时间:2023-03-06 16:04:45
导言:作为写作爱好者,不可错过为您精心挑选的10篇激光通信技术论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
光通信技术中最有发展前景的当属光纤通信技术了,在最近几十年来发展最好最快的也是光纤通信技术。光纤通信技术的发展经历了三代,从工作波长为0.85μm的多模光纤通信逐渐发展为工作波长为1.3μm的单模光纤通信,并在此基础上发展到工作波长为1.55μm的光纤通信系统,这些年的进步很好的解决了光通信系统的色散问题。不仅如此在这些年光源也放上的很大的变化,发生了从发光二极管到半导体激光器的变化。半导体激光器的出现大大的提高了传输信息的效率,而且半导体激光器与二级发光体比较具有更高的功率和更长的使用寿命。光纤和光源的发展大大的缓解了信息衰减和色散的问题,加大了光纤的通信容量,提高了光纤通信的效率。另外在光网络协议方面也有了很大的发展。目前的技术种为了方便用户使用图像、数据、语音等业务,目前的重点是宽带接入网建设。宽带接入包括光纤、无线、同轴电缆和xDSL这几种方式,这些主要是基于分组交换方式的接入,其中以光纤接入为主。光纤接入分为有源方式接入和无源方式接入两种,即利用SDH或PDH为传输通道和无源光网络方式,光纤的非线性问题随着光纤放大器的广泛应用而逐渐显现出来。光纤的非线性主要指四波混频效应、自相位调制效应、交叉相位调制效应、受激喇曼效应、受激布里渊效应等。其中一些效应会使得系统的技术指标恶化,使得信号脉冲展宽、波型畸变、信号之间串扰。通过合理的使用某些非线性效应,我们可以研制出新型的光器件。
光通信技术的发展前景
1光纤通信技术的发展前景
为了更好的建设下一代网络就必须得构建一个拥有巨大传输容量的光纤基础设施,而由于光缆高达20年的寿命以及过高的造价,光纤基础设施的设计和构建必须具有前瞻性,应该结合设备和系统技术的发展趋势来设计。同时由于下一代电信网对容量的高要求以及频率的高宽度,这一代的光纤性能已经无法满足需求,必将被淘汰,那么开发新一代的光纤将势在必行。在G.652.A光纤的基础上进行改进并取得一定成果的G.652C/D光纤很好的解决了色散斜率的问题,减低系统成本,而且能实现更长距离和更大容量的传输。基于这些原因,具有更长使用寿命的新一代光纤必将得到更好的发展。
2光纤通信网络技术业务趋势
可以说IP技术改变了我们的生活,其依赖的光纤通信技术更可以实现我们更多的梦想。IP技术的核心是IP寻址,是基于TCP/IP协议,其中最主要的两个协议是IP协议和TCP协议,这两个协议保证了信息在网络中的可靠传输。未来的IP业务将承载的不只有文字,更有图像视频,构成未来网络的基础,实现一种基于光纤的智能化网络平台,以满足人们对网络的不同程度的需求。以IP技术为主流的数据业务,将会是当今世界信息化的发展方向。现在几乎已经把能否有效支持IP业务作为一项技术能否长久的标志。目前IP技术已经相当成熟,要拓展更多的IP业务,无疑需要网络开发商创造出性价比更高的低廉传输成本。光纤通信技术能很好的满足这方面的要求。因此,光纤网络技术将会是现代IP业务发展的基础和方向。
3光纤网络通信技术发展方向
