数学文化论文模板(10篇)

时间:2022-06-23 17:29:13

导言:作为写作爱好者,不可错过为您精心挑选的10篇数学文化论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

数学文化论文

篇1

东方中国的古代文化的经济基础基本上是农业经济。这种情况决定古代中国的物质文化是农业文化。中国古代数学也与农业经济有着密切的关系。《九章算术》是中国最古老的经典著作,书有九章,包含246个问题。都和农业生产有关,九章分别是方田(土地测量)、粟米(百分法和比例)、衰分(比例分配)、少广(减少宽度)、商功(工程审议)、均输(征税)、盈不足(过剩与不足)、方程(列表计算的方法)、勾股(直角三角形)。这些问题都是用来解决农田的测量、粟米的称量,农业水利工程的测算等。《五曹算经》是一部为地方行政人员所写的应用算术,全书五卷,有田曹、兵曹、集曹、仓曹、金曹五个部分。田曹卷的主题是田地面积的量法;兵曹算术大都是军队的给养问题;集曹问题和《九章算术》粟米章问题相仿;仓曹解决粮食的征收、运输和储藏问题;金曹问题以丝绢、钱币等物资为对象,是简单的比例问题。我国古代大数学家刘徽到祖冲之、祖冲之研究圆周率和圆面积的辉煌成就中,都深深地打着农业经济的印记。农业的交通工具主要是车,车轮是否圆,不仅和车辆行驶中的平稳状况有关,而且还和省力有关,因而农业经济的需要使得我国圆周率的研究在世界数学中占有相当的地位。过去,农业的显著特点是靠天吃饭,天文、节气的测算是农业生产的需要,在中国,古代天文测算的成果是相当辉煌的,“东汉末年天文学家刘洪造乾象历法(公元206年),创立了推算定朔、定望时刻的公式”。“隋朝天文学家刘焯在他的杰作《皇极历》(公元600年)中创立了一个推算日、月、五星行度的比以前更加精密的公式”②。天文学的发展推动了数学的发展。解一次同余式就是由天文测算开始的。天文数学的发展除了物质文化的需要,还受到制度文化的要求,中国数学的重要性在于它与历法有关,“在《畴人传》中很难找到一个数学家不受诏参与或帮助他那个时代的历法革新工作。”③除了中国,古代埃及数学的建立基础也是农业的需要。埃及几何学的起源被史学家们归因于泥罗河泛滥后土地的重新测量;巴比伦的数学起源也是如此,尤其是巴比伦数学的60进位制来自于天文学;印度数学和占星术有关,而占星术又和农业及宗教有关。

东方数学的建立比西方要早,但东方的数学在理论化的道路上行动迟缓。原因何在呢?自给自足的自然经济的生产力状况决定的生产力关系是以家族为中心、以血缘关系为纽带的宗法等级关系,社会制度是宗法等级制度。自给自足的自然经济中分散的家族和农民需要有高高在上、君临一切的中央集权的君主专制制度的统治。在这种社会制度的影响和作用下,形成中国古代稳定的上下尊卑等级秩序的文化心理。主要特点是静态的、和解的、自然的、消极的心理特点。造成安于现状的生活方式、工作方式、管理方式。思想僵化、调和持中,这种文化心理使得数学只停留在实用上。没有就数学而数学,使数学自身的规律没有得到完善。“在古代东方的全部数学中甚至找不到一个我们今天称之为‘证明’的例子,代替论证的只有程序的描述,所讲授的内容只是‘如此这般地做’,而且也不是以一般规则的形式提出来,只不过是在一系列特殊情况下的应用方法。”④这段话虽有失偏颇,但也道出中国古代数学的特征。在中国数学的发展史上曾出现了刘徽、墨子、惠施等天才的数学家,但他们的数学研究和成就不能和西方的阿基米得、欧几里德相比较。这主要是我国古代数学的理论研究不受重视所致。汉王朝建立以后的“重农抑商”政策使数学研究受不到贸易的诱惑。农业经济的财富有限和填饱肚子的生活状况,不允许人们的思想向实用以外的地方延伸;隋朝开始的科举制度也扼杀了大批在数学研究上具有不凡才华的人。在科举制度中数学不是要考的课程,为“学而优则仕”而奋斗的人们,自然不会将数学当作主修课程来学习。另外,农业经济的贫困使得没有多少人来学文化,学数学的人自然更少。在这种情况下,中国古代数学的许多成就只处在应用和描述过程阶段,没有提高到抽象的、系统的理论阶段,从而使数学的发展和升华受到限制,象“勾股定理”、“圆周率”这些值得中国人骄傲的数学成就,没有造成相应的数学的轰动效应。“勾股定理”在我国商高的时代就应用比西方的毕达哥拉斯发现早600年,但由于我们没有给出严格的数学证明,这个定理在现在还认为是毕氏的成果,称为“毕氏定理”。墨子的极限理论也没有引起足够的重视,后来西方数学传入我国时才知西方极限思想和黑子的思想是一致的。“重农抑商”的文化传统的价值观具有明显的伦理性。小农经济的自给自足的环境不需进行商品交换(至少不需要太多的货币介入)。生产中占支配地位的是使用价值,人们关心的是使用价值而不是价值,以不言利为荣,“重义轻利”的思想渗透到人们的思想深处。数学的应用只局限于分配环节中。而在复杂的流通和交换领域中数学没有机会“施展才华”。多农少商没有足够的财富供人们享受,财产的有限性限制了人们的探险精神和“想入非非”,从而限制了数学向理性的发展。

