时间:2023-03-02 15:11:59
导言:作为写作爱好者,不可错过为您精心挑选的10篇系统设计论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
酒店综合布线系统的目标是:以系统规范为指导,以具有当前国际领先水平的综合布线技术、计算机技术、通讯技术和自动化技术为支撑,建立一套统一规划、高度集成的布线系统,为酒店计算机网络系统数据、图像及控制信号提供统一的传输线路、设备接口和高质量的传输性能。全面实现酒店计算机通信网络的通讯、办公、管理手段的智能化、集成化,把酒店计算机通信网络建成一个高起点、高标准、功能设施一流、且具有高开放性和平滑升级性的网络平台。同时,该布线系统兼顾了计算机网络系统未来的发展要求,提供15年保证;在酒店大楼增加新系统时,对新设备提供信号传输的支持。
作为酒店智能化系统的基础平台-综合布线系统将为整个酒店的语音通信、宽带数据、图像联网、酒店管理系统及网站建设提供高质量的传输通道。酒店大楼内的各个功能区通过高性能的结构化综合布线系统连接起来,组成一套具备高传输带宽的、结构化的信息高速公路。
二、系统功能
本设计提出的综合布线系统实现了酒店设备的网络物理层上的相互联系,满足系统间信息共享的要求,为酒店集中管理以及与Internet的连接建立了基础设施。具体来说,,本方案设计的布线系统可以支持以下各类应用及设备。
话音:程控交换机、电话、传真、卫星通讯、电话会议、语音信箱等。
数据:快速以太网、千兆以太网、1.2GATM、TCP/IP、INTERNET、INTRANET等。
视频:闭路电视监控、电视会议、可视图文、自动控制等音、视频和控制信号。
需要指出的是视频、射频、公共广播、自动控制等系统技术方面,设计理论和多个项目的实践已证实采用的结构化布线系统可达到与传统布线方式同等的传输质量和传输距离;但在工程造价方面,由于结构化布线系统要配备专用的适配器,以至工程造价将会有很大的提高,故本设计只提供了高性能的传输链路,在技术发展造价降低时,或有此类需要时提供坚实的支持。
三、系统设计依据及设计原则
酒店智能化系统工程-综合布线工程整个布线系统选用星型结构,从插座至楼层配线架,最后通过数据/语音主干线缆统一连接至相应的数据和语音机房,以便于集中式管理。系统机房设置在酒店一层,系统水平布线满足小于90米的布线标准要求。数据水平部分采用超五类双绞线传输,语音水平部分采用电话线传输;数据干线子系统采用光缆传输,语音干线子系统采用大对数电缆传输。如果把结构化布线系统看作是一条信息高速公路的话,那么,越是高级的路况,车速能提高得越快。这种高速率,不是单靠提高汽车的档次来实现,而是由构筑的信息奔驰“路面”通畅快速来完成的。本设计方案既满足用户目前的应用环境,又能支持未来21世纪高速宽带应用。
为了满足酒店现在和未来10年至15年发展的应用,以及可能会根据不同的机型选择不同的适配器来构架整个计算机网络。因此,采用了开放式的布线设计作为解决方案。结构化布线系统采用星型结构,以便实现各种网络逻辑拓朴结构。
1.设计原则
(1)先进性。布线系统的设计目标决定了系统必须采用先进的方法和设备,即要反映当今的水平,又应具有发展的潜力。由于布线系统是一项在规定时间内投入运行的工程,因此系统所涉及的技术必须是成熟和先进的。
(2)开放性。布线系统应具有开放性。一方面布线系统能适应不同功能的要求,同时又能支持不同厂家相应的设备。
(3)实用性。布线系统在现在和将来能适应技术的发展,实现资料和语音通信。
(4)灵活性。布线系统应能满足灵活通用的要求。
(5)模块化。布线系统中,除固定于建筑物中的线缆外,其余所有接插件均是模块化的标准件。
(6)扩充性。布线系统是要能扩充的,以便将来要扩展时,可以方便地将设备扩充进去。
2.设计依据
(1)EIA/TIA-568民用建筑线缆标准
(2)EIA/TIA-569民用建筑通信信道和空间标准
(3)EIA/TIA-607民用建筑中通信接地标准
(4)GB/T7427-87通信光缆的一般要求
(5)IEEE802.3总线局域网国际标准
(6)TPDDI铜线分布式资料接口局域网标准
(7)ATM异步传输网标准
(8)RS232,X.21,RS422RS485等异步和同步标准
四、各子系统设计方案
1.连接方式
E:设备C:连接点T:终端设备
2.设计等级
综合布线系统为了满足高质量的高频宽带信号,所以在设计时,参照综合型设计标准,综合型设计标准适用于建筑物配置标准较高的场所,采用有线非屏蔽双绞线的组网方式。
3.结构化布线系统的结构
