时间:2023-01-31 15:23:52
导言:作为写作爱好者,不可错过为您精心挑选的10篇基因工程疫苗,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
[中图分类号]Q789-01 [文献标识码]A [文章编号]1009-5349(2014)11-0081-01
自Edward Jenne医生发明天花疫苗开始,已有几千种疫苗被开发出来,疫苗逐渐成为人类与疾病做斗争的重要武器之一。传统疫苗具有生产的成本高、疫苗中含强毒性致病物质、减毒株突变及部分疾病用传统的疫苗防治收效甚微等缺点。所以,研制更安全、更高效的疫苗十分必要。
DNA重组技术为新一代疫苗――基因工程疫苗的研制提供了全新的方法。基因工程疫苗是指应用DNA重组技术,通过基因组改造,降低病原微生物的致病性,提高免疫原性,进而达到防治传染病的目的。迄今为止,基因工程疫苗是最先进的疫苗,相比传统疫苗而言它有巨大的优势。
一、基因工程疫苗种类
应用基因工程技术开发的已经使用和正在研制的新型疫苗种类主要有基因工程亚单位疫苗、基因工程活载体疫苗、核酸疫苗、合成肽疫苗、转基因植物可食疫苗等。
(一)基因工程亚单位疫苗
该类疫苗仅包含病原体的抗原,不包含病原体的其他遗传信息。基因工程亚单位疫苗通过表达病毒的主要保护性抗原蛋白获得免疫原性,具有安全、便于规模化生产等优点。该类疫苗的制备步骤如下:①了解编码具有免疫原活性的抗原蛋白对应的基因信息。②从大肠埃希氏菌、酵母、转基因动植物等表达系统中选择最适表达载体。如:酵母表达系统已经大规模生产人用重组肝炎疫苗。基因工程亚单位疫苗可细分为:细菌性疾病、病毒性疾病和激素亚单位疫苗。
1.细菌性疾病亚单位疫苗
分离和鉴定致病菌主要免疫原和毒力因子是研究细菌性亚单位疫苗的基础,目前已研制出与炭疽、大肠杆菌病、牛布鲁氏菌病等对应的亚单位疫苗,均能对相应的疾病产生有效的保护作用。史百芬等发现RSVF蛋白亚单位疫苗(PFP-1)注射接种后接种者无呼吸道疾病加剧作用。
2.病毒性疾病亚单位疫苗
大多数病毒基因组已经被克隆和完全测序,因此病毒性亚单位疫苗的研制相对简单。现在病毒性疾病亚单位疫苗主要有口蹄疫、狂犬病、乙肝疫苗等。中国台湾省科学家研制的禽流感亚单位疫苗效力远比灭活疫苗高。祁贤等应用酵母系统表达生产鸡传染性腔上囊病病毒VP2亚单位疫苗,发现其可完全取代传统灭活疫苗。
3.激素亚单位疫苗
该疫苗是以生长抑制素为免疫原的一类疫苗。杜念兴等将大肠埃希氏菌中表达的生长抑制素基因与HbsAg基因融合,通过Vero细胞表达,结果发现表达产物具有良好的免疫原性。杜念兴等用SS基因疫苗免疫小鼠,发现口服型SS基因疫苗免疫小鼠后可在小肠表达HBsAg/SS融合蛋白,推测该基因疫苗刺激机体表达蛋白后能产生SS抗体。
(二)基因工程活载体疫苗
此类疫苗生产主要有两种方法,一是使非致病性微生物表达某种特定病原物的抗原决定簇基因,进而产生免疫原性,另一种是致病性微生物被修饰或去掉毒性基因,但仍保持免疫原性。活载体疫苗结合了活疫苗和死疫苗的共同优点,在免疫力上具有很大的优势,分复制性和基因突变活载体疫苗。
(三)核酸疫苗
核酸疫苗接种后,抗原合成、增加与病原自然感染十分相似;还具有免疫原性单一;易构建和制备,稳定性好,成本低廉,适于规模化生产等优点。
二、展望
疫苗开发具有安全性、有效性、价廉性、易推广性等特点。基因工程疫苗具有传统疫苗无可比拟的优点,是疫苗产品开发的主要方向。研制多联或多价疫苗是基因工程疫苗的主要发展方向。
【参考文献】
[1]李媛,金红,于康震,程浩.基因工程疫苗的研究进展[J].中国预防兽医学报,2000(S1).
[2]姜健,杨宝灵,李春斌.植物基因工程疫苗研究进展[J].大连民族学院学报,2004(1).
[3]王恩秀,陈伟华,杜念兴.生长抑素基因工程疫苗对大鼠生长及免疫的影响[J].中国兽医学报,2002(5).
[4]李轶女,胡英考,沈桂芳.转基因植物基因工程疫苗[J].生物技术通报,2002(2).
[5]史百芬.对RSV F蛋白亚单位疫苗(PFP-1)接种者的第二年监测:评价抗体持久性和可能的疾病加剧作用[J].国外医学・预防・诊断・治疗用生物制品分册,1995(1).
[6]刘学东,包振民,王志亮.禽流感病毒H5N1亚型基因工程疫苗设计、表达制备及动物实验研究[J].同济大学学报(医学版),2011(6).
[7]祁贤,汤奋扬,李亮等.新甲型H1N1(2009)流感病毒的早期分子特征[J].微生物学报,2010(4).
1 基因工程制药
基因工程制药开创了制药工业的新纪元,解决了过去不能生产或者不能经济生产的药物问题。现在,人类已经可以按照需要,通过基因工程生产出大量廉价优质的新药物和诊断试剂,诸如人生长激素、人的胰岛素、尿激酶、红细胞生成素、白细胞介素、干扰素、细胞集落刺激因子、表皮生长因子等。令人振奋的是,具有高度特异性和针对性的基因工程蛋白质多肽药物的问世,不仅改变了制药工业的产品结构,而且为治疗各种疾病如糖尿病、肾衰竭、肿瘤、侏儒症等提供了有效的药物。众所周知,医治侏儒症的良药是人生长激素,倘若从人的尸体中获取,治疗一个病人就需要600具尸体的脑下垂体才能获得足够的量;倘若运用基因工程生产,就可从每升基因工程菌液中得到2.4g。人们为此而石破天惊的兴奋!成本如此之低,又如此之高产,其巨大的经济效益和社会效益,由此可见。
2 基因工程抗病毒疫苗
为人类抵御病毒侵袭提供了用武之地。基因工程乙型肝炎疫苗、狂犬病疫苗、流行性出血热病毒疫苗、轮状病毒疫苗等应用于临床,提高了人类对各种病毒病的抵御能力。比如,乙型肝炎病毒疫苗的问世,使我国新生儿不再遭遇乙型肝炎病毒的侵袭,也降低了人群肝癌的发病率。又如,为治愈癌症正在研制的用单克隆抗体制成的“生物导弹”,就是按照人类的设计,把“生物导弹”发射出去,精确地命中癌细胞,并炸死癌细胞而不伤害健康的细胞。就单克隆细胞而言,单克隆细胞在肿癌的诊断检测、显示定位、监测病变、监测疗效等方面也有重要价值。人类还通过基因工程生产抵御各种病菌、血吸虫、虐原虫等疫苗,提高人体对各种传染病的免疫力。脱氧核糖核酸或者基因疫苗的问世,变革了机体的免疫方式。如今,人们翘首关注困扰人类的艾滋病病毒(人类免疫缺陷病毒)疫苗的早日问世。基因工程抗体技术的发展,为克服单克隆抗体生产细胞株在生产过程中的不稳定性,为生产大量高效抗病毒疫苗提供了先进的生产工艺。
3 基因工程治疗疾病
临床实践已经表明,基因治病已经变革了整个医学的预防和治疗领域。比如,不治之症——白痴病,用健康的基因更换或者矫正患者的有缺损的基因,就有可能根治这种疾病。现在已知的人类遗传疾病约有4000种,包括单基因缺陷和多基因综合征。运用基因工程技术或者基因打靶的手段,将病毒的基因杀灭,插入校正基因,得以治疗、校正和预防遗传疾病的目的。人类精心设计的基因工程操作,克服了不同个体甚至物种之间由于器官移植所产生的免疫排斥作用,实现人体之间的移植已获成功,成功的实体器官移植有肾、心、肝、胰、肺、肠,也有双器官和多器官的联合移植。而人体与动物之间的器官移植成为现实,临床应用已是指日可待的事了。脱氧核糖核酸化学合成的完善和自动化,脱氧核糖核酸扩增技术的优化,为合成基因“探针”,提高临床诊断的质量,是人类所殷切企盼的。基因治疗有两种途径,一是体细胞的基因治疗,二是生殖细胞的基因治疗。体细胞的基因治疗是将正常的遗传基因导入受精的卵细胞内,让这种遗传物质进入受精卵的基因组内,并随着受精卵分裂,分配到每一个子细胞中去,最终纠正未来个体的遗传缺陷。而生殖细胞的基因治疗是将人类设计的“目的基因”导入患有遗传病病人的生殖细胞内,此法操作技术异常复杂,又涉及伦理,缓行之理充足,故尚无人涉足。
