传感器技术论文模板(10篇)

时间:2023-03-01 16:35:32

导言:作为写作爱好者,不可错过为您精心挑选的10篇传感器技术论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

传感器技术论文

篇1

2传感器技术在机电技术当中的应用

由于传感器的电磁兼容性能比较强,因此具有较高的数据存储技术可行性,同时还不容易丢失其中的模块参数。智能滤波算法以及A/D转换技术等先进的技术都在传感器当中得到了应用,就算是满量程的时候,传感器仍然可以使稳定的输出码得到保证。传感器的通讯接口属于标准的接口,其能够与计算机进行直接的连接,同时也可以连接标准的工业控制总线,具有十分灵活的使用方式。

2.1在机器人中传感器技术的应用

作为典型的仿生装置,机器人对传感器技术进行了充分的应用。通过将感知到的物理量向电量进行转化,机器人就可以实现信息输出,在这个过程中对机器人传感技术进行了充分的利用,其中包括两方面的内容,也就是外部传感器以及内部传感器。外部传感器需要通过检测外部信息,从而对工作环境进行判别,为机器人提供必要的信息,使之能够对操作对象进行准确的控制。而实施系统的控制是内部传感器的主要功能,其能够对机器人的状态进行有效的检测,保证机器人在工作的过程中能够按照要求来进行。内部传感器可以将具有价值的信息提供给外部传感器,从而能够使机器人对外部的环境产生有效的感知,并且将相应的动作做出。与此同时,在科技生产的过程中,还可以利用对机器人的操作从而能够对反馈的意见进行获取。

2.2在机械制造行业中传感器技术的应用

由于在机械制造行业当中需要实施包括加工精度等在内的动态特性测量,因此要利用传感器针对机械阻抗以及振动等相关部件当中的参数进行测量,从而对其动态特性进行检验。如果需要在线监测与控制超精加工中的零件尺寸的时候,就要利用传感器将相关的信息提供出来。比如利用传感器针对数控车床中车刀的位置进行检测;由于工件的表面精度以及尺寸在很大程度上都会受到刀尖形状的影响,可以采用在车刀上放置的振动传感器对其锋锐的程度进行检验。还可以利用液面传感器针对液压系统中的油量以及车床中的油进行监测。

2.3在环境当中传感技术的应用

传感器网络在环境监测当中通常具有一系列的优点,其中包括无需专人现场维护、可以长期不用对电池进行更换、具有十分简单的布置等。可以利用对节点进行密集的布置,从而对微观的环境因素进行观察。在环境监测领域当中对传感器网络具有非常广泛的应用,其中包括微观观测生物群落、森林火灾报警、观察气象现象、观测海岛鸟类的生活规律等。

2.4在火灾报警当中传感器技术的应用

防灾报警装置是现代建筑必须要具备的,其中最为关键的就是火灾报警系统。在发生火灾的时候一般都会出现有害气体、高温、火光以及烟雾等。如果将传感器运用到火灾报警系统当中,就可以对异常的信号进行转化,使之变成容易进行传送的形式,然后就可以利用消防网络向指挥中心提供火灾地点的报告。

篇2

随着传感器技术、信息处理技术、测量技术与计算机技术的发展,智能驾驶系统(辅助驾驶系统一无人驾驶系统)也得了飞速的发展。消费者越来越注重驾驶的安全性与舒适性,这就要求传感器能识别在同一车道上前方行驶的汽车,并能在有障碍时提醒驾驶员或者自动改变汽车状态,以避免事故诉发生。国际上各大汽车公司也都致力于这方面的研究,并开发了一系列安全驾驶系统,如碰撞报警系统(CW)、偏向报警系统(LDW)和智能巡游系统(ICC)等。国内在这些方面也有一定的研究,但与国外相比仍存在较大的差距。本文将主要讨论多传感器信息融合技术在智能驾驶系统(ITS)中的应用。

1ICC/CW和LDW系统中存在的问题

1.1ICC/CW系统中的误识别问题

ICC/CW系统中经常使用单一波束传感器。这类传感器利用非常狭窄的波束宽度测定前方的车辆,对于弯曲道路(见图1(a)),前后车辆很容易驶出传感器的测量范围,这将引起智能巡游系统误加速。如果前方车辆减速或在拐弯处另一辆汽车驶入本车道,碰撞报警系统将不能在安全停车范围内给出响应而容易产生碰撞。类似地,当弯曲度延伸时(见图1(b)),雷达系统易把邻近道路的车辆或路边的防护栏误认为是障碍而给出报警。当道路不平坦时,雷达传感器前方的道路是斜向上,小丘或小堆也可能被误认为是障碍,这些都降低了系统的稳定性。现在有一些滤波算法可以处理这些问题并取得了一定效果,但不能彻底解决。

1.2LDW系统中存在的场景识别问题

LDW系统中同样存在公共驾驶区场景识别问题。LDW系统依赖于一侧的摄像机(经常仅能测道路上相邻车辆的位置),很难区分弯曲的道路和做到多样的个人驾驶模式。LDW系统利用一个前向摄像机探测车辆前方道路的地理状况,这对于远距离测量存在着精确性的问题,所有这些都影响了TLC(Time-to-Line-Crossing)测量的准确性。现常用死区识别和驾驶信息修订法进行处理,但并不能给出任何先验知识去识别故障。

2多传感器信息融合技术在ITS系统中的应用

针对以上系统存在的一些问题,研究者们纷纷引入了多传感器信息融合技术,并提出了不同的融合算法。基于视觉系统的传感器可以提供大量的场景信息,其它传感器(如雷达或激光等)可以测定距离、范围等信息,对两方面的信息融合处理后能够给出更可靠的识别信息。融合技术可以采用Beaurais等人于1999年提出的CLARK算法(CombinedLikelihoodAddingRadar)和InstitudeNeuroinformatik提出的ICDA(IntegrativeCouplingofDifferentAlgorithms)算法等方法实现。