根据需求,结构化布线系统分解成以下五个模块进行设计。
(1)工作区子系统(2)水平布线子系统
(3)管理子系统(4)主干子系统
(5)设备子系统
4.工作区子系统的设计
工作区布线子系统由终端设备连接到信息插座的联机(或软线)组成,它包括装配软线、适配器和连接所需的扩展软线。
J45暗装式信息插座与其旁边电源插座应保持20cm的距离,信息插座和电源插座的低边沿距地板水平面30cm。如图3所示。
图3暗装式信息插座与其旁边电源插座距离示意图5.水平布线子系统的设计
这是一个主要由水平非屏蔽双绞线组成的系统,水平非屏蔽双绞线由管理区的配线架出发,通过金属线槽、管道、桥架从地面或天花板延伸到指定位置上,然后与插座模块端接,每一个插口均为RJ45制式。设计中保证单条水平双绞线的最长距离不超过90米。水平布线子系统考虑数据采用超五类UTP信息模块、语音采用RJ11信息模块。语音部分水平布线采用三类四芯电缆设计。
6.水平线缆路由设计
走廊的墙角顶上应安装有金属桥架或PVC电线管,进入房间时,从桥架或PVC电线管引出以PVC电线管暗装方式由墙壁而下到各个信息点。
7.管理子系统的设计
管理子系统由每层弱电井内的壁挂式机柜、配线架与跳线组成。通过跳线将通讯线路定位或重定位到楼层的不同部位。其中水平线缆端接数据和语音均采用24/48口RJ45型模块式配线架,保留5%的余量用于今后的扩展。采用110式卡接式配线架连接语音主干,采用机架式光纤端接箱连接数据主干,配置相应的数据点的数据跳线和110-RJ45语音跳线,并设置标准电源插座,以便安装相关网络交换设备。
8.设备间子系统的设计
设备间子系统由分配线间和主配线间组成。语音主干采用110式卡接式配线架,数据主干采用机架式光纤端接箱,所有设备均安装在19英寸标准机柜内,交接区应具有良好的标记系统,交接间的配线设备采用色标区别各类用途的配线区,并设置标准电源插座,以便安装相关网络交换设备。
9.主干子系统
干线子系统是综合布线系统的神经中枢,一端始接于计算中心的总配线间,另一端则终接于各个IDF分配线间。主干线缆到各个IDF完成主干的接续。将工作站区子系统、水平布线子系统、管理子系统、设备间子系统、主干子系统五个子系统集成在一起,就形成了完整的结构化综合布线系统。主干子系统使用大对数双绞线电缆、光缆实现设备室与各管理子系统间的连接。其中语音主干采用三类大对数非屏蔽UTP双绞线铜缆,数据主干采用室内多模光纤。
五、展望
随着新标准、新技术和新产品的不断出现,国内对智能建筑集成化的要求会不断提高,随着全球计算机技术、现代通信技术的迅速发展,人们对信息的需求也是越来越强烈。这就导致具有楼宇管理自动化、通信自动化、办公自动化等功能的智能建筑在世界范围蓬勃兴起。而综合布线系统正是智能建筑内部各系统之间、内部系统与外界进行信息交换的硬件基础。楼宇综合布线系统是现代化大厦内部的“信息高速公路”,是信息高速公路在现代大厦内的延伸。相信,我国智能建筑集成化的发展趋势将会更快的向国际化接轨。
参考文献:
[1]刘化君.综合布线系统.机械工业出版社,2004.
[2]及延辉.网络综合布线基础教程.机械工业出版社,2005.
[3]刘省贤.综合布线技术教程与实训.北京大学出版社,2006.
专利信息可视化分析系统的设计是把商业智能(BI)技术应用于专利信息分析,主要是为了实现以下建设目标:①引入专利分析指标,用户可以不用知道专利指标的计算方式,只需要了解这些指标的用途,就可以利用系统得出分析结果。②建立多维分析系统,为用户从多角度分析问题提供可靠的工具,从而为专利申请和专利战略制定提供准确、及时的依据。③为企业了解竞争对手的核心技术和研究热点领域及确定专利申请战略、专利实施战略与专利保护战略服务。④为发现科技创新人才提供支持。⑤为国家从宏观层面发现技术发展趋势、提升科研水平、制定投入与产出规划等提供决策支持。这些建设目标决定了专利信息可视化分析系统设计的功能目标,主要包括功能体系结构的说明、各模块之间关系的描述、系统界面形式的选择以及各个功能模块的设计。
1.2专利信息可视化分析系统的主要功能
专利信息可视化分析系统最主要的功能是对专利数据进行可视化分析并绘制相关图谱以及对相关数据进行挖掘与预测。专利信息可视化分析系统的总体功能结构。专利信息可视化分析系统主要由四大部分组成,即数据仓库、ETL系统、OLAP和数据挖掘。数据仓库是专利数据的存储地;ETL系统可以批量地把异构的专利数据进行处理;OLAP系统是多维分析专利数据的技术核心;数据挖掘就是从大量的专利数据中发现隐藏的模式和规律。
1.3专利信息可视化分析系统的性能需求
