分析化学论文模板(10篇)

时间:2023-02-28 15:59:15

导言:作为写作爱好者,不可错过为您精心挑选的10篇分析化学论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

分析化学论文

篇1

其次,从教学模式来看,当前高职分析化学实验课仍然是教师讲解示范、学生听讲做笔记,然后根据教师的方法来依葫芦画瓢,再加上现有的论证性实验,“照本宣科”、毫无新意,不利于充分挖掘学生的主动性和创造性,导致学生难以激发对实验课程的兴趣。此外,在实验过程中,学生所分析的样品大多数为实验室提供的纯品,很少是学生实际采集的,实验缺乏主动性和积性,体会不到实验成功的兴奋与满足感,也体会不到分析实际样品的重要性和严肃性。

再次,从实验器材看,近几年来随着高职学校的大幅扩招,在校学生人数猛增,由于资金等条件的限制,实验仪器的购进量与学校学生增长量不成比例,学校实验仪器过少,远远不能满足学生的实验需要。同时,由于国家对高职学校经费投入不足,高校自身的筹资渠道狭窄,导致学校更新设备的资金能力严重不足。当前职校实验室配备的多数为传统的分析仪器,缺乏先进的、与企业行业实际使用一致的分析仪器,这导致在实验教学中学非所用,很难真正掌握生产一线所用仪器的使用方法。

二、提高高职分析化学实验课有效性的途径

1.优化分析化学实验教学课程及内容。

分析化学主要可分为结构分析和成分分析两个部分。其中,高职分析化学教学以成分分析为主,而成分分析又可以分为定性分析和定量分析。一般而言,定性分析实验内容比较繁琐,实验效率不高,且在某些内容上与无机化学实验内容有一定的重复。因此,相关人员可以对分析化学实验教学内容进行适当调整,将定性分析实验纳入无机化学元素化合物的实验教学内容之中。高职学校主要是为国家培养应用型人才,因此在分析化学实验教学内容上应进行适当改革,在实验内容安排上由浅入深循序渐进;从高职教育的实际目标出发,以实用为先、需求为准,加强实验内容的基础性、普及型和应用性,在保障学生操作规范的基础上逐步开展技能训练,从而切实提高学生的综合职业技能。

2.加快化学实验室建设。

分析化学实验课的教学手段和教学质量与化学实验室装备条件的是否先进有直接关系。当前,实验室建设已经成为衡量一所学校综合实力的重要标志之一,因此,学校应该加大对实验室建设的重视和投入。学校应该集中力量加大对气相色谱仪、液相色谱仪、原子吸收分光光度计、可见分光光度计、电子分析天平、精密酸度计等先进的分析检测仪器的购进,加快建设分析实验室、分析天平室等化学实验室,努力创建高水平、高质量的化学实验实力与实验条件,为提高分析化学实验教学质量创造积极平台。

3.改进教学手段和方法。

随着我国教学改革的不断深入,传统的教学模式已远远不能适应当前高职教育发展的需要,应当尽快进行改革。首先,要重视对学生的基础辅导。分析化学的实验课与理论课同样重要,要加强学生对理论知识和实验知识的学习,对一些基础较为薄弱的学生不仅要以补课方式加强个别辅导,还要加强检查和督促,防止学生出现编造数据和抄袭实验报告等情况。同时,高职院校为国家培养应用型人才的特点决定了高职分析化学实验课要更加注重学生的参与性,对学生的基本操作严格把关。分析化学实验课基本操作多、要求严、实验时间长,教师要从最基本的仪器洗涤及保养等基本操作开始,循序渐进,逐步培养学生的实验能力,保持严谨、细致、求真务实的实验作风。其次,要充分发挥学生的主动性和积极性。以往的分析实验课,学生大多只是按照教师的规定程序进行实验,缺乏主动实验的欲望。教师应该给予学生更多的发展空间,可以提出实验课题,由学生根据实验内容来自行设计实验步骤。如让学生检测市场上销售的钙片中的钙含量,学生即可查阅相关资料进行钙片溶解、试剂配制、滴定、实验结果分析等一系列步骤,不仅能够激发学生的实验探索欲望,还有助于提高其综合能力。

4.完善实验考核制度。

实验课与理论课不同,其成绩的计算应该采取综合评价的方式进行,包括平时表现、笔试和现场实验等多种考试形式,综合考虑学生的各项能力,注重考察学生运用所学知识解决实际问题的能力。对于成绩评定,平时的实验态度可占30%、笔试成绩可占20%,现场操作占50%。在现场操作考试中,要求学生能够在规定时间内独立完成,力求操作准确、数据精密,并结合计算机进行实验数据分析,使学生认识到数据的严肃性。若出现数据异常情况,则让学生积极找出原因并作分析解释。若学生不能在规定时间内完成,则必须进行补考,保证考试的合理公正。

5.加强教师队伍建设。

当前,高职分析化学实验课指导教师的素质偏低,应加大鼓励实验教师的进修和培训力度,提高他们的综合素质。同时,还可以有计划地聘请公司或企业实验能力强的教师来指导本校的实验课教学工作。此外,还可以聘请其他高校的教师来指导和从事本校的实验教学工作,充分为本校教师不断加强自身学习创造条件,促进学校实验教学整体水平的提高。

篇2

1)目前多数学生是独生子女,自我为中心的意识很强,他们渴望成功却又缺乏吃苦耐劳的精神,心里想学习却又不具备自我约束的能力;2)基础课程的上课方式多为同专业、甚至是不同专业的多个班级的合班课,学生人数较多,化学基础知识层次不齐,任课教师在课堂上很难做到照顾每一个学生的学习情况,再加上学时数的压缩,学生的学习效果直接面临一些困惑和难题:听课效果不好、抄作业现象常有发生、考试结果不尽如人意、无法与后续专业课程衔接等等;3)非化学专业学生对化学基础课的学习较被动,创新的主动性与积极性不强[3].以某高校园艺专业为例,在大一学年的第二学期,“分析化学”课程往往与英语及一些专业课程同时开课,相比而言,分析化学知识零碎,各类公式多,且抽象、难以理解,学生学习起来有枯燥无味之感,普遍反应记不住,因而缺乏兴趣,积极主动性不高,甚至出现畏惧心理;同时“重专业知识,轻基础知识”的现象也普遍存在.因此如何激发学生学习基础课的兴趣与主动性,最大程度地发挥他们的潜能,是摆在大学基础课教师面前的一个新课题.

1.2繁杂的课程内容

“分析化学”学科在整个学习阶段起着承上启下的作用.它由一系列分析方法所构成,主要包括化学分析法和仪器分析法,经典的化学分析法又可分为重量分析法和滴定分析法;仪器分析法主要有光学分析法、电化学分析法、色谱分析法等等,其中每一种分析方法因响应信号机制不同还可进一步细分.不同的分析方法具有不同的原理、条件、仪器、特点和适用范围等,既相互联系又各自成体系,涉及的知识很广,并且还在以日新月异的速度向前发展,各种新理论、新方法和新技术层出不穷.因此在这样的大背景下,如何在“分析化学”学科的教学中营造一种活跃思维、主动学习、充分体现学生主体地位的氛围,真正地提高课堂的教学效率,是每一位承担这门课程的教师值得思考和探讨的问题.