2.1传感器的选择

识别障碍的首要问题是传感器的选择,下面对几种传感器的优缺点进行说明(见表1)。探测障碍的最简单的方法是使用超声波传感器,它是利用向目标发射超声波脉冲,计算其往返时间来判定距离的。该方法被广泛应用于移动机器人的研究上。其优点是价格便宜,易于使用,且在10m以内能给出精确的测量。不过在ITS系统中除了上文提出的场景限制外,还有以下问题。首先因其只能在10m以内有效使用,所以并不适合ITS系统。另外超声波传感器的工作原理基于声,即使可以使之测达100m远,但其更新频率为2Hz,而且还有可能在传输中受到其它信号的干扰,所以在CW/ICC系统中使用是不实际的。

表1传感器性能比较

传感器类型优点缺点

超声波

视觉

激光雷达

MMW雷达价格合理,夜间不受影响。

易于多目标测量和分类,分辨率好。

价格相合理,夜间不受影响

不受灯光、天气影响。测量范围小,对天气变化敏感。

不能直接测量距离,算法复杂,处理速度慢。

对水、灰尘、灯光敏感。

价格贵

视觉传感器在CW系统中使用得非常广泛。其优点是尺寸小,价格合理,在一定的宽度和视觉域内可以测量定多个目标,并且可以利用测量的图像根据外形和大小对目标进行分类。但是算法复杂,处理速度慢。

雷达传感器在军事和航空领域已经使用了几十年。主要优点是可以鲁棒地探测到障碍而不受天气或灯光条件限制。近十年来随着尺寸及价格的降低,在汽车行业开始被使用。但是仍存在性价比的问题。

为了克服这些问题,利用信息融合技术提出了一些新的方法,利用这些方式可以得到较单一传感器更为可靠的探测。

2.2信息融合的基本原理

所谓信息融合就是将来自多个传感器或多源的信息进行综合处理,从而得出更为准确、可靠的结论。多传感器信息融合是人类和其它生物系统中普遍存在的一种基本功能,人类本地地具有将身体上的各种功能器官(眼、耳、鼻、四肢)所探测的信息(景物、声音、气味和触觉)与先验知识进行综合的能力,以便对其周围的环境和正在发生的事件做出估计。由于人类的感官具有不同度量特征,因而可测出不同空间范围的各种物理现象,这一过程是复杂的,也是自适应的。它将各种信息(图像、声音、气味和物理形状或描述)转化成对环境的有价值的解释。

多传感器信息融合实际上是人对人脑综合处理复杂问题的一种功能模拟。在多传感器系统中,各种传感器提供的信息可能具有不同的特片:对变的或者非时变的,实时的或者非实时的,模糊的或者确定的,精确的或者不完整的,相互支持的或者互补的。多传感器信息融合就像人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则结合起来,产生对观测环境的一致性解释或描述。信息融合的目标是基于各种传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。这是最佳协同作用的效果,它的最终目的是利用多个传感器共同或联合操作的优势来提高整个系统的有效性。

2.3常用信息融合算法

信息融合技术涉及到方面的理论和技术,如信息处理、估计理论、不确定性理论、模式识别、最优化技术、神经网络和人工智能等。由不同的应用要求形成的各种方法都是融合方法的个子集。表2归纳了一些常用的信息融合方法。

表2信息融合方法

经典方法现代方法

估计方法统计方法信息论方法人工智能方法

加权平均法经典推理法聚类分析模糊逻辑

极大似然估计贝叶斯估计模板法产生式规则

最小二乘法品质因素法熵理论神经网络

卡尔曼滤波D-S证据决策理论遗传算法

模糊积分理论

2.4智能驾驶系统中信息融合算法的基本结构

由于单一传感器的局限性,现在ITS系统中多使用一组传感器探测不同视点的信息,再对这些信息进行融合处理,以完成初始目标探测识别。在智能驾驶系统中识别障碍常用的算法结构如图2所示。

3CLARK算法

CLARK算法是用于精确测量障碍位置和道路状况的方法,它同时使用来自距离传感器(雷达)和摄像机的信息。CLARK算法主要由以下两部分组成:①使用多传器融合技术对障碍进行鲁棒探测;②在LOIS(LikelihoodofImageShape)道路探测算法中综合考虑上述信息,以提高远距离道路和障碍的识别性能。

3.1用雷达探测障碍

目前经常使用一个雷达传感器探测前方的车辆或障碍。如前面所分析,雷达虽然在直路上的性能良好,但当道路弯曲时,探测的信号将完全可靠,有时还会有探测的盲点或产生错误报警。为了防止错误报警,常对雷达的输出进行标准卡尔曼(Kalman)滤波,但这并不能有效解决探测盲点问题。为了更可靠地解决这类问题,可以使用扫描雷达或多波束雷达,但其价格昂贵。这里选用低价的视觉传感器作为附加信息,视觉传感器经常能提供扫描雷达和多波束雷达所不能提供的信息。

3.2在目标识别中融合视觉信息

CLARK算法使用视觉图像的对比度和颜色信息探测目标,使用矩形模板方法识别目标。这个模板由具有不同左右边界和底部尺寸的矩形构成,再与视觉图像对比度域匹配,选择与雷达传感器输出最接近的障碍模板。

CLARK算法首先对雷达信号进行卡尔曼滤波,用于剔除传感器输出的强干扰,这出下列状态和观测方程处理:

D(t)=R(t)+v(t)

式中,R(t)为前方障碍的真实距离(未知),R(t)是其速度(未知,)D(t)为距离观测值,Δt为两次观测的问题时间,w(t)和v(t)为高斯噪声。给定D(t),由Kalman滤波器估计R(t)和R(t)的值,并把估计值R(t)作为距离输入值,使用R(t)和D(t)的差值确定所用矩形模板的偏差。由于使用雷达探测的位置与雷达作为补偿。

使用上述算法可以有效提高雷达探测的可靠性,但当图像包含很强的边缘信息或障碍只占据相平面一个很小的区域时,仍不能得到满意的结果。因此,除对比度外,又引入视觉图像的颜色域。

