时间:2022-07-11 18:19:59
导言:作为写作爱好者,不可错过为您精心挑选的10篇电容式传感器,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
在生产科研活动中,经常要对温度、压力等非电量进行测量,使得现代传感器技术有了飞速的发展。电容式传感器的检测元件可将被测非电量变换为电容量,然后通过对电容值的测量得到相应的非电量的值。由此可见对电容值进行测量是有实际意义的。在数字化测量技术中,为实现对电容所测值进行数字显示,通常是将被测电容Cx先转换成与其成正比的直流电压信号(称C/U转换)或时间信号(称C/t转换)。这里介绍一些具体的转换方法,并详细讨论一个典型的C/U转换电路。
1、测量电容的几种转换方法
⑴ 充电法测电容
图1是这种方法的原理图。集成运放反向输入端所加的基准电压Ur经电阻R对被测电容Cx进行充电,当输出电压Uo达到预先设定的额定值时就停止充电。在Ur和R为定值的情况下,显然充电时间t的长短与Cx成正比。由图1可写出其关系式:
只要测出时间t的大小,就可得知Cx的值。利用这种C/t的转换方法测电容,其可测范围为10μf-999.9μf。
⑵ 充放电法测电容
图2是这种方法的原理图之一,它由窗口比较器对电容的充放电进行控制。基准Ur先对Cx进行充电,当两端电压达到额定值时就对地放电,当电容两端电压降低到一个额定值时再次充电。Cx如此反复的充放电,就形成一个周期为T的震荡电压波形,T值与Cx成正比,因此通过测量时间T的大小就可得知Cx的值。这种通过C/t转换测量电容若配上单片机电容量的分辩率可达(0.5-1)×10-3乘以电容满度值,可测范围为0-200μF。
和上述方法相似的另一种测量方式是称为换向式的测量法,它也是先充电后放电,但放电到-Ur为止通过测量放电的持续时间Td得知Cx的大小,这种方法的优点是对充电电源及放大器参数要求不严格,测量误差小,分辨力可达0.1pF,能满足电容传感器的要求。
⑶ 脉宽调制法测电容
图3是这种方法的原理图。它是在如图所示的单稳态触发器的触发端输入一个脉宽为tw,周期为T的矩形波,在阈值为TH加被测电容Cx。通过Cx充放电在输出端得到一个周期仍为T,但脉宽tw即占空比q=tw/T随Cx成比例变化的矩形波(所以称为脉宽调制)。如果能设法测出tw的值,则Cx也可得,这显然也属于用C/t转换法测电容。由于q随C/x改变是输出的矩形波电压平均值Uo值随之而变,即表明Cx与Uo成正比,所以只要能Uo并测出它的数值,就可以得出Cx的值,显然这属于通过C/U转换测电容。脉宽调制法测电容的范围为0-20μF,最高分辨别率为1μF,它的缺点是测量前都要手动调零,从而延长了测量时间。
⑷ 容抗法测电容
图4是这种方法的原理电路图。运放处于线性工作,Ui是幅度及频率fo均恒定的正弦测试信号。电容中通过正弦交流信号时,其容抗为Xc=1/(2πfoCx),当fo恒定时,Xc与Cx成反比。
2、按容抗法实现的C/U转换电路的设计与分析
根据容抗法测量原理,为实现C/U转换,必须有正弦信号发生器,C/ACU转换电路,AC/DC转换电路,滤波器及辅助电路等。
由集成运放N1,电阻R1-R5和C1-C2组成RC桥式振荡器,其中C1R1和C2R2组成RC串并联网络,R3R4R5组成负反馈网络,通过调整R3R4R5 的值使略大于3满足起振的条件,即R4+R5>2R3。运放N2是一级反向输入的缓冲放大器,其电压增益为A = -(R7+RP1)/R6其中RP1为校准电位器,调节RP1可改变N2的电压增益。由运放N3、电阻RS和电容Cx组成测量电容的主电路,其功能是实现C/ACU的转换。由运放N4、电阻R9- R11和电容C3- C4组成二阶有源带通滤波器,其中心频率fo = 400HZ因此有源带通滤波器只允许400HZ信号通过,这样就得到一个纯正的400HZ的正弦波。由集成运放N5、二极管VD3-VD5电阻R13- R16和,电位器RP2和电容C5- C8组成精密整流电路,电路中的R12是N5的同向端输入电阻,R13、 R14为负反馈电阻可将N5偏置在线性放大区并控制运放的增益。
3、电容式传感器的应用
电容式传感器的检测元件将被测非电量变换为电容量变化后,用测量线路(C/U转换电路)把电容容量的变化变换为电压,再通过电压与电容的关系得出非电量的值。可应用在测气体的浓度、油箱油量、导电液体液位等等。
这种电容式转换电路具有线性度好、准确度高、电路简单、成本小、功耗低等特点可应用于一些小型、便携式装置中。例如数字万用表就是利用容抗法实现C/U转换输出平均值电压再配以高分辩率的液晶A/D转换器把模拟量转换成数字量来测量电容的。
参考文献:
Abstract: This paper describes the capacitive sensor has good temperature stability, simple structure, good dynamic response, non-contact measurement can be achieved, with the average effect of the advantages of high output impedance, load capacity is poor, and shortcomings of the parasitic capacitance of the film, and Problems in the application.