在西方,小亚西亚海岸新兴的商业城市、希腊本土、西西里岛和意大利海滨,由于海上贸易和战争的刺激使得人们的思想活跃,商品贸易发达,对计算要求的提高,财富的增加使人们有更多的时间从事“非实用”的理论研究。古代东方静态的观点和西方动态的观点不一样,表现在数学上唯理论的气氛浓厚起来。人们不但要知其“然”,而且要知其“所以然”。不但要问“什么”,而且要问“为什么”,要解决“所以然”和“为什么”。古代东方的以实践和经验为根据的方法就显得“无能为力”和“后劲不足”。为了知道“所以然”和“为什么”,就得在数学的证明方法上作一定的努力,在这样的文化氛围中现代意义上的数学产生了。东方的几何学只为测量提供方法,而证明的几何学是由公元6世纪前半期米利都的泰勒斯开创的。泰勒斯不是农业经济中的“耕夫”,而是一个商人,他在经商过程中积累了足够的财富后,在后半生从事研究和旅行。他在几何学中的主要成果有“圆被任一直径二等分”,“等腰三角形的两底角相等”、“两条直线相交对顶角相等”,“两个三角形,有两个角和一条边对应相等,则全等”、“内接与半圆的角必为直角”等⑤。这些成果的意义不在于断言的本身,而是提供了一些逻辑推理(象他的第五个问题巴比伦比他早知道近1400年,但没有形成严格的证明)。使得数学被推向抽象、系统化轨道的还有毕达哥拉斯、柏拉图以及他们的继承者形成的毕氏学派和柏氏学派。由于商业的发达、财富的增长,使得人们旅行的欲望越来越高,而旅行和游动的生活方式给数学的发展提供了机遇。前面提到的泰勒斯的后半生就是在旅行和数学研究中渡过的,“他有一段时间住在埃及”⑥。毕达哥拉斯也有旅行和流动生活的经历。“他曾在埃及居住了22年,从埃及神庙的祭司那里了解了古埃及有关数学、天文方面的知识……回国后,又前往希腊的移民地阿佩宁半岛的克罗托纳城定居”⑦。从这两位数学大师的经历看,不能不说旅游这种文化活动给数学的发展提供了条件。商业贸易的发展,可诱导战争的爆发,战争不仅给侵略者掠夺来物质财富,而且也带来了许多精神财富,其中就有数学成就。公元前334年,马其顿国王亚历山大领兵进入埃及,不久挥师东进,横扫了波斯帝国的军队,到了印度河西岸,建立起庞大的亚历山大帝国和亚历山大城,这个城市的建设主要着眼于文化科学设施的建设,吸引了大量的人才,不久就成为当时世界科学文化的名城,欧几里德就是在这个环境中熏陶和成熟起来的伟大的数学家。他对数学宝库的贡献是《几何原本》。他的几何和东方几何的不同之处是,不仅从应用的角度来谈,而是就几何而几何的角度加以研究,运用逻辑推理来证明命题的真伪。而且用几何的方法来解决代数方程。他的著作中的许多公理、定理和定义除了适应当时的经验外,还具有普遍的意义。阿基米得也是当时伟大的数学家,他采用穷竭法来求圆的周长和直径的比值,其指导思想和我国刘徽的计算圆周率的思想是一致的,但不同之点是“刘徽是从圆内接正多边形着手,而阿基米得不仅从圆内接正多边形着手、还从外切正多边形这个角度进行计算”⑧。这就体现出西方数学家多方位的思维方式。另外,阿基米得在研究圆的同时,还研究了球和圆柱的问题,他在《论锥形体和球形体》中使用了近似于现代数学的方法。他的工作不仅涉及到具有很大应用价值的数学问题,而且提出了许多明确的数学概念,在这一点上要比东方数学先进。商业贸易具有一定的风险性、尤其是远航贸易。这种背景下产生了保除业。而保险的兴起又促使了概率论的产生和发展。虽然刺激概率论的是赌博,但起源是商业文化。即使是赌博也是产生于发达的商业文化城。可见,东西方传统文化不仅影响到不同的数学分支和范围,而且在同一数学问题上所体现的解决问题的方法也不同,表述的形式、研究的动机也存在差异。再来看一个事实,《周易》及先天图二分法与菜布尼兹的二进制,两者一个讲对分,一个讲进位。但都“用两个符号表示无限的事物或数学其客观存在的排列法则,决定了先天图与二进制算术的一致”⑧。二进制和先天图没有关系,这是不同时代的东西方数学家,在完全不同的社会背景下的产物,其一致性是令人吃惊的,但思想方法却完全不同。二进制是在西方传统文化中欧洲科学发展的基础上产生的,是有意识地运用十进制知识而创造的一种计数方法。二分图是《周易》众多象数体系中的一个,其中有合理的因素。但其动机不免有些封建意识的糟粕,因为它不是依靠科学的依据推出来的。

总之,东西方传统文化的不同,造成了东西方数学上的差异。东方是数学原始的发祥地,但其发展和科学化、理性化的功劳基本上归于西方。

参考文献:

①张立文等《传统文化与现代化》,中国人民大学出版社。

②钱宝琮《中国数学史》,科学出版社。

③(英)李约瑟《中国科学技术史》,科学出版社。

篇2

二、数学:科学的语言有不少自然科学家、特别是理论物理学家都曾明确地强调了数学的语言功能。例如,著名物理学家玻尔(N.H.D.Bohr)就曾指出:“数学不应该被看成是以经验的积累为基础的一种特殊的知识分支,而应该被看成是普通语言的一种精确化,这种精确化给普通语言补充了适当的工具来表示一些关系,对这些关系来说普通字句是不精确的或过于纠缠的。严格说来,量子力学和量子电动力学的数学形式系统,只不过给推导关于观测的预期结果提供了计算法则。”(注:《原子物理学和人类知识论文续编》,商务印书馆1978年版。)狄拉克(P.A.M.Dirac)也曾写道:“数学是特别适合于处理任何种类的抽象概念的工具,在这个领域内,它的力量是没有限制的。正因为这个缘故,关于新物理学的书如果不是纯粹描述实验工作的,就必须基本上是数学性的。”(注:狄拉克《量子力学原理》,科学出版社1979年版。)另外,爱因斯坦(A.Einstein)则更通过与艺术语言的比较专门论述了数学的语言性质,他写道:“人们总想以最适当的方式来画出一幅简化的和易领悟的世界图像;于是他就试图用他的这种世界体系来代替经验的世界,并来征服它。这就是画家、诗人、思辨哲学家和自然科学家所做的,他们都按照自己的方式去做。……理论物理学家的世界图象在所有这些可能的图象中占有什么地位呢?它在描述各种关系时要求尽可能达到最高标准的严格精确性,这样的标准只有用数学语言才能做到。”(注:《爱因斯坦文集》第1卷,商务印书馆1976年版。)