3.3相合似然法

在探测到障碍后,CLARK算法将这些信息整合到道路探测算法(LOIS)中。LOIS利用变形道路的边缘应为图像中对比度的最大值部分且其方位应垂直于道路边缘来搜索道路。如果只是简单地将两个信息整合,则障碍探测部分的像素被隐藏,其图像梯度值不会影响LOIS的似然性。这样可以防止LOIS将汽车前方障碍的边缘误认为是道路的边缘来处理。但是当道路的真实边缘非常接近障碍的边缘时,隐藏技术则失效。

为了使隐藏技术有效,可以在障碍和道路探测之间采取折中的处理方法。这种折中的处理方法就是相合似然法。它将探测障碍固定的位置和尺寸参数变为可以在小范围内变化的参数。新的似然函数由LOIS的似然和小探测障碍的似然融合而成。它使用七维参数探测方法(三维用于障碍,四维用于道路),能同时给出障碍和道路预测的最好结果。其公式如下:

式中,Tb、Tl、Tw为相平面内矩形模板的底部位置、左边界和宽度的三个变形参数,[xr(t),xc(t)]为变形模板相平面的中心。[yr(t),yc(t)]为由雷达探测并经Kalman滤波的障碍在相平观的位置。将地平面压缩变化为相平面,的实时估计,为相平面内一个路宽的值(3.2m)。tan-1的压缩比率在相平面内不小于Tmin(路宽的一半),不太于Tmax(路宽)。通过求解七维后验pdfP(k'''',b''''LEFT,b''''RIGHT,vp,Tb,Tl,Tw|[yr(t),yc(t)],ObservedImage)的最大值获得障碍和道路目标。

篇3

2机房监控系统的设计与实现

2.1ZigBee协调器节点硬件设计ZigBee协调器节点主要由六大模块构成,分别为LED指示灯、电源模块、串口模块、晶振模块、射频天线以及无线收发器。LED指示灯主要用于显示系统网络连接状态。串口模块用于传输数据信息,并接收相关指令控制协调器运转。由于射频天线在输入和输出为高阻与差动,故适用(115+180)的差动负载。为了进一步优化ZingBee协调器节点性能,我们采用了不平衡变压器。无线收发器工作电压为3.3V,在运行过程中应采用电压转换模块将5V电压下降至3.3V无线收发器能够同时接收两种频率的晶振电路,以此满足监控系统的不同电路需求。

2.2传感器节点硬件设计传感器节点主要由电源模块、CC2430数据传输模块、数据采集模块以及外部数据存储等模块构成。电源模块使用两节5号干电池,CC2430数据传输模块负责数据的传输与采集,并通过与路由节点进行数据交换来控制命令。数据采集模块主要负责采集系统监控区域的湿度、温度、水浸以及光照强度等信息,并将其转化为数据进程存储。

2.3ZigBee协议栈ZigBee协议栈是分层的,每一层都需要向上一层进行数据的提供和管理功能,其主要包括网络层、应用层、媒体访问控制层以及物理层。其中应用层内又划分为ZDO、APS以及应用对象等。媒体访问控制层与物理层位于协议栈子层的最底,属于硬件系统,其他层则在这两者智商,不属于硬件系统。ZigBee协议栈的分层结构简洁明了,极大的方便了系统的设计和调控。

2.4无线传感网软件平台搭建搭建无线传感网软件平台需要一个良好的操作系统。操作系统能够对各项任务进行调度并使整个系统正常运转。不同;诶型设备的同一项处理可以视为同一任务,新建任务并添加至系统,操作系统即将新任务与ZigBee协议栈进行融合,使系统获得新功能并投入使用,从而搭建出完整的无线传感网软件平台。

篇4

    由于系统中选用了两台不同型号的激光传感器作为船舶特征信息的采集,它们采用的数据接口各异。因此,需选用不同的传输方式获取其数据信息。通过对三种方案的实践和比较,最终得到了合适的传输方案。

    激光传感器数据的传输

    1、激光传感器

    激光传感器船舶交通量观测系统由数据采集子系统、数据处理子系统和辅助子系统三个部分组成。数据采集子系统中的激光传感器通过自身激光头的旋转,对物体进行短时间的线扫描,从而实现对被测物截面的二维扫描,可实时采集航道上的目标图像。数据采集子系统主要由两台激光传感器组成。

    2、激光传感器数据的传输

    传输方案:

篇5

 

随着社会的发展,信息处理技术、微处理器和计算机技术的快速发展和广泛应用,都需要在传感器的开发方面有相应的进展。现在非电物理量的测试与控制技术,已越来越广泛地应用于航天、航空、常规武器、船舶、交通运输、冶金、机械制造、化工、轻工、生物医学工程、自动检测与计量、称重等技术领域[1],而且也正在逐步引入人们的日常生活中。免费论文参考网。可以说测试技术与自动控制技术水平的高低,是衡量一个国家科学技术现代化程度的重要标志。传感器是信息采集系统的感应单元,所以,它是自动化系统和控制设备的关键部件,作为系统中的一个结构组成,在科技、生产自动化领域中的作用越来越重要[2]。

传感器亦称换能器,是将各种非电量(包括物理量,化学量,生物学量等)按一定的规律转换成便于处理和传输的另外一种物理量(一般为电量、磁量等)的装置[3],它能把某种形式的能量转换成另一种形式的能量。传感器一般由敏感元件、传感元件和测量电路3部分组成,有时还需加上辅助电源。免费论文参考网。其原理如图1所示。

其中:①敏感元件直接感受被测物理量,如在应变式传感器中为弹性元件;②传感元件将感受到的非电量直接转换成电量,是转换元件,如固态压阻式压力传感器;③测量电路是将传感元件输出的电信号转换为便于显示、控制和处理的有用电信号的电路,使用较多的是电桥电路。由于传感器元件输出的信号一般较小,大多数的测量电路还包括放大电路,有的还包括显示器,直接在传感器上显示出所测量的物理量;④辅助电源是供给传感元件和测量电路工作电压和电流的器件。