Keywords: capacitors, sensors, load
1.电容式传感器的特点
1)优点
(1)温度稳定性好。电容式传感器的电容值一般与电极材料无关,有利于选择温度系统低的材料,又因本身发热极小,影响稳定性甚微。而电阻传感器有电阻,供电后产生热量:电感式传感器有铜损、磁游和涡流损耗等,易发热产生零漂。
(2)结构简单。电容式传感器结构简单,易于制造,易于保证高的精度,可以做得非常小巧,以实现某些特殊的测量;能工作在高温,强车船及强磁场等恶劣的环境中,可以承受很大的温度变化,承受高压力、高冲击、过载等;能测量超高温和低压差,也能对带磁工作进行测量。
(3)动态响应好。电容式传感器由于带电极板间的静电引力很小(约几个10-5N),需要的作用能量极小,又由于它的可动部分可以做得很小、很薄,即质量很轻,因此其固有频率很高,动态响应时间短,能在几兆赫的频率下工作,特别适用于动态测量。又由于其介质损耗小可以用较高频率供电,因此系统工作频率高。它可用于测量高速变化的参数。
(4)可以实现非接触测量,具有平均效应。例如,非接触测量回转轴的振动或偏心率、小型滚珠轴承的径向间隙等。当采用非接触测量时,电容式传感器具有平均效应,可以减少工作表面粗糙度等对测量的影响。
电容式传感器除了上上述的优点外,还因其带电极板间的静电引力很小,所以输入和输入能量极小,因而可测极低的压力,以及很小的加速度、位移等,可以做得很灵敏,分辨率高,能敏感0.01µm甚至更小的位移;由于其空气等介质损耗小,采用差动结构连接成电桥式时产生的零残极小,因此允许电路进行高倍率放大,使仪器具有很高的灵敏度。
2)缺点
(1)输出阻抗高,负载能力差。电容式传感器的容量受共电极的几何尺寸等限制,一般只有几pF到几百pF,使传感器的输出阻抗很高,尤其当采用音频范围内的交流电源时,输出阻抗高达106―108Ω。因此传感器的负载能力很差,易受外界干扰影响而产生不稳定现象,严重时甚至无法工作,必须采取屏蔽措施,从而给设计和使用带来极大的不便。阻抗大还要求传感器绝缘部分的电阻值极高(几十MΩ以上),否则绝缘部分将作为旁路电阻而影响仪器的性能(如灵敏度降低),为此还要特别注意周围的环境如温度、清洁度等。不采用高频供电,可降低传感器输出阻抗,但高频放大、传输远比低频的复杂,且寄生电容影响大,不易保证工作的稳定性。
(2)。电容式传感器由于受结构与尺寸的限制,其寝电容量都很小(几pF到几十pF),而连接传感器和电子线路的引线电缆电容(1―2m导线可达800pF),电子线路的杂散电容,以及传感器内极板与其周围导体构成的“寄生电容”却较大,不仅降低了传感器的灵敏度,而且这些电容(职电缆电容)常常的随机变化的,将使仪器工作很不稳定,影响测量精度。因此对电缆的选择、安装、接法都有要求。
随着材料、工艺、电子技术,特别是集成技术的发展,使电容式传感器的优点得到发扬,而缺点不断地得到克服。电容式传感器正逐渐成为一种高灵敏度、高精度,在动态、低压及一些特殊测量方面大有发展前途的传感器。
2.应用中存在的问题
1)边缘效应以上分析各种电容式传感器进还忽略了边缘效应的影响。实际上当极板厚度h与极距d之比相对较大时,边缘疚的影响就不能忽略。这时,对极板半径为r的变极距型电容传感器。
边缘效应不仅使电容传感器的灵敏度降低,而且产生非线性。为了消除边缘效应的影响,可以采用带有保护环的结构。保护环与定极板同心、电气上绝缘且间隙越小越好,同时始终保持等曜,以保证中间工作区得到均匀的场强分布,从而克服边缘效应的影响。为减小及板厚度,往往不用整块金属板做极板,而用石英或陶瓷等非金属材料,蒸涂一薄层金属作为极板。
2)静电引力 电容式传感器两个极板间因存在静电场,因而有静电引力或力矩。静电引力的大小与极板间的工作电压、介电常数、极间距离有关。通常这种静电引力很小,但在采用推动力很小的弹性敏感元件的情况下,必须考虑静电引力造成的测量误差。
3)温度影响 环境温度的变化将改变电容传感器的输出相对被测输入量的单值函数关系,从而引入温度干扰误差。这种影响主要有以下两个方面。
(1)温度对结构尺寸的影响:电容传感器由于极间隙很小而对结构尺寸的变化特别敏感。在传感器各零件料线膨胀系数不匹配的情况下,温度变化将导致极间隙相对变化,从而产生很大的温度误差。在设计电容式传感器时,适当选择材料及有关,可以满足温度误差补偿要求。
(2)温度对介质的影响:温度对介电常数的影响随介质不同而异,空气数温度系数看似为零:页岩某些液体介质,如硅油、蓖麻油、煤油等,其介电常数的温度系数较大。例如,煤油的介电常数的温度可达0.07%/°C;若环境温度变化加减50°C,则将带来7%的温度的误差,故采用此类介质时必须注意温度变化造成的误差。
参考文献:
1、王松林,鲁高奇,电容式传感器测量电路设计,电子质量,2011年第1
2、翟宝峰,梁清华,检测粮食水分用的电容式传感器,传感器技术,2003年第22卷第2期
3、丁振荣,陈卫民,电容式传感器测量油品中水的体积分数之新方法,传感器技术,2004年第23卷第5期
4、杨三序,电容式传感器在车辆检测装置中的应用,传感器技术,2004年第23卷第9期
5、伊晓光,孙来军,胡晓光,湿敏电容式传感器测量SF6气体湿度方法的研究,电力建设,2004年第25卷第8期
6、黎章,袁易君,基于AVR单片机的谷物水分检测系统,农机化研究,2010年第32卷第6期
更大的温度范围;
更大的湿度范围;
驾驶与乘客因长期接触转换器与按钮所造成的脏污。
图1:基本的电容式传感器
今日车用的按钮与转换器不仅比过去多了许多,还要能具备轻易建置的特性,以符合日趋人性化控制接口的需求,另外,还必须具备成本效益,避免采用密封封闭式的机械开关。因此,电容式触控接口(capacitive touch switches,或称为cap sense)是一个非常具有潜力的取代方案。电容式触控接口技术不仅无须采用机械式控制元器件,还具备整合人性化接口的功能,十分符合汽车工业对于可靠性与成本效应的需求。
如图1所示,电容式接口主要是由两片相邻电路极板(traces)所构成的电容器:而依据物理法,电容效应是存在于两片电邻线路极板之间的。如果有任何导电性的物体(例如:手指尖)靠近这两片极板时,平行式电容(parallel capacitance)就会与传感器产生耦合(couple)效应。因此,整体电容会随着手指尖触碰电容传感器而增加;当移开手指时,电容则会随之减少。所以只要利用一套电路系统来测量电容的变化,就可以判断手指尖是否有碰触到两片相邻的电路极板。
