须停止施工,并及时使用土工布覆盖尚未硬化的混凝土桥面,必要时可搭建临时施工防雨棚,在防雨棚下尽快完成剩余作业。

(2)根据气温、风力大小及时调整钢纤维混凝土拌和用水量,保证混凝土的和易性,建议施工时间应安排在气温不高于22℃时进行。

(3)气温较高或大风条件下应及时调整养生剂的喷洒量,喷洒养生剂后应及时覆盖土工布,混凝土初凝后立即在土工布上洒水湿润,防止桥面混凝土发生收缩开裂。

(4)在通行条件下桥梁加宽使用钢纤维混凝土桥面铺装时,除做好现场施工保通外,由于旧桥车辆通行振动对桥面钢纤维混凝土的开裂有很影响,建议将新旧桥桥面间保留30㎝宽暂时不做铺装,待新格面铺装完全成型后补做。

八、结束语

钢纤维混凝土可以较好地解决普通混凝土难以解决的裂缝、耐久性等问题,对提高桥面的使用质量,延长桥面的使用寿命十分有利。在公路旧桥加固改造、桥面修补、桥梁缺陷修复等方面的应用会更加广泛。

[摘要]钢纤维混凝土克服了普通混凝土抗拉强度低、极限延伸率小、脆性等缺点,具有优良的抗拉、抗弯、抗剪、阻裂、耐疲劳、高韧性等性能,通过在桥面铺装中的应用,总结了钢纤维混凝土施工方法,技术要求及有关注意事项,为钢纤维混凝土的推广应用提供了经验。

[关健词]钢纤维配合比设计质量控制

参考文献:

篇2

水泥稳定级配混合料是当今国内外使用最普遍的一种半刚性基层材料,其中又以水泥稳定碎石性能最为优异,使用范围较广泛。水泥稳定砂砾基层,由水泥、级配砂砾、填料,按照一定比例混合,加水拌和、摊铺、碾压并养护而成的一种结构层。它具有较高的强度,有一定的板体性和较好的稳定性。骨架密实结构同传统悬浮密实结构相比,具有能够形成有效的骨架嵌挤结构、提高抗压强度、降低水泥用量、有效减少路面裂缝的发生等突出特点,很大程度上解决了传统设计理念下沥青路面底基层、基层病害的发生,值得推广应用。

1 组成材料的技术要求

1.1水泥 要求水泥强度等级不低于32.5 MPa;水泥细度、安定性等应符合规范要求;使用缓凝的普通硅酸盐水泥,禁止使用快硬水泥,早强水泥。同时要求水泥初凝时间3h以上,终凝时间不小于6 h。若采用散装水泥,在水泥进场入罐时,要了解其出炉天数,刚出炉的水泥,要停放7 d,且安定性合格后才能使用。

夏季高温作业时,散装水泥入罐温度不能高于50 ℃,高于这个温度,又必须使用时,应采用降温措施;冬季施工,水泥进入拌缸温度不应低于10 ℃。

1.2砂砾 砂砾取自施工所在地的泾河中,保证材料均匀和含泥量控制在规范规定范围内。在水泥稳定砂砾底基层施工质量控制过程中,要控制两个方面:①砂砾的最大粒径不应超过37.5 mm;②4.75 mm以上砾石含量不应低于60 %。

1.3水 一般采用人畜能饮用的水。

2 水泥稳定砂砾基层设计方法

2.1主骨料级配确定

2.1.1确定骨料规格D0(一般选取2~4 cm料),将一定质量的此粒径的骨料分三次放入击实筒中,每次按重型击实98次后量测其击实后的高度,计算其击实密度,算出空隙率。

2.1.2以D0用量为100,D0的下一级为l/2 D0(1~2 cm),以D0用量的5 %为步长,将D1逐次掺入D0中,每次掺入后,击实,测定击实密度,建立填充数量与击实密度关系曲线。

2.1.3选择D1的合理用量,测得最佳的填隙率。以此类推,进行二、三、四、五级填充,最后分别得到各级粒径的最佳填充比例,即主骨料的级配。

2.2混合料的组成设计

2.2.1组成设计原则:①水泥稳定碎石底基层、基层级配应达到骨架密实结构,集料粒径大于4.75 mm的骨料含量宜在65 %以上,大于2.36 mm的集料含量宜大于80 %,小于0.075 mm颗粒含量宜接近0,最大不应超过3%;②在达到强度的前提下,采用较小水泥剂量,但应考虑施工的不均匀性;③改善集料级配,减少水泥用量,使水泥用量不宜大于4.2 %。

2.2.2水泥剂量的配制可采用:2.5 %、3 %、3.5 %、4 %、4.5 %五种剂量。

2.2.3每种剂量的试件制取13个(最小数量)。

2.2.4试件必须在规定的温度(20±2 ℃)保湿养生6 d,浸水养生1 d后测定无侧限抗压强度,计算结果的平均值、偏差系数,并计算RX(1-1.645Cv)是否大于Rd(设计强度)。

2.2.5根据设计剂量做水泥延迟时间对混合料强度的影响试验,并通过试验确定应该控制的延迟时间。

2.2.6骨架密实结构水泥稳定砂砾(碎石)建议级配。

2.3配合比验证结果

2.3.1根据确定的最佳含水量,拌制水泥稳定砂砾混合料,按要求压实度(重型击实标准,压实度97 %)制备混合料试件,在标准条件下养护6 d浸水24 h后取出,做无侧限抗压强度。

2.3.2最终确定的生产配合比为:37.5~19 mm砾石:19~4.75 mm砾石:4.75~0 mm石屑=(28 %:37 %:35 %)。按此配合比生产的混合料骨架结构好,集料依次从大到小的逐级填充,颗粒与颗粒之间紧锁嵌挤,基本能满足骨架密实结构的要求。

2.3.3在生产控制中严格控制混合料中4.75 mm以上砾石含量,控制在65 %~70 %之间,从而能保证整体结构中骨架的良好形成。

2.3.4室内浸水7d无侧限抗压强度,R0.95大于3.5 Mpa。一般在3.5Mpa~4Mpa之间。水泥剂量为3.5 %~4 %之间。

2.4现场取芯质量情况 在正常施工季节中项目的底基层一般在3~5 d内钻芯取样完整、密实,3 d及7 d 150 mm芯样无侧限强度能达到2.5 Mpa及4 Mpa以上,从芯样压裂程度来看强度主要来自结构中各集料骨架强度。

3 配合比设计在生产实践中的应用

黑龙江省铁通高速公路,设计路面底基层采用水泥稳定砂砾。级配组成采用骨架密实结构进行设计施工,设计强度为2.5MPa。在施工过程中一方面对骨架密实结构级配进行试验分析,选择合理的级配组成配比;另一方面,从填料、结合料入手,改变传统观念,摸索出了一些在保证强度的前提下有效的降低水泥用量,同时减少裂缝的途径。

3.1级配组成 采用骨架密实设计思路和方法,并参照《铁通高速公路路面施工细则》的建议级配,经工地试验室的反复试验,最终选定的级配如下:

3.2水泥用量

根据规范水泥用量设计方法确定水泥用量。

3.2.1减少砂砾料的含泥量 针对大多数地区砂砾含泥量均较大的情况,建议采用砂砾分级或通过5 mm筛孔控制集料中细料的含量和塑性指数,以减少水稳集料中的粘土含量。

篇3

中图分类号:G642 文献标志码:A 文章编号:1674-9324(2014)32-0202-03

一、指导教师存在的问题

1.精力投入不足。近年来,随着高校本科招生规模的扩大,师资力量明显不足,一般教师指导的毕业生数量均在6~10个左右。由于目前教师既要从事繁重的教学工作又要紧跟科研领域的迅猛进展,因此,在学生对毕业设计重视度严重缺乏的现状下,教师也很难以积极的态度完成对本科生的完善指导。