与一般信息系统的性能需求相同,专利信息可视化分析系统的性能需求主要包括安全性需求、可靠性需求、用户界面需求、响应时间需求、灵活性需求、故障处理需求、可扩展性需求等。
1.4专利信息可视化分析系统的功能需求
专利信息可视化分析系统的功能需求可以定义为两大类,即多维数据数分析和专利数据挖掘。多维数据分析即多角度分析数据,专利信息可视化分析系统的分析角度包括专利申请时间(从整体和技术领域分析专利申请的趋势)、专利公开时间(分析专利的公开趋势,专利申请与公开的时间差,即专利申请延迟公开的大致时间)、专利机构和人(分析和评估专利机构和人)、专利申请地域(分析专利地域分布趋势及各地域技术优势和人才分布情况)、专利权人(分析专利权人的技术状况、专利申请状况、专利质量和研究热点等)、专利发明人(发现高产专利发明人和核心技术人员,与专利分类号结合可以分析专利发明人的技术特点)、专利分类号(从IPC分类和专利技术领域分析专利信息,结合区域、发明人和专利权人可以综合分析专利数据,确定各区域、发明人、专利权人的技术特点和优势)、专利授权(观察专利授权状况及相关法律状态)、专利失效(观察专利失效状况)和专利类型(分析专利类型,并结合其他角度进行综合分析,如专利技术生命周期)等。用户可以自由选择数据分析的角度,系统还需提供数据筛选功能,如制定特定的专利权人和时间段作专利分析,即数据切片,系统必须提供数据切片功能。专利数据挖掘功能包括专利发明人关联分析、专利权人关联分析、IPC关联分析、专利引证分析、专利聚类分析和专利申请时序分析等。专利发明人关联分析用来发现专利发明人之间的合作发明状况,并可以通过这个模型为企业选择合适的发明人和技术人才;专利权人关联分析用来发现专利权人之间的关系网络;IPC关联分析用来发现专利技术领域间的关系;专利引证分析利用专利之间的引用关系发现基础专利、核心专利、技术演变过程;专利聚类分析用来对专利数据进行划分;专利申请时序分析用来预测未来的专利发展趋势。
2专利信息可视化分析系统的设计思路
2.1专利数据仓库建立
2.1.1维度建模
数据仓库的模型构建与一般事务型数据库模型构建方式不同。美国的K.Ralph在长期的数据库分析与设计中总结出了一种“维度建模”法。维度建模是一种将数据结构化的设计方法,并且提供快速查询功能。维度将对象分为度量和上下文。度量常常以数值形式出现,称为“事实”,事实被大量文本形式的上下文包围。上下文被直观地分割成多个独立的逻辑块,称为“维”。维度描述了度量上下文的“5W”(即Who、What、When、Where和Why)信息以及作用方式。
2.1.2专利数据的特征
充分了解现有数据的真实情况是影响数据仓库模型的重要因素。本系统通过中国专利数据库获取了2000—2012年湖南省专利申请数据共计93754条,这些专利数据包括发明专利和实用新型专利,但不包括外观专利。
2.2专利数据处理
2.2.1专利申请日和公开日处理
专利申请日和公开日处理的过程如下:首先从原始的专利数据源的公开日字段和申请日字段提取出日期数据,然后将这两个字段的记录合并成为一个数据集,由于这个数据集中有大量的冗余数据,为提供性能需去除重复的数据,这里采用聚合的方式去除冗余数据。
2.2.2专利分类号处理
1)专利分类号处理的方案。原始数据中的专利分类号表述形式为C11B1/00(2006.01)I;C11B1/04(2006.01)I,以“;”为拆分符拆成多条记录存入数据仓库。这个步骤的处理将IPC数据首先存入DimIPC维度表,其次还要将IPC和专利申请号关联起来载入FactIPC事实表进行技术分析。专利分类号处理通常有3种方案,根据专利数据处理时间和结果,本文采用方案三。2)专利分类号处理的数据流。专利分类号的处理由3个数据流和1个包含在循环容器中的数据流所组成,这4个数据流的具体执行方式如图9所示。数据流1把原始数据中的专利申请号字段和分类号全部读取到临时的记录集中,但是在FactIPC中已存在的不再读取。这时记录集中记录是以“[专利申请号|分类号1;分类2;……]”的形式存储。
2.2.3专利事实表处理
专利事实数据处理可以包括3个方面:①专利申请区域处理;②专利机构处理;③其他数据规范化处理。如图10所示。
2.2.4专利授权和专利失效数据处理
专利授权数据处理比较简单。先把FactPatent事实表中的专利是否授权字段置为0,0代表专利没有授权。在原始数据源中读取的专利数据都是已经授权的专利数据,这里只要把获得原始数据中的专利申请号与FactPatent事实表中的数据进行比对,如果存在则将FactPatent事实表中的专利是否授权字段置为1,表示该条专利已经授权。专利失效的处理同专利授权。