电容式传感器是由两片电路极板与一个机板空间所构成。这些电路极板可为电路板的一部分,上面直接覆盖着一层绝缘层。电容式传感器也可以采用玻璃印刷电路技术植入车窗玻璃,并应用于后挡风玻璃的除雾器上。另外,电容式传感器不仅可以隐藏在曝晒印制图案的背面,还能够顺应各种曲面的弧度,广泛地应用于汽车的各种功能上。
图2:典型弛张振荡器拓扑
建构电容式界面的要素:
一组电容器;
电容量测电路系统;
从电容值转译成接口状态(switch state)的近端装置。
通常电容式传感器的电容值介于10pF~30pF之间。普遍来说,手指尖经由1mm绝缘层接触到接口所造成的耦合电容是介于1pF~2pF的范围。越厚的绝缘层所产生的耦合电容则愈低。若要感应手指的触碰,则必须建置能够侦测到1%以下电容变化的电容感测电路系统。
弛张振荡器(relaxation oscillator)是一种非常有效且易于使用的电容量测电路。一般常见拓扑如图2所示:
这个电路由以下四种元器件组成:
一组同步比较器(comparator)
一组电流源
一组放电开关(discharge switch)
一组电容式传感器。
最初,放电开关呈现开启的状态,此时全数的电流会流向传感器,造成传感器电压呈现直线上升的现象。此充电动作将持续至传感器电压达到比较器阀值为止。这时,比较器会从低电压转为高电压,进一步关闭放电开关。如此一来,电容式传感器便会快速经由低阻抗路径放电至地电位。当比较器输出电压从高转低时,整个电路周期则会重复进行。依据下列的方程式,输出频率(fout)与充电电流呈现正比的关系;与阀值电压和传感器电容则呈现反比的关系。因此借着量测输出频率,就可以得知传感器电容的大小:
假设充电电流为5μA,比较器阀值电压为1.3V,而传感器电容为30pF,则会产生128KHz的输出频率将。花在量测输出频率的时间越长,则可获得越高的频率分辨率。由于更高的频率分辨率会产生更佳的电容量测灵敏度,因此增加量测时间也会相对的提高电容量测分辨率。而设计业者可分别依据不同的应用层面、传感器尺寸与覆盖绝缘体厚度等因素,调整量测电容的时间。
由上列的方程式,可以近一步推衍出下列电容方程式:
因此,显然地我们还必须有输出频率周期的量测机制。图3分别显示周期量测方式的示意图与波形图。
图3:周期量测方式示意图
弛张振荡器的输出频率在此代表脉冲宽度调变器(pulse width modulator, PWM)的频率。PWM的输出波形由低频率与高频率两种脉波构成,频率的实际值端视不同应用而定。PWM输出信号则用来当成计数器(counter)闸门(gate)的信号。当此信号为高电位时,计数器会以fref的频率累积其数值,并于闸门信号下缘(falling edge)产生中断的情况,此时则可进行读取或是重设计数器数值的动作。之前曾假设充电电流为5μA,比较器阀值电压为1.3V,而传感器电容为30pF,则会产生128KHz的输出频率。假设计数器的参考频率为6MHz,则计数器在一个周期中所累积数值为46,两个周期为93,而十个周期的计数器数值则为468。由此可知,计数器累积数值越多,产生的分辨率或是灵敏度也就会越高。设计业者可运用下列方法获得更高的计数值:
提高计数器参考频率
降低振荡器频率
增加闸门信号的周期次数
电容式接口传感器采用可变更组态的混合信号数组(configurable mixed signal array),为设计业者提供一套具备成本优势的解决方案,请参考图4所示:
图4:Cypress 可变更组态混合信号数组CY8C21x34的示意图
Cypress 可变更组态混合信号数组CY8C21x34器件不仅内含建置弛张振荡器所需的可变更组态模拟区块,还具备作为建置周期量测装置用的数字区块。更重要的是,此器件还额外内建一组I/O模拟多任务器。多任务器的每一组针脚都具备一个开关器,可直接连结到模拟总线上。I/O模拟多任务器是一套大型的交叉式开关(cross-switch),能够让每一组针脚直接连结到控制系统上的模拟数组。此外,可编程电流源与放电开关也可直接与总线连结。这套内含多功能的可变更组态混合信号数组器件,可让28个I/O针脚中的任何一个都能被当成电容式传感器的输入端使用。图5显示完整的电容式感测系统。
图5:Cypress推出型号为CY8C21x34的可变更组态混合信号数组
当指尖同时放在两组并列的电容式传感器之间时,两组传感器很有可能皆会感测到指尖的碰触。因此,设计业者可利用这样的原理,近一步研发近似模拟的指尖位置感测装置。
滑杆(slider)是由多个邻近的传感器所组成,在这样的设计模式下,指尖接触的范围可以同时影响到多个传感器。因此,受影响传感器的电容值变化可用来计算质心(center of mass)与形心(centroid)。而计算出来的数值可精确的显示指尖所在位置。图6显示滑杆的构成。
图6:滑杆是由多个邻近的传感器所组成
如要达到多个传感器同时感测出指尖碰触的目的,设计人员在滑杆的设计上就必须考虑到传感器的形状。
恒速行驶操纵装置(cruise control)为滑杆的应用之一。举例来说,我们在里程计速度值上放置一排透明的电容式传感器,只要在55与60两个数值之间轻轻的点一下,即可将行车时速设定为57 mph。此外,内建电容式触控传感器的滑杆也可应用在车灯、音响音量控制等任何测量用的应用装置上。
随着车用自动控制仪表板的设计日趋复杂,要将所有的控制钮建置在其有限的空间中也变得更困难。由于许多车种的方向盘内都已装设安全气囊,当安全气囊迅速膨胀时,可没有人希望被一大堆机械器件砸在身上,因此,一般的汽车设计业者都会避免在方向盘的表面上装置控制钮。然而,电容式传感器只是被电镀在安全气囊盖后方的电路极板,并没有任何机械元器件。若是镀装有困难,也可以超薄电路板(flex circuit) 取代,并以镶嵌的方式装置在安全气囊盖后方。
车窗是另一项电容式触控技术尚未触及的领域。您是否想过直接把车窗除雾器的控制接口直接建置在车窗上?也许现在已经有设计业者将雨刷控制器直接安装在挡风玻璃上了。也许未来设计人员会在位于门把上方的玻璃上加装触控式数字控锁接口,车主只需要在车窗的传感器上输入正确的密码,便可控制汽车门锁。设计业者只要采用玻璃印刷电路技术或印制技术,就可将这类的电容式传感器建置在物体的表面。设计人员不仅可将这些传感器设计成常见的按键形式,也可自由发挥创意,将传感器以品牌或是车款名称,加装在车窗上(如图7所示)。
或许公司的营销人员会对图7这样的设计建议表示关切,因为消费者可能会质疑当他们摇下车窗时,是否仍能顺利的打开车门?