国际电工委员会IEC则将传感器定义为测量系统中的一种前置部件,它将输入变量转换成可供测量的信号[4]。传感器是传感器系统的一个组成部分,是被测量信号输入的第一道关口。对传感器在技术方面有一定的要求,而同时亦要考虑尽可能低的零点漂移、温度漂移及蠕变等[5]。近年来,传感器有向小型化、集成化、智能化、系列化 、标准化方向发展的趋势[6]。

电阻式传感器的工作原理是将被测的非电量转换成电阻值,通过测量此电阻值达到测量非电量的目的。这类传感器大致分为两类:电阻应变式和电位计式。利用电阻式传感器可以测量形变、压力、力、位移、加速度和温度等非电量参数。

压力传感器是将压力这个物理量转换成电信号的一种电阻应变式传感器。传统的电阻应变式压力传感器是一种由敏感栅和弹性敏感元件组合起来的传感器[7]。如图2所示,将应变片用粘合剂粘贴在弹性敏感元件上,当弹性敏感元件受到外施压力作用时,弹性敏感元件将产生应变,电阻应变片将它们转换成电阻变化,再通过电桥电路及补偿电路输出电信号。它是目前应用较多的压力传感器之一,因具有结构简单、使用方便、测量速度快等特点而广泛应用于航空、机械、电力、化工、建筑、医学等诸多领域。

传统的电阻应变式压力传感器的电阻敏感栅是刻录在一层绝缘脂薄膜上,而薄膜又通过粘结剂粘合到弹性基片上,由于弹性元件与粘结剂及绝缘脂膜之间的弹性模量不同,弹性元件的应变不能直接传递给敏感栅,而是要通过粘结剂、绝缘脂膜才能到达敏感栅,从而产生较大的蠕变和滞后,影响传感器的灵敏度、响应度、线性度等性能。另外,由于粘结剂不能在高温条件下使用,这也使它的应用范围受到限制。

为了消除绝缘薄膜层和粘结剂层对传感器性能的影响,可以尝试采用真空镀膜方法及光刻技术,在弹性元件上直接刻录敏感栅,弹性元件与敏感栅直接接触,以克服常规工艺导致的滞后和蠕变大的缺陷。另外,如果弹性材料和结构选择恰当,还可制成耐高温、耐腐蚀的全隔膜式薄膜压力传感器。

一、器件研制

采用真空镀膜技术在弹性基片上蒸镀一层约300nm金属栅材料的薄膜,用半导体光刻技术,在弹性基片上直接形成电阻敏感栅,最后利用耐高温、耐酸碱腐蚀的环氧树脂粘结剂,将制作好的芯片封装在工件中,组成压力传感器探头。经过热老化、电老化,待封装应力趋于稳定后,进行电性能测试。

篇6

 

1、前言

地磁场的异常波动是发生地震的重要征兆,对地磁场异常的监测可以为地震预报研究提供重要的数据资料 [1]。

虚拟仪器技术是利用编程软件,按照测量原理,采用适当的信号分析与处理技术,编制具有测量功能的程序就可以构成相应的测试仪器[2],降低了仪器的开发和维护费用,缩短了技术更新周期,显著提高了仪器的柔性和性价比[3]。

2、硬件结构

分布式地磁场异常监测系统总体结构如图1所示。磁场传感器通过RS232串口将计算出的地磁场方位值前期数据发送给电脑1,电脑1上的虚拟仪器软件完成对信号的读取、计算、分析、显示、存储等并通过电子邮件将相关数据传送给远端的电脑2。

3、软件设计

3.1、软件的总体功能

如图2所示,监测系统主要有数据采集模块、显示模块、磁场异常报警模块、数据处理模块、数据保存模块、电子邮件发送模块等组成。

3.2、软件前面板

前面板如图3所示,主要分为3个模块:通信参数设置模块、监测结果显示及保存模块、异常报警模块等。论文参考,电子邮件。论文参考,电子邮件。设置的通信参数主要有与传感器通信时的波特率、数据位、数据文件保存的位置、软件异常及地磁异常时发送电邮的收发件人电子信箱地址等。论文参考,电子邮件。论文参考,电子邮件。

图2 软件总体功能框图

图3 软件前面板

3.3、地磁场方位值的计算

地磁场方位值计算模块如图4所示,将VISA读取控件缓冲区中的字符串数组读出,截取其中第9和第10个元素,进行数制、进制转换得到地磁场方位值,接到前面板进行显示。论文参考,电子邮件。论文参考,电子邮件。

图4 方位值计算模块

3.4异常报警

将当前时刻的方位值与正常方位值相比较,如果相差5度,即认为是地磁场的异常波动,报警指示灯亮,发出报警音,同时启动邮件发送模块。

3.5 数据保存模块

调用日期/时间字符串控件,读取windows日期时间,和地磁场方位值一起写入指定目录的txt文件中。当地磁场异常时,触发磁场异常逻辑为真,写入文件控件将从此时刻开始5秒内的时间值、地磁场方位值写入txt文件中。

图5 邮件发送第一帧

图6 邮件发送第二帧

3.6 邮件发送

4.实验

如图7所示,实验方法为:将传感器与电脑1串口相连,通过虚拟仪器软件监测地磁场的异常情况,当地磁发生异常或接收传感器数据异常时,电脑1上的监测软件报警,并把异常数据记录到数据文件中,同时通过电子邮件模块向指定信箱发送指定格式邮件,监测者在电脑2上查看相关异常邮件。做法是转动传感器使其与地磁场磁北指向夹角为200°,用一块磁铁沿着与传感器指向垂直的方向自远及近靠近后又自近及远离开传感器,记录下整个过程磁铁与传感器距离、地磁场方位值、异常情况及邮件接收情况。实验结果如表1所示。

反复实验表明,监测软件准确地记录下了磁铁靠近传感器的过程中该处磁场的变化情况,且当地磁异常时电脑2及时地接收到了相关异常数据邮件。

篇7

 