一般地说,就像对客观世界量的规律性的认识一样,人们对于其他各种自然规律的认识也并非是一种直接的、简单的反映,而是包括了一个在思想中“重新构造”相应研究对象的过程,以及由内在的思维构造向外部的“独立存在”的转化(在爱因斯坦看来,“构造性”和“思辨性”正是科学思想的本质的思想);就现代的理论研究而言,这种相对独立的“研究对象”的构造则又往往是借助于数学语言得以完成的(数学与一般自然科学的认识活动的区别之一就在于:数学对象是一种“逻辑结构”,一般的“科学对象”则可以说是一种“数学建构”),显然,这也就更为清楚地表明了数学的语言性质。

数学作为一种科学语言,还表现在它能以其特有的语言(概念、公式、法则、定理、方程、模型、理论等)对科学真理进行精确和简洁的表述。如著名物理学家、数学家麦克斯韦(J.C.Maxwell)的麦克斯韦方程组,预见了电磁波的存在,推断出电磁波速度等于光速,并断言光就是一种电磁波。这样,麦克斯韦创立了系统的电磁理论,把光、电、磁统一起来,实现了物理学上重大的理论结合和飞跃。还有黎曼(Riemann)几何和不变量理论为爱因斯坦发现相对论提供了绝妙的描述工具。而边界值数学理论使本世纪二三十年代的远距离原子示波器的制成变为现实。矩阵理论为本世纪20年代海森堡(W.K.Heisenberg)和狄拉克引起的物理学革命奠定了基础。

随着社会的数学化程度日益提高,数学语言已成为人类社会中交流和贮存信息的重要手段。如果说,从前在人们的社会生活中,在商业交往中,运用初等数学就够了,而高等数学一般被认为是科学研究人员所使用的一种高深的科学语言,那么在今天的社会生活中,只懂得初等数学就会感到远远不够用了。事实上,高等数学(如微积分、线性代数)的一些概念、语言正在越来越多地渗透到现代社会生活各个方面的各种信息系统中,而现代数学的一些新的概念(如算子、泛函、拓扑、张量、流形等)则开始大量涌现在科学技术文献中,日渐发展成为现代的科学语言。

三、数学:思维的工具数学是任何人分析问题和解决问题的思想工具。这是因为:首先,数学具有运用抽象思维去把握实在的能力。数学概念是以极度抽象的形式出现的。在现代数学中,集合、结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物。与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依赖于演绎证明。数学家像是生活在一个抽象的数学王国中,然而他们在数学王国的种种发现,即数学结构内部和各种结构之间的规律性的东西,最终还是现实的摹写。而数学应用于实际问题的研究,其关键还在于能建立一个较好的数学模型。建立数学模型的过程,是一个科学抽象的过程,即善于把问题中的次要因素、次要关系、次要过程先撇在一边,抽出主要因素、主要关系、主要过程,经过一个合理的简化步骤,找出所要研究的问题与某种数学结构的对应关系,使这个实际问题转化为数学问题。在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识、判断和预测。这就是运用抽象思维去把握现实的力量所在。

其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段。在数学中,每一个公式、定理都要严格地从逻辑上加以证明以后才能够确立。数学的推理步骤严格地遵守形式逻辑法则,以保证从前提到结论的推导过程中,每一个步骤都在逻辑上准确无误。所以运用数学方法从已知的关系推求未知的关系时,所得结论有逻辑上的确定性和可靠性。数学的逻辑严密性还表现在它的公理化方法上。以理性认识的初级水平发展到更高级的水平,表现在一个理论系统还需要发展到抽象程度更高的公理化系统,通过数学公理化方法,找出最基本的概念、命题,作为逻辑的出发点,运用演绎理论论证各种派生的命题。牛顿所建立的力学系统则可看成自然科学中成功应用公理化方法的典型例子。

第三,数学也是辩证的辅助工具和表现方式。这是恩格斯(F.Engels)对数学的认识功能的一个重要论断。在数学中充满着辩证法,而且有自己特殊的表现方式,即用特殊的符号语言,简明的数学公式,明确地表达出各种辩证的关系和转化。如牛顿

(I.Newton)—莱布尼兹(G.W.Leibniz)公式描述了微分和积分两种运算之间的联系和相互转化,概率论和数理统计表现了事物的必然性与偶然性的内在关系等等(注:孙小礼《数学:人类文化的重要力量》,《北京大学学报》(哲学社会科学版),1993年第1期。)。最后,值得指出的是,数学还是思维的体操。这种思维操练,确实能够增强思维本领,提高科学抽象能力、逻辑推理能力和辩证思维能力。

四、数学:一种思想方法数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。

任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第行星——海王星的发现,就是由亚当斯(J.C.Adams)和勒维烈(U.J.Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。

数学作为推理工具的作用是巨大的。特别是对由于技术条件限制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。

值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A.N.Whitehead)认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(L.E.Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。

数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。

五、数学:理性的艺术通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。

数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。

艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。

艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。(3)简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。(4)象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。

艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。

在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材(注:黄秦安《论艺术与数学的普遍意义及基本关系》,《陕西师大学报》(哲学社会科学版),1994年第

2期。)。

六、数学:充满理性精神数学犹如一棵正在成长着的大树,它是不断发展和丰富着的理论知识体系。数学充满着理性精神,它不断为人们提供新概念、新方法。有的数学家说:“数学在人类历史中的地位绝不亚于语言、艺术和宗教,今天数学正对科学和社会产生着翻天覆地的影响。”(注:〔美〕L.A.斯蒂恩主编《今日数学》第26页,上海科技出版社1982年版。)

篇3

二、在高等师范学校教学中渗透数学文化的意义

为了让学生更多的了解数学前辈们在过去不断专研、刻苦努力的精神以及具有启发性的教学经验,所以不断要求学生追寻数学家们成长的足迹。数学家们成长的足迹在一定程度上可以激励学生不断创造,勇往直前追寻科学创造,从而养成科学理性的思维判断以及锲而不舍的求知精神。在数学文化教育中,教育者在讲解数学家的生平事迹时,可以适当介绍数学家的高尚情操以及求知精神等,更好的帮助学生树立自己的学习目标以及增强克服困难的勇气。