中图分类号:G712文献标识码:A文章编号:1672-3791(2012)02(c)-0000-00
0引言
传感器原理及应用是高职院校机电一体化专业的专业课程,主要研究机电控制系统中传感器的应用,根据课程性质,该课程在理清传感器工作原理的基础上,偏重其工业应用,由于目前我院机电专业学生能力参差不齐,对偏重理论的传感器原理理解难度较大,导致对其工业应用把握不住,针对这一情况,我院传感器检测技术课程组老师改变了原有老师讲解为主的传统教学方法,在课堂让学生思维充分动起来,从而使学生从要我学转变为我要学,本为以电容式传感器的课堂教学为例,对偏重工作原理部分内容的课堂设计进行了探索。
1 课程分析
课堂设计首先基于对课程的分析和合理的把握。根据机电专业学生将来的职业岗位进行分析。其将来面临的职业岗位主要有机电设备装配与调试、机电设备维护与维修等。而在任何的机电设备中无疑都有控制系统,传感检测技术作为控制系统的重要环节,是机电专业学生必须掌握的重要技术,所以,传感器课程在机电专业的课程体系设计中,是一门重要的专业课程。
2 学情分析
对于不同的授课对象,理应采用不同的授课方法及手段。本课程的授课对象为高职机电专业学生。根据高职学生的特点分析,学生具有以下特点:学生的学习主动性较差,对理论性过强的知识点理解会存在一定困难;但这些学生喜欢动手,喜欢探索实际应用性的问题,具有较强的挑战性和竞争意识。
3对教材的分析及使用
传感器本身是一门应用性较强的课程,学习的目的就是为了能在实际的机电一体化系统中进行应用。所以,在授课过程中,以够用为尺度,教材仅仅作为参考,在每种传感器的学习过程中,充分利用多媒体资源,给学生展示传感器的实际应用场景,使理论知识在实际应用场合中慢慢渗入。
4 课程教学目标及重难点的把握
教学目标:使学生在理解传感器工作原理的基础上掌握其应用方法和注意事项等。那么,本次课的教学目标就是掌握电容式传感器的工作原理以及它的应用。
教学重点:学生通过本次课堂学习后,能够根据电容的定义式推知电容式传感器的工作原理;掌握电容式传感器的应用。
难点定位:通过分析,本次课的难点就在于它的应用,也就是它的应用功能与其他的传感器有何区别,它在实践中能够解决哪些实际问题。
5 教学过程
“行动导向教学”看似是要让大家都真正的“动”起来。但究其内涵,并非如此。本次课重点在电容式传感器的工作原理及应用,所以本次课对于行动导向教学的设计应该注重学生“思维上的行动”,在课堂上充分发挥学生的主观能动性,引导学生积极思维,从思想上行动起来,把课堂变成老师和学生共同学习,解决问题的场所。
接下是对这堂课具体的过程设计。
(1)回顾总结
在新课之前,设置问题,用悬念引导对已有相关知识的回顾,并导入新课。
如:“要想检测位移,可以用哪些传感器进行检测?”这个问题学生会有很多的答案,因为位移的检测用前面学过的传感器都可以解决。
(2)导入新课
提出新的问题,并在幻灯片上用图片进行展示:指纹识别、汽车安全气囊、飞机油量检测、管道液位高度等等,这些问题用现有的知识能不能够解决?学生通过思考,发现用这些知识还不能够解决这些问题,所以,激发学习好奇心,开始新课的兴趣学习。
(3)书写标题,并顾名思义,化繁为简
在黑板上写下标题“电容式传感器”,并由“电容式”三个字的字面含意去猜测这种传感器的工作原理:设法将被测量的变化转换为电容量的变化。
(4)带着问题引导学生学习
由电容的定义式可知,电容大小决定于:两极板的正对面积、两极板的间距、极板间介电常数三个量。所以,得出结论:电容式传感器可以分为三种基本类型,变面积型、变极距型和变介电常数型。
(5)巧用动画,直观形象
对于每种类型的电容式传感器,提供幻灯片及动画演示,使学生能直观生动地认知学习,切实理解掌握传感器的工作原理。对于传感器中关于灵敏度和非线性误差的相关推导,由学生自己看书,只需得出结论,并知道解决矛盾的办法。总之,在课堂上要教师讲授和学生学习有效结合,提高学习的高效性。
(6)成果验收
以小组的形式基于该传感器设计一个简单的检测系统,小组进行汇报,同学及教师给予评价,以此给学生学习的压力及动力,促使其主动学习。
6 结语
根据高职教育特点,传统的教学模式已无法适应高职院校学生的特点及就业要求,因此,高职专业教师要不断的以就业为导向,实施行动导向的教学模式改革,以不断提高课堂教学的趣味性和有效性,使高职的教学质量上一个新台阶。
参考文献
[1] 姜大源. 关于工作过程系统化课程结构的理论基础[J].职教通讯,2006(1).
1 结构及检测原理
1.1 智能手机屏幕的结构
如图1,最上层为电路保护层,通常为透光性好的玻璃,最下方为LCD(Liquid Crystal Display)液晶显示屏,由于液晶显示屏工作时常产生噪音,故在液晶显示屏与感测层之间存在防干扰层,保护层与防干扰层之间为两个内容相同的核心感测层,这种感测层一般是由一种透明的导电材料制备的,比如真空淀积的锢锡氧化物(Indium-Tin-Oxide,ITO),感测层通过改变电容值用来响应手指的靠近,其中一层用来确定X方向的位置,另一层确定Y方向,两个感测层使得电路得到两个坐标,进而在二维平面上确定触碰点。
1.2 感测层(ITO)形状以及感测原理
1.2.1形状
如图2,菱形为ITO电极设计的一种常见图案,其最早见于1980年代初,菱形图案可对暴露在手指触摸区域下的电极表面进行优化,同时把X和Y方向电极轨迹的交叉面积降至最小。这些电极的密度越高,触摸的分辨率也越高。当采用菱形图案时,对角线长通常控制在 4 到 6 毫米。电极最终通过光刻、蚀刻工艺形成多个水平和垂直方向的感应电极和驱动电极。
1.2.2感测原理
通常使用交互电容法进行对触电的探测,交互电容法以行列之间的电极耦合为初始条件,当用户触摸屏幕表面时,自身的静电会影响这个耦合电容的值,如图3,当驱动某一行电极时,感应芯片会依次扫描每一根列电极,测出每根列电极与该行电极交叉点处的交互电容。通过计算交互电容的变化值就可以确定每一个手指触摸的精确位置。
2 感应区电容工作原理
电容式传感器实现触摸点定位的工作原理中最主要的是获得每个触摸点所独有的坐标,获得此坐标的方法被称为坐标定位法,从宏观角度分析,电容触摸屏可以等效为一个由电阻组成的电路,根据等效电路可以对电容触摸屏的原理进行分析。下面以坐标与电流信号之间的关系来阐述电容传感器捕捉触点坐标的原理。
对于一维平面触摸屏,通常有两种模式:一种是从四个边引出触摸电流,另一种是从四个角引出触摸电流,其中从四角引出触摸电流的方式,坐标定位的换算方式更为复杂。本文以从四边引出电流的模式为代表性的实例,简要介绍电路工作的情况。如图4所示。
其中矩形为整个电容屏的等效形状,中间相叠的环形为触点位置,整个平面的坐标系以I1、I3交点处为零坐标,I1、I2、I3、I4为四边检测到的电流值,在捕捉触点时,给电路一个高频电压源,四边的电流与X0坐标间的定位方程为:
X0=L1* ;
坐标值可以用电流值的比例来表示,这个结果容易让人联想到电流大小与坐标呈正比例的关系,这可以由等效电路来解释,如图5所示。
其中最上方的电阻丝为整个电容屏在X方向上的等效,T为触点,r1与r2分别为触点左右两边电阻丝的电阻值,i1、i2为电流,ε1、ε2为电源的电压,Z为人体电阻,根据此电路由戴维宁定理可得:
ε1+ i1r1+(i1+i2)z=0
ε2+i2r2+(i1+i2)z=0
两式相减,并由r2=R-r1,并取ε1=ε2
显然可以得到R与任意一个r之间的比例关系与电流的比例之间的对应关系即r1/R=i1(i1+i2),同时从硬件上又知道对于一个组成均匀的电阻丝来说,阻值与长度成正比即r/R=Xo/L故可得到:
Xo=L*i2/(i1+i2)
同理可得Yo,从两者的坐标算法可以看出,微观与宏观上是一致的,只需要在计算横坐标时在宏观上把坐标所在行看做微观中的电阻丝。
3 结束语
投射式电容屏传感器技术已经相当成熟,任何一个智能手机的开发人员选项中都有能使屏幕坐标可视的功能,人们可以看到智能手机屏幕工作的坐标。智能手机作为便携式设备深入到人们生活之中,有着巨大的发展前景。
参考文献
[1]Hal Philipp.触摸屏设计日益简化投射式电容触摸屏前景广阔[J].中国电子商情(基础电子),2009(09).
[3]陈松生.投射式电容触摸屏探究[D].江苏省:苏州大学,2011.
[4]李兵兵.电容式多点触摸技术的研究与实现[D].成都:电子科技大学,2011.