中图分类号:94 文献标识码:B 文章编号:1009-9166(2009)02(c)-0069-02
一、医药生物技术
医药生物技术是生物技术首先取得突破,实现产业化的技术领域。在现代医药生物技术中,当前最活跃、应用最广泛的为基因工程技术和细胞工程技术,人们利用基因改造后的生物体可以制备大量的新的基因工程药物(所谓基因工程药物就是先确定对某种疾病有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因取出来,经过一系列基因操作,最后将该基因放入可以大量生产的受体细胞中去,这些受体细胞包括细菌、酵母菌、动物或动物细胞、植物或植物细胞,在受体细胞不断繁殖过程中,大规模生产具有预防和治疗这些疾病的蛋白质,即基因疫苗或药物),进而生产各种导向药物,各种特异性的免疫诊断试剂、核酸检测试剂、生物芯片等。基因工程药物已经走进人们的生活,利用基因治愈更多的疾病不再是一个奢望。
1、生物技术药品的生产。基因工程药品的生产,包括干扰素、白细胞介素、红细胞生成素、血小板生成素四个药品以及基因工程。利用基因工程、酶工程、发酵工程和蛋白质工程对传统医药产业进行技术改造,成为现代生物技术制药产业的包括维生素c、激素类药品和抗生素的生产以及氨基酸生产等。利用现代生物技术的提取、分离、纯化等下游技术使生化制剂升级换代。其中,乙肝疫苗形成了基因工程产品体系。它是基因工程药物对人类的贡献典例之一,以下将以此为例说明基因工程药物的应用:像其他蛋白质一样,乙肝表面抗原(HBSAg)的产生也受DNA调控。利用基因剪切技术,用一种“基因剪刀”将调控HBSAg的那段DNA剪裁下来,装到一个表达载体中,再把这种表达载体转移到受体细胞内,如大肠杆菌或酵母菌等;最后再通过这些大肠杆菌或酵母菌的快速繁殖,生产出大量我们所需要的HBSAg(乙肝疫苗)。过去,乙肝疫苗的来源,主要是从HBV携带者的血液中分离出来的HBSAg,这种血液是不安全的,可能混有其他病原体[其他型的肝炎病毒,特别是艾滋病病毒(HIV)的污染。此外,血液来源也是极有限的,使乙肝疫苗的供应犹如杯水车薪,远不能满足全国的需要。基因工程疫苗解决了这一难题。而且基因工程乙肝疫苗(酵母重组)与血源乙肝疫苗可互换使用。据临床报道,基因工程乙肝疫苗(酵母重组)能够成功地加强由血源乙肝疫苗激发的免疫反应,对一个曾经接受过血源乙肝疫苗的人,完全可以换用基因工程乙肝疫苗(酵母重组)来加强免疫。临床研究表明,人体对基因工程乙肝疫苗(酵母重组)有很好的耐受性,无严重副反应出现,表明基因工程乙肝疫苗(酵母重组)是非常安全的,在我国基因工程乙肝疫苗已使用1500万人份以上,如此大规模接种,尚未出现严重副反应报道。正是基于1996年我国已有能力生产大量的基因工程乙肝疫苗,我国才有信心遏制这一威胁人类健康最严重、流行最广泛的病种。大量临床资料表明:它是一种安全有效的制品,它的抗体阳转率在95%以上,母婴阻断率在85%以上,它能降低乙肝感染率、携带率,成为控制乙肝的一种重要手段。基因工程乙肝疫苗(酵母重组)因是一个新产品,有关免疫持久性试验仍在进行之中,从所观察5年资料看,可以保护5年,是否能保护更长时间仍需实验证实。科学研究表明:基因工程乙肝疫苗(酵母重组)可刺激人体产生免疫记忆反应,因此,长期受益是可能的。2、医药生物技术的带动作用。随着现代生物技术的应用,必然引起一些产业的发展。例如,随着医疗诊断水平的提高,酶诊断试剂和免疫诊断试剂的生产必然达到更高水平;海洋药物和中药的开发应用技术也会有所改进;保健品的生产也已显出强劲的势头。3、展望。人类基因组测序工作的完成,人们期待已久的人类基因密码的破译,会使我们对人的健康与疾病起因有更深入的认识,随之而来的将是更多的新防治药物的产生和新疗法的问世,为基因工程制药产业带来新的发展契机。然而,第一张人类基因组测序工作草图尚未弄清所有人类基因的功能,一旦人的基因产物(即活性蛋白质)被表达出来,将会有几千种具有特殊疗效的现代药物诞生。我们乐观地期待着这场新药革命的来临。
二、食品生物技术
食品生物技术就是通过生物技术手段,用生物程序、生产细胞或其代谢物质来制造食品,改进传统生产过程,以提高人类生活质的科学技术。生物技术在食品工业中的应用首先是在基因工程领域,即以DNA重组技术或克隆技术为手段,实现动物、植物、微生物等的基因转移或DNA重组,以改良食品原料或食品微生物。如利用基因工程改良食品加工的原料、改良微生物的菌种性能、生产酶制剂、生产保健食品的有效成分等。其次是在细胞工程的应用,即以细胞生物学的方法,按照人们预定的设计,有计划地改造遗传物质和细胞培养技术,包括细胞融合技术及动、植物大量控制性培养技术,以生产各种保健食品的有效成分、新型食品和食品添加剂。再次是在酶工程的应用。酶是活细胞产生的具有高度催化活性和高度专一性的生物催化剂,可应用于食品生产过程中物质的转化。继淀粉水解酶的品种配套和应用开拓取得显著成效以来,纤维素酶在果汁生产、果蔬生产、速溶茶生产、酱油酿造、制酒等食品工业中应用广泛。最后是在发酵工程的应用,即采用现酵设备,使经优选的细胞或经现代技术改造的菌株进行放大培养和控制性发酵,获得工业化生产预定的食品或食品的功能成分。还有一些功能性食品如高钙奶、蜂产品、螺旋藻、鱼油、多糖、大豆异黄酮、辅酶Q10等。
作为一项极富潜力和发展空间的新兴技术,生物技术在食品工业中的发展将会呈现出以下趋势:
1、大力开发食品添加剂新品种。目前,国际上对食品添加剂品质要求是:使食品更加天然、新鲜;追求食品的低脂肪、低胆固醇、低热量;增强食品贮藏过程中品质的稳定性;不用或少用化学合成的添加剂。因此,今后要从两个方面加大开发的力度,一是用生物法代替化学合成的食品添加剂,迫切需要开发的有保鲜剂、香精香料、防腐剂、天然色素等;二是要大力开发功能性食品添加剂,如具有免疫调节、延缓衰老、抗疲劳、耐缺氧、抗辐射、调节血脂、调整肠胃功能性组分。2、发展微生物保健食品微生物食品有着悠久的历史,酱油、食醋、饮料酒、蘑菇都等属于这个领域,它们与双歧杆菌饮料、酵母片剂、乳制品等微生物医疗保健品一样,有着巨大的发展潜力。微生物生产食品有着独有的特点,繁殖过程快,在一定的设备条件下可以大规模生产;要求的营养物质简单;食用菌的投入与产出比高出其它经济作物;易于实现产业化;可采用固体培养,也可实行液体培养,还可混菌培养;得到的菌体既可研制成产品,还可提取有效成分,用途极其广泛。3、转基因生物技术为农业、医学及食品等行业的腾飞注入了新的动力,直接加快了农业新品种的培育改良、各种疾病的防治、食品营养改善和生态环境管理。转基因技术的开发可以加速农业、林业和渔业的发展,提高农作物产量,进而通过未来基因食品解决发展中国家人民的饥饿以及营养不良等问题。现时最普遍的转基因食品是大豆及玉米,占总数量的八成。加上棉花、油菜加在一起达到99%,还有番茄,如抗黄瓜花叶病毒的番茄和一种晚熟的番茄;还有也是抗黄瓜花叶病毒矮牵牛的甜椒;另外,也有一些兽用的饲料添加剂和微生物的农用产品。其中食用油是其中比较大的一块。食用油业内人士指出,目前食用油中约有80%~90%为转基因食品,这是由于目前市场上占主导地位的调和油、大豆色拉油,大部分是采用含转基因的原材料制成的。消费者要在超市里买到一瓶非转基因大豆油并不容易。因为目前的大豆色拉油、调和油其主要原料都是进口转基因大豆。由于目前市场上还没有转基因的有花生、橄榄及葵花子,因此所有花生油、橄榄油及葵花子油都属于非转基因食品。一些产品,也可能与转基因有关,如饼干、即溶饮品及冲调食品,饮料和奶制品,啤酒,婴儿食品及奶粉,膨化食品与零食,糖果、果冻和巧克力、雪糕等。