2.时间安排集中。各高校对本科毕业设计的时间安排一般均设定在本科第8学期,即学生真正参与毕业设计的时间都是在每年的3月至5月底,要求学生在两个月内完成对四年专业学习的总结并应用于实践,且在对科技论文的写作基本一无所知的情况下完成该类型论文的撰写及答辩,无论对教师或学生确实存在较高的难度。另外,对于省属地方高校的一般本科生,其着手工作的应聘或实习均安排在每年年初,即在完成本科毕业设计的同时还要解决就业问题。因此,即便教师能够集中精力筹备指导学生的毕业设计,但学生根据个人的实际情况,也很难在有限的时间内以充沛的精力完成教师的合理安排。

3.科研方向有限。根据教师科研方向的不同,可以将教师分为理论研究型和生产实际型。从事理论研究的老师多以青年、拥有博士学位的教师为主,这部分教师绝大部分从高校毕业后直接走上工作岗位,缺乏生产实践的工程工作和指导学生的经验,难以短期内成熟有效地完成本科毕业设计的指导;而从事生产实际型的教师,尽管具备一定的工程实践背景,但是正规系统地指导学生将毕业设计内容以科技论文形式完成也是一大难题。

4.指导模式单一。目前,各高校指导本科毕业设计的模式实行的是每个学生的毕业题目各异,因此在学生完成毕业设计的过程中,获得引导的途径只能来源于教师,而与其他同学咨询、合作的条件有限,无法获得更多关于设计的启发和思维的碰撞。另外,一个教师指导多名学生,也令教师没有足够的精力为多人设计适合其的更系统、更条理的指导规划。

二、团队指导模式的探索

1.科研团队指导模式的设计。培养学生的科研创新能力是美国研究型大学本科教育的一个重要方面,国内外许多院校纷纷开展结合科研项目提高本科生科研创新能力的研究与实践。结合地方院校的实际情况,以我校工科专业的班级为例,每班大约有50~60个学生,考虑目前就业形势的严峻,其中有大概过半的学生选择考研。为了提高成功考研的可能性,这些学生更愿意选择理论研究型老师作为本科毕业设计导师。同样,本科生科研作为一种新型的培养方式,对本科教育的发展产生了积极的影响。针对此类学生的需求以及指导教师存在的上述问题,以教师科研团队的形式指导学生完成研究型论文的模式势在必行。那么,科研团队的指导模式初步分为两大类:第一类指导模式称其为“大课题”模式(见图1)。所谓的“大课题”模式,即以纵向课题(比如国家自然科学基金、省自然科学基金等)为牵引,将该课题分为若干小课题。此科研团队既包括教师也包括学生。教师团队应由课题主持人统领,成员应为课题的参与者,这些参与成员可指导的学生在1~3名为宜。该指导模式最明显的优势在于本科学生可以参与到完整的课题或基金的完成,对于培养其独立、创新的科研能力有着积极的作用。第二类指导模式称其为“似课题”模式(见图2),即以某一个研究理论(一个研究方向)为牵引,将此理论的不同知识点作为若干小课题。此科研团队应保证指导教师均从事同一科研方向的研究,而每位老师指导的学生建议为1~2名。该指导模式最明显的优势在于能够拓展本科生理论知识的广度和深度。

不论以上哪一类的科研团队的指导模式,其最大的优点是便于学生的互动交流,而这类模式的具体实现均可分为三步骤完成,以“似课题”模式为例,具体的指导过程如下:第一步,科研团队由研究方向一致或近似的教师构成,建议由一位教师组织该团队内所有教师指导下的全部学生统一进行前期基础培养,包括介绍学校和学院对本科毕业设计的要求、毕业设计的流程和思路、相关注意事项以及有关研究方向的基础知识的讲解(也可借助研究生课程的旁听),进而为学生迅速进入课题赢得宝贵时间,且能够避免教师为重复工作浪费更多的精力。第二步,在学生掌握了个人研究方向的基础理论后,由其本人的指导教师开始有针对性地引导学生开展具体的课题研究。以我校信息类专业从事盲信号理论和应用研究的教师为例,首先由一位教师(此教师可以是研究生“盲信号处理”课程的授课教师,或者是授课压力较小、对该研究方向基础较为熟悉的教师,或者团队内的教师轮流担任此部分工作)引导学生明确关于毕业设计的多方面要求,而后即可讲解盲信号处理理论的基础知识:包括盲信号处理的定义、研究该理论所需的数学基本知识等,这个阶段教师的讲解估计最低使用6个学时左右,而学生完成此阶段相关内容的学约需要两周的时间;然后由学生各自的指导教师一对一介绍学生本人的课题的具体内容,此阶段教师的一对一讲解大概每个学生仅需要2~4个学时,而学生完成此阶段相关内容的学习需要四周左右的时间,此后学生可在两周的时间内完成论文的写作和修改。

另外,以科研团队形式指导的学生毕业设计的答辩,也可首先在教师团队内进行。这样不但便于学生之间的交流,而且从事同一研究方向的导师更能准确判定学生毕业设计的质量高低,进而给予学生更为合理的毕业答辩成绩。

2.应用团队指导模式的设计。应用团队指导模式的设计构想源于要达到一个合格电子信息类工程师所具备的能力,仅依靠在高等院校的常规学习是不可能的,只有学生在企业或基本满足生产需求的电子信息类实习实训基地经过有在企业实际工程项目设计与管理经验的工程师的指导下方可实现。因此,对于该指导模式提出以下两个建设思路:第一类指导模式称其为“学研”模式,团队由教师和学生构成,即以横向课题为牵引,课题主持人(或参与人)作为指导教师,而课题的参与者和完成者以学生为主,这些学生建议以参加过学科竞赛或以前就跟随该教师从事过相关工作的人优先。该指导模式最明显的优势在于毕业设计与横向科研项目结合是解决目前学校经费不足、仪器设备紧张、提高学生工程实践能力的有效途径。第二类指导模式称其为“产学”模式,团队由企业的工程师和学生构成,即以校企合作为平台,将学生的毕业设计和实习相结合。该指导模式最明显的优势在于与企业零距离对接,不但遵循了学生学以致用的工科教学理念,而且为方便学生就业提供了便利条件。

三、结论

21世纪的高等教育是以培养学生的创新能力和实践能力为主导的教育,考虑目前学生考研和就业的不同需求,文中提出了关于本科生毕业设计的科研团队指导模式以及应用团队指导模式。这些模式的采用,定会给学生带来巨大的好奇心和挑战的勇气,激发学生去关注和研究科研与开发上的困难,使学生所学的知识融会贯通,更好地锻炼学生的独立进行科研或实践的能力。

参考文献:

[1]陈枭,李丹,王洪涛,李养良,王玉伟.地方型本科院校在毕业设计中提升学生科研创新能力研究――以九江学院为例[J].轻工科技,2013,(12).

[2]杨智,陈荣军,许清媛,苑俊英,陈海山.电子信息类卓越工程师培养模式探讨[J].武汉大学学报(理学版),2012,58(S2).