为减小附加误差,保证测试数据的可比性,两次测试均采用相同的标准器和测试设备。标准器为美国GE公司的精密冷镜式露点仪,露点测量范围为-60℃~40℃,测量误差为±0.01℃;测试设备为国产SYSD型一等标准双压法湿度发生器,其产生相对湿度的范围为10%~95%RH,最大允许误差为±1%RH。1.3测试方法测试中选取-30℃,-10℃和20℃3个温度点。-30℃时,选取20%、30%、40%、50%、75%、85%、95%7个湿度测试点。由于被试件技术指标不同,-10℃和20℃时,1#、2#、7#、8#被试件选取20%为低湿测试点,其余被试件选取15%测试点,其他测试点与-30℃时相同。每个温度点进行两个循环测试,每个湿度测试点有两对不同湿度变化趋势的数据。
2稳定性分析方法
本文利用误差年漂移量定量表征湿敏电容传感器的稳定性。文中定义误差的年漂移量为使用后各湿度测试点误差与使用前各湿度测试点误差的差值,其中湿度测试点误差为该测试点4次单次测量误差的平均值。为研究误差年漂移量的变化规律,文中分析了不同温度条件下,误差年漂移量的分布情况。讨论了室温(20℃)条件下误差年漂移量随湿度变化的规律以及同型号的两被试件之间的一致性。为确定各种因素对误差年漂移量的影响,文中采用方差分析法,分析了温度、湿度以及观测设备型号对误差年漂移量的影响,并给出了显著度。为检验现行湿敏电容传感器的检定周期是否合理,文中以中国气象局对湿敏电容传感器的要求为标准,对使用后静态测试中14支湿敏电容传感器的合格率进行了统计。
3稳定性分析结果
3.1误差年漂移量随温度变化情况测试时选取了-30℃,-10℃和20℃3个温度点,图1为各被试件在不同温度点误差年漂移量的箱形图,每个箱形的数据为7个湿度测试点的误差年漂移量。箱形图中,线段的最高点为最大值,最低点为最小值,箱形的上框线为上4分位值,下框线为下4分位值,箱内线为中位线,箱外“+”点为异常值。从图中可以看出,对大多数被试件来说,低温时中位线低,并且随着温度的降低,箱形和线段的长度增加,由此可知误差年漂移量在低温时较低,并且其分布随温度降低而变得分散。为定量表征误差年漂移量随温度的变化规律,文中计算了误差年漂移量的平均值和标准偏差。根据JJF1001-2011《通用计量术语及定义技术规范》的规定,当测量次数小于9次时,采用极差法计算标准偏差,如式(1):表2给出了各被试件在不同温度点时误差年漂移量的平均值和标准偏差。总体来看,各被试件在-30℃时误差年漂移量的区间为[-5.62,0.82],-10℃时为[-3.73,0.95],20℃时为[-1.85,1.07],其中置信因子k=1。
3.220℃时误差年漂移量的变化规律南京市年平均气温为15.4℃,因此分析20℃时误差的漂移情况具有更重要的意义。为了便于分析不同型号的被试件的误差漂移情况,按照观测设备型号将14套被试件分为8组,图2给出了20℃时8种型号的观测设备湿度测量误差的年漂移量。从误差年漂移量曲线的变化趋势来看,在全量程不同测量段,误差年漂移量有很大的差异。除I、IV型观测设备图2中(a)和(d)外,其余被试件误差的年漂移量随湿度的升高向y轴负向移动。在低湿点(≤40%RH),各被试件误差年漂移量的平均值为-0.04%RH,在高湿点(>80%RH),误差年漂移量的平均值为-1.04%RH。从图2(a)~(f)中两条曲线的关系来看,II、III、V、VI型观测设备(图2中(b)、(c)、(e)、(f))的两套被试件之间的误差年漂移量具有较好的一致性,两被试件间误差年漂移量的差值平均为0.5%RH。IV型观测设备的两套被试件除50%RH测试点存在1.81%RH的差异外,其余测试点误差年漂移量具有较好的一致性。I型观测设备的两套被试件一致性较差,两被试件间误差年漂移量曲线近似平行,其差值平均为3.2%RH。
3.3误差年漂移量影响因素的方差分析事件的发生往往与多个因素有关,但各个因素对事件发生的影响可能是不同的。所谓方差分析就是利用试验观测值总偏差的可分解性,将不同因素所引起的偏差与试验误差分解开,以确定不同因素的影响程度[6]。文中对测试点温度、测试点湿度、观测设备型号进行3因素方差检验,得出3个因素及其交互作用对误差年漂移量的影响。为确定结果是否是“统计上显著的”,需要确定α值[7],文中规定当α值小于0.01时,结果是显著的。表3为多因子方差分析表,可以看出,温度、观测设备型号以及温度和湿度交互作用的α值均小于0.01,表明温度、温度和湿度的交互作用以及厂家的设计制造水平对误差年漂移量有显著影响。
3.4湿敏电容传感器检定周期合理性分析为保证气象资料的准确性和连续性,要求气象仪器具有较好的稳定性。因此气象仪器必须进行周期检定以保障其准确性和气象资料的可靠性,其中被试仪器的检定周期则取决于它的稳定性。中国气象局对湿度测量最大允许误差为±4%RH(≤80%RH),±8%RH(>80%RH)。参加试验的14套被试件经过一年的动态比对试验,使用后的静态测试中有3套被试件仍符合技术指标要求,11套被试件不符合要求,不合格率为78.6%。仪器特性漂移产生的误差可以通过检定给出修正值予以解决,试行的GJB1758.26A《军用气象仪器检定规程第26部分:地面气象自动观测仪》中规定湿敏电容传感器的检定周期为1年。根据本文研究结果可以看出,经过一年的使用,超过3/4的传感器不能满足技术要求。为保证湿敏电容传感器的测量准确度,德国科学工作者建议几周校准一次[8],我国也建议应每半年采用两种饱和盐溶液对湿敏电容传感器进行两点调校。
中图分类号TP39 文献标识码A 文章编号 1674-6708(2013)100-0209-02
光电传感器因其灵敏轻便等优势而被广泛应用于自动化设备检测装置中。20世纪80年代,美国军事领域开始应用光电传感器信息融合技术;2013年3月15日,美国国防先期计划研究局(DARPA)公布了在阿灵顿召开的已进入第二阶段的MIST-LR项目会议,指出在未来的第三阶段,将开发出能够提升飞行器性能的原型系统传感器,极大发挥其在民用和军事两个方面的助推器作用。
1 应用必要
第一,光电传感器获取信息的过程实际是一个多对一的对应抽样过程,在将客观世界空间的信息传输至传感器这一过程中信息丢失的问题难以避免;第二,军事领域中光电传感器的数量庞大,急需处理的信息量也繁多冗杂,这些都会给人工处理带来一定困扰,而光电传感器信息融合技术的应用巧妙地解决了这一信息综合处理的难题;第三,应用环境决定了光电传感器性能发挥的好坏,但截至目前尚未有一个国家可以开发出适用于任何环境下且性能优于其他类型的光电传感器。