2.2.5其他处理
专利发明人的拆分处理和专利权人的拆分处理与专利分类号处理类似。另外,还需要对一些在上述步骤中存在但尚未入库的数据进行手工处理。比如在进行专利事实数据处理的过程中,存在区域无法匹配的数据,要仔细检查这些数据的错误原因,然后修改再入库。
2人员闯入室内检测模块设计
为了能准确的检测到人体入侵,本设计采用了主动式红外检测方式,主动式红外需要一个红外发射管以及一个红外接受管,正常情况下,两个管子之间由红外线连通,但是当有人入侵时,红外线被阻隔。红外对管跟单片机相连的电路图如图2所示图中红外接受管串联了一个1K的电阻,而红外发射管串联了一个500R的电阻。同时在红外接收管的正极端接到了单片机P32口,当接受管能正常接收到红外光时,P32为低电平,相反,当接收不到红外光时,P32为高电平。
3人员闯入报警设计
当有人入侵的时候,除了做到远程短信报警,也需要有本地报警,起到震慑罪犯的作用,本设计中本地报警就采用了蜂鸣器。蜂鸣器的驱动采用单片机的P2.4口,由于蜂鸣器需要较大的电流来工作,单片机纯IO口无法达到那么大的电流,因此需要外接三极管来放大电流。三极管采用的是PNP型三极管,当P2.4为低电平时,三极管导通,蜂鸣器的正极为高电平,就会响起来。图3是其连线图。
4按键电路
本设计除了主动检测人体入侵和自动报警外,还需要对各种参数进行设置,比如要设置主人电话号码,设置当前时间,查询报警记录等等,这就需要用到人机交互功能,这里采用了四个按键作为人机交互设备,此按键属于微动开关,每个按键上都用了10K的上拉电阻,当按键没有被按下时,按键所对应的IO口固定为高电平,当按键被按下时,IO口直接跟地短路了,所以IO口为低电平,单片机就是读取IO口的高低电平来判断是否有按键被按下。
2近红外光模拟实验
本实验设计的透过血液的近红外光成像系统示于图6,主要有可见光、850、940nm主波的LED灯珠、卤素光源(LS3000)、传光光纤、支架、黑匣子、CMOS摄像头、视频采集盒、窄带滤色片(10nm)、比色皿.比色皿的光程分别为03、05、1mm.窄带滤色片(透过率T>80%)的波长分别为800、850、900、925、975、1000、1025、1050、1075nm.实验用的血液样本来源于南方医科大学附属南方医院,采用柠檬酸钠9NC真空抗凝管采集,采集后12h之内测量.在不同光源条件下用CMOS摄像头透过不同厚度的血液(03、05、10mm)观察比色皿另一侧不同间隔距离(分别为05、10、15、20、25、30、35、40、45mm)的线条成像效果.选择光程不同装满血液的比色皿,其光程大小表示血液的厚度.整个实验装置放在黑匣子里面,以减小实验过程中自然光对实验结果的影响.
3实验结果与分析
3.1可见光、近红外光LED光源的实验结果与分析
实验中,选择可见光LED,850、940nm主波的近红外LED直接作为照明光源.CMOS摄像头透过03、05、10mm厚度的血液,观察比色皿另一侧不同间隔距离的线条成像效果.从表1、表2、表3可以看出红外LED发出的近红外光可以穿透一定厚度的血液并且使CMOS摄像头成像效果比可见光LED条件下好.验证了以上设计的合理性.CMOS光谱响应受Si半导体材料限制,同种Si材料的光谱响应基本一致,其光谱响应区间从400~1100nm,峰值响应在近红外附近;在近红外区域,随着波长增大,CMOS传感器的响应度与量子效率都发生改变,进而影响到CMOS的成像效果[14];因此如何确定在血液环境下使CMOS摄像头成像效果最佳的波长成为关键.
3.2不同波长近红外光的实验效果与分析
在血液环境下,为了进一步确定可以使CMOS摄像头成像效果最佳的波长,进行了不同波长的近红外光成像实验.由于近红外LED灯珠各个波段波长不好控制,用红外光源、滤色片以及传光束代替近红外LED进行原理性验证.下面以近红外穿透03mm厚度血液为例,进行原理性的实验验证,不会对理论实验结果造成偏差.实验中,选择钨卤灯光源(波长360~2000nm),10nm窄带滤色片(波长分别为800、850、900、925、975、1000、1025、1050、1075nm)组成的单一波长的近红外光,作为照明光源,用传光束进行照明.进而观察装满血液的光程为03mm的比色皿另一侧不同间隔距离的线条成像效果.从表4可以看出照明光源采用波长为900nm附近的近红外光,可以使CMOS摄像头在有血液的情况下成像效果最佳.进一步确定了在血液环境下使CMOS摄像头成像效果最佳的近红外波长.