1.3机械的实验教学

在实验设计方面,简单的验证性实验多,综合设计的研究性实验较少[4],实验内容不能及时反映分析化学的发展现状与相关学科间的渗透交叉,并且多数实验都是在教师的“精心安排”下进行“照方抓药”,学生只需按部就班地跟着教材走就能完成实验,独立思考的机会不多,严重缺乏在方案设计、样品前处理及数据处理等方面的创造性锻炼.在实验授课方面,多数实验课程仍采用传统的“教师先讲解原理———学生接受,然后动手实验”的模式.教师“倾囊相授”,希望将所有的知识点都传授于学生,但与教师的教学热情相反,学生的积极性却往往不高,无动于衷,对实验内容的理解与设计基本依赖于教师的讲解,缺乏对未知知识的探求精神以及独立进行实践操作的能力.在实验操作方面,对于移液、称量等基本操作,虽然教师已详细讲解并演示,学生操作仍不规范,如在减量法称量时直接用手接触称量瓶,未用纸条和纸片;滴定时不注意观察标准溶液滴落点周围的颜色变化,却不时地抬头观察滴定管的读数;未进行半滴操作等.还有一些仪器较为精密、贵重,数量偏少,不能保证每个学生都能掌握所有实验细节,再加上操作步骤较多,一些学生怕操作不当得不到理想的数据,只简单做一些辅助的配合工作,甚至站在旁边“冷眼观看”,基本上是学无所获.综上所述,不难看出,目前“分析化学”实验教学相对比较机械.所以,如何建立新型的分析化学实验课程体系,采用新颖的教学方法,赋予学生更广阔、更自主的学习空间,使学生在知识和能力上获得双丰收,是一个巨大的挑战.

1.4单一的评价方式

多年来,“分析化学”课程的考核方式为期末闭卷考试这种单一的考核形式,课程最终成绩为期末考试的卷面成绩、实验成绩和平时成绩加权后的总评成绩.成绩高的学生可能是“临时抱佛脚”即考前几天突击复习的结果.这种考核方式虽然能较好地考察学生对“分析化学”课程基础知识的储备情况,却不能很好地反映出他们综合分析问题、解决问题的能力.因此,要使学生的创新能力、综合运用知识能力得到真正的提高,必须要建立一套科学的评价方式.

2“分析化学”课程教学改革的主要措施

2.1激发学生兴趣

美国教育家杜威指出:教育不是一件“告诉”和“被告诉”的事情,而是一个主动建设的过程.因此,在教学过程中应充分调动学生的积极性,激发他们的学习兴趣.为此,可采取在传统授课方式的基础上,增加图片、动画效果、视频等多样化的多媒体内容帮助学生理解晦涩难懂的理论内容,并注重与相关学科之间的衔接与联系,适时地把一些化学史、应用实例或社会热点问题引入课堂,使学生认识到理论源于实践,又能指导实践.对于食品类专业的学生,在讲解色谱分析法时,可介绍2008年我国发生的非法添加三聚氰胺的毒奶粉事件,进而向学生提出可用高效液相色谱法测定饲料和植物蛋白粉中的三聚氰胺,此外还可介绍引起社会广泛关注的二噁英、苏丹红、瘦肉精等食品安全事件及奥运会期间兴奋剂的检测;针对生物学专业的学生,在介绍绪论“分析化学”课程的重要性及应用性时,如果只是泛泛地说分析化学在生物医学领域有着非常重要的作用,学生其实并没有深刻的体会,这时可列举在生物大分子研究领域做出重大贡献而获得2002年诺贝尔化学奖的三位分析化学家约翰•芬恩、田中耕一和库尔特•维特里希,紧接着介绍分析化学在他们熟知的领域,如基因组学、蛋白质组学和代谢组学中发挥的重要作用.这种讲授方法不但会使学生进一步认识到“分析化学”课程在其所学专业的重要地位和作用,而且还能开拓他们的视野,最大程度地激发他们的求知欲和创新性,进而参与到分析化学的科研工作中来.另一方面,还应在现代教学理论的指导下,以“教师为主导、学生为主体,并凸显主体”为研究突破口,发挥学生主观能动性,把教师的“教”和学生的“学”统一起来,探索以学生为主体的教学模式,改变现在普遍存在的学生学得枯燥,教师教得艰难,大家都感到无所适从的局面,以达到在教学过程中,学生真正成为学习的主人,“快乐学习”、“学会学习”,最终达到提高人才培养质量的目标.例如,在教学实践中可采取学生参与的方式,先由教师提出分析任务,如水环境中As含量的测定、重要药物溶菌酶的测定[5]等,学生依据兴趣自由分组,先完成综述小论文,再由教师指导讨论各种分析方法的优缺点.这样,学生先是对这些分析任务产生浓厚兴趣,水环境中As的含量究竟是多少?国家标准允许的含量是多少?经常饮用超标水,会对当地人、畜产生怎样的不良后果?在此基础上,深刻认识到准确测定的重要性.通过查阅文献资料,了解到As的测定方法有滴定分析法、原子吸收光度法、电分析方法及紫外-可见吸收光谱法等,最后根据环境水样中As的含量范围及实验室现有的仪器资源,确定选用紫外-可见分光光度法.在此过程中,学生可将课堂中学到的分析方法的评价指标及各种分析方法的原理用于解决实际问题,逐步形成为达到分析目的而应采取的分析化学专业思维的方式和方法.

2.2优化教学内容

“分析化学”课程教材难度大、内容多、学时少,因此,教学改革首先要以优化教学内容为核心,重点突出专业性和实用性:

1)对课程内容进一步优化和精简,压缩同其他基础课程中相同或相近的内容,如氢离子浓度的计算等,这些在普通化学部分章节已经提到,可略讲甚至不讲,让学生自己去复习.

2)对于相似的知识点,应培养学生归纳、比较和触类旁通的能力.在滴定分析法中,可精讲酸碱滴定法,包括滴定分析法的共性(基本原理、滴定曲线、突跃范围及影响因素、指示剂、终点误差和应用等),然后通过对比和归纳手段,讲解配位滴定法和氧化还原滴定法;在讲授紫外-可见分光光度法时,可以给学生列举蛋白质含量测定的光度方法,如考马斯亮蓝染色法、双缩脲法(Biuret法),并将这些方法和之前学习的凯式定氮法相比较,使学生了解各种方法的优缺点.通过这样前后知识的贯通融合,达到了以点带面、以小见大、触类旁通的作用,不但大大节约了课时,也培养了学生自主学习的能力.