2 概念优点
光电传感器信息融合的过程正是为了完成目标分类、识别及跟踪等任务而进行信息自动分析综合处理的过程。军事领域中的目标识别及跟踪可以实现光电传感器目标属性中的监视功能,有利于精确定位与预估判决。我国航天技术的高速发展离不开当前最热门的技术之一——航天技术上光电传感器信息融合技术,它能够有效提高空间的分辨率和系统的可靠性,无疑成为我国GDP增长的“助推器”。
3 工作原理
光电传感器能够有效检测到光强度变化的情况并将光强度的变化转换为电信号的变化。通常情况下,光电传感器这种小型电子设备由三部分组成:发送器、接收器与检测电路。发送器负责向目标发射来源于发光二极管、激光二极管及红外射二极管等的光束,不间断发射出的光束经过像光圈、透镜这种光学元件后达到由光电二极管、光电三极管及光电池构成的接收器中,接收器接收到光束后会将其传输至能够过滤该信号是否有效并决定是否应用的检测电路。详细流程见下图所示。
需要强调的一点是发射板和光导纤维作为光电传感器结构元件的一种也独具特色。众所周知,三角形的结构最为稳定,因此由极细小的三角锥体反射材料组成的三角反射板是一种能保证光束可以准确无误地从反射板返回的发射装置,其结构极其稳固且具有极强的实用性。
4 应用领域
4.1研制抄表系统
为及时结算用户的电费,一般由电力部门派专门的抄表人员到有关用户处定期走家串户地查看、抄写设置在现场的电能表,通过人工读取、记录、计算和收费。这不仅浪费人力,而且还会因人工读取造成不必要的误差,给用户带来不必要的麻烦和损失,甚至会发生不法分子假冒抄表人员入室作案而影响社会治安。因此,无论是电力部门还是用户们均迫切要求改变当前的落后状态。随着微电子技术、传感器技术、计算机技术及现代通讯技术的发展,可以利用光电传感器来研制自动抄表系统。
电能表的铝盘受电涡流和磁场的作用下产生的转矩驱动而旋转,采用光电传感器则可将铝盘的转数转换成脉冲数。如在旋转的光亮的铝盘上局部涂黑,再配以反射式光电发射接收对管,则当铝盘旋转时在局部涂黑处便产生脉冲,并可将铝盘的转数采样转换为相应的脉冲数,并经光电耦合隔离电路,送至CPU的T0端口进行计数处理。采用光电耦合隔离器可以有效地防止干扰信号进入微机,再结合其它传输方式便可形成自动抄表系统。目前自动抄表系统没有大规模使用与当前的技术有莫大关系,这套技术还有很多需要改进之处,相信在未来几年随着技术的发展,自动抄表将在全国范围内实现。
4.2节能灯具设计
光敏传感器、红外传感器、颜色传感器已进入各种自控节能LED照明系统的设计方案之中,它们的自主控制、方便应用使得不少公共照明LED灯具和居家照明灯具实现智能化。光电传感器可以协助公共照明的LED灯具实现灯光的自动开启关闭,可以智能的感应人和车辆进出而自动开关灯光,可以智慧的控制LED灯光开启的时间和控制亮度,甚至按人类的意愿自动调整光线的色温,营造人类想要的光氛围。
4.2.1光敏传感器应用
光敏传感器中最简单的电子器件是光敏电阻,它能感应光线的明暗变化,输出微弱的电信号,通过简单电子线路放大处理,可以控制LED灯具的自动开关。对于远程的照明灯具,如街灯、庭院灯、草坪灯等都可经济而简单的实现节能自动控制。太阳能路灯本身是利用太阳光发电、储能的LED照明灯具,无需电网供电也就无需架设成本不菲的输电线路,因此使用光敏传感器可以实现极低成本、自动开启关闭的节能管理。
4.2.2红外传感器应用
红外热释电传感器(PIR)在LED照明中的应用已有近十年的历史。红外传感器的视角有限,需要搭配菲涅尔透镜才能扩大探测区,才能监视移动的热源(人或车)。菲涅尔透镜有两个作用:一是聚焦作用,将热释红外信号折射在PIR上;二是将探测区内分为若干个明区和暗区,使进入探测区的人能以温度变化的形式在PIR上产生变化的热释红外信号。
4.3航天技术应用
我国神舟十号发射成功后到与天宫一号的自动交会对接,2000多项航天技术成果移植国民经济成为经济发展“倍增器”,其中光电传感器技术发挥了重要作用。神舟十号和天宫一号对接机构十分复杂,由上百个传感器、上千轴承组合而成。对接任务要求严丝合缝且不能漏气。另外考虑到飞行器在太空环境中失重要经历高低温的变化,因此必须保证对接时不出现故障。手控交会对接时要有精确的传感器测量设备,不断测量两个飞行器之间的距离、相对速度和姿态等,稍有差池后果不堪设想。最后对接时,要求轴向误差≤18cm。这些对航天员的身心都是极大的挑战,要求他们具有极高的眼手协调性、操作精细性和过硬的心理素质等。在交会对接的过程中,航天员需要紧盯电视图像,根据实时传输的数据让两个航天器一点点逼近,根据仔细计算决定速度变化方案完成交会对接,其中传感器起到决定性作用,为实现航天梦奠定最强基础。
4.4工业自动化装置
光电传感器具有非接触、响应快、性能可靠等特点,在工业上常用于非接触测量物位、距离和条码等信息,因此在工业自动化装置和机器人中获得广泛应用。随着现代检测技术的发展出现了很多新型的光电传感器,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。相关应用行业的系列产品如下:
1)光电式烟雾报警器。没有烟雾时,发光二极管发出的光线直线传播,光电三极管没有接收信号,没有输出;有烟雾时,发光二极管发出的光线被烟雾颗粒折射,使三极管接受到光线,有信号输出,发出报警。如今频遭吐槽的雾霾天气说明环境污染问题严重,而光电式烟雾报警器则可通过光在烟道里传输过程的变化检测到烟道中的烟尘浊度;2)点钞机的计数传感器。具有结构微型化、操作简便化、使用耐用型等特点的点钞机在我们的日常生活中应用频繁,其不光在金融机构中被大量使用,也逐渐成为一些大型企事业单位必备的办公用品,成就其的正是结构简单、响应速度快、精确度高的光电传感器。点钞机的技术传感器采用两组由一个红外发光二极管和一个接收红外光的光敏三极管组成的红外光电传感器,没有钞票时,接收管受光照导通而输出为0;有钞票时,接收管光通量不足而输出为1且产生一个脉冲信号,经检测电路输入至负责计数和显示的单片机。只有不断提升光电传感器的性能,才能满足商业经济和财务自动化日新月异变化而产生的高要求。
参考文献
[1]黄斌.基于多传感器信息融合的节能控制系统.测控技术,2013(4).