篇4

 

我国从建设高等级公路以来沥青路面的设计一直采用马歇尔设计方法,其混合料类型的选择一般是:采用空隙率小、不透水的连续级配沥青混凝土AC型, AC型是一种密实型沥青混凝土结构,其矿料级配按最大密实原则设计,属于连续性级配,强度和稳定性主要取决于混合料的粘聚力和内摩阻力,因为结构密实、空隙率小,所以AC型路面的水稳定性较好。免费论文。但是,由于其表面不够粗糙,耐磨、抗滑、高温抗车辙等性能明显不足,并且矿料间隙率也难以满足要求,通常采用减少沥青用量的方法来满足间隙率的要求,这样使沥青路面的耐久性能降低,因此,AC型在高等级公路的上面层中已很少采用,主要用于中、下面层。鉴于以上原因,在S243省道句容段的路面设计中将原设计中AC型调整为superpave型。同时在上面层中采用SBS改性沥青。

一、具体设计:

4cm superpave-13 (SBS改性沥青)上面层

7cm superpave-20下面层

二、施工中的配合比设计及控制

Superpave沥青混合料采用旋转压实仪成型试件,依据沥青混合料初始、设计和最大旋转压实次数时的密实度以及在设计压实次数时的空隙率、矿料间隙率、沥青填隙率、填料与有效沥青之比进行沥青混合料的组成设计。它在沥青混合料组成设计时首先依据石料的性质进行级配组成设计,然后再进行油石比的选择。

在本工程中,生产配合比在施工现场完成,用生产配合比进行试拌,沥青混合料的技术指标合格后铺筑试铺段(K8+160-K9+000)。免费论文。取试铺用的沥青混合料进行旋转压实检验、马歇尔试验检验和沥青含量、筛分试验,检验标准配合比矿料合成级配中,至少应包括0.075mm、2.36mm、4.75mm及公称最大粒径筛孔的通过率接近目标配合比级配值,并避免在0.3mm~0.6mm处出现驼峰。由此确定正常生产用的标准配合比。

在本工程中采用的Super-13型目标及生产配合比见表一

Super-13型目标及生产配合比表 表一

 

篇5

 

笔者长期在宁夏路桥公路工程股份有限公司从事质量管理工作,近年来宁夏高速公路建设飞速发展,笔者注意到多条在建的高速公路,都不同程度的存在混凝土质量通病,笔者就多年的工作经验,浅谈水泥混凝土工程施工质量的控制方法。

混凝土工程是钢筋混凝土工程中的重要组成部分,混凝土工程的施工过程有混凝土的制备、运输、浇筑和养护等。

1、混凝土的制备

混凝土的制备就是根据混凝土的配合比,把水泥、砂、石、外加剂、矿物掺和料和水通过搅拌的手段使其成为均质的混凝土。水泥进场时应对其品种、级别、包装或散装仓号、出厂日期等进行检查,并应对其强度、安定性及其他必要的性能指标进行复验,其质量必须符合国家标准的规定。当在使用中对水泥质量有怀疑或水泥出厂超过3 个月(快硬硅酸盐水泥超过1 个月)时,应进行复验,并按复验结果使用。在钢筋混凝土结构、预应力混凝土结构中,严禁使用含氯化物的水泥。

1.1 混凝土配合比

混凝土应根据实际采用的原材料进行配合比设计,并按普通混凝土拌和物性能试验方法等标准进行试验、试配,以满足混凝土强度、耐久性和工作性能(坍落度等)的要求,不得采用经验配合比。同时,应符合经济、合理的原则。混凝土生产时,砂、石的实际含水率可能与配合比设计存在差异,因此在混凝土拌制前应测定砂、石含水率并根据测试结果调整材料用量,提出施工的配合比。

1.2混凝土搅拌

为了拌制出均匀优质的混凝土,除合理地选择搅拌机外,还必须正确地确定搅拌制度,即一次投料量、搅拌时间和投料顺序等。一次投料量,不同类型的搅拌机都有一定的进料容量,搅拌机不宜超载过多,以免影响混凝土拌和物的均匀性,一次投料量宜控制在搅拌机的额定容量以下。施工配料就是根据施工配合比以及施工现场搅拌机的型号,确定现场搅拌时原材料的一次投料量。搅拌混凝土时,根据计算出的各组成材料的一次投料量,按重量投料。混凝土搅拌的最短时间应满足规范的规定。投料顺序是影响混凝土质量及搅拌机生产率的重要因素。按照原材料加入搅拌筒内的投料顺序的不同,常用的投料顺序有:一次投料法,二次投料法,两次加水法。

2、混凝土的运输

混凝土的运输是指混凝土拌和物自搅拌机中出料至浇筑入模这一段运送距离以及在运送过程中所消耗的时间。

2.1 对混凝土运输的要求

在运输过程中应保持混凝土的均质性,避免产生分离、泌水、砂浆流失、流动性减少等现象。混凝土应以最少的转运次数和最短的时间,从搅拌地点运至浇筑地点,使混凝土在初凝前浇筑完毕。混凝土的运输应保证混凝土的灌筑量。对于采用滑升模板施工的工程和不允许留施工缝的大体积混凝土的浇筑,混凝土的运输必须保证其浇筑工作的连续进行。

2.2 混凝土的运输方法

混凝土运输分为地面运输、垂直运输和楼地面运输三种情况。论文写作,混凝土。运输预拌混凝土,多采用自卸汽车或混凝土搅拌运输车。混凝土如来自现场搅拌站,多采用小型机动翻斗车、双轮手推车等。混凝土垂直运输多采用塔式起重机、混凝土泵、快速提升架和井架等。混凝土楼地面运输一般以双轮手推车为主。

3、混凝土的浇筑

3.1 混凝土浇筑

在混凝土浇筑前,应检查模板的标高、位置、尺寸、强度和刚度是否符合要求;检查钢筋和预埋件的位置、数量和保护层厚度,并将检查结果填入隐蔽工程记录表;清除模板内的杂物和钢筋的油污;对模板的缝隙和孔洞应堵严;对木模板应用清水湿润,但不得有积水。论文写作,混凝土。

在地基或基土上浇筑混凝土时,应清除淤泥和杂物,并应有排水和防水措施。对干燥的非粘性土,应用水湿润;对未风化的岩土,应用水清洗,但表面不得留有积水。在降雨雪时,不宜露天浇筑混凝土。

混凝土的浇筑,应由低处往高处分层浇筑。每层的厚度应根据捣实方法、结构的配筋情况等因素确定。

在浇筑竖向结构混凝土前,应先在底部填入与混凝土内砂浆成分相同的水泥砂浆;浇筑中不得发生离析现象;当浇筑高度超过3m时,应采用串筒、溜管或振动溜管使混凝土下落。在混凝土浇筑过程中应经常观察模板、支架、钢筋、预埋件、预留孔洞的情况,当发现有变形、移位时,应及时采取措施进行处理。

混凝土浇筑后,必须保证混凝土均匀密实,充满整个模板空间,新旧混凝土结合良好,拆模后,混凝土表面平整光洁。

为保证混凝土的整体性,浇筑混凝土应连续进行。论文写作,混凝土。当必须间歇时,其间歇时间宜缩短,并应在前层混凝土凝结前将次层混凝土浇筑完毕。论文写作,混凝土。混凝土运输、浇筑及间歇的全部时间不应超过混凝土的初凝时间。论文写作,混凝土。

3.2 施工缝

由于技术上的原因或设备、人力的限制,混凝土的浇筑不能连续进行,中间的间歇时间需超过混凝土的初凝时间,则应留置施工缝,施工缝的位置应在混凝土浇筑前按设计要求和施工技术方案确定。论文写作,混凝土。由于该处新旧混凝土的结合力较差,是结构中的薄弱环节,因此,施工缝宜留置在结构受剪力较小且便于施工的部位。

3.3 混凝土的捣实

混凝土的捣实就是使入模的混凝土完成成型与密实的过程,从而保证混凝土结构构件外形正确,表面平整,混凝土的强度和其他性能符合设计的要求。

混凝土浇筑入模后应立即进行充分的振捣,使新入模的混凝土充满模板的每一角落,排出气泡,使混凝土拌和物获得最大的密实度和均匀性。

混凝土的振捣分为人工振捣和机械振捣。人工振捣是利用捣棍或插钎等用人力对混凝土进行夯、插,使之成型。只有在采用塑性混凝土,而且缺少机械或工程量不大时才采用人工振捣。采用机械振实混凝土,早期强度高,可以加快模板的周转,提高生产率,并能获得高质量的混凝土,应尽可能采用。

4、混凝土的养护

混凝土的凝结与硬化是水泥与水产生水化反应的结果,在混凝土浇筑后的初期,采取一定的工艺措施,建立适当的水化反应条件的工作,称为混凝土的养护。养护的目的是为混凝土硬化创造必要的湿度、温度等条件。常采用的养护方法有:标准养护、热养护、自然养护,根据具体施工情况采用相应的养护方法。