3)对于仪器分析内容,应把握教学重点,理清知识主线,突出方法间的联系与区别[6].仪器分析的主要内容实际上就是响应信号与被测物性质(与结构有关)、浓度之间的关系,教师应让学生彻底理解并掌握“利用峰位置可进行定性分析,峰高或峰面积可进行定量分析”这一基本规律.在三大类分析中(包括光谱分析、电分析和色谱分析),利用各自的峰位置可推断被测物的结构信息,而峰面积或峰高则可以反映被测物的含量或浓度信息.这种讲授方法会使学生对仪器分析知识有一整体性的认识,在此基础上再对不同方法进行比较.这样不仅可以收到较好的教学效果,还能帮助学生掌握学习知识的方法,最终达到双赢的目的.

4)将学科的前沿发展动态引入课堂教学.徐光宪院士指出,应把21世纪分析化学生龙活虎、立体多维的形象展示给学生,引起学生对该课程的极大兴趣.因此在实际教学中,应结合课程进度,适度地把学科最前沿的知识和最新的研究动态介绍给学生,注重知识面的补充和延伸.例如,在讲解分光光度法时,可引进现今发展最为迅速的碳纳米材料.碳材料的基本组成元素虽然相同,但由于这些元素的空间排布不同继而可形成不同的形态,有零维的碳点、一维的碳纳米管、二维的石墨烯等,不同的碳材料在紫外-可见光区域有不同的吸收峰,根据吸收峰(尤其是最大吸收波长)的位置可进行定性分析,区分不同的碳材料,根据吸光度的大小可进行定量分析,确定碳材料的浓度或含量.同时可利用透射电镜、原子力显微镜等进一步确定碳材料内部的精确结构,用共聚焦显微成像仪可观察其在细胞内的成像情况,为将其进一步应用在重大疾病的诊断和治疗方面提供理论依据.另外,对于现代分析化学中单细胞实时分析、单分子检测等前沿技术,可以专题的形式介绍给学生.最后,还可以让学生通过图书馆的网络资源(如中文的CNKI和英文的WebofScience)追踪相关领域的最新动态,这样不仅为课堂注入了新鲜血液,而且能激发学生探索科学的兴趣,有利于创新能力的培养.

2.3强化实验环节

“分析化学”是一门以实验为基础的学科,实验教学起着课堂教学不可替代的特殊作用,它不仅能使学生验证和巩固理论知识,而且能培养学生观察、分析和解决问题的能力,养成严谨、细致、实事求是的科学态度.因此,如何使学生的实验效率最大化,用“心”体会实验内容,一直是“分析化学”教育工作者长期以来不断追求的目标.最近几年,有关实验教学的改革如火如荼,笔者所在的学校也积极响应号召,针对“分析化学”实验教学进行改革.

1)在实验内容的安排上,保留具有代表性的经典实验,通过这些实验的练习,使学生规范地掌握基础实验的分析方法和操作要领.除此之外,增加一些与实际生活有紧密联系的综合设计性实验,内容的选择注重各专业的通用性,如食醋中总酸度的测定、日用卫生纸中荧光增白剂的检测,并让学生自行提供样品.这些实验很好地锻炼了学生在文献检索、实验方案设计、样品前处理、仪器操作及用计算机软件处理数据等方面的能力,大大地提高了学生的参与感和成就感,全方位地培养学生的化学素养.

2)在实验讲授和学生的操作训练方面,摒弃教师“一切包办”的理念和“老师讲,学生听”的单一模式.对于分析天平、滴定管等常规仪器,在课前预习的基础上,教师对每一项基本操作技能(包括操作规范、操作要点和技巧、注意事项及影响实验成败的关键因素等)边讲边示范,让学生先在感官上对基本操作技能有初步的印象,然后再通过大量的独立操作练习得以强化;对于一些涉及到精密贵重仪器的实验内容,可采用“虚拟实验”的方式,通过图片、视频等多媒体仿真动画教学,将仪器工作原理和实验过程通过三维虚拟动画的模式直观展现出来,教师要适时地对操作中可能出现的问题进行讲解与引导,尽可能提示操作可能出错的地方以及出错所导致的不良结果,增强学生的感性认识,减少实验中由于操作不当等造成的不必要的损失和浪费.

2.4科学评价学生成绩

要培养适应社会发展需要的多元化创新人才,必须要有科学的评价方式.基于此,要改变以“考试分数论英雄”的做法,强化对学习过程、学习能力的评价,构建多元评价体系.笔者在授课过程中均采用结构评分来组成课程的总成绩,即总成绩=平时成绩(10%)+实验成绩(30%)+期末考试成绩(60%)综合考察学生学习情况,其中平时成绩改变以往所用的点名或签到次数计算的方式,而是通过对学生在课前预习、随堂练习、课堂讨论及课后复习的总体表现来确定;实验成绩采用综合评定标准,包括预习报告、实验操作、实验报告、纪律清洁四部分,学生编造实验数据及结果的不良风气得以纠正.实践证明,这种成绩评定方式有利于调动学生学习的主动性,激发其学习热情,真实地反映了学生对“分析化学”课程“三基”知识的掌握情况,最终达到提高教学质量的目的.

篇3

2分析化学实验多元考核模式的建立

针对分析化学实验考核现状与存在的问题,我们提出在实验教学中采用和实施多元实验考核模式。主要考核学生动手能力和设计实验能力,平时考核、期末操作技能考核和设计型实验考核相结合,突出学生动手能力和设计实验能力,统筹考核实验过程与实验结果,集中反映学生掌握知识的全面性和综合能力。

2.1平时成绩考核为进一步加强学生实验过程管理,在平时的实验教学中我们采取多环节监控,包括检查预习报告、课堂提问、实验过程全程监督(实验态度、纪律和卫生等)及分析数据审核等。

2.1.1检查预习报告

我们对参加实验的学生都明确要求实验前必须进行预习,并写出预习报告,预习报告必须完整阐述实验原理,详细陈述实验步骤,准确表达相关图表,通过预习使学生能明确了解实验目的及要求,熟悉实验的知识点、重点和难点,提高学生实验的积极性。对不写预习报告或敷衍了事的学生,取消其进行实验的资格。

2.1.2课堂提问

课堂提问一般在讲解后进行,内容涉及实验原理、注意事项和有关知识的拓展等。依据学生回答问题是否积极主动、正确与否等情况评分,计入平时成绩。

2.1.3实验过程全程监督

学生开始实验后,由指导教师和实验员组成监督小组。对学生的实验情况进行全程监督。包括实验考勤、课堂纪律、动手能力、操作规范、实验质量、清洁卫生等方面进行评分。对学生的实验操作技能及分析解决问题的能力进行准确评价。

2.1.4实验数据审核

化学实验要求学生在实验中坚持实事求是,如实记录实验数据而不能随意臆造或修改,仔细观察实验现象;掌握实验方法,控制好相应测定实验条件,确定存疑数据。因此我们要求实验后实验数据必须由教师审核。数据考核主要从数据是否合理,数据记录是否规范,误差是否在允许范围以内等方面进行评分,对数据错误,误差较大的学生教师不予通过,要求学生须重做直至数据符合要求。通过对分析化学实验中误差分析及其数据处理,有助于培养和提高学生的观察能力和思维能力,激发学生学习积极性和主动性,培养学生独立思考能力,进而提高学生们的科研创新能力。