飞思卡尔推出的接近传感器系列产――MPR03x器件被优化设计为最适合管理具有两个电极(带中断IRQ功能)或三个电极(IRQ功能被禁用)的应用。由于其高灵敏度且带有一些经优化的特制功能,所以能适应各种应用场合。
MPR03x传感器最多可以管理3个触摸板电极,其中一个电极可选择作为中断输出负责向主机通告电极状态的变化。该中断输出与第3个电极输出进行复用,因此使用该中断输出将电极输入数减为2个。MPR03x传感器包括三级输入信号过滤,以检测由于触摸而引起的触摸板输入条件变化,不需要应用做任何算法处理。
所有MPR03x传感器都作为I2C从动器件操作,以高达400 kbit/s的数据速率,通过I2C双线接口发送和接收数据。双线接口使用串行数据线(SDA)和串行时钟线(SCL),实现主从器件之间的双向通信。主器件(通常是微控制器)发起MPR03x传感器的所有数据传输,同时生成同步数据传输的SCL时钟。
配置
MPR03x接近电容式触摸传感控制器拥有三级滤波器。第一级和第二级滤波器允许应用程序对输入信号进行调理,以防止意外状态变化。第一级滤波器过滤高频噪音,第二级滤波器过滤低频噪音,第三级滤波器可以配置为触摸信号基线的检测。
另外,各个电极具有的独立触摸和释放跳变阈值寄存器。这些滤波器还可以提供系统迟滞,具体说来,用户可以对每个电极单独进行触摸和释放阈值寄存器配置,防止任何电极在某个阈值内出现抖动。触摸阈值在电容增加时激活,释放阈值在电容朝基线回降时激活。
MPR03x器件的一个独特功能是拥有可设置的电容范围,因而一个器件可以覆盖各种不同的应用。由于电容测量是基于电荷充放的模式,所以提供的电荷总和是影响电容范围的唯一因素。在这种情况下、提供的电荷由电荷率(恒定电流)与充电时间共同决定。电流可以设为1~64μA,充电时间可以设为500ns-2μs,电压测量范围是0.7~2.0V,这样电容测量值的范围就是0.25~2900pF,只需修改两个参数,这个范围就足以涵盖从很大的电极到只有指尖大小的触摸按键。
MPR03x系列中MPR031(地址:0x4A)和MPR032(地址:0x4B)有不同的I2C设备地址。这意味着同一个I2C总线上可以使用两个有不同地址的部件,从而在同一个系统内就能够部署4~6个更多的电极。利用这一灵活性,根据应用系统的优化,MPR03x器件可以在经过配置后实现最大功能或能效。
MPR03x系列的应用
MPR03x系列电容式触摸传感控制器为触摸控制带来了很多过去根本不可能的新机会。总的来说,这类应用都具有下面的一个或多个特征:
1、外形小巧,通常是手持应用;
2、电池使用寿命特别长:
3、电子设计特别简单。
・蓝牙耳机――蓝牙耳机变得越来越小,因此对按钮的大小和位置有一定限制。使用触摸按键可以使设计变得更简单,用一两个简单的多功能按钮就能控制电源、配对和音量。对于空间更大的器件,可以用两个按钮完成这些任务、以实现更大的使用便利性。由于尺寸限制和电池很小,使得蓝牙耳机成为MPR03x低功率传感控制器的理想应用。
・桌灯――使用简单金属触点开关(带触摸激活功能)的桌灯已经上市多年了。但如果使用MPR03x,则可以实现更精确的控制,包括灯光调暗、开/关控制,甚至家庭自动化智能等。使用更智能的传感器,将为现代家庭的更多电器带来更简单、更直观的界面。
・瓶装水饮水机――不用摆弄标准瓶装水饮水机上的塑料把手,轻轻触摸一下电容式触摸传感器,饮水机就自动放水。举例来说,MPR03x系列可以分别控制冷水和热水出水的触摸按钮。
・遥控钥匙――遥控锁解决方案(RICE)有三个重要的设计注意事项:超低功耗、外形小巧及使用简便。尺寸为2×2mm2的小型MPR03x电容式触摸传感器就能解决所有这3个问题,而且它支持设计人员在钥匙的最终设计中,能够更好地集成上锁、开锁、后备箱开锁和紧急告警功能。
・带LED手电和激光教鞭的多功能笔――MPR03x系列外形小巧,足以集成到只有钢笔大小的应用中,从而在能源预算有限的情况下,在以电池为电源的应用中多增加一些功能。一个开/关按键可以既用来启动LED手电,给低光环境照明,也可以用作演讲时的激光教鞭,而不妨碍笔的纤巧设计。
・手表或闹钟――尺寸仅为2×2mm2的小型MPR03x电容式传感器非常适合于支持像腕表这样的表面空间有限的、器件上的多功能触摸按钮。该传感器的低功率特性还能够延长应用的电池使用寿命。相同传感器还能方便闹钟上的多功能触摸按钮的操作。对于闹钟来说,空间不是至关重要的,但低成本和低功耗仍是首要考虑的问题。
・计算机上的多媒体键――笔记本电脑有很多额外按键,来实现从无线网卡、演示模式到音量控制和基于硬件的DVD播放器等众多功能。MPR03x可以用来简化机械设计为简单的触摸按钮,让计算机呈现简约的现代外观。
・自动调温器――智能调温器被越来越多地用于更有效的气候控制。MPR03x电容式触摸传感器促进了能效更高、使用更便利的自动调温器设计,在一个更优雅的紧凑型设计中,它以触摸板替代机械按钮,来完成时间、温度和菜单选择。
・调光器――电容式触摸传感可以替代“一按即开”和“再按即关”的调光器开关,但这种开关很容易坏。而一个2×2mm2MPR03x电容式传感器能够同时支持两个触摸,其中一个用来调暗,另一个用来调亮,因而不需要移动部件就能切换光线亮度。
・DVD驱动器――这是一个很简单的应用,MPR03x电容式触摸传感器的外形小巧和功耗低特征允许设计人员使用一个可靠的触摸按钮就能打开或关闭光盘托架。
・网络摄像头――大部分网络摄像头都非常简单、紧凑,且价格便宜,无论是用于帧捕捉还是用于视频流。外形小巧、功耗低的MPR03x电容式触摸传感器可以作为一个启动/停止按钮,与网络摄像头集成,以降低复杂性,提高可靠性,保持开发成本和销售价格的低水平。
・飞机座位――对于像商业飞机座位这样的人流量大、容易违反操作流程的环境,触摸按钮尤其有效。经济、可靠的MPR03x电容式传感器可以用于音频/视频信道及音量控制接口。由于没有移动部件,可以最大限度地降低使用期内正常所需的维护。
中图分类号:TM451.2 文献标识码:A 文章编号:1006-8937(2013)14-0020-03
目前,智能电网技术快速发展,其已成为全球能源发展和变革中的重大研究课题,其中各类电信号的测量技术及其传感器是实现智能电网监测、控制、分析和决策的基础,也是智能电网发展的关键。电压互感器的准确性、可靠性、便利性和快速性是电能计量和继电保护、电力系统监测诊断、电力系统故障分析中的关键技术要求。
电磁式电压互感器(Potential Transformer,PT)和电容式电压互感器(Capacitive Voltage Transformer,CVT)在电力系统中广泛应用。虽然电网中普遍使用的电容式电压互感器和电磁式电流互感器的技术成熟,而且拥有长期的运行维护经验,但它们的测量线性度较差、瞬变响应速度较慢,且电磁式电流互感器的瞬态误差特性也不理想。