篇6

 

沥青路面以造价低、工期短、行车舒适等优点,占据着我国公路建设的重要位置。但是由于原材料质量较差,施工设备及施工工艺落后等原因,是造成沥青路面施工质量较差的现象,往往今年铺,明年补,新建公路路面不到一年又再成为“万补路”,为此,在群众心目中,沥青路面成为一种等级较低的路面结构,而往往选择用水泥混凝土路面来代替沥青混凝土路面。其实沥青混凝土路面和水泥混凝土路面,同样属于“高等级路面”,沥青混凝土路面与水泥混凝土路面相比较,还具有以下优点:

(1)沥青混凝土路面属于柔性路面,耐磨、振动小、有良好的抗滑性能、行车舒适性好。

(2)对汽车噪音减少效果比较理想。

(3)路面平整,无接缝。

(4)工期短,养护维修简便,适宜分期修建。

为了贯彻沥青路面“精心施工,质量第一”的方针,使铺筑的沥青混凝土路面更坚实、平整、稳定、耐久、有良好的抗滑性,确保沥青混凝土路面的施工质量,我想和大家谈谈我的几点体会。

1 沥青混凝土路面施工准备工作

1.1 沥青混凝土所选用粗细集料、填料以及沥青均应符合合同技术规范要求,确定矿料配合比,进行马歇尔试验。

1.2 路缘石、路沟、检查井和其他结构物的接触面上应均匀地涂上一薄层沥青。

1.3 要检查两侧路缘石完好情况,位置高程不符要求应纠正,如有扰动或损坏须及时更换,尤其要注意背面夯实情况,保证在摊铺碾压时,不被挤压、移动。

1.4 施工测量放样:恢复中线:在直线每10m设一钢筋桩,平曲线每5m设一桩,桩的位置在中央隔离带所摊铺结构层的宽度外20cm处。水平测量:对设立好的钢筋桩进行水平测量,并标出摊铺层的设计标高,挂好钢筋,作为摊铺机的自动找平基线。

2 沥青混凝土路面的质量控制

以往的沥青路面,混合料的拌和设备、摊铺设备和碾压设备都较为落后,拌和机普遍都是直排式和滚筒式,不具备二次筛分和不能严格按配合比进行生产,甚至有时采用人工拌合,导致混合料的质量难以保证。摊铺设备相对比较落后,有时仅限于人工摊铺,造成混合料路面离析、路面不平整、横坡度等质量难以保证。

2.1 沥青混合料的拌合

2.1.1 拌和设备。为保证沥青混合料的质量,应选用先进的拌和设备,如帕克(parker英制)、柏拉希(burladi意制)、巴布格林(babgeen德制)和我国西安生产的LB-2000型拌和站等等。论文写作,沥青混凝土。

2.1.2 拌和质量控制。

2.1.2.1 确定生产用配合比 。 根据马歇尔试验结果,并结合实际经验通过现场试铺试验段进行碾压实验论证确定施工用配合比,并投入批量生产。

2.1.2.2 经常检查混合料出料时的温度,出料温度应控制在160±5℃为宜.

2.1.2.3 出料时应检查混合料是否均匀一致、有无白花结团等现象,并及时调整.

2.1.2.4 拌好的热拌沥青混合料不立即铺筑时,可放入保温的成品储料仓储存,存储时间不得超过72h,贮料仓无保温设备时,允许的储料时间应以符合摊铺温度要求为准。

2.2 混合料的运输。

从拌和机向运料车放料时,应自卸一斗混合料挪动一下汽车位置,以减少粗细集料的离析现象。运输时宜采用大吨位的汽车,以利于保温,同时车厢应该上帆布,起保温、防雨、防污染作用,运输中混合料温度降低不少于5℃。论文写作,沥青混凝土。

混合料的运输车辆应满足摊铺能力,在摊铺机前形成不间断的车流,具体可按以下公式计算:

N=1+T1+T2+T3/T+d

T--每辆车容量的沥青混合料拌和,装车所需时间min。论文写作,沥青混凝土。

t1t2--运输到现场和返回拌和站的时间。

t3--现场卸料和其他时间。

d--备用汽车数量。

2.2.1 除了进口摊铺机外,我国近几年也有比较先进的摊铺设备,包括陕建ABG系列,镇江华通WLTL系列,徐工集团的摊铺机等。

2.2.1 摊铺质量控制

2.2.2.1 摊铺时必须缓慢、均匀、连续不断的摊铺。

2.2.2.2 当摊铺机不能全幅路面施工时,应考虑用两台或三台摊铺机排列成梯队进行摊铺。相邻两幅之间应有重叠,重叠宽度宜为5-10cm,相邻的摊铺机宜相距10-30m,且不得造成前面摊铺的混合料冷却。

2.2.2.3 用机械摊铺的混合料,不应用人工反复修整。

2.2.2.4 当高速公路和一级公路施工温度低于10℃,其他等级公路施工气温低于5℃时,不易摊铺,当施工中遇雨时应立即停止施工,雨季施工时应采取路面排水措施。

2.2.2.5 及时检查路面的厚度,平整度,横坡度等指标。

2.3 碾压

沥青混合料的碾压分为初压、复压、终压三个阶段,初压时宜采用6-8T的双轮压路机,沥青混合料温度不低于120℃,从外侧向中心碾压,复压宜用8-12T的三轮压路机或轮胎压路机,,也可用振动压路机代替,沥青混合料温度不低于90℃,终压宜采用6-8T的双轮压路机,沥青混合料温度不低于70℃,使路面达到要求的压实度并且无显著轮迹,整个过程为“轻-重-轻”。为防止压路机碾压过程中沥青混合料沾轮现象发生,可向碾压轮洒少量水、混有极少量洗涤剂的水或其他认可的材料,把碾轮适当保湿。

2.4 接缝、修边和清场

沥青混合料的摊铺应尽量连续作业,压路机不得驶过新铺混合料的无保护端部,横缝应在前一次行程端部切成,以暴露出铺层的全面。接铺新混合料时,应在上次行程的末端涂刷适量粘层沥青,然后紧贴着先前压好的材料加铺混合料,并注意调置整平板的高度,为碾压留出充分的预留量。相邻两幅及上下层的横向接缝均应错位1m以上。论文写作,沥青混凝土。横缝的碾压采用横向碾压后再进行常规碾压。修边切下的材料及其他的废弃沥青混合料均应从路上清除。

3 结构组合

3.1 沥青路面层宜采用双层或三层式结构,至少有一层是I型密实级配,以防止雨水下渗。三层式宜在中面层采用I型密实级配,下面层根据气候,交通量采用I型或II型沥青混凝土。

3.2 不宜采用沥青碎石作为路面结构层,因为沥青碎石空隙率不具备具体指标,且混合料不加入矿粉,对沥青路面的质量控制较困难。

3.3 不宜采用一层罩面形式,特别是对旧混凝土路面铺筑沥青混凝土路面进行改造过程中,经过各个例子证明,采用单层罩面或沥青路面总厚度过薄,极易出现反射裂缝,因此,沥青路面结构层不宜太薄,根据路基情况交通量等因素,对结构层进行合理设计。

3.4 在裂缝较多和路基强度不理想的情况下,可考虑在底层加铺一层土工布或土工格栅。论文写作,沥青混凝土。论文写作,沥青混凝土。

3.5 为减少路基或旧水泥路对沥青路面的影响,可在路基面或水泥路面设一层应力吸水膜。

4 其他控制

4.1为提高沥青路面抗老化、高温稳定性等指标,可在沥青中掺入改性剂生产的改性沥青,或者直接购买厂家出口的改性沥青。

4.2沥青材料的选择根据路面型、施工条件、地区气候、施工季节和矿料性质因素决定,一般热区宜采用AH-70,温区宜用AH-90。

4.3 矿粉宜选用石灰石,白云石等磨细的石粉,并检查其颗粒组成、比重、含水量、亲水系数等。

4.4沥青混合料的沥青用量应严格控制,按目标配合比的用量加减0.3%,进行马歇尔试验,确定生产配合比的沥青最终用量,同时,应注意油石比接近低限为宜,并避免出现泛油等病害。

5 结束语

5.1 沥青路面结构设计是路面设计的一项重要工作,做出正确的设计,可保证沥青路面的使用年限,提高路面的使用年限。

5.2 先进的施工工艺和设备,严格的质量控制是保证沥青路面施工质量的重要措施。

参考文献

[1]JTJ 014-1997《公路沥青路面设计规范》

[2]JTJ 052-2000《公路工程沥青及沥青混合料试验规程》

篇7

 

随着我国建筑科学技术的发展及近年来混凝土的高强化和高性能化,矿物细掺料已成为制备高性能混凝土必不可少的组分之一,其中,粉煤灰是一种具一定物理性质和经济效益的材料。而我国目前煤灰的年排放量为 3亿吨,因此积极推动粉煤灰的综合利用,可获得巨大的社会效益和经济效益.