2.2期末操作技能考核

分析化学实验操作技能考核采取随机抽题并现场操作的方式,要求学生在规定的时间内完成操作考试,并当场提交结果和实验报告,由指导教师和实验员依据实验结果、现象和实验报告的完成情况现场评分。基本操作技能考核主要从学生滴定分析操作、天平操作、溶液的配制及转移等基本技能和反应条件的控制等方面进行考察。这种综合考核的形式能全面客观地评价学生实际操作能力、动手能力和基本实验技能,极大地增强了学习积极性和对实验的重视程度,培养了学生基本科学素养。

2.3设计型实验考核

设计型实验考核是学生已经接受了一个学期的基本实验训练后,掌握了实验基本操作及分析化学实验的基本知识与技能的基础上,由教师根据教学内容和教学要求进行命题。在考核前两周,由学生抽签确定设计型实验考核题。学生根据命题与指导教师进行沟通和探讨后,在规定的时间内查阅相关文献资料,运用所学的知识,独立思考,自行设计,写出实验方案。实验方案包括实验原理、操作步骤、实验条件等。实验所需材料由实验员准备。实验时,教师对学生对实验过程中的实验操作技能、解决问题的能力、实验方案的可行性、实验数据记录和结果处理,以及分析结果的正确表达和实验报告的书写等方面进行综合考评。以此培养学生的创新意识和创新能力,激发学生的学习兴趣和主动性,进而提高学生分析问题和解决问题的能力,强化学生查阅文献资料能力和科研协作能力,为毕业论文打下坚实基础。

3分析化学实验总评成绩评定方法及标准

新的考核模式中,分析化学实验成绩按“平时成绩(40%)+期末考核成绩(60%)”综合评定,期末考核成绩由期末操作技能考核成绩(30%)和设计型实验考核成绩(30%)两块组成。在新的实验考核模式中体现了考评体系更加注重学生能力的培养,基本动手能力、基本技能所占比例为60%。通过对各环节制定的评分标准综合评定,使分析化学实验评分体系实现科学化和定量化,体现了人性化和公平化。

篇4

2丰富教学资源,激发学生兴趣

高速发展的现代信息技术为分析化学的教学提供了丰富的教学资源,如网络、动画、多媒体等。鼓励学生充分利用Google、Baidu等搜索引擎查找学习资料,及时解决学习过程中遇到的疑难问题;充分利用多媒体课件图文并茂的特点,将教材中枯燥的理论、抽象的问题转换为生动形象的图形、文字、动画、视频等,使抽象的概念形象化、立体化,使枯燥的理论理解起来更形象、更直观,既可增强学生的感性认识,又能帮助学生理解那些抽象的问题,提高课堂效率。充分地、合理的利用这些资源既可弥补传统的教材、挂图及实物模型携带不方便的不足,又可活跃课堂气氛,激发学生学习兴趣,丰富课堂信息量,提高教学效果。例如在液相色谱法时,通过播放Flas演示,学生既可明了色谱仪各主要部件的作用,又可以清楚观察到液相色谱分析过程的产生,再结合教师的适当的讲解,必然加深学生对该法分离机制的理解。

3综合多种教学手段,提高教学效率

随着现代信息技术和多媒体技术的快速发展,多媒体教学已经在大多数高校普及使用。虽然,在教学过程中采用用动画、视频等多媒体手段,有助于学生对知识的理解记忆,激发学习兴趣,但传统的板书仍然有着现代教学媒体无法完全替代的优势。例如在计算公式的推导过程中,学生可跟着教师的书写记笔记,板书的过程也为学生提供了充分的思考时间。因此,在实际教学中,应将多媒体教学与传统的板书相结合,并灵活运用案例教学法、以问题为基础(PBL)的启发式教学法、课堂讲授与讨论,在线答疑等多种教学方法与手段开展教学活动,调动学生的学习积极性,不仅要向学生传授知识,更要培养学生掌握运用分析化学知识和技能解决实际问题的能力。

篇5

(一)碱基对的氧化现象SWNTs/POAO电极既具有较大的比表面积大的π电子体系及大量的活性电位特点,又具有导电聚合物地性能。因此,在SWNTs/POAO电极上,嘌呤碱基和嘧啶碱基的氧化电位都随着其结构环系上的取代基增多而产生反向移动,且氧化的峰电流会随着浓度增加而出现线性增长。由于嘌呤碱基是由嘧啶和咪唑酬和而成的环系,多π芳杂环系和缺π芳杂环系都在其结构中存在,所以鸟嘌呤(GUA)和腺嘌呤(ADE)容易发生氧化,且氧化电流较大;而嘧啶碱基结构中只有缺π芳杂环,致使其比嘌呤碱基的氧化电位较正,氧化电流较小。由上所述,可以得出嘧啶碱基电氧化反应的灵敏度比嘌呤碱基低的结论。

(二)嘌呤碱基氧化过程分析以ADE和GUA为研究对象,分别分析研究了其在不同电极的反应(见图2)。在图中可以发现,只有嘌呤碱基对的氧化电流峰,而没有还原峰,由此可以得知嘌呤碱基的电极反应是不可逆的过程。在图中还可以看出,ADE和GUA的氧化峰电流在GCE(玻碳电极)和POAO(聚吖啶橙电极)上基本相同且都较小;而在SWNTs修屎电极上比在GCE上有明显增加,这表明碳单壁纳米管增加了GCE电极的有效面积,且其自身带有的—COOH、—OH基团给电极提供了更多的反应点,催化了GUA、ADE的反应,峰电流明显增大。而在SWNTs/POAO电极上,嘌呤碱基的氧化电流增加更加明显。

二、DNA碱基与金属离子的相互作用

脱氧核糖核酸与金属离子的相互作用,主要有其对金属离子的吸附作用以及核糖核酸上特点结合点与金属离子发生配位作用。本文仅对DNA嘧啶碱基与汞、银离子的相互作用进行分析。

(一)汞离子与胸腺嘧啶的相互作用汞离子与DNA的相互作用在1952年时就已经被Katz发现,但其观点是汞离子与DNA链中的磷酸骨架发生了互相作用,到后来Thomas用紫外光谱证实汞离子是与DNA中的碱基发生作用。在这个发现之后,Katz于1963年又提出了T-Hg-T的假设,这个假设内容是汞离子与T碱基是以1:2的比例形成新配合物。近年来,日本人Ono等人通过溶解曲线、质谱以及核磁共振等手段进一步证实了T-Hg-T的假设[2]。由于有毒性是汞离子的具备的特点,利用DNA能够与汞离子结合发生反应的特性,可以来进行环境汞离子含量的检测。