食品生物技术如同一把双刃剑,有利也有弊。转基因食品是不是有利,取决于转什么基因,或者基因转到什么食品里。因此,政府应该采取积极措施,随时公开基因食品的研究成果,以足以博取信任的方式与公众进行沟通。总之,生物技术已深入到食品工业的各个环节,对食品工业的发展发挥越来越重要的作用。随着它的不断发展,必将给人们带来更丰富,更有利于健康,更富有营养的食品,并带动食品工业发生革命性变化。展望21世纪基因食品的发展,未来生物技术不仅有助于实现食品的多样化,而且有助于生产特定的营养保健食品,进而治病健身。
作者单位:中国药科大学
作者简介:童欣(1987年-),女,汉族,广东乐昌人,中国药科大学生科院2005级生物技术本科生
参考文献:
截至2003年,我国批准上市的基因工程药物和疫苗主要有重组人a-lb干扰素、重组人表皮因子(外用)、重组人红细胞生成素、重组链激素、重组人胰岛素、重组人生长激素、重组乙肝疫苗等。目前,全球最畅销的十几种基因药物在我国都能生产。
基因药物成为人类对付疾病的新锐,一般来说基因药物,都应有自己特有的作用靶点,或是人体组织、或是细胞膜、或是细胞浆中的某蛋白质和酶。通过这些作用点,药物能发挥最佳疗效。而现有的药物除了作用于治疗的目标点之外,还常常作用于其他部位,因此常常会带来很多的副作用。
基因工程制药将具有药物作用效果明确、作用机理清楚或作用专一、毒副作用小等优点。这些药物会使医生能像发射激光制导“导弹”那样使用药物,而不是盲目对疾病“开火”。
而且,基因工程制药不仅解决传统药物“头痛医头脚痛医脚”的治标问题,还将从基因的个性化角度配制药物,使疾病得到彻底根治,并同时带来制药产业的革命。
从提高人类生存质量角度看,基因工程制药目前主要瞄准一些重大的常见疾病,如艾滋病、癌症、糖尿病、抑郁症、心脏病、老年性痴呆症、中风、骨质疏松症等严重危害人类健康并流行范围较广的病症。
寻找新的药物作用靶点是今后新药研制开发的关键。而人类基因组学研究将为寻找新的药物作用点开辟广阔的前景,它最终揭示的人类基因中至少有几千个基因可作为药物的作用点。
基因工程制药产业发展迅速,得益于我国举世瞩目的基因技术研究实力。我国是唯一参与人类基因组研究的发展中国家,在参与人类基因组计划的美、英、日、中、法、德6个国家中,我国基因组测序能力已经超过法国和德国,名列第四。在6国16个基因组测序中心里,我国位居前十强。2000年完成了1%的人类基因组测序任务,2002年又独立完成了水稻基因组研究。如今又领衔国际人类肝脏蛋白质组研究,这些都是举世瞩目的成就。尤其近年来,在医学和生命科学的几大最前沿的领域,如组织器官工程、生物芯片、干细胞技术、克隆技术等方面也均处于世界先进水平。加上基因重组技术、DNA技术、基因化学技术的进步和发展等,这些都将为我国基因工程药物产业的发展奠定坚实的科学技术基础,将给基因工程药物产业带来深刻的变化和前所未有的发展机遇。
尽管国内基因工程制药企业现状不容乐观,我国生物技术产业与欧美发达国家相比虽有一定距离,但并非不可逾越,这个市场依然被业内人士十分看好。比如我国干扰素的实际消费量不足1亿,但市场潜力相当大,专家们估计能达到4亿―5亿支。尤其经过近10年的努力,我国已造就了若干个具有国际竞争力,甚至能跻身世界基因工程药物产业前列的中国本土上的龙头企业。所以尽管基因工程制药发展道路艰辛,但前景依然十分诱人。
1基因工程与基因板块前景分析
1.基因工程技术的发展与前瞻性,2000年6月26日,“人类基因组计划”成功绘制了人类生命的“天书”,人类的遗传密码基本被破译,标志着生物技术,特别是生命科学技术发展进入到一个新的阶段。人类基因组计划(HGP)与曼哈顿原子弹计划和阿波罗登月计划一起被称为二十世纪三大科学工程,它同时将贯穿于整个21世纪,被认为是21世纪最伟大的科学工程。早在20世纪上半叶,遗传学家就提出了“基因”概念,即基因是决定生物性状的遗传物质基础。特别是1953年沃森和克里克DNA双螺旋结构模型创立后,进一步从本质上证实基因是决定人类生、老、病、死和一切生命现象的物质基础。至70年代,DNA重组技术(也称基因工程或遗传工程技术)终获成功并付之应用,分离、克隆基因变为现实,不少遗传病的致病基因及其他一些疾病的相关基因和病毒致病基因陆陆续续被确定。所有这一切使人们似乎看到了攻克顽症的曙光,研究基因的热情空前高涨。
诺贝尔奖获得者杜伯克进一步提出了基因组研究模式,美国国会于1990年10月1日批准正式启动HGP,为期15年,政府投资30亿美元。人类基因组计划的目的是要破译出基因密码并将其序列化制成研究蓝本,从而对诊断病症和研究治疗提供巨大帮助。不久的将来我们不仅可以看到癌症、艾滋病等绝症被攻克;人类可以通过基因克隆复制器官和无性繁殖;基因诊断和改动技术可以使人类后代不再受遗传病的困扰;而且人类将进入药物个性化时代,人类的生命也将延长。正是由于这些新技术和新领域的不断出现和日新月异,人类在新世纪的生存和生活方式将发生重大变化。
其一、基因制药。在过去发现新药物作用靶点和受体是非常昂贵和漫长的,科学家只是依赖试错法来实现其药物研究和开发的目标。人类基因组研究计划完成后,科学家可以直接根据基因组研究成果确定靶位和受体设计药物。这将大大缩短药物研制时间和大大降低药物研制费用。
其二、基因诊断。人类基因组研究计划最直接和最容易产生效益的地方就是基因诊断。通过基因诊断可以解决遗传性疾病的黑洞,基因诊断能够在遗传病患者还未发现出任何症状之前,甚至还未出生的婴儿就能确诊。
其三、基因治疗。基因治疗被称为人类医疗史上的第四次革命,遗传学表明人类有6500种遗传性疾病是由单个基因缺陷引起的,而通过基因治疗置入相关基因将使人类的许多不治之症得以克服。
其四、基因克隆。是指把一个生物体中的遗传信息(DNA)转入另一个生物体内。利用基因克隆技术不仅可以培育出自然界不可能产生的新物种,而且可以培养带有人体基因的动植物作为“生物反应器”生产基因工程产品,还可制造用于人体脏器移植的器官,从而解决异体器官的排斥和供移植的人体器官来源不足的问题。现在动植物克隆已成为现代科技进步中最具有冲击力和争议性的事件,克隆羊和克隆猪的出现引发人类克隆自身的担忧,而植物克隆和大量转基因食物大规模出现引发了人们对于生物物种混乱和污染的担忧。但不可否认的是,植物克隆可以为人类食品来源开启广阔的空间,而动物克隆可以利用动物生产大量人类需要的基因药物和器官。
其五、基因芯片。由此可见,在21世纪谁能掌握人类自身,谁拥有基因专利越多,谁就在某种基因的商业运用和新药开发中居于领导地位,基因技术具有巨大商业价值和社会意义。
2中国基因工程产业的发展态势
1999年7月,我国在国际人类基因组注册,承担了其中1%的测序任务。我国人类基因组研究除完成3号染色体3000万个碱基对即1%的测序任务外,主要着重于疾病相关基因以及重要生物功能基因的结构和功能研究。我国近两年又在上海和北京相继成立了国家人类基因组南、北两个中心,这为大规模进行基因功能研究提供了可靠的保证。