从30多年前光纤的问世开始,光纤的传输速率就在不断的提高。有统计表明,在过去的10年中,光纤的传输速率提高了100倍左右。预计在未来的十年,还将再提高100倍左右。IP技术使得三网融合,包括通信网、有线电视网和计算机网络,成为可能。这就需要更高速可靠的信息传播途径,因此,必须让传递信息的介质能够支持这些业务。就目前来看,互联网的通信基本上可以分为三类:人与人,如IP电话;计算机与人,如网页服务;计算机与计算机,如邮件。这些通信对网络的要求也不尽相同。因此,建立一个全新透明的全光路网络就会是此类技术发展的必由之路,我们称之为光联网。这不但会使传统的互联网业务更加可靠便捷,而且会促进一些无法预料到的新业务产生。不难想到,基于光路的波分复用(WDM)技术,将会是未来光联网道路上的先驱。光联网将会将会实现以下几个基本功能:1)超高速的传输速率;2)灵活的网络重组;3)网络层的透明性,对下层网络传输机制透明;3)更易的扩展性,允许网络节点和数据量的不断增长;4)更快速的网络恢复速度;5)同时实现光路和应用层的联网,使其有更健壮的物理层恢复能力。鉴于光联网的巨大优势和潜力,目前一些发达国家已经投入了巨大的人力、财力和物力对其进行研究和实施。光联网将会是电联网以后又一个互联网的革命。这不光对我们国民经济发展有重要意义,而且对国家的信息安全有着重要的战略意义。我们能够预测到,在不久的将来,随着光纤通信网络技术的迅速发展,人们的通信能够朝着传输速率更高、信号更加稳定的方向发展,人们在各种复杂情况之下的通讯要求也能够不断地得以满足。
与普通的通信相比,光纤的损耗率要低得多。目前,光纤的损耗可以低达0.2dB/km。中继光放大器间距可达100多km,而传统的铜电缆中继放大器间距仅为几百米到几千米。因此,除了用户到小站间仍使用铜电缆,其他通信网中包括电视网、跨海洋的网络全部使用光纤通信。光纤通信在长距离传输中的优势非常明显。目前光纤通信的最长通信距离达到10000m以上。
1.2抗干扰能力强
与其他光缆相比,光纤通信具有非常明显的优点———抗电磁干扰能力极强。光纤通信设备的主要成分是SiO的应用给光纤通信技术带来无可比拟的优势。由于石英具有极强的抗腐蚀性和绝缘性,因此,应用到光纤通讯设备上使其同样具有较强的抗干扰能力。光纤通信不会受到太阳黑子活动、电离层变化、雷电以及人为释放的电磁等方面的干扰,这一特性使得光纤可以应用到军事领域中。
1.3安全性和保密性高
因为光纤主要依靠光波的全反射原理进行传输,光信号完全被限制在包层内,光波泄露的现象很少发生。而且一个光缆内的很多光纤线之间也不会相互干扰,因此,光通信的抗干扰能力很强,保密性和安全性非常高。此外,光纤的重量很轻、体积较小,这样既节省空间又使得设备的安装非常方便。另外,用来制作光纤通信设备的原材料越来越丰富,而且价格低廉,稳定性好,同时受环境温度影响小,使用寿命很长。光纤通信技术这些优势使其在日常生活中的应用范围和领域越来越广。
2光纤通信技术在我国的发展现状
2.1普通单模光纤的现状
光纤分为单模光纤和多模光纤两大类。目前,普通单模光纤是我们生活中最常见的光纤。单模光纤只能传输一种模式的光,且对光源的谱宽及稳定性都有较高的要求。随着光纤通信技术的发展,单模光纤的传输距离和信息容量也在不断增加,G652.A光纤的性能还能进一步优化和提高。符合ITUTG654规定的截止波长的单模光纤和符合G653规定的单模光纤是对G652.A光纤进行了改进。
2.2接入网光缆的发展现状
光纤接入网指的是以光纤为主要媒质实现接入网的信息传送。光纤接入逐渐替代原有电缆,成为通信接入网未来重点的发展方向。接入网光缆的发展趋势主要体现在接入网的光缆距离不断缩短、分支越来越多、分插频繁等。通常情况下,接入网的光缆会采用增加光纤芯数的方式来增加网络容量。尤其是城市的光纤管道,由于管道内径有限制,只能通过增加管内光纤芯数和光纤的集装密度来增加网络容量,同时需要减轻光缆的重量,缩小光缆的直径。通常,接入网光纤使用G652普通单模光纤或G652C低水峰的单模光纤,而前者在我国使用较多。
2.3室内光缆的发展现状