(二)核糖核酸与胞嘧啶的相互作用银离子与胞嘧啶的相互作用是在2002年才由Tanaka小组开始研究,他们通过研究银离子与人工合成DNA双链(含有嘧啶(Pyridine)修饰碱基形成的P-P错配)发生特异性结合的现象,证实了银离子与嘧啶反应能够形成稳定的P-Ag-P结构。2008年,One小组提出了银离子可以与胞嘧啶形成稳定的C-Ag-C结构,并通过变温紫外的研究手段证实了银离子具有能够使错配的DNA双链更加稳定。根据银离子的这种特性,可以将其设计成分子信标,应用在医学诊断、生物工程研究等各个领域。

篇6

现代分析化学已成为使用和依赖于生物学、信息学、计算机学、物理学和数学等学科的一门“边缘学科”,涉及面广、内容多且抽象,例如在化学分析部分及电位法和永停滴定法主要包括定量分析,要求学生掌握化学平衡理论在分析化学中的具体表现和实际应用,与无机化学、物理化学中的溶液理论紧密联系起来,牢固树立“量”和“定量”的概念。仪器分析部分涉及定量、定性和结构分析,要求学生学会电化学分析、紫外、荧光、原子吸收分光光度和色谱分析中的定量分析方法,理解“量”与分析信号间的关系;有机化合物的结构与其光谱、质谱之间的关系及结构分析的基本方法。传统的教学方法是满堂灌,难以做到形象化,直观化。而多媒体教学中所用的课件采用多媒体编辑工具包括字处理软件、绘图软件、图像处理软件、动画制作软件、声音编辑软件以及视频编辑软件等把分析化学中一些抽象的理论特别是光谱分析部分,动态反映其过程,展现在学生面前的是生动,简易易懂的画面,能够启发学生的思考和解决问题的能力从而收到很好的教学效果。例如在讲授光谱分析仪器的主要部件及工作原理时,传统的方法让学生感觉到知识面和涉及面广,内容多,很难抓住侧重点,而且众多的理论方法难理解,甚至产生厌倦心理,而采用动画,能直观展示出仪器的图像及其工作原理,一方面节约时间给教师跟学生互动,更重要的是抽象的理论、技术直观化从而充分发挥学生的学习积极性,教师在有限的时间里给学生讲授更多的知识。

1.2多媒体教学信息量大、节约时间、提高教师的教学效率

采用传统教学方法很多内容难以在课堂上讲授。多媒体教学不仅能把知识更多、更快地传授给学生,还节约了时间,增加了容量,有效地提高课堂教学效率。与传统的教学方法相比,利用多媒体技术进行教学,授课老师可以在相同的教学时间内向学生讲授更多的内容。采用多媒体,可以简化教学程序,加快教学节奏,扩大教学规模,从而提高课堂教学效率。例如分析化学中包括化学分析和仪器分析两部分内容,化学分析是利用物质的化学反应及其计量关系确定被测物值的组成及其含量的分析方法。化学分析法历史悠久,是分析化学的基础。溶液四大平衡理论的建立使化学分析得以迅速发展,化学分析涉及到四大平衡理论多,所涉及到的内容包括高中化学以及无机化学课程,需要全面复习有关内容,而多媒体课件在这些方面显得尤其重要。

1.3提高实验教学质量

分析化学是一门实践性的科学,以解决实际问题为目的,因此,实验教学是分析化学教学的一个重要环节。如果在实验教学中,利用多媒体展示滴定管、容量瓶、移液管的使用以及标准溶液的配制等基本操作,对于学生独立完成实验有很大的帮助。在滴定分析实验中,大多数学生对终点时指示剂颜色的变化很难把握好,容易造成终点提前或滞后,给体积的测量带来误差。对此,课件在实验演示中,用动画的形式把每一实验步骤以及常见指示剂在终点时颜色变化形象地表现出来,使学生提前获得感性认识,避免由于操作不当产生误差。这种多媒体教学,既直观、生动,又能克服时间和空间的限制,达到传统实验教学方式难以实现的效果,从而可提高实验教学的质量。

2我校教师应用多媒体教学中存在的问题

2.1多媒体课件制作质量不高

部分教师在制作多媒体课件时不认真考虑教材情况和教学大纲内容,课件的内容安排、概念、思路不严谨,重点不突出,文字大小不规范,颜色不清楚,过分利用华丽的图片、声音、视频多媒体辅助工具造成多媒体课件与课程内容之间有偏差,最终导致多媒体课件质量严重降低,也有一些教师干脆网上直接复制课件,稍作处理后把它搬到课堂上试教。以原子吸收分光光度法为例,在制作课件时,应将图片、动画等直观性较强的内容作为课件的重点,因为此部分内容量大课时少,同时空心阴极灯的工作原理用文字表达学生很难理解,而用动画就可以达到很好的教学效果。

2.2教师讲课速度过快,学生难以消化吸收

多媒体课件的快速功能是众所周知的,就是因为快很容易导致学生的逆反心理,信息量大,很多时候学生没有时间完全读懂、分析、整合、储存教师所讲授的内容,跟不上教师的思路,学生难以消化吸收,这时很难调动学生主动学习,启发学生积极思维。分析化学是以无机化学、有机化学、数学、物理等课程为基础,运用无机化学、有机化学的基础理论、基本知识,要求学生正确理解分析化学的基本原理,而讲解基本原理时屏幕上的文字、公式的推导过程一晃而过,学生往往感觉既没有弄明白怎么回事,还不如自己看书,边看边想,更比不上老师在黑板上一步一步地边讲边推导,逐步理解。

2.3过度依赖多媒体,忽视了教师的重要地位

多媒体把声音、文本、图像等融为一体,形象、直观全方位的展示了教学内容,充分调动了学生学习的积极性,提高了教学密度,增加了单位时间内学生获得知识的容量,有利于提高教学效率。但是不管采用什么样的教学手段教师的主导地位起决定性的作用,有一些经验丰富的教师即使采用传统教学,能抓住重点,用生动语言牵动学生心理,学生喜欢跟着他的思路认真听讲,从而收到很好的课堂效果,但有一些教师过分依赖多媒体,丧失了课堂教学的灵活性,导致教学效果下滑,甚至导致教师的教学基本功下降。应将传统教学和多媒体教学紧密的融合在一起,以便达到最佳的教学效果,把握好两者的比例,一般各占一半为好。

2.4在多媒体教学中,板书作用逐渐消失

过分依赖多媒体,淡化板书的作用,影响教师的创造性、灵活性、积极性以及教师跟学生之间的互动,多媒体教学中教师只是一味地跟着课件走,一节课下来,没有在黑板上留下任何字迹,这样很难给学生留下较深的印象。

3对策

3.1多媒体课件制作质量不高问题

一是任课教师保持教书育人的优良传统,认真负责,高度重视,在教材的处理和PPT的制作方面狠下功夫,合理有效的运用多媒体辅助软件制作出高质量的多媒体课件,而不是采用简单地从网上复制课件或别人的课件稍加修饰后搬到课堂上教学生。二是学校重视采购一些符合教学情况的有些课件,经常组织教师学习和讨论如何制作高质量的多媒体课件。