基因技术革命是继工业革命、信息革命之后对人类社会产生深远影响的一场革命。它在基因制药、基因诊断、基因治疗等技术方面所取得的革命性成果,将极大地改变人类生命和生活的面貌。同时,基因技术所带来的商业价值无可估量,从事此类技术研究和开发企业的发展前景无疑十分广阔。基因工程产业除了众所周知的高投入、高回报、高技术、高风险外,还具有其它一些十分重要和鲜明的特点。基因工程产品的技术含量非常高,因此,基因工程产品的前期研究和开发投入非常高,国外新药的研究开发费用基本上占销售额的15%左右。而基因工程产品的直接生产成本却非常低,而且对生产的设备要求也不是很高,基因产品的这一特点意味着基因工程领域的进入壁垒并不存在于生产领域,而存在于该产业的上游,即研究开发这一环节,因此只有具备相当资金与技术实力的企业才能问津。基因工程产业不仅在投入上具有非常明显的阶段性,而且基因工程产品的创新期非常长,因为不仅产品的研究开发需要花费大量的时间和精力,而且对产品的审批也相当严格,所以一种基因工程产品完成创新阶段,从实验室到消费者手中要经过好几年时间。
由于基因工程产业的发展前景十分看好,因此一大批国内企业包括许多上市公司近年来纷纷涉足这一行业。自九十年代中期以来,我国已有300多家生物工程研究单位,200多家现代生物医药企业,50多家生物工程技术开发公司,上市公司中有30多家企业涉及生物制药。目前,基因工程药物、生物疫苗、生物诊断试剂三大类的基因产品均有国内企业参与生产。在这些产品的市场上,国内企业依靠低廉的价格和广阔的营销网络,已在与国外厂商的市场竞争中取得了优势地位。从行业分布上来看,国内上述几类基因工程产品的市场格局大致呈现如下的状况:
细胞因子类产品目前市场已处于饱和状态。受超额利润的诱惑,前两年已有太多的厂家介入该市场,仅EPO一项,光上市公司在生产的就有复星实业(600196)、哈医药(600664)、张江高科(600895)、等好几家,再加上国内非上市公司,目前共有十几家公司在生产EPO,年生产能力过剩超过了500万支。而血小板生长因子(TPO),由于国外的知识产权保护而未能为国内厂商所仿制,从而导致该产品被进口品所垄断。因此,如果不能形成新细胞因子的自主开发能力,对企业来说,该市场的拓展空间将非常有限。
重组类药物目前还处于实验室开发阶段。目前市场上的水蛭素、降钙素等产品是通过提取或化学合成,而不是利用基因工程技术的方法获得的。有许多院校和研究机构已在这方面取得了一定的进展,拿到了目的基因并在实验室构建了表达载体,但在表达量及分离纯化方面还有待突破。可见部分重组类药物的产业化生产已不再遥远,国内在这方面与国外的差距还不算大,是一个大有可为的新领域。
转基因作物的研究规模已达到了空前的水平。自1983年世界上第一例转基因抗病毒植物诞生以来,转基因作物的研制、中间试验、田间释放和商业化种植得到了迅速的发展,到1997年底,转基因植物已达几百种;转基因作物于1986年在美国和法国首次进入大田试验,到1997年底全世界转基因作物的田间试验已达25000多例;1994年,美国批准了转基因延熟番茄的商业化生产,到1997年底,全世界共有51种转基因植物产品被正式投入商品化生产。
转基因作物的种植面积正在迅速扩大。全世界转基因作物的种植面积在1995年仅为1.2×106hm2,1996年为2.84×106hm2,1997年为1.25×107hm2,1998年为2.78×107hm2,1999年增至3.99×107hm2.2000年进一步增至4.42×107hm2,2001年已达5.26×107hm2.2001年全球转基因作物按作物种类统计为:大豆占46%,棉花占20%,油菜占11%,玉米占7%;按国家统计:美国占70%(面积,下同)、阿根廷占22%、加拿大占6%、中国占1%~3%,上述4国占全球转基因作物种植面积的99%;按目标性状分类:抗除草剂转基因作物占77%,抗虫转基因作物占15%.据统计,1999年美国转基因大豆、棉花和玉米的种植面积,分别占该国相应作物种植面积的55%、50%和30%。
转基因作物具有巨大的经济效益,1997年美国转基因抗虫棉种植面积为1×106hm2,平均增产70%,每公顷抗虫棉可增加净收益83美元,直接经济效益近1亿美元;1998年美国种植转基因抗虫玉米达5×106hm2,平均增产9%,其净收益为68.1美元/hm2,可产生直接经济效益3.4亿美元。1995年全球转基因作物的销售额仅为0.75亿美元,1998年达到12亿美元~15亿美元,2000年已达30亿美元,5年间增加了40倍。预计2005年将达60亿美元,2010年将达到200亿美元。
2.植物用转基因微生物
自上世纪80年代以来,重组农业微生物工程研究取得了突破性进展,其中新型重组固氮微生物研究已进入田间试验,一些杀虫、防病遗传工程微生物进入田间试验或商业化生产。防冻害基因工程菌株已于1987年进入田间试验,防治果树根癌病工程菌株也于1991年和1992年先后在澳大利亚和美国获准登记,目前已在澳大利亚、美国、加拿大和西欧一些国家销售,这是世界上首例商品化生产的植病生防基因工程细菌制剂。具有杀虫活性的转b.t基因工程细菌,自1991年起已有多个产品进入市场。在高铵条件下仍保持良好固氮能力的耐铵工程菌株,也进入田间试验。
3.转基因动物
转基因动物主要应用于以下几个方面:改良动物品种和生产性能;生产人药用蛋白和营养保健蛋白;生产人用器官移植的异种供体;建立疾病和药物筛选模型;生产新型生物材料等。1998年全球动物生物技术产品总销售额约为6.2亿美元,预计2010年总销售额将达到110亿美元,其中75亿美元是转基因动物产品。
4. 兽用基因工程生物制品
兽用基因工程生物制品是指利用重组dna技术生产的兽用免疫制剂。主要包括:单克隆抗体等诊断试剂,目前国内外正在研究、开发或已应用的单克隆抗体诊断试剂已达1000多种;基因工程疫苗,已有44例获准进行商品化生产,其中重组亚单位疫苗30例,基因缺失活疫苗12例,基因重组活疫苗2例。此外,还有dna疫苗和兽用基因植物源生物制品等。
5. 转基因水生生物
迄今为止,全世界研究的转基因水生生物达20余种,已有8种进入中间试验,其中我国有一种两例,仅有大西洋鲑1种可能已开始小规模商品化生产。
6. 我国农业转基因生物研发现状与产业化概况
我国转基因植物的研究开发始于20世纪80年代,1986年启动的863高新技术计划起到了关键性的导向、带动和辐射作用。据1996年统计,国内正在研究和开发的转基因植物约47种,涉及各类基因103种。1997年~1999年,有26例转基因植物获准进行商业化生产。按转基因性状分:抗虫16例,抗病毒9例,改良品质1例。按作物划分:棉16例,番茄5例,甜椒4例,矮牵牛1例。
转基因抗虫棉是国内植物基因工程应用于农业生产的第一个成功范例,使我国成为继美国之后独立研制成抗虫棉,并具有自主知识产权的第二个国家。1998年~2001年4年累计种植逾1.3×106hm2,减少农药使用量70%以上,产生了巨大的社会、经济和生态效益。由于其伞形辐射的带动作用,抗虫转基因水稻、玉米、杨树等一批后继转基因产品正在进行田间试验,蓄势待发。转基因技术将使农业产业发生深刻的结构变化,向农业与医药、农业与食品、农业与加工结合的方向发展。
我国植物用转基因微生物研究已取得长足进展,正在研发的防病杀虫微生物13种,涉及基因16种;固氮微生物8种,涉及基因12种,大多已进入中间试验和环境释放试验。我国兽用基因工程生物制品研究与产业化进展迅速,已有近70种单克隆抗体等诊断试剂投放市场,2例基因工程疫苗获准进行商品化生产,其中重组亚单位疫苗1例,基因重组活疫苗1例。
转基因作物的研究规模已达到了空前的水平。自1983年世界上第一例转基因抗病毒植物诞生以来,转基因作物的研制、中间试验、田间释放和商业化种植得到了迅速的发展,到1997年底,转基因植物已达几百种;转基因作物于1986年在美国和法国首次进入大田试验,到1997年底全世界转基因作物的田间试验已达25000多例;1994年,美国批准了转基因延熟番茄的商业化生产,到1997年底,全世界共有51种转基因植物产品被正式投入商品化生产。