1 绪论

1.1课题背景波达方向(Direction Of Arrival,DOA)估计(常称为DOA估计)是阵列信号处理领域内的主要研究方向之一。论文格式。阵列信号处理[1]是近几十年来综合阵列理论和数字信号处理理论与技术而发展起来的一门学科分支。它是将一组传感器在空间的不同位置上按一定规则布置形成的传感器阵列。尽管采用的传感器类型可以不同,如天线、水听器、听地器、超声探头、X射线检测器,但是传感器阵列的功能是相同的,它是连信号处理器和感兴趣的空间的纽带,用传感器阵列接收空间信号,获得信号源的空间观测数据并加以处理。阵列信号的处理目的是从这些观测数据中提取信号场的有用特征,获取信号源的属性等信息。近些年,随着微电子技术、数字信号处理技术、并行处理技术的迅猛发展,阵列信号处理的理论和实际应用也得到了迅速发展。

尽管空间谱估计的理论与技术日益成熟,但是需要或者值得研究的方向仍然很多。譬如近几年来,如何利用非圆信号(non-circularsi gnals)的特征来提高算法估计性能己经成为信号处理理论界的一个研究热点。

1.2对非圆信号的研究意义对非圆信号的研究有着现实意义,一方面,非圆信号是现代通信系统中常用信号;另一方面,在实际应用场合中经常会遇到由于用户的高密集性而使得阵列的接收信号数要远大于阵元数的情况,并且为了处理的实时性,不可能获得很多的快拍数。因此研究处理信号个数多、运算量小的算法显得尤为迫切。

2 电磁矢量传感器阵列非圆信号模型2.1电磁矢量传感器输出信号模型电磁矢量传感器由于其独特的同点极化分集接收能力,使得隐含于信号结构中的微观信息得到充分利用,受到了人们的广泛关注。电磁矢量传感器[3]阵列是一种极化敏感阵列,由若干个相同形式的电磁矢量传感器组成。每个电磁矢量传感器又可视为一个6元子阵,由相位中心重合的三个正交电偶极子和三个正交磁偶极子组成,可以同时感应入射电磁信号的3个电场分量和相应的3个磁场分量。

2.2电磁矢量传感器阵列流行矢量特点关于电磁矢量传感器的阵列流形矢量有几个重要的特点。首先单个矢量传感器测量产生一个6×1维的导向矢量,因此,单个矢量传感器本身能够等效表示一个六元阵列。第二,矢量传感器的阵列流形没有时间延迟相位,也就是说矢量传感器阵列流形矢量不同于空间平移阵列,单电磁矢量传感器的导向矢量与空间抽样间隔以及入射信号的频率无关,这种频率无关性是由于组成矢量传感器的六个分量传感器在空间同点放置。论文格式。第三,电磁矢量传感器阵列流形矢量是极化敏感的;这就意味着具有相同DOA方向但是有不同极化状态的信号有不同的阵列流形矢量,因而可以基于他们的极化分集区分开来。第四,任意宽带或者窄带电磁波信号的电场矢量和磁场矢量相互正交,并且正交于信号的归一化玻印廷矢量,信号单位传播矢量的三个分量是沿着笛卡尔坐标的三个方向余弦。

3 改进的非圆信号DOA估计方法3.1相干源的分辨问题在实际情况中,常由于多径传输或人为干扰的影响,阵列有时会收到来自不同方向上的相干信号,相干信号会导致接收信号协方差矩阵的秩亏损,从而使得信号子空间“扩散”到噪声子空间中去。因此,MUSIC算法[2]的空间谱搜索就无法在波达方向上产生谱峰;ESPRIT算法也会由于秩亏损而无法求解出正确的来波方向。相干源的问题要从解决矩阵的秩亏损入手。论文格式。当个信号非相干时,一次快拍得到的是个信号线性组合的阵列向量,其协方差矩阵具有秩为的信号子空间。如果个信号中有两个相干,即这两个信号的相位关系保持不变,再多的快拍数也只能得到个非线性相关的阵列向量,使信号子空间的秩降为,也就是产生了秩亏损。

由以上分析可知,在相干信号源情况下正确估计信号方向(称为解相干或去相干)的核心问题是如何通过一系列有效变换使得信号协方差矩阵的秩得到有效恢复,从而正确估计信号源的方向。本章将考虑基于电磁矢量阵列的非圆信号DOA估计问题,提出一种广义相位平滑算法,这种方法不仅可以提高非圆信号的DOA估计精度,还可以有效处理相干信号的估计问题。

3.2广义相位平滑MUSIC与MUSIC算法比较广义相位平滑算法能较好的对两个相干非圆信号解相干。不仅如此,广义直接相位平滑算法和广义平方相位平滑算法还可以对非相干非圆信号DOA估计精度有明显的改进。

下面将通过仿真来比较这三种算法的性能。仿真中采用电磁矢量传感器均匀线阵,由6个指向相同的电磁矢量传感器组成,阵元间距为半波长。通过第2节电磁矢量传感器输出信号模型的建立和电磁矢量传感器阵列流行矢量的特点分析进行比较。比较步骤如下:

1.通过计算信噪比与均方角度误差的关系,信号为三个非相干的BPSK窄带信号,入射角度为、和,初始相位为、和,极化状态为、和,快拍数为200,所给结果为200次独立实验的平均;

2.快拍数与均方角度误差的关系,信号步骤1相同,信噪比为-5dB;

3.在步骤1的基础上将信号入射角度变为、和;

4.在步骤2的基础上将信号入射角度变为、和。

通过比较,结果表明,在低信噪比和短快拍数两种困难条件下广义相位平滑算法对非相干的线极化非圆信号DOA估计精度有明显的改善作用。

4 .总结本文主要研究了非圆信号的定义与性质;基于电磁矢量阵列的非圆信号DOA估计的数学模型;研究了一种改进的非圆信号DOA估计方法,即广义相位平滑算法,并把它推广到电磁矢量阵列。从而提高参数估计性能并且能估计多于阵元个数的信号。同时,广义直接相位平滑算法和广义平方相位平滑算法不仅可以很好的对两个相干的非圆信号解相干,还对非相干的非圆信号DOA估计精度有明显的改善作用。

【参考文献】

[1]庄钊文等.极化敏感阵列信号处理[M].国防工业出版社,2006.