室内光缆指的是光传输载体(光纤)经过一定技术手段处理而形成的线缆,通常需要同时支持语音、数据以及视频等信号传输。室内光缆主要包括综合布线与局内光缆两大部分。其中综合布线的光缆一般供用户使用,放置在室内用户端,而局内光缆放在中心局或其他各类电信机房内。室内光缆结构的设计和应用容易受到建筑物本身的限制及光缆材料多样化的影响,因此室内光缆相对复杂。虽然其抗拉度较小,保护层也较差,但是室内光缆仍然有经济、便捷、便于信息传递等自身优势。室内光缆传输信息速度很快,而且具有信号稳定、清晰、强烈,抗干扰性好,信息流量大等优点。
2.4通信光缆的发展现状
通信光缆主要包括多根光纤芯和包层组成的缆芯、外保护层,属于全介质光缆,是电力系统中最为理想的通信线路。通信光缆主要依靠电流传输信号,在数据信息传输方面具有一定优势,但是其传输信息量较小。ADSS光缆则因为其可以单独布放,比较适用于电力通信领域。目前我国电力系统改造过程中广泛应用ADSS光缆,但是我国通信光缆的产品结构和性能仍然需要进一步完善。
2.5塑料光纤的发展
塑料光纤在我国也得到了广泛应用,其成本低廉、传输速度较快,是优质的短距离信息传输介质。它主要利用光的全反射或者光在塑料纤维内的跳跃来进行传输,因此在数据传输系统领域有巨大的潜在市场。塑料光纤可以应用于海底。在海底进行铺设时,海底光纤使用绝缘材料包裹导线,同时其两端采用激光器,大大节约成本,相应的通话费用也有一定的减少。
3我国光纤通信技术在未来的发展趋势
3.1超大的容量,超长的距离
超大容量、超长距离的传输技术在我国通信技术领域将有广阔的应用前景。波分复用技术(WDM)通过增加单根光纤中传输的信道数,大大提高光纤传输系统的传输容量。目前1.6Tbit/s的光波分复用系统已经大量商用,同时全光传输的距离也在逐渐增加。而光时分复用技术(OTDM)通过提高单信道速率来提高传输容量,使目前单信道最高速率达到640Gbit/s。要想进一步提高光纤通信的传输速度和传输容量,仅仅依靠光波分复用技术或光时分复用技术是很难实现的,必须同时结合光时分复用和光波分复用技术,只有这样才能进一步提高光纤的传输速度和容量。
3.2光网络智能化
智能化的光网络是我国光纤通信技术未来非常重要的发展方向。近50年的发展历程中,信息传输一直占据着光纤通信技术的主导地位。随着计算机技术的迅猛发展,网络技术和通信技术实现完美结合,进一步促进光网络通信技术朝着更高更好的方向发展。现代化的光网络不仅能实现信息数据的传输,同时结合计算机控制技术、自动发现功能及更加完善的自我保护修复能力,真正形成智能化的光网络。
(1)信号干扰小、保密性强。
(2)通信容量超大,可完成远距离传输。一般一根光纤的带宽在20THz以上,在没有中继传输的情况下,可传输到几十公里以上。
(3)重量较轻、细径较细,一般制作材料是石英,大大降低了有色金属的耗损,使资源得到合理利用。
(4)不受外界因素影响,在任何情况下可使用,具有较长使用寿命。
(5)较强抗电磁干扰能力和绝缘性能,因此,信息传输质量非常好。
(6)没有辐射,不容易被窃听,提高信息传输的安全性。
(7)环绕性好、抗腐蚀能力强,在使用过程中,不会出现火花,减少安全事故。
2光纤通信技术在电力通信中的应用
在电力通信中,电力特种光纤包括OPGW(光纤复合地线)、MASS(金属自承光缆)、OPPC(光纤复合相线)、ADL(相/地捆绑光缆)、ADSS(全介质自承光缆)和GWWOP(相/地线缠绕光缆)等六种,而我国应用较多的电力特种光缆是ADSS和OPGW两种,大大提高了电力通信的工作效率,使电能损耗得到大量减少。
2.1ADSS(全介质自承光缆)