1.粉煤灰的三大效应及其对混凝土性能的影响

根据文献资料,粉煤灰在混凝土中发挥作用主要依靠三大效应:即形态效应, 活性效应,微集料效应。此三项效应主导着粉煤灰对混凝土性能的影响,此三项效应主导着粉煤灰对混凝土性能的影响,其他作用大多源于这三项效应。

形态效应是指粉煤灰的颗粒形状、细度、级配等物理特性的综合作用,在新鲜混凝土的和易性、需水量、含气量等性能方面有显著的影响。一般情况下,级配合理,颗粒形态良好的粉煤灰,会降低混凝土集料的空隙率,同时由于其细微颗粒在混凝土中起一定的作用。相反,颗粒形态不良的粉煤灰,通常含有杂质煤并且结构疏松,其颗粒形态不良,表面粗糙,致使混凝土单方用水量的增大。形态效应较差的粉煤灰在早期混凝土的硬化过程中使水化反应迟缓,故而骨料周围的间隙不能够充分填实。

活性效应是指粉煤灰的火山灰效应。据资料表明,粉煤灰中有些成份具有胶凝作用。粉煤灰的活性效应,主要影响到混凝土的强度,尤其是长龄期的强度。因此,混凝土的设计龄期应采用较长龄期。粉煤灰混凝土的强度主要是要求28天龄期与基准混凝土等强度。试验表明,与基准混凝土等强度的28天龄期的粉煤灰混凝土的其他性能,基本上与同龄期的基准混凝土接近。基于上述的活性效应的试验表明,这种28天龄期等强度的粉煤灰混凝土处于非成熟期,其后期强度潜力巨大。粉煤灰混凝土 90~180天龄期的后期强度可提高 25%~30%;180天~360天龄期的强度可能增长55%~70%。若按后期强度设计,采用添加粉煤灰的混凝土可节约20~50kg/m3水泥用量。

微集料效应是指粉煤灰玻璃微珠分散于混凝土中,起微细骨料的作用,对新鲜混凝土与硬化混凝土均产生影响。粉煤灰的形态效应和微集料效应,共同对新鲜混凝土的和易性、泌水性产生一定影响 ,在硬化混凝土中,玻璃微珠在混凝土中起到骨架的作用 ,同时因其表面的水化凝胶与其紧密结合,强度远远超过凝胶与普通骨料,即微集料效应。

2.粉煤灰掺量对混凝土徐变的影响及机理分析

据文献资料,粉煤灰的掺加明显抑制高性能混凝土的徐变。在水胶比不同的情况下 ,粉煤灰的对混凝土徐变的抑制程度与影响规律也明显不同。论文格式。总的来讲,水胶比为0.3左右时,大体上趋势是随着粉煤灰掺量越大,其抑制混凝土徐变的能力越强。试验表明,粉煤灰掺量为35%时是最佳掺量,但是因旧规范所限,导致最终掺量一直限为30%。考虑粉煤灰的最大掺量问题,应当在考虑粉煤灰的形态效应的同时,考虑其火山灰活性效应。粉煤灰的最大掺量及最佳掺量的确定依据,应当由混凝土所要求的性能及环境、使用年限所决定。

粉煤灰掺量和水胶比影响混凝土徐变的机理为:粉煤灰颗粒的弹性模量较高 ,因此可通过发挥微集料效应抑制混凝土的徐变,但微集料效应的发挥程度与粉煤灰和基体界面结合情况有密切关系。水胶比越小,界面结合情况越好,粉煤灰抑制混凝土徐变的能力越强;水胶比较大时,粉煤灰与基体界面结合情况变差。粉煤灰掺量较高时此种效应更加明显。

3.粉煤灰掺量对混凝土的宏观作用

3.1增强混凝土的耐久性

粉煤灰的应用,提高了混凝土的密实性,减少了骨料与胶合材料间的收缩变形,同时粉煤灰的掺入减少了水泥用量,从而减少水泥水化过程中的硬化收缩,这对混凝土的抗裂性非常有利。粉煤灰二次水化的产物填充了混凝土的毛细孔,减少了混凝土中的游离水的数量,阻断了泌水路线。这就大大减小了因泌水和水分蒸发引起的失水收缩。粉煤灰的掺入改善了混凝土中砂子级配,填充混凝土的部分空隙,提高混凝土的密实度,从而增强了混凝土的抗渗性,最终使得混凝土的耐久性得到提高。

3.2提高混凝土的强度

粉煤灰的活性是在碱性环境下产生的,它的水化速度比水泥慢,而粉煤灰和水泥水化后产生的氢氧化钙反应形成硅酸钙凝胶,改善了水泥石和粗骨料间的界面结构,消耗了强度和稳定性都较差的氢氧化钙,提高了混凝土的强度。再者,粉煤灰水化速度较慢,使得水泥的水化更充分。粉煤灰水化产生水,促进水泥继续水化,从而进一步提高了混凝土的强度。为解决粉煤灰混凝土早期强度低的问题,可以同时加入粉煤灰和活性较强的的磨细矿渣粉,两者在混凝土强度发展上可互补,能适当提高粉煤灰混凝土早期强度低。

3.3改善混凝土的流动性

粉煤灰俗称飞灰,即燃煤电厂烟囱中灰尘,经过高温燃烧后极速冷却的过程中形成表面光滑的球状玻璃体,具有很大的活性。主要化学成分氧化铝、氧化硅,在碱性环境下极易生成凝胶,水泥水化过程产生的氢氧化钙提供了少细骨料对运输管壁的摩擦。粉煤灰对水泥颗粒起到物理分散作用,使它们分布的更均匀,阻止了水泥颗粒的粘聚。微观环境以球状玻璃体状体现出来的粉煤灰填充了骨料的空隙并包裹它们形成层,故而改善了混凝土的流动性。粉煤灰可以明显减少塌落度损失,满足混凝土运输浇筑的要求。论文格式。

4. 现行粉煤灰混凝土配合比设计的修正

据有关文献,当配制大体积混凝土时,粉煤灰混凝土配合比设计采用超量取代法;当改善混凝土的和易性时,可采用外加法。论文格式。此类方法在实际工作中简单易行,却不能正确反映混凝土中粉煤灰掺量的内在规律。超量取代法的实质,是将粉煤灰看作一种胶凝材料,而外加法的实质,则是将粉煤灰当作细骨料使用。粉煤灰在混凝土中,综合发挥着三种效应,故粉煤灰绝不等同于水泥,也绝不相当于细骨料,所以目前这种配合比设计的思想存在明显缺陷。

进行配合比设计时,可按照传统配合比设计得出一个符合规范要求的基准混凝土配合比,然后选取一个取代系数,重新计算水泥和细骨料的体积,通过试拌、调整得出最终配合比。

总之,粉煤灰混凝土的应用潜力巨大,要从理论根本上解决粉煤灰混凝土的应用和理论配合比问题,必须对其进行系统的理论探索、试验分析、经验积累、探索改进,进而寻找适合我国实际施工情况的粉煤灰混凝土的简单快速的配合比方法。

参考文献:

[1]赵庆新,孙伟,郑克仁等.水泥、磨细矿渣、粉煤灰颗粒弹性模量的比较[J].硅酸盐学报, 2005,33 (7).