转基因作物的种植面积正在迅速扩大。全世界转基因作物的种植面积在1995年仅为1.2×106hm2,1996年为2.84×106hm2,1997年为1.25×107hm2,1998年为2.78×107hm2,1999年增至3.99×107hm2.2000年进一步增至4.42×107hm2,2001年已达5.26×107hm2.2001年全球转基因作物按作物种类统计为:大豆占46%,棉花占20%,油菜占11%,玉米占7%;按国家统计:美国占70%(面积,下同)、阿根廷占22%、加拿大占6%、中国占1%~3%,上述4国占全球转基因作物种植面积的99%;按目标性状分类:抗除草剂转基因作物占77%,抗虫转基因作物占15%.据统计,1999年美国转基因大豆、棉花和玉米的种植面积,分别占该国相应作物种植面积的55%、50%和30%。
转基因作物具有巨大的经济效益,1997年美国转基因抗虫棉种植面积为1×106hm2,平均增产70%,每公顷抗虫棉可增加净收益83美元,直接经济效益近1亿美元;1998年美国种植转基因抗虫玉米达5×106hm2,平均增产9%,其净收益为68.1美元/hm2,可产生直接经济效益3.4亿美元。1995年全球转基因作物的销售额仅为0.75亿美元,1998年达到12亿美元~15亿美元,2000年已达30亿美元,5年间增加了40倍。预计2005年将达60亿美元,2010年将达到200亿美元。
2.植物用转基因微生物
自上世纪80年代以来,重组农业微生物工程研究取得了突破性进展,其中新型重组固氮微生物研究已进入田间试验,一些杀虫、防病遗传工程微生物进入田间试验或商业化生产。防冻害基因工程菌株已于1987年进入田间试验,防治果树根癌病工程菌株也于1991年和1992年先后在澳大利亚和美国获准登记,目前已在澳大利亚、美国、加拿大和西欧一些国家销售,这是世界上首例商品化生产的植病生防基因工程细菌制剂。具有杀虫活性的转B.t基因工程细菌,自1991年起已有多个产品进入市场。在高铵条件下仍保持良好固氮能力的耐铵工程菌株,也进入田间试验。
3.转基因动物
转基因动物主要应用于以下几个方面:改良动物品种和生产性能;生产人药用蛋白和营养保健蛋白;生产人用器官移植的异种供体;建立疾病和药物筛选模型;生产新型生物材料等。1998年全球动物生物技术产品总销售额约为6.2亿美元,预计2010年总销售额将达到110亿美元,其中75亿美元是转基因动物产品。
4. 兽用基因工程生物制品
兽用基因工程生物制品是指利用重组DNA技术生产的兽用免疫制剂。主要包括:单克隆抗体等诊断试剂,目前国内外正在研究、开发或已应用的单克隆抗体诊断试剂已达1000多种;基因工程疫苗,已有44例获准进行商品化生产,其中重组亚单位疫苗30例,基因缺失活疫苗12例,基因重组活疫苗2例。此外,还有DNA疫苗和兽用基因植物源生物制品等。
5. 转基因水生生物
迄今为止,全世界研究的转基因水生生物达20余种,已有8种进入中间试验,其中我国有一种两例,仅有大西洋鲑1种可能已开始小规模商品化生产。
6. 我国农业转基因生物研发现状与产业化概况
我国转基因植物的研究开发始于20世纪80年代,1986年启动的863高新技术计划起到了关键性的导向、带动和辐射作用。据1996年统计,国内正在研究和开发的转基因植物约47种,涉及各类基因103种。1997年~1999年,有26例转基因植物获准进行商业化生产。按转基因性状分:抗虫16例,抗病毒9例,改良品质1例。按作物划分:棉16例,番茄5例,甜椒4例,矮牵牛1例。
转基因抗虫棉是国内植物基因工程应用于农业生产的第一个成功范例,使我国成为继美国之后独立研制成抗虫棉,并具有自主知识产权的第二个国家。1998年~2001年4年累计种植逾1.3×106hm2,减少农药使用量70%以上,产生了巨大的社会、经济和生态效益。由于其伞形辐射的带动作用,抗虫转基因水稻、玉米、杨树等一批后继转基因产品正在进行田间试验,蓄势待发。转基因技术将使农业产业发生深刻的结构变化,向农业与医药、农业与食品、农业与加工结合的方向发展。
我国植物用转基因微生物研究已取得长足进展,正在研发的防病杀虫微生物13种,涉及基因16种;固氮微生物8种,涉及基因12种,大多已进入中间试验和环境释放试验。我国兽用基因工程生物制品研究与产业化进展迅速,已有近70种单克隆抗体等诊断试剂投放市场,2例基因工程疫苗获准进行商品化生产,其中重组亚单位疫苗1例,基因重组活疫苗1例。
根据抗原性质可分为灭活疫苗、弱毒活疫苗、亚单位疫苗、工程疫苗、核酸疫苗和转基因植物可饲疫苗;根据疫苗功效则可分为预防性疫苗和治疗性疫苗。
1. 灭活疫苗。将分类离培养的病原微生物(多数为强毒株)用适当的化学试剂将其灭活但保留其免疫原性,与不同的佐剂混合后乳化制成灭活疫苗。目前,用于制备灭活疫苗的佐剂有矿物油佐剂和氢氧化铝佐剂。前者多用于病毒性疫苗,如当前使用的猪圆环病毒灭活疫苗、伪狂犬病毒灭活疫苗;用氢氧化铝作为佐剂制备疫苗静置后,会出现分层,疫苗在使用前摇匀即可,该佐剂多用于细菌疫苗。蜂胶佐剂多用于细菌苗和亚单位疫苗。
灭活疫苗的用途:①新分离的病原,短期内难以致弱。如高致病性猪蓝耳病灭活疫苗、猪圆环病毒灭活疫苗和兔瘟灭活疫苗。②血清型较多的病原,疫苗的保护力呈现血清型特异性,如猪胸膜肺炎放线杆菌(15 个血清型)、副猪嗜血杆菌(15 个血清型)、猪链球菌(35 个血清型)等。③变异频率高的病原,如新分离的口蹄疫Mya-98 株。
猪用灭活疫苗中,有猪伪狂犬病灭活疫苗、猪口蹄疫0 型(单价/ 二价/ 三价)灭活疫苗、猪繁殖与呼吸综合征灭活疫苗、猪圆环病毒灭活疫苗、猪细小病毒灭活疫苗、猪乙脑灭活疫苗、猪链球菌病单价( 二价/ 三价) 灭活疫苗、副猪嗜血杆菌三价灭活疫苗和猪传染性胸膜肺炎三价灭活疫苗等。
灭活疫苗的优点是安全性强,疫苗毒株无毒力返强的危险;多数疫苗的免疫接种效果不受仔猪母源抗体水平高低的干扰;贮存条件方面,一般需冷藏保存,不能冷冻。其缺点是需要免疫次数多,接种后局部反应略大,甚至出现接种部位污染,可引起局部炎症脓肿,影响接种效果,也降低局部的肉品质量。
2.弱毒活疫苗。
疫苗种类指将毒力下降或毒力完全丧失的病原微生物,与牛奶、明胶等佐剂混合后经过低温冻干后形成的疏松状制剂。严格意义上,此类疫苗不包含采用基因工程方法对基因组改变后引起致病性改变的微生物制备的弱毒疫苗。根据所含的疫苗毒株分类不同,可以分为以下几种:(1)细菌活疫苗:如仔猪副伤寒疫苗,猪丹毒- 肺疫活疫苗。(2)病毒活疫苗:猪瘟活疫苗、伪狂犬病活疫苗和猪繁殖与呼吸综合征活疫苗。(3)猪支原体肺炎活疫苗。预防猪寄生虫的活疫苗尚未问世。
我国常用的弱毒活疫苗较多,如猪瘟活疫苗、猪伪狂犬病活疫苗、猪繁殖与呼吸综合征活疫苗、猪乙肝疫苗、猪丹毒活疫苗、猪肺疫活疫苗、仔猪副伤寒疫苗、猪马腺疫链球菌活疫苗等。
活疫苗的优点与缺点:优点是:(1)免疫途径多样:可通过肌肉注射、滴鼻、口服等途径免疫。(2)刺激产生黏膜免疫:除肌肉注射外,滴鼻和口服途径免疫后可刺激机体产生局部分泌型IgA, 形成黏膜免疫,在预防呼吸道感染和消化道感染中具有独特的作用,这是灭活疫苗无法比拟的,如沙门氏菌口服可以刺激机体肠道局部黏膜免疫。(3)免疫后可剌激产生体液免疫和细胞免疫,免疫效果较为确实。(4)免疫次数少于灭活疫苗。(5)接种后局部反应低。缺点:受母源抗体的影响如猪瘟活疫苗、伪狂犬病活疫苗等;受抗菌药物的影响如仔猪副伤寒弱毒疫苗、猪丹毒- 肺疫二联弱毒疫苗和猪支原体弱毒疫苗等;活疫苗运输保存条件严格,需冷冻条件。
3. 基因工程疫苗。