2硬件设计
围栏报警系统是由各个模块共同构成的,本节将具体介绍模块的内部结构。
2.1加速度传感器ADXL344
ADXL344是一款完整的3轴、数字输出加速度测量系统,可选择的测量范围有±2g、±8g、±16g。本设计主要利用ADXL344中的寄存器THRESH_ACT,该寄存器保存活动检测的阈值,当活动事件的幅度值(X、Y、Z轴)大于阈值就会触发活动事件Activity的置位(Activity中断已使能)。以及寄存器THRESH_INACT、TIME_INACT,用于设置静止时的阈值。设置寄存器INT_MAP的值分配相应的中断到INT1或INT2引脚,由单片机中断引脚INT0/INT1控制ADXL344产生的中断,从而判断是否发生报警。
2.2ADXL344通信接口电路
加速度传感器ADXL344既能实现I2C通信也能实现SPI通信,本文单片机C8051F020与ADXL344之间通过串口SPI进行通信,实现了单片机控制及读写加速度传感器。且将加速度传感器的中断引脚INT1/INT2分别与单片机INT0/INT1引脚相连接。
3程序设计
本程序设计主要是实现这两方面的通信,第一、C8051F020与ADXL344之间的SPI通信;第二、模块与模块之间的通信即串口UART0与串口UART1之间数据的相互转发。主要包括四大模块:主程序模块、ADXL344配置模块、SPI通信模块、中断模块。主程序模块包括了初始化和状态查询并发送两部分。ADXL344配置模块主要是对加速度传感器芯片配置。SPI通信模块包括SPI写模块和读模块。中断模块包括串口UART0中断、UART1中断、SPI中断、INT0中断。程序开始初始化直到主函数While(1)循环中进行状态查询,若加速度传感器ADXL344振动值大于活动阈值视为有效触动触发活动中断即单片机外部INT0中断触发(本设计将ADXL344所有的中断分配到单片机INT0引脚上),将报警数据处理后通过串口UART0或UART1回传。若判断UART0接收中断触发,将通过该串口完成对所有模块中ADXL344的数据配置,该模块配置完成后通过UART1下发配置命令到下一级模块(下一级模块通过UART0接收),并且UART0回传该模块的配置状态和通信状态,报警数据将通过该串口回传给前一级模块(前一级模块通过UART1接收)。若判断UART1接收中断触发,也将对所有模块中的ADXL344进行数据配置,该模块配置完成后通过UART0下发配置命令到下一级模块(下一级模块通过UART1接收),并且UART1回传该模块的配置状态和通信状态,报警数据将通过该串口回传给前一级模块(前一级模块通过UART0接收)。其实UART0与UART1接受中断数据处理下发和回传是互逆的过程。
4实验数据
通过串口助手给每个模块下发的配置命令及回传数据。模块中串口0和1的传输速率为57600bps。模块部分配置命令如,有效触动命令为:下发命令(3字节):0xEE+0x00+0x00;上传命令(4字节):0xEF+0x00+0x00+0x00。下发命令中0xEE为有效触动命令下发格式,后两字节为模块编号,例如下发0xEE0000,则将对所有模块有效触动进行监测,若下发0xEE0001,只对编号为1的模块的有效触动进行监测。上传命令中0xEF为有效触动命令回传格式,第二、三字节为模块编号,最后一个字节为有效触动次数,若模块没有被振动则回传触动次数为0,如EF000100;若将编号为1的模块振动一次,回传触动次数为1,如EF000101。最后,通过编写上位机应用界面,将报警位置在该界面中进行实时的显示。
2融合算法与控制算法
2.1基于卡尔曼滤波的姿态解算算法利用加速度计对重力矢量进行观测,以观测值同重力常量的误差值修正陀螺对姿态角的测量值,设计卡尔曼滤波器对状态进行融合估计[10]。根据该方案,传感器信息融合处理过程如下:1)利用式(6)计算更新四元数,并转换为姿态角。2)观测矩阵
2.2控制系统数学模型根据平地铲运动特征,建立平地铲的抽象物理模型,如图3所示。按以下方法建立平地铲运动的载体坐标系xoy:以平地铲质心o为零点,系统输入量x为液压系统阀芯位移,输出量y为油缸位移,平地铲转动倾角为θ,建立传递函数模型。
2.3控制器的算法设计
2.3.1适用于平地铲运动的控制算法考虑水田激光平地机的作业特点,控制系统在设计上必须保证平地铲在倾角角度情况下能够迅速回位到水平位置,并且尽量减少超调和避免振荡。传统PID控制有较好的适应性,但是还不能提供最优控制,其结果是导致超调失效而影响控制效果。目前,基于动态补偿的最优控制在工业中得到应用,其特点是能够准确反映信号的变化趋势,产生有效的早期修正信号,以增加系统的阻尼程度,从而改善系统的稳定度[12]。本文鉴于非线性系统近似最优PD控制的特性,引入其算法,针对平地机做出相应修改,进行相应尝试。控制器框图如图4所示,姿态测量单元提供位置反馈θ。积分控制、比例控制以及微分控制的作用如下:①积分控制放在前馈通道,其作用是抑制平地铲在受到外界恒定负载情况下产生的输出误差,增益输出为y0=K1θ。②比例控制作用输出为y3,等于两次连续位置反馈值的差值,增量y1等于信号y0减去y3,通过数字积分器累加。③微分反馈信号y2提供参考速度,其大小正比于平地铲输出转速,与参考信号y1组成一个局部的速度内环。微分控制器设计目的是适合平地铲在大干扰情况下的操作。④系统输出转矩的参考值为Trf,送入零阶保持器,输出力矩实际值为Tcm。Tcm正比于零阶保持器的输出。