3.2精心制作课件,保证课件质量

PowerPoint是一种利用计算机制作幻灯片进行交互演示电子展示软件,是集文字、图像、动画以及音效、音乐、摄像于一体的多媒体制作平台。利用PowerPoint制作分析化学课件无疑是对分析化学的课堂教学起到了积极的作用,但是制作课件要注重课件的效率,合理应用现有的多媒体资源和课程内容,有机的合成出精彩生动的课件,既突出中有突出趣味性,所以严格把关课件质量使得多媒体课件真正起到提高教学效果的作用。

3.3加强对多媒体教学的监督管理

为了进一步提高多媒体教学的水平和质量,学校督导组应建立完善的多媒体教学评价系统,完善多媒体教学软件立项制度、评奖制度。督导组还应经常采取听课、在学生中作调查、和任课教师交流研讨等方式来了解多媒体教学的效果,发现问题并及时调整和解决。每学年以学校或学院为单位组织教学课件比赛并鼓励教师积极参加全国性多媒体课件比赛,从而不断提高多媒体教学的质量。

篇7

学生通过实验这个环节,可以提高其动手能力、独立思考的能力、解决问题的能力以及实践能力等,为将来从事科研项目奠定了基础。然而,高校中的大多数学生进行实验的能力普遍较差,达不到探究性教学这一要求,主要因为学生们的实验操作能力较差,不能根据课堂所学的理论知识进行实际操作,遇到问题就束手无策,独立思考的能力较差。

1.2课程内容单一

如今的高校有机化学教学课程较单一,几乎所有学校的学生都学习相似的内容,同一高校的学生更是学习同样的教学书籍内容。所以,有机化学这门课程缺乏创新,选择性较差,综合能力差,知识的相互关联性有待加强,不能形成一个完善的有机化学课程群。因此,有些学生无法系统地掌握有机化学的理论知识,实践能力较差,从而无法解决实验过程中遇到的一些问题。

2.完善高校有有机分析化学教学的措施

2.1改善教学理念和方法

一方面,在高校有机化学教学中主要实施探究性的启发式教学。即教学者在有机化学教学中对学生进行诱导式教育,充分调动学生主动学习的能力和积极性。教师不能对学生进行大量灌输抽象的理论知识以及强迫学生背诵记忆,这会导致学生厌恶有机化学的学习,并且在实际操作中无法解决遇到的问题,不能正确、有效的学习这门课程。所以,这种探究性启发式的教学模式不仅能够开发学生主动学习有机化学的兴趣,提高学生自主学习的能力,而且提高了学生的学习效率,培养学生的思考能力,为以后更深层的学习奠定了坚实的而基础。另一方面,还应注重培养学生解决问题的能力。这就要求教学者要针对学生的具体实际情况,即学生掌握基本知识的水平、接受知识的能力、兴趣爱好等,进行适当地专业知识传授和实验指点,不仅是单纯领略到该专业知识,更重要的是提高学习的能力,走出误区,突破盲点,不仅提高了学生主动学习的能力和兴趣、加深对专业知识的理解能力和掌握能力,也提高了学生的独立思考能力和学习能力。

2.2注重科学素养教育

首先,在高校有机化学教学体系中应重视对新知识的更新、补充。更新是高校当今进行教学改革中十分重要、紧迫的一项任务,更新教学内容,使教学知识现代化,不仅要求教育思想方面的更新、改革,还要求对专业技术方面问题的研究和解决。高校中有机化学教学模式中一些内容的理论性比较强或是知识比较陈旧,内容比较抽象,不好理解。所以,应适当将近年相关专业知识的一些成就、创新引入有机化学教育课堂上,不仅充实了学生的课堂学习和对有机化学更深刻、形象地理解,而且使学生了解该专业的发展现状和具体应用,提高了学生对有机化学的理解深度,培养了学生的学习兴趣。其次,教学者应结合实际生活中的案例进行课堂教学,丰富课堂活动。有机化学知识的呈现与人们的生产生活息息相关,人们的生活环境中处处体现有机化学,如各种食品健康问题,都是进行化学处理从而危害人们的健康。所以,任课教师应根据实际生活中的各种实例来阐述相应的原理知识,强调有机化学专业学科的重要性,开拓学生的视野。并且相应进行化学实验,培养学生思考和解决问题的能力,进行实践从而处理遇到的问题,进行科学探究和知识创新等。

2.3完善专业课程体系

篇8

白芷根于200403采自江苏省盐城市洋马镇,经江苏省中国科学院植物研究所袁昌齐研究员鉴定,凭证标本现存放于江苏省中国科学院植物研究所标本馆内。

2提取与分离

白芷根(38kg)用95%的乙醇提取3次,合并提取液,减压浓缩至无醇味。提取液依次用石油醚、醋酸乙酯萃取,剩余部分为水部分。将水部分上样于D101大孔树脂柱,水-乙醇梯度洗脱,分为6个部分。其中50%洗脱部分分别进行硅胶柱层析,氯仿-甲醇(10∶1~7∶3)梯度洗脱,各流分采用薄层或高效液相检识,合并相类似组分,反复反相柱层析分离,凝胶纯化,得到6个化合物。

3结构鉴定

3.1化合物1

白色无定形粉末(冻干),mp170~172℃,[α]21.7D=-52.40(c=0.065甲醇:水=40:60),紫外灯365,254nm下均显示蓝绿色荧光。ESI-MSm/z:509[M+Na]+,示其分子量为486,结合1H-NMR,13C-NMR谱数据推断分子式为C21H26O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据详见表1。综合各谱数据及与文献[1]对照鉴定化合物为7-O-β-D-Apiofuranosyl-(16)-β-D-Glucopyranosyl-Scopoletin(xeroboside)。表1化合物1的1H-NMR,13C-NMR,HMQC及HMBC谱数据(略)

3.2化合物2

白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),紫外灯365nm及254nm下均显示蓝绿色荧光,ESI-MSm/z:495[M+Na]+,示其分子量为472,结合1H-NMR,13C-NMR谱数据推断分子式为C20H24O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据见表2。综合以上各谱数据及与已知文献[2]对照鉴定化合物为aesculetin-6-O-β-D-apiofuranosyl-(16)-O-β-D-glucopyranoside。

3.3化合物3白色无定形粉末(氯仿-甲醇),mp207℃,[α]21.7D=+47.75(c=0.07甲醇∶水=40∶60),紫外灯365,254nm下均显示蓝色荧光。ESI-MSm/z∶407[M+Na]+示其分子量为384,结合1H-NMR,13C-NMR谱数据推断分子式为C17H20O10。化合物的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据详见表3。综合各谱数据[3]鉴定化合物为tomenin。表2化合物2的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)表3化合物3的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)