根据我国电力通信的发展来看,ADSS(全介质自承光缆)在35KV、110KV、220KV的电压等级输电线路上得到了广泛应用,尤其是目前已建成的线路上使用范围非常广,使电力部门利用高压输电线杆塔建设通信网络变得更加方便和快捷,大大减低工作人员的工作量和建设成本。在进行光缆设计时,对温差、风速和气候等外界因素进行了充分考虑,因此,ADSS(全介质自承光缆)具有很强的抗震动性、抗冲击性,可以随意弯折和抗老化性,并且,成本较低、安装非常方便、易携带,给杆塔带来的负载非常小。由于ADSS(全介质自承光缆)具有光纤传输性能强、环境性能好和光缆机械性能卓越等特点,在实际应用过程中,可以与高雅电力传输线架设在同一根电杆上,因此,成为了电力系统中最完美的电网通信传输介质,确保了电网通信的信号质量,使光缆传输效果得到大大提高。我国现代化建设中,ADSS(全介质自承光缆)在山区、跨度较大区域和雷电集中区等地方的线缆架空敷设中非常适用,在满足了电力部门自身的通信要求的同时,为通信业务不断发展和开展新业务提供新的途径。
2.2OPGW(光纤复合地线)
在电力通信中,OPGW(光纤复合地线)是电路传输线路的地形中含有供通信用的光纤单元,由此可见,架空地线中含有光纤,OPGW(光纤复合地线)是架空地线和光缆的复合体。由于OPGW(光纤复合地线)的一次性投入较大,在新建线路或旧线路更换时会选择使用,具有可靠性高和不需要维护的特点。在实际应用过程中,OPGW(光纤复合地线)拥有两种功能:一是,与复合在地线中的光纤一起完成信息传输,二是作为输电线路的防雷线,可以对输电导线起到屏蔽保护的作用。一般情况下,OPGW(光纤复合地线)有铝管型、钢管型和铝骨架型三种,具有光学性能、电气性能和机械性能,可以应用于具有架空接地线的输配电线路中,从而使光纤的可靠性和安全性得到大大提高,使我国输电容量得到机一部提高。在新建线路的应用中,OPGW(光纤复合地线)不需要增加建设成本,在旧线路更换中,只需要将原来的地线更换掉就可以了,并且不需要对杆塔进行加固或重新设计等,从而大大减少工作人员的工作量。另外,OPGW(光纤复合地线)的安装非常方便,不需要特殊的工具,成为我国电力事业未来发展的重要研究方向。
一、光纤技术发展的特点
1.网络的发展对光纤提出新的要求
(1)扩大单一波长的传输容量。目前,单一波长的传输容量已达到40Gbit/s,并进行160Gbit/s的研究。40Gbit/s以上传输对光纤的PMD提出一定要求。(2)实现超长距离传输。无中继传输是骨干传输网的理想,目前一些公司已采用色散齐理技术,实现2000-5000km的无电中继传输;有的采用拉曼光放大技术,更大地延长光传输距离。(3)适应DWDM技术的运用。目前运用32×2.5Gbit/sDWDM系统,该系统对光纤的非线性指标提出了更高要求;ITU-T对光纤的非线性属性及测试方法的标准(G.650.2)已完成,对光纤的有效面积提出相应指标,对G.655光纤的非线性特性会有改善。
2.新型光纤产品的不断出现
(1)用于长途通信的新型大容量长距离光纤。康宁公司推出的PureModePM系列新型光纤,利用了偏振传输和复合包层,用于10Gbit/s以上的DWDM系统中,很适合于拉曼放大器的开发与应用。Alcatelcable推出的TeralightUltra光纤,已有传输100km长度以上单信道40Gbit/s、总容量10.2Tbit/s的记录。一些公司开发负色散大有效面积的光纤,提高了非线性指标的要求,简化了色散补偿方案,在长距离无再生传输和海底光缆长距离通信中效果很好。