2.3.2控制器参数的确定平地铲运动机构近似于二阶系统,有以下方程成立。
2.3.3辅助补偿器的设计采用Lyapunov再设计方法设计辅助补偿器以补偿非线性部分和外界扰动对PID控制器的影响。对于渐进稳定的线性系统,必存在实对称正定矩阵P,满足以下关系。
3试验与分析
为了验证本文提出的平地铲水平控制系统,本文进行融合算法的验证试验以及平地机田间试验。
3.1传感器融合算法验证试验
3.1.1试验方法通过AHRS500GA同步测量平地铲姿态信息并作为准确数据,验证基于ADIS16355的姿态测量单元有效性。美国Crossbow公司生产的AHRS500GA是高精度惯性姿态测量器件,其采样频率为100Hz,测量精度为:航向角0.2°RMS、俯仰角0.03°RMS、横滚0.03°RMS[15]。融合算法的验证实验步骤如下:①在平地机上安装水平控制系统,保证系统坐标系与载体坐标系一致;②启动系统,人为摇动平地铲,同步记录ADIS16355与AHRS500GA数据;③PC平台上运行MatLab融合程序对采样的数据进行处理。
3.1.2试验结果分析图5为一次典型的试验结果,图5(a)为平地铲倾角测量值对比,图5(b)为局部放大结果。1)从图5(a)、6(b)中可见,0~400s区间平地铲振动较小时,利用加速度计计算倾角值较准确;当外界扰动导致振动加剧时,误差可达±5°以上,无法单纯用加速度计解算姿态角。2)本设计姿态测量单元能准确测量平地铲动态倾角。由图5(b)可见,在动态环境下融合结果能与AHRS500GA提供的参考倾角结果呈现良好的一致性,其误差绝对值不超过±1°。3)通过传感器实时判断平地铲运动状态,利用加速度计对重力矢量观测值来修正陀螺漂移,可以有效降低姿态角计算误差。
3.2平地机田间试验
3.2.1试验方法组装好平地机的高程和水平控制系统,在水田进行平地试验,开启以上系统并保证正常工作,记录相关数据。图6所示为水田激光平地机田间作业后的场景,可以看出平地效果良好。
3.2.2试验结果分析图7所示曲线为平地机平地过程中控制系统所测量的平地铲水平倾角。田间试验结果分析如下:1)从图7(a)可知,平地铲倾角变动基本控制在±1.5°以内且渐进稳定,满足平地机作业要求。2)从图7(b)和7(c)可知,在外界干扰较大导致平地铲晃动严重时,水平控制系统起作用,通过PWM输出反向力矩,使平地铲恢复到水平位置,其过程是渐进稳定的。3)由于在控制算法推导过程中,平地铲的传递函数是简化和抽象的,如忽略机械连接部分的间隙、挠度,液压油缸对于控制系统的响应有延迟现象等,最终导致了控制系统的效果受到影响。
装置采用高度角和方位角的全追踪方式,又称为地平坐标系双轴追踪。工作平面的方位轴垂直于地平面,另一根轴与方位轴垂直,称为俯仰轴。阳光追踪系统通过实时计算,求出装置所在地的太阳位置。工作时工作平面根据太阳的视日运动计算结果绕方位轴转动改变方位角α,绕俯仰轴作俯仰运动改变工作台的倾斜角β,从而使工作平面始终与太阳光线垂直。工作平面方位角α与太阳方位角A相等,倾斜角β与太阳高度角h互余,如图1所示,因此只要计算出太阳的方位角A和高度角h即可确定当前工作台应该保持的姿态。这种追踪系统的特点是追踪精度高,而且工作台承载器件的重量保持在垂直轴所在的平面内,因此结构简单,易于加工制造。
1.2阳光追踪控制系统结构
本系统机械本体具有两个自由度并具备自锁能力,可以调节安装在工作台上物体的位姿,以对准太阳高度角和方向角。单片机根据时间及当地经纬度计算出此时当地的太阳位置,并产生脉冲信号给步进电机驱动器,控制步进电机进行相应动作,并通过电子罗盘HMC5883L和加速度计MPU6050进行检测反馈。操作者可通过人机交互模块查看或改变系统的运行参数,如角度、时间、电机转速等信息。
1.3系统工作流程
控制系统上电后,系统根据时间,判断太阳是否落山,是则进入待机状态;如没有,则自动进入对正模式,系统将根据时间及当地经纬度计算出的此时太阳高度角及方位角,并实时与MPU6050检测到的工作台倾角及HMC5883L检测到的方位角比较求出角度差,转换成控制脉冲输出步进电机驱动器,使机构对正太阳方位,对正后等待一个设定时间,进行下一次对正。
2太阳角度计算及参数修正
2.1太阳主要角度计算