[2]张振.大掺量粉煤灰混凝土断裂研究.大连理工大学.2000.

[3]李益进,周士琼,尹健,等.超细粉煤灰高性能混凝土的力学性能 [J].建筑材料学报.

[4]赵全胜.大掺量粉煤灰混凝土在工程中的应用研究.河北工业大学,2000.

[5]侯桂华.粉煤灰在混凝土中的应用.混凝土,2005(9).

篇8

 

1.沥青混凝土路面早期病害成因分析

造成沥青混凝土路面早期病害的因素很多,但综合起来主要有路面结构设计不合理、现场施工质量控制不严、投入运营后超载车辆管理不严、气候条件影响等四个方面。下面就以上几种最常见的沥青混凝土路面早期病害成因逐一进行分析:

1.1裂缝

高速公路沥青混凝土路面裂缝主要有纵向裂缝和横向裂缝两种。纵向裂缝的产生主要是由于地基和填土在横向不可避免的不均匀性所造成的。

和纵向裂缝一样,横向裂缝也是不可避免的。横向裂缝的产生往往是由于温度应力的作用而产生的疲劳裂缝。面层裂缝一旦发生冲刷、唧浆就会产生以缝为中心的下陷形变,同时引起裂缝两侧产生新裂缝甚至碎裂破坏。

1.2水破坏

所谓水破坏即降水透入路面结构层后使路面产生早期破坏的现象,它是目前沥青混凝土路面早期病害中最常见也是破坏力最大的一种病害。水破坏的主要破坏形式有:网裂、坑洞、唧浆、辙槽等。水破坏的产生往往是由于施工中沥青混凝土配合比控制不严、沥青混合料拌合不均、碾压效果不良等导致的沥青路面空隙率过大所造成的。形成水破坏的原因除沥青混合料不均匀、空隙率过大有关外,还与沥青和碎石间的粘结性能或有无抗剥落剂、交通量大小、重载车比重及公路沿线降雨量等因素有关。

1.3松散

松散是由于沥青混凝土表面层中的集料颗粒脱落,从表面向下发展的渐进过程。论文参考网。集料颗粒与裹覆沥青之间丧失粘结力是颗粒脱落的主要原因。可能导致松散的情况还有:、集料颗粒被足够厚的粉尘包裹,使沥青膜粘结在粉尘上,而不是粘结在集料颗粒上,表面的摩擦力磨掉沥青膜,并使集料颗粒脱落。这种情况的产生主要是由于集料含泥量超标所造成的。2、表面离析处往往缺少大部分细集料,离析面上粗集料与粗集料相接触,但只有在少数接触点沥青膜与集料粘结。随时间增长,沥青会老化,沥青膜剥落会使沥青与集料的粘结力减弱,孔隙中的水冻结会破坏粘结力,或足够大的摩擦力会破坏离析面上的集料颗粒而产生松散。3、沥青混凝土面层要有高密实度才能保证沥青混合料的粘聚力,如果混合料密实度不够,集料就容易从混合料中脱落而形成局部松散。

1.4泛油

沥青用量过大是产生沥青面层泛油的最主要原因。论文参考网。而沥青用量过大的主要原因有:1、沥青混合料配合比设计的击实功不够。我国在设计沥青混合料配合比时通常采用马歇尔试验方法。当初在开发和确定马歇尔试验方法时,选定室内试验的压实功是要使室内产生的密度等于路面在行车荷载作用下最终达到的密度。如果室内所用击实功产生的密度小于使用过程中所达到的最终密度,所选定的沥青用量就会偏多。2、施工控制不严和管理不善。有些施工单位在生产过程中私自改变配合比、沥青混合料拌合不均都是造成沥青混凝土路面局部沥青用量偏大的主观原因。3、少数施工单位习惯于使用沥青用量过大的混合料。有些人认为沥青用量越大,裹覆矿料的沥青膜越厚,沥青混合料的粘结力就越大。但实际情况恰恰相反,包覆矿料的沥青膜越薄,沥青混合料的粘结力就越大。

1.5推移

推移的产生一般与基层施工质量、透油层洒布质量、超载车辆比重加大、沥青混合料性能不良等因素有关。在沥青混凝土路面铺筑前,由于基层表面清扫不干净、透层油洒布不均等都会容易造成沥青面层和基层粘结不良。沥青面层建成运营后在大量行车荷载(超载车辆)作用下,由于与基层粘结不良特别在沥青面层施工接缝处开始产生推移,随着时间增长,轮迹带两侧会产生壅包,甚至会出现由于推移而造成的严重裂缝。在基层平整度较差、面层厚度较薄的地段往往由于施工质量等原因,基层不平整会反映到沥青路面上,车辆荷载作用下面层不平整会愈加明显,形成波浪。

2.沥青混凝土路面早期病害预防措施

沥青混凝土路面早期病害不能彻底消除,但是可以通过优化设计、加强施工管理、提高现场施工质量等措施去预防,将其危害降到最低,从而延长沥青混凝土路面的使用寿命。

2.1裂缝

1、根据纵向裂缝形成原因,在路基施工过程别在路基拓宽地段、路桥(涵)衔接处严格控制填土厚度及填料的均匀性,并保证达到规范要求的压实度。沥青路面进行半幅摊铺时,采取合理措施处理纵向冷接缝。2、在其它条件相同的情况下,采用较稀(针入度大)的沥青有利于减少温度裂缝。混凝土均匀、压实度高、空隙率小,混凝土强度高且比较均匀,面层表面的薄弱处也就越少。3、在基层施工中,及时的养护、良好的接头处理及整体强度是有效防治沥青面层反射裂缝的有效方法之一。

2.2水破坏

1、选择合适的混凝土类型。沥青面层各层应尽量使用空隙率≯5%的密实型沥青混凝土。从当前的技术水平看,密实式粗集料断级配沥青混凝土既具有良好的不透水性,又具有明显优于连续级配沥青混凝土(如AC—16Ⅰ、AC—20Ⅰ、AC—25Ⅰ)的高温抗永久形变能力,用前者作为表面层时,还具有良好的抗滑性能。SMA路面的广泛应用是最好的例证。2、使用优质沥青及抗剥落剂以增强沥青与碎石的粘附性。一般情况下,酸性石料(花岗岩、玄武岩等)与沥青的粘附性较差,所以在高等级公路中,宜使用针入度较小的沥青并采用抗剥落剂。严格控制细集料含泥量也是提高沥青与碎石的粘附性的有力措施。3、提高施工质量。施工前原材料的选用必须规格、均匀、合理,配合比设计必须严密。在施工过程中必须注意沥青混凝土拌合的均匀性,防止粗细集料离析。严格控制沥青混合料拌合温度、出场温度及碾压温度,混合料拌合温度过高会容易造成沥青老化,与集料的粘附性也会明显降低,严重时会造成面层局部色泽不一致等现象。论文参考网。4、严格控制超载车辆。公路管理部门应该按照《公路法》及交通部《超限运输车辆行驶公路规定》的要求对超载车辆进行强制卸载,并在入口处设卡不得让超载车辆进入高速公路。

2.3松散

1、选用合格的原材料,特别严格控制细集料含泥量及矿粉掺量以增强沥青混合料的粘结力。2、严格控制施工温度及压实效果。沥青混合料施工温度过高会导致沥青老化,降低与矿料的粘附性;温度过低会导致混合料压实困难,造成混合料内部空隙率过大。3、严格控制沥青混合料均匀性,防止混合料离析。