利用分子生物学手段改造病原微生物的基因,获得毒力下降、丧失的突变株或构建以弱毒株为载体、表达外源基因的重组毒(菌)株,并利用它们作为疫苗毒株制备疫苗,包括基因缺失活疫苗和基因工程活载体疫苗。该疫苗与常规弱毒疫苗相比,主要区别在于后者采用常规技术,而非分子生物学技术,来致弱病原微生物,不确定其毒力致弱的分子机制。
作为基因工程疫苗载体的病毒或细菌,其主要特性是:致病力下降或缺失、对靶动物和非靶动物是安全的,基因组庞大、可容纳外源基因,并高效表达。常用的活载体有:伪狂犬病毒弱毒株、腺病毒、沙门氏菌弱毒菌株、乳酸杆菌、胸膜肺炎放线杆菌弱毒株。我国在“十一五”期间,在“863”课题资助下,开展了以伪狂犬病毒为载体,表达猪细小病毒、乙脑病毒、口蹄疫病毒和猪繁殖与呼吸综合征病毒主要免疫原性基因的研究。鉴于对其安全性的忧虑,我国规定转基因生物(包含基因工程 疫苗)必须经历实验室和野外安全性观察测试,获得安全证书后,方能进行疫苗学研宄,以申报兽用生物制品新兽药证书。目前,我国己经批准上市的基因工程疫苗有:猪伪狂犬病基因缺失疫苗、口蹄疫基因工程疫苗、猪大肠杆菌K88-K99 基因工程疫苗。重组载体疫苗尚未正式上市。
4.核酸疫苗。
核酸疫苗产生于20 世纪80 年代。将病原微生物或寄生虫基因组中编码免疫原性蛋白的基因克隆到真核表达载体中制备重组质粒,这种质粒直接导入动物体内,利用宿主体内的转录翻译系统,合成该蛋白,剌激机体产生针对相应的细胞免疫和体液抗体,因而称之为DNA 疫苗。DNA 疫苗可以用大肠杆菌大量制备,成本较低。针对细菌病、病毒病和寄生虫病的DNA 疫苗报道较多。但基于是否整合到宿主染色体等安全性考虑,核酸疫苗多处于实验研宄阶段,尚未大量应用。RNA 疫苗是近几年才出现的一种核酸疫苗,主要在人类医学中,作为RNA 类药物,用于抗肿瘤研宄。在动物疫苗领域尚未见RNA 疫苗的应用报道。
5. 亚单位疫苗与合成肽疫苗。
利用物理化学方法提纯病原微生物中具免疫原性的组份,或者利用基因工程表达该组分,纯化后加入佐剂而制成。猪传染性胸膜肺炎的亚单位疫苗中含有毒素I, 毒素II,毒素III 和外膜蛋白等, 能提供对所有15 个血清型的交叉保护力。我国使用的口蹄疫合成肽疫苗,是利用人工方法合成口蹄疫病毒VP1 蛋白中具有较强免疫原性的抗原片段,加入佐剂制成。该疫苗的优点是抗原组分单一,纯度高,免疫反应强,副作用低;能迅速针对新出现变异毒株研制其合成肽疫苗。但是,其成本较高。
6.转基因植物可饲疫苗。
将病原微生物中编码免疫蛋白的基因插入植物基因组中,获得表达病原微生物免疫原性的植物,再从植物中提纯蛋白用于注射动物或将植物直接饲喂动物,产生免疫力。用于表达免疫原性基因的植物主要是马铃薯、玉米、蔬菜、番茄、烟草和香蕉等,称为转基因可饲疫苗(ediable vaccine)。此类疫苗在口蹄疫(拟南芥、苜蓿和马铃薯为受体)、猪传染性胃肠炎(马铃薯、花椰菜和土豆为受体)、腹泻(烟草为受体)和轮状病毒感染(番茄和马铃薯为受体)等疾病防控中有研究的报道,但未见临床应用。目前的技术难题是:选择直接生食和贮藏方便的植物作为表达植株(烟草不适用于动物基因的筛选和优化其密码子和使用合适启动子,使其表达量满足疫苗免疫剂量的要求;免疫剂量免疫程序的确定;并设法提高口服后黏膜免疫效果。转基因植物可饲疫苗主要应用在胃肠道疾病中。
二、疫苗使用的注意事项
1. 建立在正确的流行病学调查基础上,有针对性选择所需疫苗,不可盲从。对于多血清型菌株感染,应选择与当地流行菌株血清型一致的疫苗,免疫效果要确实。
2.确保疫苗运输和使用过程中的冷链保障。如疫苗的物理性状己经改变,如分层现象,不可用手工混匀后再使用,应丢弃。
3.细菌活疫苗使用前后不可同时使用抗生素或有抗菌活性的中草药。
4.建议使用于健康猪群;正在发病猪群使用紧急接种,可能会加快处于疾病晚期猪只死亡,但是会缩短猪群的病程,因此要有心理准备。
【Keywords】 rotavirus; VP6 gene; genes, synthetic; genetic engineering vaccine
【摘要】 目的:设计获得轮状病毒(RV)新型VP6基因. 方法:本研究在前期工作的基础上,对RV VP6基因的优化合成方法进行了探索研究. 我们应用改良的嵌套式PCR策略,通过逐步拼接法对RV VP6基因进行了优化改造. 结果:成功地合成了优化的RV VP6基因cDNA序列,该序列长约1220 bp,(G+C)含量达55%. 结论:与野生型RV VP6基因相比,优化合成的RV VP6基因(G+C) 含量提高了约20%,这一工作为新型高效口服RV基因工程疫苗的深入研究奠定了基础.
【关键词】 轮状病毒; VP6基因;基因,合成; 基因工程疫苗
0引言
轮状病毒(rotavirus, RV)是引起全世界婴幼儿严重腹泻的重要病原,RV危害严重且无有效的治疗手段[1],根除RV感染的惟一途径是发展安全、有效的疫苗,这已成为一个全球性的公共医疗目标,是一项十分迫切而必要的工作[2-5]. A组RV血清型众多,VP6蛋白是其主要的组特异性抗原,有较强的抗原性和免疫原性,可诱导保护性免疫. 有研究表明,VP6蛋白的IgA mAb对RV感染具有免疫保护作用,肌注免疫VP6 DNA疫苗可产生较好的异源保护作用[6],以VP6蛋白和黏膜佐剂免疫小鼠可诱导产生对鼠RV EDIM株的完全保护作用[7]. 根据我国RV的感染状况,本课题组的疫苗设计方案主要包括A组RV的VP6抗原和A组RV G1,G2和G3型3种不同的VP7抗原. 前期免疫效果研究结果表明,灌胃免疫组产生的RV特异性免疫反应较滴鼻组弱,推测可能与疫苗在胃肠道受到胃酸和消化酶的降解破坏作用,导致其表达量降低和免疫效果弱化有关. 据此,为了发展新型高效的口服RV基因工程疫苗,我们应用改良的嵌套式PCR策略,通过逐步拼接法对RV VP6基因进行了优化合成研究,以期提高其(G+C)含量,可望增加其表达量和提高以其为目标抗原的RV疫苗的免疫效果.
1材料和方法
1.1材料PcDNAⅡ质粒,E.coli DH5α菌种和E.coli DH10B菌种均为本室保存. Agarose Gel DNA purification Kit, Pyrobest DNA polymerase,T4 DNA Ligase, 限制性DNA内切酶KpnⅠ,XhoⅠ,EcoRⅠ,EcoRV,XGal, IPTG, DNA Marker DL2000, dNTP mixture和Amp均为Takara产品;RNA酶为Sigma产品; 酵母提取物和胰蛋白胨为OXOID产品; PEG(4000)为Promega产品.
1.2方法
1.2.1引物合成引物由上海生工生物工程技术服务有限公司合成.
1.2.2RV VP6基因的优化合成根据RV VP6基因的氨基酸序列和人类细胞偏爱的密码子,重新设计了RV VP6基因的重组cDNA序列,合成了引物P11~P116和P21~P216与sP115和sP216. 根据嵌套式PCR方法制备突变体的原理[8],我们应用改良的嵌套式PCR策略,通过逐步拼接法人工合成RV VP6基因的重组cDNA序列.
2结果
2.1RV VP6基因S1和S2片段的合成应用改良的嵌套式PCR策略,通过逐步拼接法人工合成RV VP6基因的重组cDNA序列,RV VP6基因全长S片段分为S1和S2片段两部分先分别合成,再以S1和S2片段为模板,合成RV VP6基因全长S片段,合成策略见图1,2. 获得RV VP6基因S1和S2片段(图3,4),对其进行酶切和测序鉴定(图5,6),合成片段序列正确.