传统的电磁式电压互感器存重量大和体积大的特点,而且随着特超高压电网的发展,其绝缘强度要求难度越来越大,同时由于具有铁芯,可能导致发生铁磁谐振过电压和由铁磁饱和带来的动态范围变小等缺点,已经越来越不适应当前智能化电网的发展趋势。
与电磁式电压互感器相比,电容式电压互感器具有更多的优点,其分压结构可以提高互感器的动态范围,使其更容易提高绝缘强度。但该互感器不能够及时跟踪电压变化,不能满足继保系统中的要求,而且该互感器能够捕捉到高频的过电压波形,也不能满足电力系统故障诊断与在线监测要求,而电容式电压互感器中耦合电容、补偿电抗器以及中间变压器等内部储能元件构成的RLC电路会使得电容式互感器的暂态特性会变差,使得当一次系统发生如电压跌落故障时,电容式电压互感器的输出并不能立即跟随一次侧输入变化,并且在高频过电压下,二次侧输出可能发生由铁磁谐振导致的高频振荡,无法反映一次侧输入波形。在一些不易进行直接测量的场合,如对高压套管、被绝缘层包裹的变压器绕组接头处等进行测量时,电磁式电压互感器和电容式电压互感器的使用也具受到了限制。
1 D-dot传感器测量
3 结 语
D-dot传感器是一种电场耦合的传感器,工作原理上与通过传递能量实现测量的PT和CVT有所不同,可以实现无接触测量,其结构简单、具有较大的测量带宽和动态范围、能够抑制非线性负载的感应电压过冲,为克服上述问题提供了新的途径。但是传统的D-dot传感器由于传递函数限制与积分器、衰减器的使用,其工频与高频响应会存在幅值与相位误差的同时也存在传感器体积与绝缘强度之间的矛盾,限制了其作为电力互感器的使用。通过分析D-dot传感器的工作原理及其影响因素,指出一种通过差动输入和多重电极并联的方式被引入以使互感器工作于自积分模式,使其能够作为无接触式电子式电压互感器应用于电力系统电压测量领域,具有结构简单、便捷的特点,理论上分析其在额定电压范围内线性拟合较高,而且具有很高的动态范围,幅值与相位误差能够达到计量要求,能够快速反应暂态电压变化,是未来的发展方向。
参考文献:
[1] 任晓,方春恩,李伟,等.电阻分压式电子式电压互感器的研究[J].变压器,2010,(4).
[2] 方春恩,李伟,任晓,等.基于电阻分压器的10 kV电子式电压互感器的研制[J].西华大学学报(自然科学版),2010,(2).
[3] 胡晓倩,杨菁,张莲.电阻分压器的集中参数电路模型及分析[J].重庆工学院学报(自然科学版),2008,(7).
[4] 杨学昌,陈昌渔.精密冲击电阻分压器测量误差的计算分析[J].高电压技术,1987,(2).
[5] 林明星,邱红辉,段雄英,等.10 kV电压传感器的设计与误差分析[J].四川电力技术,2008,(S1).
[6] 牛海清,迟永久.10 kV级电阻型电子式电压互感器电场计算及参数设计[J].变压器,2004,(10).
[7] 周延龄,谭成.2000千伏压缩型电阻分压器及电阻分压器响应时间的测量[J].高电压技术,1981,(2).
[8] 梁志远.10 kV电子式互感器的应用[J].广东输电与变电技术,2008,(1).
触摸屏广泛应用于我们日常生活各个领域,如手机、媒体播放器、导航系统、数码相机、数码相框、PDA、游戏设备、显示器、电器控制、医疗设备等等。
通用的触摸屏包括适用于移动设备和消费电子产品的电阻式触摸屏和投射电容式(projected capacitive)触摸屏以及用于其他应用的表面电容式(surface capacitive)触摸屏、表面声波(SAW)触摸屏和红外线触摸屏。
电阻式触摸屏
应用比较多的电阻式触摸屏(图1)具有空气间隙和间隔层的两层ITO(Indium TinOxide,铟锡氧化物)。电阻式触摸屏是大量应用、经过验证、低成本的技术。其缺点是:薄弱的机械性能;堆叠厚,相对较为复杂;不能检测多个手指的动作;前面板实现方案易损坏;有限的工业设计选项;光学性能不良;需要用户校准。
投射电容式触摸屏
触摸屏的电容触摸控制采用一个用传导物质(如ITO)做涂层的表面来存储电荷。传导物质沿屏的X轴和Y轴传导电流。当传导(如手指)触摸时控制电场发生变化,而且可以确定沿水平轴和垂直轴触摸的位置。在带按键触摸位置的应用中,把分立的传感器放置在特定按键位置的下面,当传感器的电场扰时系统记录触摸和位置。投射电容式触摸屏示于图2。
投射电容式触摸屏比其他触摸屏技术的优势是:
・出色的信噪比;
・整个触摸屏表面具有高精度;
・能够支持多个触摸;
・通过“厚的”电介质材料进行感应;
・无需用户校准。
QTOUCh技术
QTouch技术是Atmel触摸技术部前身Quantum(量研科技)的专利。所开发的集成电路技术是基于电荷一传输电容式感测。QTouch IC检测用传感器芯片和简单按键电极之间单连接来检测触摸(图3)。QTouch器件对未知电容的感测电极充电到已知电位。电极通常是印刷电路板上的一块铜区域。在1个或多个电荷一传输周期后测量电荷,就可以确定感测板的电容。在触摸表面按手指,导致在该点影响电荷流的外部电容。这做为一个触摸记录。也可确定QTouch微控制器来检测手指的接近度,而不是绝对触摸。判断逻辑中的信号处理使QTouch健全和可靠。可以消除静电脉冲或瞬时无意识触摸或接近引起的假触发。
QTouch传感器可以驱动单按键或多按键。在用多按键时,可以为每个按键设置1个单独的灵敏电平。可以用不同大小和形状的按键来满足功能和审美要求。
QTouch技术可以采用两种模式:正常或“触摸”模式和高灵敏度或“接近”模式。用高灵敏电荷传输接近感测来检测末端用户接近的手指,用用户接口中断电子设备或电气装置来启动系统功能。
为了优异的电磁兼容,QTouch传感器采用扩频调制和稀疏、随机充电脉冲(脉冲之间具有长延迟)。单个脉冲可以比内部串脉冲间隔短5%以上。这种方法的优点是较低的交叉传感器干扰,降低了RF辐射和极化率,以及低功耗。
QTouch器件对于慢变化(由于老化或环境条件改变)具有自动漂移补偿。这些器件具有几十的动态范围,它们不需要线圈、振荡器、RF元件、专门缆线、RC网络或大量的分立元件。QTouch做为一个工程方案,它是简单、耐用、精巧的方案。
在几个触摸按键互相靠近时,接近的手指会导致多个按键的电容变化。Atmel专利的邻键抑制(AKS)采用迭代技术重复测量每个按键上的电容变化,比较结果和确定哪个按键是用户想要的。AKS抑制或忽略来自所有其他按键的信号,提供所选择按键的信号。这可防止对邻键的假触摸检测。
触摸屏系统设计