2.4泛油

由于泛油往往是沥青用量过大造成的,所以在配合比设计阶段必须严格按照试验规程进行最佳油石比的选定;在施工过程中严格按照工程师批准的配合比进行施工,任何人不得随意改变生产配合比。

2.5推移、壅包、波浪

1、加强路面基层施工质量,提高基层平整度是有效防治病害的条件之一。再者,沥青面层铺筑前透层油的洒布尤为重要,透层油洒布前首先必须认真清扫基层表面浮土及杂物并且保证透层油洒布的均匀性和设计用量,提高基层与面层的粘结力。2、有效阻止超载车辆。随着油价上涨等原因,近年来超载车辆越来越多,与设计荷载相比超载十分严重。在重荷载重复作用下,特别在车辆启动或刹车频繁的叉路口及转弯处沥青路面很快产生破坏,推移、裂缝尤为常见。

3.结束语

篇9

中图分类号: TU528 文献标识码: A 文章编号:

一、前言

现代建筑材料中,混凝土应用最广泛,在土木工程项目中起了至关重要的意义和作用。当前,全世界的水泥产量年产量和所浇筑的混凝土,数额巨大。混凝土是一种人工石材,由水泥、石、砂、添加剂及附加剂与适量的水混合之后逐渐硬化形成,多种因素直接影响混凝土的质量、成本和性能,进而影响土木结构物的质量、造价和寿命。这些因素包括原材料的种类、性质和用量等等。所以,在混凝土配合比设计中,确定混凝土组成的材料及其用量,让混凝土的性能达到所需求的强度和耐久性,是设计的关键环节。

二、传统配合比设计方法面临的问题

传统的基于经验的混凝土配合比设计方法,就是确定原材料的品种和用量,其主要步骤如下所述:

一是设计阶段。计算出混凝土配制强度,求出水灰比;按照混凝土所选骨料和要求的坍落度,查表确定出用水量;计算出水泥用量;然后按体积法或重量法,对粗细骨料和其它材料的用量进行确定。

二是试配、测试和调整阶段。根据所确定的材料用量,进行混凝土试件的制备;标准养护到28天的龄期,对试件的有关性能进行测试;试件性能如果符合要求,就采用该组配合比,不满足相关要求,需要进一步进行调整。早期的混凝土结构,对混凝土材料性能的要求较为简单,配制所需的原材料种类也较为少,所以传统的混凝土配合比设计方法,能很好地满足混凝土工程的要求。

一个多世纪以来,生产和社会在不断发展,建筑工程质量要求在日益提高,混凝土科学和技术在此需求的推动下,成果颇丰,取得诸多突破性的变革。

一是,长跨、高层和大型的结构物形成,并逐渐成为潮流。

二是,混凝土品种大大增多,高性能、低温、纤维、防水、喷射、加气、泵送和轻骨料等特性的特种混凝土纷纷出现。

三是,混凝土的成份日益丰富,配制时使用了各种矿物粉料、纤维和外加剂。

四是,混凝土的性能指标逐渐提高,原本是单一的28天强度,现在已经扩展到若干龄期的强度、弹性模量、工作性和耐久性等各项指标,特种混凝土在抗腐蚀、防辐射、耐高温高压上也有其对应的标准要求。

五是,混凝土的施工速度大大加快。

六是,对结构物寿命的要求大大延长。

七是,施工工艺和条件逐步多样化。

传统设计方法,基于经验设计,难以满足现代混凝土工程的需要,具体表现在以下几个方面:

一是,设计周期比较长。

二是,设计的变量比较少,主要的变量是水、水泥和粗细骨料的各自用量。矿物粉料以及外加剂的掺入,导致传统的配合比设计方法很难配制出组分复杂、拥有特殊性能的混凝土。用传统配合比设计方法制备预制高强混凝土构件时,再多拌合物也没法制备出一种令人满意的构件。

三是,考虑的性能比较单一,强度及工作性的要求能满足,但是缺乏对耐久性等特殊性能要求的设计。传统的方法设计出的结构物,往往耐久性偏低。一般混凝土工程,使用年限为50到100年,甚至某些工程在使用10到20年后就需要维修。

四是,不利于混凝土构件生产的计算机控制。

五是,优化配合比设计非常困难。配合比设计的指导思想,应该从强度设计转化到多种性能设计,从可行性设计转化到优化设计。在符合相关规范给出的各种要求的前提下,合理的材料配合比设计应当能够确定各种成份的用量,获得最经济和适用的混凝土。

三、设计方法的发展

混凝土配合比设计方法,逐步由从基于经验的设计方法发展为解析的计算方法。传统的混凝土配合比设计中,大量参数需要靠查表选值,以经验为基础,进行半定量设计。随着各种现代方法和先进测试技术的应用,混凝土科学技术正逐步从经验发展为理论,从定性发展为定量。对于高性能混凝土配合比设计,陈建奎等提出了一种全计算方法,对传统的绝对体积法进行了修正。该方法有两个理论基础,如下所述。

一是,混凝土材料组成的四个假定项为:混凝土组成材料,包含固液气三相,拥有体积加和性;石子的空隙率是由干砂浆进行填充;干砂浆的空隙率是由水进行填充;干砂浆是由水泥、细掺和料、砂和空气隙组成。

二是,水泥和细粉料的体积比为75:25,水泥浆和骨料的体积比为35:65,才能使高性能混凝土获得最佳工作性和最佳强度。可由此导出一系列解析计算式进行高性能混凝土配合比设计。这种全计算法,可以由公式计算得出对混凝土拌合物的设计,大大有利于计算机在配合比设计中的应用。

四、最优化方法

随着建筑工程和基础设施的快速发展,我国混凝土的年产量数额巨大。优化配合比设计,可节约混凝土生产所消耗的大量资源和能源,减少环境污染,还可以降低成本,提高经济效益。

现行设计方法和原则中没有考虑混凝土组分和混凝土稳定性之间的联系,无法保证新拌混凝土体积稳定、质量均匀和粘聚性的要求。现行设计方法中也没有考虑到,与混凝土密实度有关的塌落度和水泥浆数量等诸多因素对混凝土性能的重要影响。近年来针对混凝土配合比设计的研究成果中,提出了一种单目标的非线性规划模型,混凝土价格作为目标函数,各种原材料的用量作为设计变量,通过优化数学模型,在混凝土性能符合用户需要的前提下,尽可能使成本最低。

这种方法的主要步骤如下所述:一,进行大量的混凝土实验及性能测试;二,回归分析所获数据,在混凝土的组成和性能之间建立起预测方程;三,将其转化成优化模型的约束方程,并用矩阵表达;四,建立以混凝土成本价格为目标函数的优化设计模型;五,按非线性规划的单纯形解法优化计算各种组成材料的用量;六,补偿混凝土密实度,根据骨料含水量和吸水率调整各原材料的用量。

在配合比多目标优化和实时控制的研究中,根据实践数据,建立混凝土各项性能指标和各种材料用量之间的关系数据库,然后用多元线性回归分析方法,计算出它们之间的近似关系式。这个模型中隐含了施工水平,能及时预测混凝土各项技术指标喝各种材料用量间的关系。依据欲达到的各项性能指标的目的值,最后将上述数学模式表达为目标函数,采用多目标规划方法,计算求出各种材料的最优用量以及相应的技术指标。

在进行对混凝土配合比的实时控制中,主要性能指标的目标值是数学模式的因变量,分别是抗压强度、抗拉强度、抗渗标号,抗冻标号和混凝土总费用,,其自变量分别是单位用灰量、用水量、用砂量、各种粒径的粗骨料的用量和添加剂用量等。此计算中的约束条件是各设计变量的上下限值,在此基础上建立出相应的约束方程。可运用目的规划法求解,逐个用单纯形法优化每一级目标函数的期望值,计算求解得到所有5项指标的值和混凝土的材料用量。与单目标规划方法相比,多目标规划方法的计算量比较大,但其约束条件更为合理,可以使五项主要性能指标得到不同程度的优化。