2.2获得优化的RV VP6基因全长S片段逐步拼接法获得了约1220 bp的RV VP6基因全长目的片段(图7),进行酶切(图8)和测序鉴定,目的片段序列正确.
1: RV VP6基因全长S片段;2: DNA标准DL2000.
图7RV VP6基因全长S片段的PCR产物
1: DNA标准DL2000;2: RV VP6基因全长S片段阳性重组质粒.
图8RV VP6基因全长S片段阳性重组质粒酶切鉴定
2.3RV VP6基因优化改造前后的序列对比分析应用改良的嵌套式PCR策略,通过逐步拼接法成功地优化合成了RV VP6基因. 与优化改造前的野生型序列相比,优化后的RV VP6基因(G+C)含量提高了约20%. 优化改造前后的序列对比和(G+C)含量分析见表1.表1RV VP6基因优化改造前后的序列对比分析
转贴于 3讨论
国内外新型病毒疫苗发展规划将RV预防性疫苗列为新型病毒疫苗研制的重点项目之一,全球疫苗与免疫接种联盟(GAVI)和WHO也十分重视中国的口服RV活疫苗,将其列为“全球疫苗腹泻病控制和免疫规划”主攻发展的首要疫苗. 为了发展新型高效的口服RV基因工程疫苗, 本研究在前期免疫效果研究工作的基础上, 针对灌胃免疫组产生的RV特异性免疫反应比滴鼻组弱的问题,分析其原因可能与疫苗在胃肠道受到胃酸和消化酶的降解破坏作用,导致其表达量降低和免疫原性弱化有关,根据有关HIV和DNA序列化学合成的有关研究报道[9-17],提高目的基因的(G+C)含量可显著提高其表达量,从而增强其免疫效果. 据此,我们对RV VP6基因优化合成方法进行了探索研究. 根据RV VP6基因的氨基酸序列和人类细胞偏爱的密码子,我们重新设计了RV VP6基因的cDNA序列,并增加了有助序列正确翻译的Kozak序列,以提高VP6的表达量. 优化改造的VP6基因重组cDNA序列包含保护性碱基、酶切位点和Kozak序列,共计约1220 bp.
应用改良的嵌套式PCR策略,通过逐步拼接法对RV VP6基因的人工合成方法进行探索,我们发现应用改良的嵌套式PCR策略合成基因时,具体合成方法(逐步拼接法或两步法)的选择及基因合成的成功率可能主要取决于引物长度及其彼此间的重叠长度. ①当引物长度
【参考文献】
[1] Parashar UD, Bresee JS, Gentsch JR, et al. Rotavirus [J].Emerg Infect Dis, 1998, 4:561-570.
[2] Ward RL. Possible mechanisms of protection elicited by candidate rotavirus vaccines as determined with the adult mouse model[J]. Viral Immunol, 2003, 16(1):17-24.
[3] 金奇. 医学分子病毒学[M]. 北京:科学出版社, 2001: 558-562.
[4] Lynch M, Shieh WJ, Tatti K, et al. The pathology of rotavirusassociated deaths, using new molecular diagnostics [J]. Clin Infect Dis, 2003, 37: 1327-1333.
[5] Kapikian AZ. A rotavirus vaccine for prevention of severe diarrhea of infants and young children: Development, utilization and withdrawl[J]. Novartis Found Symp, 2001, 238: 153-179.
[6] Yang KJ, Wang SX, Chang K, et al. Immune responses and protection obtained with rotavirus VP6 DNA vaccines given by intramuscular injection [J]. Vaccine, 2001, 19:3285-3291.
[7] Monica M, Mc Neal, John L, et al. CD4+ T cells are the only lymphocytes needed to protect mice against rotavirus shedding after intranasal immunization with a chimeric VP6 protein and the adjuvant LT(R192G) [J]. J Virol, 2002, 2:560-568.
[8] [美]CM.迪芬巴赫,GS.德维克斯勒主编. 黄培堂,余炜源,陈添弥,等译. PCR技术实验指南[M]. 北京:科学出版社,1998:432-433.
[9] Smith HO, Hutchison CA 3rd, Pfannkoch C, et al. Generating a synthetic genome by whole genome assembly: PhiX174 bacteriophage from synthetic oligonucleotides[J]. Proc Natl Acad Sci USA, 2003, 100(26):15440-15445.
[10] Zhao X, Huo KK, Li YY. Synonymous codon usage in Pichia pastoris[J]. Shengwu Gongcheng Xuebao, 2000, 16(3):308-311.
[11] Gao X, Yo P, Keith A, et al. Thermodynamically balanced insideout (TBIO) PCRbased gene synthesis: A novel method of primer design for highfidelity assembly of longer gene sequences [J]. Nucleic Acids Res, 2003,31(22):e143.
[12] David MH, Jacek L. DNA Works: An automated method for designing digonucleotides for PCRbased gene synthesis [J]. Nucleic Acids Res, 2002, 30:e43.
[13] Xiong AS, Peng RH, Li X, et al. Influence of signal peptide sequences on the expression of heterogeneous proteins in Pichia pastoris[J]. Shengwu Huaxue Yu Shengwu Wuli Xuebao (Shanghai), 2003, 35(2):154-160.
[14] Peng RH, Xiong AS, Li X, et al. PCRaided synthesis and stable expression in E.coli of the cryIA(c)Bt Gene[J]. Shengwu Huaxue Yu Shengwu Wuli Xuebao (Shanghai), 2001, 33(2):219-224.
[15] Peng RH, Xiong AS, Li X, et al. High expression of a heatstable phytase in Pichia pastoris[J]. Shengwu Huaxue Yu Shengwu Wuli Xuebao (Shanghai), 2002, 34(6):725-730.
目前使用的多为基因工程乙肝疫苗,昔日使用的血源性疫苗已基本淘汰(原因是有引起血源性疾病的嫌疑和浪费大量的血浆)。基因工程乙肝疫苗是利用现代基因工程技术,构建含有乙肝表面抗原基因的重组质粒,它可以用于预防所有已知亚型的乙肝病毒感染。现在用的基因工程乙肝疫苗为乙肝重组脱氧核糖核酸酵母疫苗和重组牛痘病毒疫苗,剂量为每支5微克。
二、为何要打乙肝疫苗?
乙肝疫苗可以成功预防乙肝病毒的感染,新生儿一出生就接种乙肝疫苗,基本可以确保将来不得乙肝。 现有的肝硬化、肝癌多从乙肝发展而来,成功地预防乙肝,实际就是防硬化、防肝癌第一针。目前乙肝疫苗较便宜,每支几元钱,民众都能接受。
三、乙肝疫苗的正确使用方法是什么?
;也有采取出生后立即注射1支高效价乙肝免疫球蛋白,及3次乙肝疫苗(每次15微克,生后立即及1月、6月各注射1次),2个方案保护的成功率都在90%以上。
四、接种疫苗后不产生抗体该怎么办?
五、接种疫苗后,多长时间需要再次接种?
六、乙肝疫苗能和其他疫苗同时使用吗?
乙肝疫苗可以和流脑疫苗、卡介苗、白百破、脊髓灰质疫苗、乙脑疫苗同时接种,接种程序按照计划免疫所要求的顺序进行。但是乙肝疫苗最好不要和麻疹疫苗同时使用。
七、意外接触乙肝病毒者如何打乙肝疫苗?
八、接种乙肝疫苗会不会传染上其他传染病?
接种肝炎疫苗不会引起其他肝炎发生,也不会被传染上其他疾病。乙肝疫苗在生产过程中有严格的质量标准,其中许多工
序都能杀死血液中包括爱滋病病毒在内的病原微生物,经过临床观察是安全可靠的。值得提出的是,使用不合格产品如注射破损、变质疫苗,或注射过程不按无菌要求操作,共用注射器或针头,可染上肝炎或其他传染病。还有一部分人原来是隐性传染者,病毒呈低水平复制状态,“两对半”检查正常,需要用核糖核酸增殖法检出病毒(hbvdna阳性),这种人注射疫苗后不会有表面抗体形成。
九、如果在边远地区,尚无法做到乙肝疫苗的普种怎么办?