3.4化合物4

白色无定形粉末(冻干),mp140~141℃,[α]19.4d=-52.30(c=0.06甲醇∶水=40∶60),紫外灯365及254nm下均显示蓝色荧光,结合1H-NMR,13C-NMR谱数据推断分子式为C16H18O9。1H-NMR(Pyridine-d5500MHz)δ:6.27(1H,d,J=9.5Hz,3-H),7.56(1H,d,J=9.5Hz,4-H),7.62(1H,s,5-H),6.90(1H,s,8-H),3.70(3H,s,OCH3),5.65(1H,d,J=7.1Hz,1-H-Glc)。综合以上数据及与已知文献[4]对照鉴定化合物为isoscopolin。

3.5化合物5

白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),ESI-MSm/z:455[M+Na]+,示其分子量为432,结合1H-NMR,13C-NMR谱数据推断分子式为C19H28O11。1H-NMR(Pyridine-d5500MHz)δ:7.07(2H,d,J=8.5Hz,3-H和5-H),7.19(2H,d,J=8.6Hz,2-H和6-H),2.96(2H,t,J=7.4Hz,β-H),4.34(1H,dd,J=7.5,11.2Hz,3''''a-α),3.88(1H,dd,J=7.4,11.2Hz,3''''a-α),4.82(1H,d,J=7.1Hz,1-H-Glc),5.75(1H,d,J=2.6Hz,1-H-Api)。13C-NMR(Pyridine-d5125MHz)δ:129.53(C-1),130.50(C-2),116.13(C-3),157.23(C-4),116.13(C-5),130.50(C-6),71.12(C-α),35.88(C-β),104.58(C-1-Glc),74.95(C-2-Glc),78.45(C-3-Glc),71.12(C-4-Glc),77.08(C-5-Glc),68.87(C-6-Glc),111.07(C-1-Api),77.74(C-2-Api),80.37(C-3-Api),75.00(C-4-Api),65.48(C-5-Api)。综合以上数据及与文献[5]对照鉴定化合物为OsmanthusideH。

4结果与讨论

前人从茜草科植物山石榴Xeromphisspinosa[1]以及Xeromphisobovata[6]中分到过此化合物1,故此次为首次从伞形科中分离得到。但化合物的熔点有文献[1]报道为238~234℃,有文献[2]报道为192~197℃,而本次实验测得的熔点为170~172℃,具体原因有待进一步确定。

前人从忍冬科植物Loniceragracilipes[3]中分得化合物2,但是只报道了1H-NMR,13C-NMR谱数据,且C-6和C-7的归属颠倒了。本文通过对其进行HSQC,HMBC等二维谱的研究,纠正了前人的错误,丰富了该化合物的波谱数据。

日本学者Hasegawa[3]最早从蔷薇科植物Prunustomentosa中分离得到化合物3,但没有报道核磁数据,以后未见此化合物的报道。本文完善了该化合物的核磁数据,并且用二维谱进行了全归属,丰富了该化合物的波谱数据,并首次报道了此化合物的旋光值。

化合物6在自然界植物中分布广泛,但在伞形科植物中此类化合物较少见。

【参考文献】

[1]S.P.Sati,D.C.Chaukiyal,O.P.Sati[J].JounalofNaturalProducts,1989,52(2):376.

[2]T.Iossifova,B.Vogler,I.Kostova.Escuside,anewcoumarin-secoiridoidfromFraxinusornusbark[J].Fitoterapia,2002,(73):386.

[3]Hasegawa,Masao.FlavonoidsofvariousPrunusspecies.X.WoodconstituentsofPrunustomentosa[J].ShokubutsugakuZasshi,1969,82(978):458.

[4]Komissarenko.N.F,Derkach.A.I,Komissarenko.A.N.CoumarinsofAesculushippocastanumL[J].FitochemistryRastitel''''nyeResursy,1994,30(3):53.

[5]Warashina.Tsutomu,Nagatani.Yoshimi,Noro,Tadataka.ConstituentsfromthebarkofTabebuiaimpetiginosa[J].ChemicalPharmaceuticalBulletin,2006,54(1):14.

篇9

Abstract:ObjectiveTostudythechemicalconstituentsfromLigusticumchuanxiongaimingatsearchingforbioactivenaturalproducts.MethodsAllcompoundswereisolatedandpurifiedbychromatographicmethods.Theirstructuresweredeterminedbyvariousspectralmethods.ResultsSixteencompoundswereisolatedfromLigusticumchuanxiongandtheirstructureswereidentifiedbymeansofspectroscopicanalysisas:sinapicacid(Ⅰ);βsistosterol(Ⅱ);Z6,8’,7,3’–diligustilide(Ⅲ);ferulicacid(Ⅳ);4hydroxy3butylphthalide(Ⅴ);pregnenolone(Ⅵ).ConclusionCompoundsⅠandⅥarefoundinLigusticumchuanxiongforthefirsttime.

Keywords:LigusticumchuanxiongHort.;Chemicalconstituents;Structureidentification

川芎为《中国药典》2005年版(Ⅰ部)收载品种,为伞形科植物川芎LigusticumchuanxiongHort.的干燥根茎,味辛、性温,归肝、胆、心包经,具有活血行气、祛风止痛的功效,常用于月经不调,经闭痛经,癥瘕腹痛,胸胁刺痛,跌扑肿痛,头痛,风湿痹痛[1]。川芎含有多种内酯类、生物碱类、酚类、以及挥发油类等多种化合物。

笔者对川芎进行了化学成分研究,从中分离得到了6个化合物,经鉴定为芥子酸(sinapicacid,Ⅰ)、β谷甾醇(βsistosterol,Ⅱ)、Z6,8’,7,3’二聚藁本内酯(Z6,8’,7,3’diligustilide,Ⅲ)、阿魏酸(ferulicacid,Ⅳ)、4-羟基3丁基苯酞(4hydroxy3butylphthalide,Ⅴ)、孕烯醇酮(pregnenolone,Ⅵ),其中化合物Ⅰ、Ⅵ为首次从该植物中分离得到。

1仪器与材料

X4熔点测定仪(温度未校正);BrukerAvance600型核磁共振仪(TMS为内标),测定溶剂为CDCl3;BioTOFQ型质谱仪;柱层析硅胶(200~300目):青岛海洋化工厂生产;川芎药材购自成都市五块石药材市场,经成都中医药大学炮制制剂教研室胡昌江教授鉴定为川芎LigusticumChuanxiongHort.的干燥根茎。

2提取分离

川芎粗粉(10kg),经乙醇回流提取,乙醇提取液减压浓缩至无醇味,氯仿萃取,回收氯仿,氯仿萃取物经硅胶(200~300目)柱层析,以石油醚醋酸乙酯混合溶剂进行梯度洗脱,TLC检查合并相似流份,各组分进行反复硅胶柱层析分离,先后得到6个化合物。