[2]Y Xu and Z Liu.Subspace-Based Single-Vector-Sensor Direction Finding for Two Coherent AcousticSources Having Real-Valued Constellations[C].in proc.IET internationalconference on wireless,Mobile&MultimediaNetworks,2006,HangzhouChina,994-997

篇8

中图分类号:TN711 文献标识码:A 文章编号:

传感器最早在军事等领域应用,传感器网络由空间上分布的许多自动装置构成计算机网络,通过传感器,装置对不同位置的物理或者污染物、运动、压力、振动、声音、湿度等环境状况进行协同监控。虽然传感器网络最早起源于军事监测,现今已经在交通控制、家庭自动化、健康监护、生态监测等很多民用领域应用。传感器集成了分布式信息处理技术、嵌入式计算技术、通信技术、传感器技术,具备通信、计算、感知等功能。而论文中的主角传感器网络技术可以对网络分布区域内各种监测或环境对象的感知和采集,并对其进行处理,最后以多跳中继的方式,通过随机无线通信网络,给用户终端传输信息。在交通管理、医疗卫生、环境监测、远程控制等领域方面都离不开传感器网络技术,我们就来了解一下其在水文自动测报系统中的应用。

水文测报系统

传感器网络与其他无线网络的本质区别在于:它是以数据为核心的网络,它是具有分布式的智能网络系统。传感器网络实现了虚拟计算世界和真实物理世界的耦合。传感器网络中,网络在得到信息后,将其汇报给用户。社会经济的飞速发展,科学技术水平的不断提升,水文测报系统也进入了网络时代。水文测报系统为一个计算机网络。而系统按照不同的用户,将其分为中央机、中枢机、中心机、现场机。在国家防洪防旱调度指挥中心或者国家水利部服务的为中央机,在流域级管理的信息系统称为中枢机,服务于市级管理部门的信息系统称为中心机,而布置在现场环境的水文传输以及遥测系统称为现场机。建立水文测报系统的目的就是要将在现场采集的水文数据传达到数据处理中心,再通过决策和融合处理,满足系统同于管理与组织的目的。由现地机到中心机、由中心机到中枢机、中枢机到中央机,水文测报系统采用网络拓扑结构。通过现场装配的传感器,将各种水文数据由各个水文测站进行采集后,在进行存储前,适配器会将不同标准与格式的数据转变为具有统一标准格式的数据,并通过等无线方式或等有线方式传输到中心机,再对各种数据分析、处理、存储后,通过例如:、等传输至上层控制中心。

获取与处理信息是为了能够使传感器资源达到最优工作状态,用户除了能够及时掌握环境内的影响因素数值外,就需要控制与管理资源。管理层与系统组织控制与管理了分布于网络环境中各个节点上的数据源设备。智能仪表仪器、工作站、计算机等都在网络节点上体现。其核心设计就是采用分布模式代替了原来集中控制的测控网络,使其成为具有智能化、网络化、分散性、可互操作性、开放性的测控系统。

水文测报系统中传感器网络技术的应用

由处理、传递、收集水文实施数据的各种计算机、通讯设备、传感器等装置共同组成了水文自动测报系统。主要用于水利的调度和防汛,其分为中心控制站、信息传输通道、遥测站这3部分。水文自动测报系统仅需要几分钟的时间就可以处理小流域范围内的数据收集,并提供出水库、重点河段的水清和雨情等。

中心控制站将各个遥测站的水文数据集中,在经过了整理和计算后,对闸门的启闭进行控制,并及时预报洪水情况,最终实现水利调度。中心控制站的设备主要有电子计算机和通信电台等组成。信息传输通道分为无线和有线两类,作为电波传输线,它将中心控制站与遥测站连接。无线电通道克服了距离或障碍的困难,中继站在通信距离大于五十公里位置设置,能够满足各个方向通信要求。而有线通道可采用电话线为其专用线路,有线通道的不足之处在于受恶劣天气影响较大,会增加架空线等设备的成本。而有线通道最大的特点就是使用较为可靠方便,抗干扰能力强等。人们往往采用脉冲调制数字通信来作为传输信息的方式。遥测站中有电源设备、电台、数传机、编码器、水位计、雨量计等仪器设备,通过中心控制站的控制,遥测站实现自动收集水文参数实时数据,并将这些数据编成脉冲信号,传递于中心控制站。

我国的湖泊、江河分布范围广,例如太湖、长江等流域范围内存在着人力难以观测障碍,而在这些难于达到的流域部署传感器节点,就可对高精度的数据做到了如指掌,在水文监测中,使用传感器节点所组成的传感器网络,具有着显著的特点。第一,传感器的节点可以在节点之间进行监控,且具有通信能力,可以通过环境的变化来实现对复杂情况的控制。无线传感器节点其自身也具备了一定的存储功能和计算功能。第二,传感器的网络节点具有精度高、采集数据量大等特点,每一个局部区段的具体信息都可以由每个节点检测,其节点分布的范围广、密度高。第三,该传感器网络人为影响流域的因素小,因为传感器节点的部署简便,仅需要部署一次即可,且体积小。

2.1结构

传感器节点能够分布在不相邻的测控区域中,也可以集中部署在同一个区域内,不管如何布置,都可以形成传感器网络。传感器网络在水文测报中的应用如图所示。传感器节点向网关节点传送感知到的数据,而将传感器节点传输来的数据传到基站就是网关节点的任务,期间,数据会经由传输网络进行传输。传输网

图传感器网络用于水文测报系统的体系结构图

络的传输方式可以是无线也可以是有线。它负责协同综合网关节点、传感器网络网关节点信息的局部网络。基站备有本地数据库,用于传感数据的存放。通过,基站可以将数据传输至用户数据处理中心。用户可以在任何时候、任何地方,通过连接了的计算机,发出命令控制基站。

2.2功能

篇9

随着现代科学技术的高速发展,自动导引小车(Automatic Guided Vehicle AGV)得到了广泛的应用。AGV以电池为动力,并装有非接触导航(导引)装置,以电磁引导、激光引导、惯性引导及GPS引导等方式。可实现无人驾驶的运输作业。它能在计算机监控下,按路径规划和作业要求,精确地行走并停靠到指定地点,完成一系列作业。