三、在高等师范学校数学教学中渗透数学文化的途径

(1)在各章引言中渗透数学文化在教学中开设引言课主要是为了让学生更好的了解本章的学习内容以及知识构架,同时也便于老师引导学生明白本章的学习重点。例如在学习复数的时候,其引言中就向学生简单介绍了有理数、无理数、整数、虚数等的产生与发展过程,同时也可以引经据典讲诉一些科学家的事迹,让学生了解数学知识的发展过程。通过引言课的讲解,使学生不仅仅了解了复数的知识背景,也能够更好的调动学生的学习积极性与主动性。

(2)在讲述概念时渗透数学文化数学文化中某些概念的形成都是以一定的人文背景作为基础的,通过对概念的不断分析与讲解,可以在一定程度上刺激学生的学习激情,让学生感受到数学概念中所蕴含的浓厚历史文化背景;同样的,也可以使学生感受到数学前辈们在专研数学时所付出的艰辛与执着。在数学文化教学中,老师可以充分利用相关的人文背景资料,对学生进行教育。在进行数学概念讲解时,可以不断加深数学文化的讲解,使学生感受到数学文化所蕴含的美。从数学概念内涵上讲,其具有高层次的内在、和谐以及智慧美、逻辑美、以及精确美。对于西方人来讲,数学被称为“精密科学”,例如,一个数列从第二项起,它的每一项与前一项的差都是相同的常数,那么这个数列就被称之为等差数列。所以,英国数学家怀特海认为“在进行推演过程中,推断出完整模式的逻辑推理是一种普遍的审美性质”。从而可以说明数学逻辑推理中包含了美的元素。

(3)在思想方法中渗透数学文化数学教学内容的重要内容是数学方法的教学。数学方法不仅仅针对解题过程有着指导作用,同时也是数学人文精神的一个重要载体。例如,在进行数学归纳法的教学中,问题是孔夫子的后代姓什么?学生回答姓孔。又问为什么?随之学生开始展开激烈讨论,如果他的后代都姓孔,那么则要求他的子孙中每代都有男丁,并且必须是子随父姓。把这道带入到数学课题中,则人的代数为自然数,验证n=n0时命题成立(相当于孔子姓孔),设n=k(k≥n0)时命题成立,那么如果能推断出n=k+1时命题成立(相当于姓氏在父系亲属中的传递性),则可以确定从n0起命题成立。通过这样的方法,学生可以更好的理解利用数学归纳法证明问题,两个步骤缺一不可。

(4)在数学的实际应用中渗透数学文化数学文化的价值可以分为两个方面,一是知识本身价值;二是其本身的应用价值。从应用价值上讲,数学应用是数学文化与数学学科结合产生的。例如在进行“指数函数”教学时,可以通过一些文化背景知识让学生更好的了解学习的内容。在教学过程中,老师还可以让学生了解数学在日常生活的应用,例如利用数学原理来购买彩票、黄金分割法的应用等;同时数学也可以应用于天文学中,例如行星的发现过程、彗星的轨道运行计算等;数学也应用于经济中,如市场数据分析、广告商标设计等。通过举例子的方法让学生利用数学的眼光来看待生活,分析生活中所遇到的数学问题,并利用相对应的数学方法来解决这些问题。

篇4

在高等数学教学中浸润数学文化与开展案例教学基础上,把数学文化有效地浸润到案例教学中,通过工程实践等案例来培养学生的实际应用能力,提升学生的数学素质和文化素质。增加数学科普内容,提高学生学习兴趣。优秀的数学科普知识可以陶冶学生的情操、开阔学生的视野、培养学生对数学的兴趣。通过挖掘数学理论的实际应用案例背景,让学生体会数学的价值,活跃课堂气氛、提高学生学习兴趣。渗透进文化的案例教学,更好地促进学生接受案例所承载的实际应用信息,达到培养学生实际应用能力的目的,进一步达到培养人才的目的。

二、高等数学的案例教学中浸润数学文化的方法与措施

笔者从以下几个方面来阐述在高等数学案例教学中如何加强数学文化的浸润教学。

1.高等数学教学中浸润数学文化的研究。从高等数学的课堂教学内容中挖掘隐含的数学文化内涵。教师必须深入研究教学内容,挖掘出其中蕴含的数学方法、数学思想、数学精神和数学品质,并采取灵活多样的课堂教学形式,才能够吸引学生深入到教学情境,从而领悟数学文化,潜移默化地将数学精髓变成自身素质的一部分。

2.高等数学案例教学的研究。建立典型的案例库,包括机械类、电气工程类、通信类、经济类、生产生活类等。在进行案例教学前,要选择合适的教学内容,并且选择适当的教学案例。例如,导数的应用、定积分的概念、重积分的应用等,积极引导学生参与到课堂的案例教学中。

3.高等数学课程文化浸润下的案例教学的研究。通过工程实践等案例来培养学生的实际应用能力,提升学生的数学素质和文化素质。增加数学科普内容,提高学生学习兴趣。理论教学中穿插来源于社会中的实际问题,从思考该问题如何解决,解决问题应该用到哪些数学知识,到如何利用数学知识解决实际问题,一环扣一环,达到培养学生应用数学知识解决实际问题的能力,来体现数学文化。例如,讲解微分方程时,可以引入著名的人口模型、变化率及相对变化率。渗透进文化的案例教学,通过文化的渗透可以更好地促进学生接受案例所承载的实际应用信息,达到培养学生实际应用能力的目的,进一步达到培养人才的目的。

篇5

在数学教学中,传授知识只是其中的一部分,更需要教师注重的是使学生能够独立思考,培养学生发现问题、解决问题的能力,从而使其数学能力得到发展.例如,在概念教学过程中,教师应首先将产生概念的背景介绍给学生,努力营造一个需要形成概念的情境,学生就可以自己将某类事物的本质属性完整地概括出来,并通过恰当的词语来进行表述.

2.对学生的人格成长有所启发

在数学史中,任何一项伟大的成就都需要付出艰苦卓绝的努力.例如,南北朝时期著名的数学家祖冲之,利用刘徽割圆术,将圆周率精确计算到第七位有效数字.数学家这种刻苦钻研、持之以恒的精神能够对学生的人格成长大有启发,能够引导学生树立学习数学的自信心,对待挫折坚忍不拔,对待困难迎难而上,不畏挫折,不惧失败.