(2)用于城域网通信的新型低水峰光纤。在城域网设计中,要考虑简化设备、降低成本和非波分复用技术应用的可能性。低水峰光纤在1360-1460nm的延伸波段使带宽被大大扩展,使CWDM系统被优化,增大了传输信道、增长了传输距离。一些城域网设计,要求光纤的水峰低和具有负色散值,可抵消光源光器件的正色散,可组合运用这种负色散光纤与G.652光纤或G.655标准光纤,利用它来做色散补偿,避免色散补偿设计,节约成本。
(3)用于局域网的新型多模光纤。随着局域网、用户住地网的高速发展,大量综合布线系统采用多模光纤代替数字电缆,多模光纤市场份额逐渐加大。选用多模光纤,是因为局域网传输距离较短,虽然多模光纤比单模光纤价格贵50%-100%,但它所配套的光器件可选用发光二极管,价格比激光管便宜,且多模光纤有较大的芯径与数值孔径,易连接与耦合,相应的连接器、耦合器等元器件价格也低。ITU-T至今未接受62.5/125μm型多模光纤标准,因局域网发展的需要,它仍然得到了广泛使用。而ITU-T推荐的G.651光纤,即50/125μm的标准型多模光纤,其芯径较小、耦合与连接困难一些。针对此问题,有的公司进行了改进,研制出新型的5O/125μm光纤渐变型(G1)光纤,区别于传统的50/125μm光纤纤芯的梯度折射率分布,将带宽的正态分布进行了调整,以配合850nm和1300nm两个窗口的运用。
3.光缆技术发展的特点
(1)光缆结构使用网络环境有明确的光纤类型选择,如干线网光纤、城域网光纤等,这决定了大范围内光缆光纤传输特性的要求,具体运用的条件,还有可依据的细分的标准及指标。(2)光缆结构除考虑光缆使用环境条件外,与其施工和维护方法有关,必须统一考虑,配套设计。(3)光缆新材料的出现,促进了光缆结构改进,如干式阻水料、纳米材料、“干缆芯”式、生态光缆、海底和浅水光缆、微型光缆、全介质自承式光缆、架空地线光缆等的采用,使光缆性能有明显改进。
二、光纤光缆技术发展值得思考的问题
1.积极创新开发具有自主知识产权的新技术。1997年以来,国内光通信核心技术专利是90件,自主申请的有9件。作为世界第二光缆大国,应该把开发具有自主知识产权的技术,作为工作的重中之重,争取创造更多的光纤光缆专利。
2.开发具有先进技术水平、与使用环境、施工技术相配套的新产品。光缆的结构依赖于使用的环境条件和施工的具体要求,今后,光缆建设的重点将会随着接入网、用户住地网的建设不断展开,新一代的光缆结构和施工技术会基于,如微型光缆、吹入或漂浮安装,及迷你型微管或小管系统的全套技术,有一系列新的变化,充分利用有限的敷设空间。目前我国创新的成份太少,在接入网、用户住地网中,多采用一些国产的光电缆产品。
(2)跨段监测和跨段故障扫描。通过对无源光器件或在光缆跨接处跳纤,就能够实现监测多段连续的光纤线路的远距离在线或者空闲纤芯的工作,针对不同的监测方式,则必须要根据实际的情况对检测的方法进行重新的设计,以实现跨段监测,在线监测只能测试一段业务信号,不能实现跨段监测,只能实现跨段故障扫描,当使用在线检测模式的时候,由于OTDR故障检测信号和业务信号共用纤芯,跨段设计需要在跨段点上增加两套无源的波分复用设备(FCM),使测试信号可以旁路。上面介绍的所有的测试方法,空闲芯检测方法不影响相关光纤的正常工作,也不会对相关的传输信号造成干扰,系统的稳定性高,且构造比较简单,性价比高,且空闲芯检测支持跨段监测和跨段故障扫描,能够扩大监测的范围,因此,当前这种方法应用得最多。
2光缆通信监测系统的硬件平台
光缆通信检测系统式整个电力通信网络中一个非常重要的子系统,为了确保电力通信系统的正常运行,因此应该有一个个系统能够对大规模的光纤网络资源进行管理和维护,且应该支持多级管理和维护,以保证系统运行的稳定性。