AGV以轮式移动为特征,较之步行、爬行或其它非轮式的移动机器人具有行动快捷、工作效率高、结构简单、可控性强、安全性好等优势。AGV的活动区域无需铺设轨道、支座架等固定装置,不受场地、道路和空间的限制。在自动化物流系统中,最能充分地体现其自动性和柔性,实现高效、经济、灵活的无人化生产。

一、AGV导航系统的系统总体设计

本论文设计了磁带引导AGV,完成寻迹、蔽障、PWM调速、人工控制等功能,为大量生产工业型AGV提供较好的研究基础。系统模块设计如图1所示:

图1

本论文主要对AGV的硬件系统进行设计,重点研究磁引导AGV的磁寻迹感器模块软硬件模块、速度反馈模块的设计。

二、磁寻迹传感模块设计

磁寻迹传感器是AGV能否完成磁带寻迹功能的关键,为了检测到弱磁磁场的存在,要选用灵敏度更高的传感器。本设计采用磁阻传感器,可以测量到弱磁磁场的存在。由于磁阻传感器输出为模拟量输出,需要通过响应的A/D转换电路将信号输入单片机。模块设计如图2所示。

图2 磁寻迹传感器硬件实现电路

三、速度反馈模块设计

本论文AGV采用双轮差速驱动方式,当电机负载增加时,电机的运行速度下降,一般额定转速降落达3%~10%,为了使两电机同速,必须要有反馈换环节对电机的速度进行反馈。只有组成了闭环系统,AGV的运动与速度才可控。码盘接口硬件电路如图3所示。两编码器的A和B两相信号经过74LS14施密特整形,分别接到单片机的P2.3和P2.2 以及INT0和INT1上。单片机对INT1和INT0的中断次数计数来测量通道B的脉冲数,读取P1.2的电平状态来判断电机的转动方向。以上升沿触发为例,当B路信号的上升沿引起中断时,单片机判断P2.2或P2.3信号的电平高低。若其为低,则电机正传;为高,则电机反转。电机的速度即为一个采样周期中N值的变化量。电机的转速为,式中,C为标度变化系数,可根据转速的量纲来选择,N为一个采样周期中的计数值,它的符号反应电机的转动方向。硬件实现电路如图3所示。

图3 光电编码器实现电路图

四、总结

本系统采用PWM调速及双轮差速控制,使车辆依照车载传感器确定的位置信息,沿着规定的行驶路线和停靠位置,自动行驶,完成规定的操作。论文对关键模块的设计进行了详细设计,经验证该系统设计可靠合理,能实现系统设计的基本功能。

参考文献:

[1] 温钢云,黄道平. 计算机控制技术[M]. 华南理工大学出版社,2002.

篇10

高压开关柜在电力系统中担负着关合及断开电力线路、保护系统安全的双重功能,随着电力系统向着高电压、大机组、大容量的迅速发展,电网日益扩大以及变电站无人值班管理模式和综合自动化的普及推广,高压开关柜的安全运行越来越重要。高压开关柜内闸刀触头、电力电缆进出线的接头接触不良时,接触电阻增大,在负载电流流过时会产生发热现象,过热会引起金属材料的机械强度下降,绝缘材料老化并可能导致击穿,形成事故。在高压开关柜中,固体绝缘中的空穴、不同特性的绝缘层之间,以及金属(或半导电)电极的尖锐边缘处,由于气体的击穿场强比固体介质低得多,气体中的电场又比固体介质中高,往往在气隙的部位产生局部放电。这些局部放电会造成电介质绝缘强度逐步下降,最终导致绝缘的损坏。此外,高压开关柜中还存在SF6气体的泄漏,同样会造成设备性能的下降。因此,测量和监视高压开关柜内的运行状态,是避免重大事故发生及控制故障恶化的有力手段,对于保证高压开关柜的正常运行,提高电力系统的运行可靠性和自动化程度具有非常重要的意义。

目前已有的各个测试系统存在各种各样的缺陷,并且各种方法只能实现对某一种故障的监测,还无法实现对高压开关柜的运行状态准确监测。针对于上述的情况,针对于上述的情况,对高压开关柜在运行过程中各故障状态下的气体成分进行了分析,发现各种故障状态下,高压开关内部会产生不同的特征气体。由此可见,采用变压器油色谱测试的原理,通过对不同特征气体的分析,可以实现对高压开关柜运行状态的监测。基于上述的原理,本论文介绍了基于故障气体原理开发了便携式开关柜故障探测装置,该系统通过提取开关柜运行过程中所形成的气体,采用气敏传感器对各种气体成分进行分析,从而对开关柜的运行状态做出可靠判断,确保高压开关柜的安全运行。

一、开关柜内部故障的特征气体分析

对于采用SF6断路器的小车式开关柜,最容易发生的异常是接头发热、SF6气体泄漏和局部放电。下文将分别研究每种异常状况的特征气体特点。

1.接头发热

接头发热是一次设备的常见故障,对于常用的小车式开关设备,由于其断路器小车经常被移进移出,断路器的触指和触头很容易受到撞击等外力作用而变形,导致接触不良而发热,另外其电缆接头也是发热故障的高发部位,由于开关柜内部发热几乎不能早期发觉,接头发热故障对于开关柜的安全运行事关重大。接头发热产生的特征气体比较复杂,各种气体的组分和浓度随发热温度和接头材料的不同而不同,主要特征气体有以下几种:

a.烷烃和硫化氢——主要是接头电力脂、脂、示温蜡片中杂质受热分解产生,由于断路器触头无一例外地涂有脂,如果接头发热,凡士林融化导致内部少量碳原子数量较少的烷烃和硫化物等杂质气化而分布在柜内的空气中,由于各种气体传感器对于烷烃等可燃气体灵敏度极高,因此很容易检出。

b.单质铜和氧化铜颗粒——如果温度过高,接头的铜会逐步氧化发黑形成氧化铜,极少量的氧化铜和单质铜会升华进入空气,并产生微量烟雾。

c.绝缘材料分解气体——发热接头附近的绝缘材料(如环氧树脂)受热也会产生一定特殊气体,另外接头部位的灰尘受热也会产生特殊气体,主要有氢溴酸、胺类、腈类、酚类、烷烃、醛类、氮氧化物,多环芳烃、杂环族化合物、羟基化合物等。