3.有利于训练学生的逻辑思维

中国的教育制度一直处在不断的改革完善中,对人才的培养也是越来越全面、越来越严格.目前而言,“应试教育”已经明显存在缺陷.素质高能力强的人明显是被需要的,这时学会如何学习显得尤为重要.“数学是思维的体操.”也许说思维是不可碰触的、无形的,但是一旦形成就是一种能力,它不会戛然而止,它是一种会伴随我们一生的素质.

二、数学文化在高中数学教学中的渗透策略

1.讲述数学史,展现数学文化的科学价值

在课堂教学过程中,教师可以讲述数学成就在人类发展史中的巨大作用、数学家探求真理坚持不懈的精神、思想方法的应用、知识产生的历史背景等内容,从而使得学生能够感受到数学大厦建造伟大而精彩的历程.例如,在讲解完“合数”与“素数”的知识之后,教师可以对“哥德巴赫猜想”进行介绍.除此之外,教师应合理地划分课堂教学时间,适当地减少考试以及机械的解题练习,而腾出一定的时间用于讲解数学史.例如,在讲解“圆柱体积计算公式”的时候,教师可以先介绍曹冲称象的典故,激发学生学习兴趣,引导学生积极思考.

2.欣赏数学美,展现数学文化的美学价值

数学美是一种抽象的美,能够体现数学文化,使人感受到数学的魅力.数学的美是含蓄的、内在的、理性的,并且无处不在.在很多美好的事物背后都会隐藏着一些数学的奥秘.在高中数学教学过程中,教师可以充分利用数学公式、数学逻辑、数学符号、数学图形等的简洁美、统一美、奇艺美、对称美来陶冶学生情操,发挥数学的美育功能.例如,和谐统一美可以在相似三角形中体现出来.相似三角形,不论其大小,都被看作同一类几何图形.简洁美则在命题表述与论证、数学符号、数学逻辑体系中均有所体现.发挥数学的美学价值不仅仅是将其展现给学生,更重要的是使得学生能够发现数学美、欣赏数学、热爱数学.高中数学教师也应提升自身美学修养,引导学生利用数学美陶冶情操,从而达到数学的文化教育的目的.

3.在问题情景中渗透数学文化

在学习数学的时候,我们常常被枯燥而又复杂难懂的公式弄得苦不堪言.若是能在教学的时候从历史的角度介绍数学公式产生的背景,或从现实的角度阐述数学知识的现实经济意义,或是用图形等数学知识进行推导,这样可以化抽象为形象,使知识点变得通俗易懂,做到事半功倍.好比圆周率π,一个出现于公元前950年的数字,自有记载而来就引起了国内外的关注.我们现在知道的π的值已经是非常精确的估计值,但它的发展历程是非常坎坷的,从古至今,从国内到海外,从珠算到计算机,一代又一代的数学家为了最大限度地求其估计值而努力,即使如此,数学家探索的步伐还在继续.

4.在课外活动中渗透数学文化

数学学习的环境是广阔的,它不该局限于课堂.数学的学习方式也是灵活的,它不该局限于做题.老师们可以通过组织竞赛、演讲等形式调动学生们学习的主动性,学生们亦可在查阅、收集、整理资料的过程中丰富课余生活,同时巩固课堂上学到的知识.

5.在研究下学习中渗透数学文化

现在社会越来越主张和提倡独立和创新,鼓励人们大胆地质疑和探究.研究性学习是一种非常重要的学习方式,它虽然出现得比较晚,但它的开放性、创造性等独有的特性引起了广泛的关注,尤其受广大师生的欢迎,他们常借此方式来渗透数学文化.经过对研究性学习的研究,教会学生们发现问题、解决问题,将所思所想化为实际行动.这是一次学习知识的过程,也是自我增值的过程.

篇6

文化教育也是高中数学教育的主要组成部分,在高中数学教学标准中同样对数学文化教育提出了明确要求,但是在实际教学过程中,由于数学文化教育缺乏具体的教学目标和评价标准,教师们很少会展开数学文化教育。

一、高中数学文化教育缺失现状

高中数学文化教育在现行的高中数学教育中长期处于缺失状态,大部分高中数学教师在自己的学习生涯中都曾深入研究过数学发展史和数学文化,但是在高中数学教育过程中,数学教师却并没有把自己所学到的这些内容传授给学生,这主要是因为高中数学教学任务非常繁重,课堂教学时间有限,而高中学生面临着即将到来的高考,数学教师直接跳过了一些高考不会考查的内容。这种方式虽然能够展开更多数学知识的传授,但却对学生们学习数学知识的效果产生了影响。大部分学生仅仅把数学作为高考的敲门砖,他们并不了解数学背后深刻的文化内涵以及学习数学知识所能够带来的巨大影响。数学文化教育的缺失直接影响到学生的数学素养和数学学习兴趣,从长期来看,这是不利于高中数学教育的顺利高效开展的。

二、高中数学文化教育缺失的原因

1.教学目标导致数学文化教育被忽视

数学文化教育应该是高中数学教育的主要目标之一,也是高中数学教学的主要内容之一。但是当前高中阶段的数学教师、家长和学生都将高考中取得好成绩作为教学的首要目标,大部分教师对数学文化教育并不重视,在讲解到文化教育环节时往往一带而过,并不会展开精心设计和深入教学。教师们未能认识到文化教育对高中学生学习数学知识的重要性,最终导致数学文化教育被忽视。

2.教师在课堂中占据课堂核心地位

高中数学教师在教学过程中主要根据自己的想法和教学经验展开教学活动,并不关心学生的需要,教师认为学生们只要按照自己的要求完成学习过程就能够取得好成绩,他们会传授给学生大量的解题方法,并安排学生反复练习习题。大部分学生并不能够理解数学知识的本质和内涵,只是掌握了外在的一些知识,这些知识在短时间内对学生提升成绩是有帮助的,但却人为地制造了学生发展的瓶颈。

3.教学评价体系过于陈旧

现行的高中数学评价体系非常简单,教师会设置不同难度和不同题型的数学考卷对学生进行考查,最终的评价方式就是学生的分数,教师只看到学生成绩的变化,却看不到学生内在思想的变化。教学评价从未发生过改变,陈旧的教学评价体系限制了教师的教学思路,最终影响到教师的教学方法和学生的学习内容。数学评价体系应该包含更多内容,特别是数学文化评价,对学生的学习兴趣、思维能力、价值取向等进行考核,保证学生可以通过数学学习实现全方位发展。