五、结语

传统的混凝土配合比设计方法,已经难以满足现代工程的需求。实际配制中,尤其是在高性能和特殊性能混凝土的配制过程中,困难和问题时有发生。专业研究人员着力于研究新的配合比设计方法,成果颇丰,其中智能化的优化设计方法得到最多关注,包括全计算法、计算机化的设计方法、配合比优化设计、基于专家系统、人工神经网络和神经专家系统的方法等,研究成果有利促进了混凝土科学技术的发展。

参考文献:

[1]王继宗 混凝土配合比设计方法的研究进展 [期刊论文] 《河北建筑科技学院学报(自然科学版)》 2003

篇10

目前,砖混结构仍是一种普遍采用的结构形式,这种结构形式的受力构件是砖砌体。因此,砖砌体整体质量的好坏直接影响到建筑物的结构安全。科技论文。而在砌体施工中,施工材料、施工操作、施工方法都对砖砌体的整体质量产生影响。怎样控制好砖砌体的整体质量,我认为应从把好“三关”入手。

一、严把施工选材关

1、砖的选择

砖的品种、强度等级必须符合设计要求,应尽量选用棱角整齐、无弯曲裂纹、颜色均匀和规格基本一致的砖。砖在砌筑前应提前1 d~2 d 浇水湿润,烧结普通粘土砖的含水率宜为10 %~15 % ,灰砂砖、粉煤灰砖的含水率宜为8 %~12 %。

2、砂浆的选择

2.1、水泥的选择:

水泥应按品种、强度等级和出厂日期分别堆放,并应保持干燥。当水泥强度等级不明或 出厂日期超过3个月(快硬硅酸盐水泥超过1个月) 时,应进行复查试验,并按试验结果使用,不同品种的水泥不得混合使用。

2.2、砂的筛选:

宜采用中砂并过筛,且不得含草根、腐烂物等有机物质。砂中含泥量,对于水泥砂浆和强度等级不小于M5 的水泥混合砂浆,不应超过10%。

2.3、其他辅料的选择:

拌制水泥混合砂浆用的石灰膏、粉煤灰和磨细生石灰粉等无机掺合料应符合规范要求。科技论文。

二、严把施工配料关

1、配合比控制

砌筑砂浆的配合比应经试配确定, 施工单位应从现场抽取原材料试样,根据设计要求向有资质的试验室提出试配申请, 再由试验室通过试配来确定砂浆的配合比。砂浆配合比应采用重量比,试配砂浆的强度应比设计强度要高。

施工中要严格按照试验室的配合比通知单计量施工,如果砂浆的组成材料有变更,其配合比应重新经试配选定。为使砂浆具有良好的保水性,因掺入无机和有机塑化剂,不应采取增加水泥用量的方法,水泥砂浆的最小水泥用量不宜小于200kg/m 3 ,砌筑砂浆的分层度不应大于30mm,水泥混合砂浆中掺入有机塑化剂使无机掺合料的用量最多可减少1/2,水泥砂浆掺入有机塑化剂,应考虑砌体的抗压强度,较水泥混合砂浆砌体降低10 %的不利影响,水泥粘土砂浆中不得掺入有机塑化剂。

2、搅拌控制

砌筑砂浆时应该采用机械搅拌,从投料完毕开始计时,搅拌时间应符合下列规定:水泥砂浆和水泥混合砂浆搅拌时间不得少于2 min ; 水泥粉煤灰砂浆和掺用外加剂砂浆的搅拌时间不得少于3 min ,普通烧结砖砌体的砂浆稠度为70 mm~90 mm ,施工中采用水泥砂浆代替水泥混合砂浆,应按现行国家标准《砌体结构设计》(GBJ3-88)的规定,考虑砌体强度降低的影响,重新确定砂浆强度等级,并以此设计配合比。采用有机塑化剂的砂浆,搅拌时间为3 min~5 min ,砂浆拌成后和使用时,均应盛入贮灰器中,如砂浆出现泌水现象,应在砌筑前再次拌和,砂浆应随拌随用,水泥砂浆和水泥混合砂浆必须分别在拌成后3 h~4 h 内使用完毕。当施工期间最高温度超过30 ℃时,必须在拌成2 h~3 h 内使用完毕,有特殊要求的砂浆,应符合相应标准,并满足施工要求。科技论文。

3、砂浆试块控制

砂浆试块应在搅拌机出料口随机取样制作,一组试样应在同一盘砂浆中取样制作,同一盘砂浆只应制作一组试样,砂浆的抽样频率应符合以下规定:每楼层或250 m 3 砌体中的各种强度等级的砂浆,每台搅拌机至少检查一次,每次至少应制作一组试块,砂浆强度等级或配合比如有变更,还应制作试块(基础砌体可按一个楼层计) ,砂浆强度应以标准养护,龄期28天试块的抗压试验结果为准。

三、严把施工操作关

现场操作应该严格按如下程序进行:抄平、放线、排砖摞底、盘角、立皮数-挂竿准线、砌砖。

1、找平

砌筑砖墙前,应先在基础防潮层或楼面上,按标准的水准点或指定的水准点定出各层的标高,并用水泥砂浆或C10 细石混凝土找平。

2、放线

底层墙身可以用龙门板上的轴线定位定为准拉线,沿线挂下线锤,将墙身中心轴线放到基础面上,并以此墙身中心轴线为准弹出纵横墙身边线,并定出门洞口位置。为保证各楼层墙身轴线的重合,并与基础定位轴线一致,可采用以下两种方法:

(1)、利用引测在外墙面上墙身中心轴线,用经纬仪把墙身中心轴线引测到楼层上去,从而定位。

(2)、用线锤对准外墙面上的墙身中心轴线,从而引测上去,轴线的引测是放线的关键,必须按图纸给出尺寸,用钢尺进行校核,同样按楼层墙身中心线弹出各墙边线,划出门洞口位置。

3、排砖撂底(干摆砖)

一般外墙第一层砖撂底时,两山墙排丁砖,前后纵墙排条砖,根据弹好的门窗洞口位置线,认真核对窗间墙垛的尺寸是否符合排砖模数,如不符合排砖模数,可将门窗洞口的位置左右移动;如有破活,七分头或丁砖应摆在窗口中间,附墙垛或其他不明显的部位,移动门窗洞口位置时,应注意暖卫立管在门窗开启时不受影响;另外在排砖时,还要考虑在门窗口上边的砖墙合拢时,不要出现破活。所以,排砖撂底时必须要全盘考虑,即前后檐墙排第一匹砖时,要考虑甩窗口后砌条砖,窗角上必须是七分头才是好活。

4、盘角

砌砖前应选盘角,每次盘角不超过5 匹砖,新盘的大角,应及时吊靠,如有偏差应及时修正,盘角时要仔细对照皮数杆的砖层和标高,控制好灰缝厚薄,使水平灰缝均匀一致,大角盘好后,再复查一次,平整度和垂直度完全符合要求后才可挂线砌墙。

5、立皮数杆、挂准线

砖砌体施工前,应设置皮数杆,皮数杆上按施工图规定的层高和现场砖的规格,计算出灰缝的厚度,并标明砖的皮数以及门窗洞、过梁、楼板等的标高,以保证灰缝的厚度和砖层的水平,以宜于墙的转角离墙皮10 cm 处,一般每隔10 m~15 m 立一根,按皮数杆上砖层进行盘角(一般每次盘5 匹砖) ,然后将准线挂在墙角上,每砌一匹砖,准线向上移动一次,沿着准线砌筑,以保证墙面的垂直度和平整度。砌筑240 mm 墙时,宜采用外手挂线,砌大于370 mm 墙时,必须双面挂线,如果长墙几个人使用同一根铜线,中间应设置点,小线要拉紧,每层砖都要穿线看平,使水平灰缝均匀一致,平直通顺。

6、砌砖