2.局部放电

局部放电也是一次设备的常见故障,空气中的放电现象会产生氮氧化合物、臭氧和负离子,因此对于空气中的局部放电,如沿面放电等,可采用探测上述气体的传感器进行探测,对于固体介质内部的局部放电则没有作用。

3.SF6泄漏

绝大部分的小车式开关柜均为装设断路器SF6压力表或密度继电器,如发生SF6泄漏,只有等到压力低于报警或闭锁值时,才能通过处罚压力接点的方式用光子牌、指示灯间接显示出来,如果压力接点失灵,SF6气体即使漏完运行人员也无法知道,如果此时操作断路器可能导致设备爆炸的严重后果,因此采用另一种手段探测SF6泄漏也很有必要。由于现有的SF6气体传感器能检测到0.1ppm以下浓度的SF6气体,因此开关柜内部的SF6泄漏应该能很容易地检出。

二、气体传感器设计

1.传感器的选择

通过对不同传感器的性能比较,分析了各种传感器在寿命、灵敏度、成本、加热功耗和反应速度方面的优缺点,本论文提出了采用电化学可燃气体传感器+离子型烟雾传感器+TGS型空气质量传感器”检测接头发热、大气型臭氧传感器检测局部放电、环境监测型SF6传感器检测SF6的方案。

接头发热采用电化学可燃气体传感器,该传感器灵敏度很高,用其可满意地检出微量的硫化氢或其他可燃气体;游离碳、游离状氧化铜和单质铜用气体传感器较难检出,为了提高检测性能,又加上了离子型烟雾传感器,这样如果柜内有极少量的烟雾颗粒,也能及时检出,通过联合使用2种不同原理的气体传感器,就能较可靠地探测出开关柜内部发热异常。局部放电和SF6泄漏的检测分别采用O3/S-5型大气监测用臭氧传感器和SM-SF6型SF6气体传感器,该两种传感器的检出灵敏度都在0.1ppm以下,足以探测开关柜内部的SF6气体泄漏和表面局部放电现象。

2.气体传感器的典型应用电路

气体传感器是一种将特征气体浓度量转化为电量的传感器,大部分气体传感器都采用电阻率变化的方式输出信号,当环境中某种特征气体含量较低时,传感器电阻较大,当该气体浓度增大后,传感器电阻减小,大部分气体传感器的电阻在一定范围内都能与气体浓度成比例变化,具有较高的线性度。

典型的采用加热方式工作的气体传感器电路如图1所示,传感器的1、2端口为加热端口,3、4端口为输出端口,R2为加热端口的限流电阻,用以将加热电流调整到传感器所规定的电流值,R1为输出端负载电阻,当传感器启动后,需要加热一段时间,加热完毕后即能工作,此时3、4端口的电阻值会随着外界气体浓度的变化而变化,从而使R1上的电流和输出端的电压变化,起到监测气体浓度的作用。

三、系统结构设计

通过上述的研究,本论文对整个测试系统进行了设计,其整个原理如图2所示。

从上述监测系统的结构框图可以看出,整个系统由CPU控制系统、按键、液晶显示屏、通信总线、A/D数据采集单元、局部放电探测单元、SF6泄漏探测单元和触头过热探测单元所构成。整个系统的工作过程为:首先采用抽气的方式,将开关柜内的运行气体送入到各测量单元中,利用局部放电探测单元、SF6泄漏探测单元和触头过热探测单元中的气敏传感器对各种故障的特征气体进行测量,实现非电量向电量的转换,接着将各测试信号传到A/D数据采集单元,将模拟信号转换成数字信号,最后将数字信号送入CPU控制单元中,对采集的数据进行归类、统计分析,将测试结果和分析结果显示在液晶屏中,其显示的内容可通过按键进行更改。此外,整个系统还可以通过通信总线,将测试结果上传至监控中心。

四、测试电路设计

针对于上述电路的框架,本论文对其的测量电路进行了设计,其原理如图3所示。

从图3中可以看出,整个测试电路由模拟开关、AD采样电路和MCU组成,其工作原理:首先将测量信号(如热信号、局部放电信号等)接入模拟开关,然后利用MCU控制模拟开关,实现对其分时控制,将模拟信号输入AD采集单元中,接着MCU控制AD采集单元实现对其模拟量的数字转换,从而实现对被测量的测量。

五、系统软件设计

根据上述的测量电路,对其控制软件进行了设计,其程序的流程框图如图4所示。从图中可以看出,整个程序的流程为:首先对系统进行初始化,如接口的电平、寄存器初值的设定,中断的关闭等,然后控制模拟开关,使模拟信号进入AD的输入端,接着对其进行模数转换,实现对模拟量的分时采样,然后对所测量的数据进行分析,对高压开关柜的运行状态作出判断。

六、样机的效果测试

鉴于要寻找内部存在异常的运行开关柜比较困难,因此设计了一些模拟实验,来验证该样机的实际效果,试验结果如表1所示,图4为测量程序流程图。

七、结论

本文说明了空气绝缘开关柜内部异常早期探测的必要性,提出一种通过检测开关柜内空气质量和特征气体组分的方式,来探测空气绝缘开关柜内部异常状态的方法。通过理论分析和实验证明了其具有较高的可行性和实用性,对于接头发热、表面放电和SF6泄漏异常具有较高的检出率,能够实现对高压开关柜的监测。

参考文献

[1]吴家棍,孙良彦.传感器技术[J].1997(1):18-21.

[2]尚文,刘杏芹,汤笑婷.应用化学[J].1998(2):60-63.

[3]陈尔绍.传感器实用装置制作集锦[M].北京:人民邮电出版社,2000(4).

[4]陆凡,王小平等.传感器技术[J].1997,26(3):5-6.