三、高中数学文化教育缺失的解决对策

1.教师转变教学目标及教学思路

在新课改后的高中数学课程标准中,明确要求数学教师要在自己的教学过程中有效渗透文化教育。教师应该顺应这一要求转变教学目标及教学思路,数学文化教育是一个长期的过程,文化教育需要循序渐进和逐步渗透,教师要坚持在数学教育过程中融入数学文化教育,使得数学文化教育真正成为高中数学教育的一部分。在制定教学目标时,教师要将文化教育与知识传授结合起来,既不能忽略文化教育,也不能够急于求成,并根据教学目标捋顺自己的教学思路,在教学过程中落实教学目标中的各项内容。

2.准确把握教学内容,丰富高中数学教育

在过去的高中数学教育中,教师仅仅讲授各种数学知识,例如基础概念、解题方法、易考知识点等等,这些教学内容已经使学生陷入麻木状态,数学课堂如同一潭死水。数学文化教育可以使数学教育变得更加丰富,教师在传授知识的同时可以告诉学生这些知识的来源及发展,通过数学历史、数学人物和数学思想教育来激活学生的学习兴趣,最终通过数学文化教育促进数学知识的传授,通过数学知识的传授来辅助数学文化讲解。

3.改变评价策略,注重文化考查

在现行的高中数学评价体系中,主要考查内容都与数学知识有关,基本没有涉及数学文化的考核。数学教师应该积极改变评价策略,在评价过程中加入更多的文化评价内容,注重学生文化素养的考查,通过评价策略的转变引导学生学习思路的转变,使得学生对数学拥有更多兴趣,并积极学习伟大数学家的数学精神,勇于面对数学学习中的困难,通过自己不懈地努力去获取更多数学知识,改变过去成绩定高低的评价方式,这对于后进学生转换也是非常有利的。高中数学教育中文化教育的缺失对于学生数学思维及数学素养培养是非常不利的,教师应该积极转变思路,采取有效对策应对并妥善解决这一问题,加强数学文化教育。

【参考资料】

篇7

[中图分类号]G640[文献标识码]A[文章编号]2095-3437(2013)08-0015-03

一、引言

数学不以客观世界的某一领域、过程或对象作为研究目的,故数学不能算自然科学;数学显然也不属于人文学科,这种矛盾性体现了数学逻辑性的思维和人文性的统一,数学教育应兼顾两者。数学教育的重要任务是要有助于完善学生的自我全面发展。德国数学家格瑞斯曼说:“数学除了锻炼敏锐的理解力,发现真理之外,还有另一个训练全面考虑,科学系统的头脑的开发功能。”数学文化的出现是顺应数学素质教育的产物,是对数学教育模式的改革。

“数学是一种文化”的观点是20世纪60年代美国学者怀尔德提出的。“数学文化”一词首次出现在中国是20世纪90年代。2001年南开大学率先开设了针对普通本科生的“数学文化”课,现已成为国家级精品课程。2003年,教育部颁布了新的“普通高中数学课程标准”,其第三部分单独安排了“数学文化”板块。自此以后,各高校相继开设数学文化课,探讨“数学文化”在新教育改革和促进大学数学教育中的作用的论文大量出现。关于数学文化的课程建设研讨会已经召开了两届,充分肯定了数学文化在提高大学生数学素质方面的作用和意义。

二、数学文化和数学素养

数学文化有两种解释,狭义的数学文化是指数学的思想、精神、方法、观点、语言,以及它们的形成和发展;广义的数学文化除具有狭义的内涵以外,还包含数学家、数学史、数学美、数学教育、数学与社会的联系、数学与各种文化的关系等等。面对本科生所讲的数学文化,一般是指狭义的表述。

如今,“数学是一种文化”的观点已被中国的数学教育界认同,它体现着文理交融。从文化角度分析,“数学是一种文化”包括人类在数学活动中所创造的两种结果。一是静态的,例如数学的概念、知识、方法等,以及其中所蕴含的真、善、美的客观因素;二是动态的,包括数学家的信念品质、价值判断、审美追求、思维过程等深层次的思想创造过程。静态和动态的结果以及它们所包含的各个因素之间的交互作用,构成了完整而庞大的数学文化系统。

什么是数学素养?通俗地说就是:把所学的数学知识都排除或忘掉后,剩下的东西。那么剩下的是什么呢?例如,从数学角度看问题的出发点、严密地求证、简洁和准确地表达问题、逻辑推理、合理简化所从事工作的能力等。

三、开设公选课的不足和解决办法

受到大学扩招的影响,理工科院校具有学生多、数学课授课任务量大的特点,大多数理工科院校只能开设数学文化公选课。例如作者在学校开设了《数学文化》公选课,共32学时,每次选修人数约150人。教材选用顾沛教授的《数学文化》,再融入作者感兴趣的一些内容和对数学文化的理解。学生对于《数学文化》课的反响是好的,但由于受到学时和人数的限制,很多精彩的内容没有时间上,很多学生也选不到此课。受到大学基础课总学时的限制,不可能对所有的学生都开设《数学文化》。本校在这方面的不足也是很多兄弟理工科院校的通病。理工科院校通过开设数学文化公选课来提高学生的数学素质和人文修养在目前还仅是理论上的可能,对全体学生并无多大的帮助。此外,因为是公选课,多数学生上课本着应付的态度,能认真听讲、思考、解决老师所留问题的是少数,多数学生只想拿到两个学分了事。以上所列因素都使得理工科院校以开设数学文化公选课的形式来提高学生数学素养的效果打了折扣。

考虑到高等数学、线性代数和概率论与数理统计是理工科院校的三门主干基础课,这三门课一般需要学生三个学期的时间来学习,具有授课时间长、学时多的特点。就课程内容来说,三门课内容多,包含的数学思想、方法丰富。需要特别提到的是《高等数学》,它将现代微积分的内容都融入进去了,其本身包含了极限、逼近、集合论、无穷、归纳等数学思想。如果能在三门课的授课过程中,融入数学文化,让学生了解数学的思想、发展、思维模式以及解决问题的方式等,那么必将对提高学生的数学和文化素质有很大的帮助。