根据天文学及航海学中常采用的天球坐标系可以方便地对天体的运动进行观测及追踪。通常的方法是在太阳与地球间建立天球赤道坐标系主要包括天轴PNPS、天赤道、以及天体时圈。在观测者与太阳间建立天球地平坐标系包括测者天顶Z、天底Z¢、测者真地平圈、垂直圈、测者午圈,其中太阳在天体时圈和垂直圈的交点上,如图2所示。根据天球坐标系的相关定义,有太阳赤纬角δ,当地的纬度φ,太阳时角t,太阳高度角h,太阳方位角A,从1月1日开始的天数被称为积日N。在天球上以仰极、天顶和天体为顶点,通过这些点的大圆弧为边所形成的三角形称为天文三角形,或称为位置三角形。由于要求解的角度与星体距离无关,所以假设以地球为中心,太阳到地球的距离不变,从而可以用角度来表示弧长。
2.2HMC5883L数据校准
电子罗盘主要是通过感知地球磁场的存在来计算磁北极的方向,然而由于地球磁场在一般情况下只有微弱的0.5高斯,外界的各种磁场干扰都很容易对检测结果造成影响。理想状态下,电子罗盘水平转动一周,两个水平方向磁场矢量的输出为圆形。当存在外界磁场干扰的情况时,测量得到的磁场强度矢量将为该点地球磁场与干扰磁场的矢量和,使罗盘输出曲线的圆心发生偏移。罗差使罗盘输出转变成椭圆,因此将罗差校准的问题转变为椭圆拟合问题。
2自动纠偏装置
①为放置隔膜卷气涨轴,②为恒张力保证机构,③④为导向过渡轴,⑤为纠偏执型步进电机,⑥传感器位置调节微分头,⑦为光学检测传感器,⑧为除静电棒。图中隔膜卷在气涨轴①夹紧固定后,通过过渡辊和恒张力保证机构②后由隔膜输送机构传送隔膜,隔膜首先由放卷电机从隔膜卷释放出一定长度以保证后端输送隔膜的顺畅进行,张力辊自动调节高度以保证整个输送过程中隔膜的张力恒定不变。膜的外侧端面布置有光学传感器⑦检测隔膜的位置,在隔膜边缘处于标准位置时,记录下此时的传感器光通量对应输出电压值U0作为判定门限,当隔膜发生跑偏时,传感器的光通量就会发生变化,根据当前光通量对应的电压输出值Ui与门限值U0的比较,去实时驱动执行机构予以纠正。
3隔膜偏移的检测
用于检测隔膜的位置及偏移量。隔膜输送过程中偏移量的快速、准确检测是保证纠偏系统正常工作的前提。为保证纠偏系统的及时性和高效性,根据隔膜的特性,我们选择了模拟量输出的U型光学传感器,并将其安装固定在安装基座上。光信号从传感器的上侧窗口发射,经下侧接收窗口返回,根据返回的光信号宽度判断被检测物的大小及位置。当U型传感器槽内无任何阻挡物时,上侧窗口发出的光信号几乎完全被下侧接收窗口接收,我们可以近似地认为这时的光线接收强度为100%,对应的输出电压为+10V;相反,当U型槽下侧接收窗口被完全阻挡无光信号时,我们认为这时的光线接收强度为0,对应的输出电压为0V。隔膜在传感器U型槽中位置不同,光线的透过量亦不同,对应的输出电压Ui亦不同。为使设备调试维护方便并保证不同设备的一致性,在光学传感器的安装基座上装配了调节微分头,用以对传感器位置的微调。当隔膜标准位置确定好以后,通过微调传感器的位置以设置判断基准U0(如将50%光通量对应电压U0作为比较门限值),在隔膜传送过程中,当传感器实时电压输出值Ui>U0时,说明隔膜偏向内侧;当Ui<U0时,说明隔膜偏向外侧;当Ui≈U0时,这时隔膜处于正常位置。
4纠偏控制系统设计
当传感器实时电压输出值Ui>U0时,说明隔膜偏向内侧,这时需要驱动纠偏执行机构向外侧移动隔膜补偿位置;当Ui<U0时,说明隔膜偏向外侧,同理纠偏执行机构需要向内侧移动隔膜补偿位置;当Ui=U0时,隔膜处于正常位置,这时不需要位置补偿,纠偏执行机构停止动作。本项目选用五相步进电机作为纠偏执行电机,执行机构螺杆导程为6mm,理论纠偏精度可达0.01mm,响应时间小于0.1s,满足设计要求。
1.1加速度采集接口设计
加速度传感器选用具有坚固耐用、受外界干扰小等特点的压电式加速度传感器,压电式加速度传感器采集对击锤的加速度,将加速度信号转换成相应的电荷信号,电荷信号经过电荷放大器的处理,最终输出与之相对应电压信号;最后,通过高速串行ADS8325实时高速采集电荷放大器输出的电压信号,获得打击过程中加速度变化的时域曲线,从而计算出最大打击力和打击能量,通过无线方式将数据传输给主机。STM32有两个标准SPI,该接口被配置成主模式时可以为外部的其他从设备提供通信时钟。STM32与ADS8325之间通过标准SPI接口连接,STM32使用SPI的单主模式,采集加速度信号只需要ADS8325到STM32串行数据传输,SCK为ADS8325提供通信时钟,将ADS8325片选管脚CS拉低则为从模式。
1.2位移采集接口设计
选用欧姆龙编码器进行位移数据的采集,将E6B2-CWZ6C编码器与机械滑轮相连形成一个位移传感器,机械滑轮的半径为17.49mm,锤头将移动2×3.14R的距离,即109.9mm,即锤头移动109.9mm时编码器刚好转一圈,脉冲计数为2000个。为了增加安全性,减小电压的干扰,减少电路设计,增量式编码器和STM32接口采用光耦器件TPL521—4进行隔离。
1.3无线通信模块接口设计
STM32与SI4432通过SPI接口相接,实现SI4432的基本工作状态。SI4432通过nIRQ向STM32发送中断。串行数据通过MOSI从STM32传输到SI4432;MISO正好相反;通过SCK向SI4432提供时钟,同步两者的串行数据传输。nSEL引脚电平为低时,SI4432片选为从模式,STM32才能有效操作SI4432。SI4432的工作模式位SDN为高时,SI4432处于关闭模式,为低时,则处于工作模式,因此,在芯片工作期间,工作模式位必须为低。