3结构鉴定

化合物Ⅰ:无色针状结晶,mp143~145℃,FeCl3反应呈阳性,显示其具有酚羟基。溴甲酚绿反应呈阳性,表明其具有羧基。1HNMR(CDCl3)δ:3.93(6H,d,J=18.24,OCH3),6.28(1H,d,J=9.48,H7),6.85(2H,d,J=4.44,H2,H6),7.61(1H,d,J=9.48,H8),参照文献[2],可确定该化合物Ⅰ为芥子酸(sinapicacid)。

化合物Ⅱ:无色针状结晶,mp137~139℃,LibermannBerchard反应呈阳性,提示分子中具有甾体母核,10%硫酸乙醇溶液显色为紫红色。1HNMR(CDCl3)数据与文献β谷甾醇标准图谱[3]一致,且与对照品β-谷甾醇的薄层具有相同的Rf值,与β谷甾醇对照品混合测熔点不下降,故鉴定化合物Ⅱ为β谷甾醇(βsistosterol)。

化合物Ⅲ:无色片状结晶,mp106~108℃,ESIMS给出分子量为380,结合元素分析确定分子式为C24H28O4,1H-NMR(CDCl3)δ:2.02(3H,m,H4),2.57(4H,m,H4),2.02(3H,m,H5),2.17(3H,m,H5),2.58(5H,m,H6),3.47(1H,d,J=7.24,H7),5.21(1H,t,J=7.8,H8),2.33(3H,m,H9),1.47(6H,m,H10),0.95(4H,t,J=7.6,H11),2.74(1H,m,H4’),2.45(1H,m,H5’),2.75(1H,m,H5’),5.93(1H,dt,J=9.6,4.1,H6’),6.17(1H,dt,J=9.6,1.8,H7’),2.94(1H,q,J=7.8,H8’),1.47(6H,m,H9’),1.14(3H,m,H10’),0.86(4H,t,J=7.6,H11’),ESIMS,1HNMR光谱数据与文献报道Z6,8’,7,3’-二聚藁本内酯相符[4]。故鉴定化合物Ⅲ为Z6,8’,7,3’二聚藁本内酯(Z6,8’,7,3’diligustilide)。

化合物Ⅳ:淡黄色针状结晶,mp174~176℃,溴甲酚绿反应呈阳性,表明其具有羧基。1HNMR(CDCL3)δ:3.94(3H,s,OCH3),6.30(1H,d,J=15.84,H3),6.93(1H,d,J=8.10,H8),7.11(1H,dd,J=8.22,1.8,H9),7.05(1H,d,J=1.92,H5),7.71(1H,d,J=15.84,H2),与阿魏酸光谱数据基本一致[4],且与对照品阿魏酸薄层具有相同的Rf值,故鉴定化合物Ⅳ为阿魏酸(ferulicacid)。

化合物Ⅴ:无色片状结晶,mp188~190℃,1HNMR(CDCl3)δ:5.55(1H,dd,J=7.98,3.06,H3),7.36(1H,t,J=7.65,H6),7.47(1H,d,J=7.62,H5),7.01(1H,d,J=7.92,H7),2.31,1.77(各1H,m,H8),1.39(4H,m,H9,H10),0.90(3H,t,J=7.08,H11),5.72(1H,s,4OH)。13CNMR(CDCl3)δ:170.7(C1),80.7(C3),136.1(C3a),150.4(C4),120.0(C5),130.6(C6),117.8(C7),128.5(C7a),32.4(C8),26.8(C9),22.4(C10),13.9(C11)。以上物理常数及光谱数据与文献报道4-羟基3丁基苯酞相符[4]。故鉴定化合物Ⅴ为4羟基3丁基苯酞(4hydroxy3butylphthalide)。

化合物Ⅵ:无色片状结晶,mp191193℃,1HNMR(CDCl3),13CNMR(CDCl3),二维谱数据与文献孕烯醇酮标准图谱[5]一致,且与对照品孕烯醇酮的薄层具有相同的Rf值,与对照品孕烯醇酮混合测熔点不下降,故确定化合物Ⅵ为孕烯醇酮(pregnenolone)。

【参考文献】

[1]国家药典委员会.中国药典,Ⅰ部[S].北京:化学工业出版社,2005:28.

[2]孙凯,李铣.南葶苈子的化学成分[J].沈阳药科大学学报,2003,20(6):419.

篇10

如果说一堂生动活泼的课对学生来说是一种愉快的享受,那么一堂呆板枯燥的课对学生而言则无疑是一种痛苦的精神折磨,学生只有在下课后才会感到如释负重,假如真是这样,即使资料再少,作业再少,“负”也未必能减下来。所以教师要注意课堂教学,要让每堂课都有新鲜感,使课堂气氛活跃,学生学得轻松愉快。对中学数学教师来说,可以从以下几个方面入手:

一创设愉快情景,使学生乐于学习

教学中,学生是主体,是内因;教师是主导,是外因。教师的教是为了学生的学。良好的课堂气氛\和谐的师生关系,能使教师愉快的教,学生专心的学。但在教学过程中经常会出现学生不注意听课,做小动作,瞌睡等情况。怎样处理才能保持良好的课堂气氛,和谐的师生关系呢?

1重视师生的感情交流,建立民主、平等的新型师生关系。教师对学生要倾注慈母般的爱,使他们振奋精神,愉快学习。

2当学生上课走神时不要批评,只用暗示,提醒或通过扼要提问使其注意力集中。

3遇到学生对答不上来或答错时,不要训斥、冷淡,应耐心启发,诱导并鼓励学生答对为止,帮助他们消除心理负担,进而解决学习中的困难。

4教师要坚持面向全体学生,创设成功的机会,促使学生知难而上,积极进取,在克服困难中体会成功的喜悦,增强学习数学的兴趣。

二大胆猜测,小心求证,激发学生探求知识的欲望。

数学家波利亚认为:教师不但要教学生严格演绎思维证明问题,而且要教学生学会猜测问题。他说:“数学家的创造性工作结果是论证推理,是证明,但证明又是由推理,猜想等非逻辑思维而发现。”所以他向教师呼吁:让我们教学生猜想吧!

如在教学“有理数的除法”时,教师先不进行直接教学,而是出几个除法算式“—10÷5=-10÷(-5)=10÷(-5)=

0÷(5-)=”

,让同学们猜一猜,这几个算式的结果各是多少,这样,大家的兴趣来了,课堂气氛十分热烈。对于种种答案,教师没有直接肯定或否定,而是因势利导,引入新课。大家你一言,我一语,各抒己见,集思广益,互相补充,最后学生出:“两数相除,同号得正,异号得负,并把绝对值相除。0除以任何不为0的数都得0”

.

三充分运用学习正迁移,达到“轻负担,高效率”的目的

1

注重强化新知识的生长点,形成迁移动势,使学生在学习新知时,思维处于积极主动、定向有序的兴奋状态之中。如在教学“绝对值”时,先复习“相反数”的几何意义,再教学“绝对值”的概念。|让学生想一想,怎样才能迅速地求出一个数的绝对值?有什么规律?由于学生急切地想知道其中的规律,在这样一种积极思考,主动探索的心理状态中,学生的能力得到。

2