综合上面的分析可得,通过开设数学文化公选课来提高学生的数学素养在学时、授课内容以及受益人数上有很大的不足。将数学文化融入理工科大学的三门主干基础课,对提高大学生的数学素养来说更具有可行性。

四、加强数学文化教育的必要性

第一,加强素质教育,实行文理交融的教育模式的必然结果。中国实行的是文理分科教育,从高中时候起,学生就分成了文科和理科,大学的专业设置也按文理科进行设置。理科生在高中接受的文科教育就不多,在大学接受的文科知识也较少。分科教育的结果就是理科生文科知识欠缺。数学是文化,是人类文明的重要基础,它包含着丰富的人文文化。学习数学文化,能促进学生的科学素质和人文素质,促进文理交融和学生的全面发展。

第二,提高学生人文素质的必然要求。人文素质,是指由知识、能力、情感、意志等多种因素综合而成的一个人的内在品质,表现为一个人的气质、人格、修养。人文素质教育主要通过吸取优秀的文化成果,让学生学会善良、宽容、刚强、不屈不挠和献身等美好的品质。人文素质教育和建设和谐社会的要求是一致的,是教育对学生只重视考试能力,不注重人格培养的修正。数学文化是人类文化的重要组成部分,在人文素质教育方面有着不可替代的作用。众所周知,数学家的献身、执着以及专注的精神是无与伦比的。数学天才牛顿就因专注于数学,而错过了两次结婚的机会。第一次是牛顿在剑桥大学求学期间,到乡下躲避鼠疫,与自己23岁的表妹心心相印。然而,牛顿生性腼腆,未能及时表达出自己的爱意;又因牛顿回到了剑桥后,钟情于数学,不重视自己的个人生活,很快忘记了自己的表妹。牛顿的表妹在长久的等待中心灰意冷,终于嫁给他人。后一次恋情更有戏剧性,有一次,牛顿轻轻握着自己中意姑娘的手,含情脉脉注视着姑娘,就在将要有什么事情发生的千钧一发之际,牛顿的心却莫名其妙地想到了无穷小量的二项式定理。结果是姑娘离开了牛顿,牛顿也决定终身不娶。三十岁执掌英国数学界牛耳的大师哈代也是一辈子不结婚。他有一个习惯,无论到哪里住宿,都是先用毛巾把旅馆的镜子盖住,他不想因为关注容貌而浪费时间。不同数学学派之间的宽容是有目共睹的,支持欧式几何学的人并没有与支持非欧几何学的人相互争论,反而在一起相互生存,相互发展。阿尔布斯纳特・约翰(Arbuthnot John)说过:“数学能唤起热情而抑制急躁,净化灵魂而使之杜绝偏见与错误。恶习乃是错误、混乱和虚伪的根源,所有的真理都与此抗衡。而数学真理更有益于青年人摒弃恶习。”

第三,数学素质能提高学生的美学欣赏力 。波莱尔说:“数学是一门艺术,因为它主要是思维的创造,靠才智取得进展,很多进展出自脑海深处,只有美学标准才是最后的鉴定者。”科学求真,人文求善,真和善又都导致美。美,具有文化的属性,而数学是美的,数学的美表现数学思想深刻之美。例如黄金分割的再生性、“等于”的思想和逼近的思想都体现着数学的美。数学是人们求真、求善、求美的殿堂,柏拉图言:“几何把我们的灵魂引导到真理面前。”数学是静谧、深奥和典雅的音乐,其书写语言和符号是理性的音符,数学追求美,创造美,数学与艺术的结合更加灿烂绚丽。理解数学的美,必将提高理工科大学生美学欣赏力。

关于提高学生的数学文化教育的意义已在多篇论文中阐述,在此不再赘述。

五、数学文化教育的具体策略

第一,重新编写三门基础数学课(高等数学、线性代数和概率论与数理统计)教材,将数学文化融入新教材中。随着教育大众化时代的到来,现在的大学生在知识和能力水平、学习动机、精力投入等方面与精英教育时代相比,差距很大。中国传统的数学教材来源于前苏联时代,有很强的研究色彩。少数学生通过投入大量时间和精力,会获得超强的计算能力、深厚的数学基础。但是大多数学生会感觉听不懂、学不会。新编的教材应以学生为本,在保留教育部规定的教学内容后,应加强数学内容的思想性、方法性;从文化的角度阐释数学内容,引入数学的应用背景;降低数学抽象所带来的难度,适当融入数学建模的方法,介绍最新的数学软件和编程方法。新教材应体现数学的亲和力,注重对学生个性化能力的培养。

第二,教师在教学过程中应重点阐述数学思想,少些复杂的运算过程。大多数数学老师授课方式都是采用先介绍定义,定理,然后给出证明,最后给出一两个例子结束。至于为什么要有这个定义、定理及其包含的数学思想就基本不讲了。这种教学方式使得学生是被动地接受知识,结果就是学生越学越糊涂,以至最后放弃数学。通过阐述数学思想,解释定义、定理出现的原因,能够使得学生明白“为什么”,体会到学习数学的乐趣。例如在讲授微积分的中值定理时,可按照认知规律从特殊到一般来介绍罗尔定理、拉格朗日定理和柯西定理及其包含的数学思想。

第三,教学过程中,适当加入数学史,讲发展和过程,讲数学体现的文化内涵,包括存在的问题,展望前景,让学生学会思考,学会提出问题。

数学是一个连续性很强的学科,任意一个知识点必有其源头,必有若干数学家在此方面做出过重要贡献。通过介绍数学史,能让学生明白众多数学家为此付出的努力,让学生明白做人做事的道理。讲数学知识点的发展和过程,能让学生体会数学的逻辑和思考问题的方式,理解发展过程中出现的问题,学会思考和提出问题。

第四,教师应揭示数学与生活、数学和其他学科的联系,展示数学的应用价值,吸引学生的学习兴趣。学生不重视数学的一个重要原因就是尽管数学在现代社会有着广泛的应用,但这些应用却鲜为人知。例如,搜索引擎如何在浩瀚的互联网上找到所需要的网页,如何计算炮弹的弹着点,在面临选择时,如何运用概率论的知识增加自己成功的机会等等,这些都需要大量的数学知识。如果在上课的过程中能展示数学的应用价值,必将大大吸引学生的学习兴趣。

最后,以上这些能够实现,都需要一个前提,那就是教师本身的数学文化素养达到一定的高度,熟悉数学史、了解数学有哪些思想、方法等等。因此,加强授课老师数学文化修养就很重要。这不仅需要教师努力提高自身的数学素养,还需要学校为他们提供学习交流的平台。

[参考文献]

[1]杨叔子.文理交融,打造“数学文化”特色课程[J].数学教育学报,2011,(20).