中图分类号 S851 文献标识码 A 文章编号 1007-5739(2012)02-0325-03
新城疫病毒属于副粘病毒科副粘病毒属,为有囊膜的单股负链RNA病毒。其基因组编码6个蛋白:RNA依赖的RNA聚合酶(L基因)、血凝素神经氨酸酶(HN)、融合蛋白(F基因)、基质蛋白(M基因)、磷蛋白(P基因)、白(NP基因)。其中F蛋白有使病毒囊膜与宿主细胞融合进而导致病毒传人宿主细胞膜的作用,是决定病毒毒力的关键因子。而HN蛋白是NDV的另一种重要的致病因子,它的主要作用是参与病毒粒子与细胞受体的最初吸附以及破坏这种吸附作用。此外,HN蛋白还可使F蛋白充分接近受体而发生病毒与细胞膜的融合而致病。因此,NDV表面的HN-F糖蛋白在病毒的传染性和治病性上起到至关重要的作用,许多新城疫基因工程疫苗的研制都依赖于F、HN蛋白。
新城疫(ND)是一种侵害禽类的急性高度接触性传染病,由新城疫病毒引起。自1926年首次在印度尼西亚的爪哇岛和英国的新城暴发以来,至今已有4次世界范围内的大流行,给养禽业带来了严重的经济损失。NDV基因型已经发生了很大的差异(I-Ⅺ)。虽然现有的灭活苗和弱毒苗能获得较好的免疫效果,但是近年来由强毒引起的非典型ND在免疫鸡群中时有发生,因而研究出安全、高效的新型疫苗一直备受有关学者的关注。目前,亚单位疫苗、活载体疫苗、新城疫病毒载体疫苗、DNA疫苗等都被广泛研究。
1 常规疫苗
1.1 灭活苗
灭活苗一般是由灭活的感染性尿囊液与载体佐剂混合后制得,能够刺激机体产生有效的免疫应答,使抗体以较高的水平在体内持续较长时间,且易于储存。目前,广泛使用的灭活苗为油乳剂灭活苗,多用Ulster2e、B1、LaSota及Rokin等作毒种来生产,这些毒株在鸡胚中均能大量增殖,多用于二联苗或多联疫苗的制造,使用多联苗可以节省劳动力,免疫效力受母源抗体影响较小,免疫后副作用小。但由于注射剂量和疫苗对免疫效果有很大的影响。且灭活疫苗中需要添加Avridine、ISCOMS弗氏完全佐剂、矿物油、动植物油、脂质体等佐剂,导致免疫成本大大提高。同时,接种灭活苗的机体产生针对病毒的特异性抗体,干扰临床检测检疫以及流行病学调查,这是以灭活苗防治ND的最大障碍。
1.2 活疫苗
活疫苗一般由感染胚尿囊液冻干而成,通过饮水、进食、喷雾、气雾等途径大规模免疫鸡群。通常NDV活疫苗分为缓发型和中发型。B1株和Lasota株是天然弱毒株,几乎无致病性,可作为缓发型疫苗,经滴鼻、点眼、饮水、气雾等途径接种免疫,保护效果较好。而H株、Roakin株等属中发型的疫苗,由于毒力较强,只能用于二次免疫。也有用CS2株、V4株等作活疫苗的,也能达到良好的免疫效果。活病毒感染能刺激机体产生局部免疫,免疫后可较快得到保护,一般接种后3-5d就能产生抗体,抗体一般可维持20-30d。主要产生黏膜抗体(IgA),对机体呼吸道、消化道等局部黏膜免疫具有重要作用,是阻止外界病毒入侵的屏障。活疫苗易于大规模使用,较便宜,且疫苗毒还可以使免疫鸡传给未免疫鸡,但由于环境条件及并发感染,可能引发疾病,母源抗体对初次免疫影响较大。此外,若在生产过程中控制不当,活疫苗易被灭活、污染,有毒力返强的危险。因此,为了使NDV得到更好的控制,人们又开发了其他类型的疫苗。
2 基因工程疫苗
2.1 亚单位疫苗
利用重组DNA技术辅以佐剂将NDV保护性抗原基因在高效的表达系统中表达而制成亚单位疫苗。目前,杆状病毒表达系统是研究ND亚单位疫苗的主要常用工具。Nagyetal分别利用昆虫杆状病毒表达了NDV的F及HN蛋白,对雏鸡进行免疫。结果表明,表达的F和HN蛋白能够产生很好的免疫保护作用。丁壮等应用该系统表达NDV四平和长春2个分离株的HN,用NDV强毒攻毒后,分别达到65%(四平株)和100%(长春株)的保护率。闻晓波等构建含有NDV的M、NP、F、HN 4个基因的杆状病毒转移载体,并得到了共表达的NDV的M、NP、F、HN4个蛋白,为进一步研究亚单位疫苗及NDV结构蛋白之间的相互作用奠定了基础。Kapczynski et al用处理NDV的不具感染性的病毒HN和F蛋白免疫鸡,经验证这些病毒亚单位成分具有良好的免疫保护效果。亚单位疫苗具有安全性高、稳定性好、运输方便、批量生产容易的优点。是ND疫苗未来发展的一个重要方向,但是由于生产成本高,价格受限,很难真正用于疫苗生产,除非改进表达技术,显著降低成本。
2.2 新城疫病毒重组活载体疫苗
近年来,采用以病毒或细菌为载体研究新城疫活疫苗的技术路线被多数学者主张。将NDV F和HN基因在动物病毒弱毒或无毒株(如腺病毒、痘苗病毒、反转录病毒等)等载体上进行表达,均已获得成功。目前,痘病毒、腺病毒和孢疹病毒等都是较为理想的病毒载体。1990年Taylor et al将新城疫病毒Texas株F基因插入禽痘病毒中,在培养细胞中得以表达,经糖基化修饰后切割成F1和F2,通过点眼或口服重组病毒可获得部分攻毒保护,而通过肌肉注射或翅下刺种,免疫1次就可获得完全攻毒保护。Morgan et al将NDV的F、HN基因分别克隆人火鸡孢疹病毒的复制非,必需区(US2),利用Rous肉瘤病毒LTR的强启动子构建重组病毒,用其腹腔接种SPF白来航鸡,第28天后肌肉注射攻毒,表达F蛋白的重组病毒的保护率高达90%。曹殿军等将NDV HN基因在重组鸡痘病毒中表达,以NDV强毒株F48E9攻毒发现,接种重组病毒106pfu/只时,保护力可达80%,而104pfu/只时,保护力可达60%。说明该重组病毒对雏鸡具有一定的保护作用,且该保护作用与接种剂量有一定的相关性。梁雪芽等将含NDV F48E9株融合蛋白(F)基因的真核表达质粒PCDNA3-F的减毒鼠伤寒沙门氏菌ZJIll株(Z]111/PCDNA3-F)口服接种小鼠和雏鸡,表明利用该减毒株作为载体传递DNA疫苗具有相对安全性。用ZJlll/PEDNA3-F以108cfu/只免疫雏鸡,2周后二免,二免后4周攻击致死剂量的强毒株F48E9。结果表明:重组zJlll/PCDNA3-F菌株不仅能诱导法氏囊B淋巴细胞和胸腺T淋巴细胞的增值反应,而且能诱导雏鸡产生NDV抗体,对强毒攻击的保护率高于PCDNA3-F裸质粒DNA疫苗注射免疫组(50.00%),达66.7%。活载体疫苗是当今及未来疫苗开发与研制的主要方向之一,其不仅具有传统疫苗的许多优点,而且还为多价苗及联苗的生产开辟了新道路。
2.3 新城疫病毒载体疫苗
随着反向遗传学的发展,重组NDV载体已成为当今病毒载体系统研究的热点之一。基于NDV可以诱导机体的体液免疫和细胞免疫能在体内增值,并长期表达抗原基因,使机体得到较强且较持久的免疫保护,且是一种RNA病毒,不会与宿主基因组整合,安全性较高,被学者们认为是很好的疫苗载体。Zhao et al。吩别在NDV强毒株和弱毒株的4个不同基因间区域插入外源基因,结果表明:NDV作为疫苗载体是完全可行的,因为病毒的复制效率和滴度并没有受到影响。Peeters et al以含禽副粘病毒4型基因的杂合体HN基因取代NDV HN基因,构建的嵌合体病毒作为活疫苗可以产生对NDV的免疫保护以及对F蛋白的中和抗体,不仅能够抵制致死剂量NDV的攻击,而且根据其对HN所产生的抗体及血清分析即可区别于野生毒感染。
2.4 核酸疫苗
核酸疫苗最早是由Wolffet al于1990年发现。他们注意到给小鼠直接肌肉注射质粒DNA,质粒及纯化的DNA或RNA重组表达载体,可使载体上的基因在局部肌肉细胞内表达,这种表达可持续数日甚至终身,且没有检出注射的外源核酸与宿主染色体的混合,之后William,Tang et al也证实了这一点。1994年其被世界卫生组织(WHO)正式统一命名为核酸疫苗(nuclmc acid vaccine)。它是指把外源基因克隆到真核质粒表达载体上,然后将重组的质粒DNA直接注射到动物体内,使外源基因通过宿主细胞的转录系统合成抗原蛋白,刺激机体的免疫系统,使机体产生特异性的体液免疫和细胞免疫应答。