2系统软件实现
系统软件在KeiluVision4平台上采用模块化思想设计开发,将所需模块的主要功能全部编译成相对独立的函数以供主程序需要时调用。模块需要完成的功能是首先对STM32,SI4432及SPI进行初始化配置,其次,从机模块采集加速度数据并传输,最后,主机模块接收数据并处理。软件采用同步传输的模式,同步字传输完之后才会开始传输数据。
2.1从机模块软件实现
从机模块主要实现加速度数据的采集与发送。数据采集与发送过程如下:首先,完成初始化后开始采集数据,数据采集未完成,则等待至数据采集完成,然后清空SI4432的发送FIFO,写入将要发送的加速度数据;其次,打开发送完成中断并关闭其他中断,该中断使能正常后开始发送数据;再次,数据发送完成后nIRQ引脚转为低电平状态,读取中断引脚状态后并将nIRQ引脚转为高电平状态,准备下次检测。如果数据发送成功,则主机模块上绿色指示灯会变亮;最后,关闭发送功能,准备下一次数据发送。
2.2主机模块软件实现
主机模块软件实现加速度数据接收与处理。首先,完成初始化并清空SI4432的接收FIFO;其次,打开接收完成中断并关闭其他中断,该中断使能正常后开始接收数据;再次,数据接收完成后nIRQ引脚转为低电平状态,读取中断引脚状态后并将nIRQ引脚转为高电平状态,准备下次检测,然后,关闭接收功能,准备下次数据接收;最后,对接收到的数据进行相应的处理得到打击能量和打击力,并将数据通过RS485通信传输给工控机和LED大屏。
1.1控制子系统
控制子系统由直流28V供电,主要实现负载加载控制、负载参数及负载系统参数采集、冷却系统控制、应急情况控制以及自检功能。控制子系统主要由相关的接触器、继电器、滤波器以及控制计算机等组成,这些控制器件统一安装在飞机客舱的控制柜内,控制计算机作为中心控制单元,负责采集压力、温度、电流、电压、流量等各个传感器的实时数据,并对数据进行分析处理,判断整个系统的实时状态,接收用户命令,实现开关量、模拟量控制等功能。控制子系统具有自动、手动加载控制的功能;具有自检、告警以及应急断电功能;能够保证罐中负载消耗平衡,在负载不平衡时,能够自动切断负载单元;具有可视化操作界面,实时显示飞机消耗功率;能够及时采集压力、温度、电流、电压、液位等,并能及时作出响应,改变系统工作状态;当采集到各个蒸发罐的液位传感器低于设定值时,控制系统发出指令,补水泵从补水罐箱对其进行补水,使其达到设定值;当检测到补水罐的液位低于设定值时,控制系统发出指令,给出报警信号;当蒸发罐和补水罐的液位均低于设定值时,系统自动断电;在紧急情况下,该系统能自动放掉热水。
1.2蒸发耗能系统
蒸发耗能系统由补水排水子系统和负载子系统组成。能够实现能量转换,自动排放高温水蒸气。补水排水子系统主要由补水分系统、应急排水分系统以及注水、排水分系统等组成。补水分系统由补水罐、补水泵以及液位传感器等组成。当液位传感器采集到各个蒸发罐的液位低于设定值时,则自动启动补水泵,由补水罐向蒸发罐组输水,使其达到设定的液位值。应急排水分系统由应急排水泵、单向阀以及单向插板阀等组成,用于在飞机应急着陆前,排放掉蒸发罐内的热水。负载子系统实现电负载的分配和消耗。负载子系统主要由安装在蒸发罐里面的60个负载元件组成。每个负载元件的功率1KVA,绝缘层热稳定性不小于300°,绝缘电阻不小于20MΩ,每相电负载最小负载1KVA、共20KVA,均分在三个电加热器罐里,为保证负载消耗平衡,每次加载最小功率3KVA,总共可以实现60KVA的负载消耗。在出现负载不平衡时,系统具有自动切除功能。
2电负载系统设计
2.1硬件设计
电负载系统硬件组成主要由工控机、西门子PLC、传感器(电压、电流、液位等)、交流接触器、断路器、采集板卡等组成。
2.2软件设计
系统软件由两部分构成,分别是一体化工作站(上位机)程序和可编程控制器(下位机)程序。上位机主要用于监控整个系统详细的工作过程,跟据预先设定好的规律,执行相对应的加载规律,上位机具有友好的工作界面,操作界面,并且能够实时监测到加载的负载以及整个系统的运行状况。下位机程序主要采用的是梯形图进行编程,主要采集补水罐和蒸发罐的液位信号,接收上位机指令,实现负载自动加载、补水泵控制和报警断电等功能。整个系统有条不紊的进行。
3电负载系统实验
在完成了软件调试、控制机柜的接线以及外部线路接线工作以后,对电负载系统进行了地面联试实验,进行了地面长时间加载实验,首先进行了系统自检工作,自检完成后,模拟飞机剩余功率进行自动加载以及卸载规律设定,进行了长达4小时的实验,实验过程顺利,实验结果表明:系统能够按照预先设定的模拟飞机的加载、卸载规律进行工作,并且在水蒸气状态下,蒸发耗能系统能够将高温水蒸气排出;模拟了飞机上故障情况,该系统能够紧急卸载以及紧急排水。经过一系列的地面联试实验和分析,电负载系统功能完善,长时间工作运行稳定可靠,达到了设计要求。