[2]顾沛.数学文化[M].北京:高等教育出版社,2002.

[3]王淑红.漫谈终身未婚的数学家[J].数学文化,2012,(3).

[4]方延明.数学文化导论[M].南京:南京大学出版社,1999.

[5]顾沛.数学的美,在于数学思想深刻之美[J].数学教育学报,2011,(20).

篇8

二、构建数学图形,使化学规律具体化化

学是一门具有高度抽象性和概括性的科学.要让学生熟练地掌握这部分内容,需要用具体形象的方法呈现给学生,学生通过由“具体—形象—抽象”的思维规律来认识掌握化学知识,并通过多次的这种思维方法训练,培养发展学生的抽象思维能力.例如,在镁、铝盐的学习中,与氢氧化钠的反应经常出现在考题中,其变化多、反应复杂,学生往往难以准确把握要点.如果能合理构建图形进行讲解,把问题具体化,学生很会容易接受.首先通过分析图象找出图中的关键点(如图形的起点,终点,折点,特殊点等)观察曲线的变化趋势,然后通过化学反应将图形中的数据联系起来,实现以“数”解“形”。

三、构建数学图形,使微观原理直观化

原子的核外电子排布属于微观化学内容,比较抽象,而原子的结构与其化学性质密切相关,所以这部分内容即使重点也是教学难点,在一些有关化学性质的讲解中也可以构建数学图形,使微观原理直观化,容易理解和记忆.

篇9

2精选实验内容,实施绿色化实验教学

无机化学实验教学长期处于理论课的附属,选择的实验内容基本上是都是对理论课上所讲的理论的验证。要想满足教学大纲所规定的培养目标的要求,就必须精心选择实验内容,尽量减少验证性实验的比例,增加综合性、设计性实验的比例,将绿色化学理念贯穿在实验教学过程中,减少有毒有害实验药品的用量,在实验过程中尽量避免有毒有害的化学产物或副产物的生成,减少对周围环境造成的污染。提高实验试剂的利用率和药品的使用率,将实验产生的废液集中存放并按要求进行无害化处理,尽可能的回收再利用,注重对学生环保意识的培养。

3在实验教学中引入多媒体教学手段

多媒体技术是近年来发展非常迅速的网络技术之一,在无机化学实验教学中,一些抽象的原理和现象,很难通过单纯的语言讲解让学生理解,因此可以通过多媒体教学把难懂的原理和现象,具体而形象的展现的屏幕上,来帮助学生理解与掌握。多媒体教学具有较强的直观性,引入的素材较多,能够声形并茂的将抽象的原理,形象直观的表达出来,提高知识传授的效率,充分调动学生的学习积极性,学生的主体地位能得到更深刻的体现。

4更新实验教学方法

目前无机化学实验的教学方法有很多种,包括注入式、启发式、探究式等,而在实际教学过程中并不是只用一种方法,二是采用多种方法并用的形式,我们要改变传统的知识灌输式的把知识全部灌输给学生,学生只是被动的接受,取而代之的是,引导学生去主动学习,学生对实验内容中的知识点进行小组讨论,老师在实验过程中只起到监督和指导的作用,及时纠正学生的实验过程中的不规范操作,引导学生认真观察、分析解释实验现象,并以小组的形式讨论实验结果,使学生正确的理解和掌握实验原理。在实际教学过程中,采用多种方法联合并用的方式,从而提高无机化学实验的教学质量和水平。

5改善实验室的硬件设施

实验室是无机化学实验教学实施过程的主要场所,学生在这里不仅增长了实验技能,也提高了实践创新能力。在无机化学实验的内容里会涉及一些基本仪器的使用操作,这些仪器的更新程度直接反映出实验室的教学水平。随着时代的发展,科技的进步,仪器设备的更新换代非常快,只有跟上发展的步伐,引入先进的仪器设备,才能培养出与国际接轨的人才。因此,高校要增加实验经费的投资,建设高标准、高水平的无机化学实验室,健全实验室的管理体制,完善基础设施建设,建立更高级别的无机化学实验教学基地。

篇10

(二)教师应该因材施教在文化创意产业发展得背景下,教师对于学生的美术学教学的引导方式是多重多样的,但是最重要的是,教师要善于因材施教,对于不同的学生实行对其最有效的教学方案,教师要注重培养学生的对于美术学的创新能力和审美能力,定期检察学生的美术作品,认真分析他们存在的问题,然后认真监督他们认识自己的不足,并且加以修改,尽量确定学生正确的学习方向,重点培养学生的正确的审美能力和优秀的创新能力和以及实践能力,对其作品进行点评,并且根据学生的具体情况制定适合学生发展的学习方式。此外,教师应该加强与学生的沟通交流,及时了解学生的学习情况,了解他们在学习过程中出现的问题和困惑,积极的帮助学生去解决这些问题,把自己当做学生的知心朋友,能够完全走进学生的内心世界,了解他们,理解他们,然后根据他们的具体情况,掌握他们性格以及兴趣和风格,从而引导每个学生走自己的风格路线,积极创新,让每一个学生都能够创造出属于自己的,有创意的美术风格。每个学生都有自己的性格和行事方式,教师应该尽量让自己的教学方式灵活,保证每个学生都可以自由发展自己的个性,从而更加有效的学习美术,提升自己的创新思维。

(三)培养学生对于美术学基础课程的兴趣美术学基础课程是一个学生学好美术的根本,所以教师一定要努力提升学生对美术学基础课程的兴趣。首先,教师应该让自己的课堂活跃起来,美术学基础课程不一定要上的那么枯燥,教师可以让学生在课堂上积极讨论发挥自己的观点和见解,这样不仅能提升学生的学习兴趣,而且能够培养学生形成正确的价值观。或者教师也可以通过野外写生的方式来上美术学的基础课程,这样,学生既可以享受到学习的乐趣,还可以高效学习。