(1)一级监控中心。一级监控中心主要负责大区域的监测,去监测多级多层的光缆网络,并且要有一个与检测规模相对应的监测中心,数据通信网可以将各级的监控中心有效的连接起来,并且将他们各自监测到数据传送到总的监测中心,然后对故障进行分析判断,并生成统计报表。
(2)二级监控中心是一级监控中心下面的一个子系统,它主要负责一定区域内的光纤通信监测系统,对这个区域之内的光缆网络进行自动的监测、进行故障定位、数据管理等,并且接收来自相关监测站点的告警信号和相关的数据,对发生的故障进行有效的统计和处理,并且生成报表。
(3)远方监测单元。远方监测单元主要是实现对相关纤芯的监测,并对监测的数据进行采集,然后根据采集的数据绘制出数据曲线,然后进行初级的分析,根据分析的结果对光缆线路进行远程的控制等工作,通过DCN与上一级别的监控中心数据服务器的通信,支持上级监测中心对本监测站的光缆和RTU设备实施监测和管理功能。主控单元:主控制单元主要指的是远方监测单元的主控制板,或者是负责远方监测单元监测控制和数据通信的一个服务中心,它具有网络接口,以便于更好的进行数据的交换,进行远程测试等工作;光切换单元:主要有两种,分别是机械式光路切管开关和电磁式光路切管开关,机械式光路切管开关稳定性好,且抗干扰,但是它的精度比较低,电磁式光路切管开关精度高、体积小、抗震性好,且不耗电不发热,对于降低整个远方监测单元的发热有帮助。
(4)光缆自动监测系统的最大监测距离计算。实际上,光缆自动检测系统的最大监测距离就是OTRD的极限有效检测距离,因为在传输的过程中可能会有光缆熔接头损耗、传输衰耗等因素,所以它的最大有效传输距离应该考虑这些因素。
(5)波分复用模块。波分复用模块主要是由光合波器和光滤波器等这些光纤被动元件组成的,针对和纤在线测试方式,FCM可以将OTDR故障扫描信号波与业务信号波耦合在一起注入到受测光纤中。通过在远端光缆交叉点上设置FCM,可以实现跨段在线故障扫描。
光纤接入网技术利用传输网络实现用户接入光纤,共同实现光纤接入网下信息传输效果的持续提升,实现了传统信息传输的技术性突破,满足人们对信息传输速度的需求。光纤用户接入技术发展起着关键作用。FTTH是光纤接入网发展的一种最终形式,光纤接入网以光网络单位(0NU)的位置所在,分为FTTH、光纤到大楼(FTTB)、光纤到驻地(FTTP)、光纤到路边(FTTC)等几种情况。目前,以”千兆到小区、百兆到大楼、十兆到用户”为基础的光纤+五类缆接入方式(FTTx+LAN)非常适合我国国情。它适用于用户相对集中的小区、大专院校、企事业单位及人口密集的乡镇。这种光纤接入方式的上传和下传带宽,能够实现高速上网或企业局域网间的高速互联,满足不同客户群体对不同速率的需求。
1.2光纤波分复用技术
光纤波分复用技术是现代信息技术发展的重要组成部分,充分表现了现代光纤通信技术发展的主要特点。在ITU-T标准中,通过引入控制层面,使网络具有自动连接建立和修改功能,以及提高连接恢复能力。光纤网络控制层面本身能够支撑不同的技术,不同的业务需求及不同的功能组合。光纤波分复用技术主要是应用波分复用器对广信信息传输出现的损耗进行控制,保证宽带资源的有效获取。同时在光波频率根据波长的不同情况对光纤损耗情况进行独立性信息发送,充分发挥波分复用器的效果将信息数据进行整合。波分复用器能够将不同信号波长进行传输,承载电信光纤通信技术优势。
1.3光联网的实现
目前,在扩充骨干网、迅速普及应用DWDM系统的驱动下,我国光网络市场已出现巨大变化,光传送网的角色由原来大容量带宽传送转变为提供端到端的服务连接。电信运营商在电路交换转变为分组交换过程中,在光层网络同时实现了传输功能和交换功能,而全光网络以其良好的透明性、波长路由特性、兼容性和可扩展性,成为下一代高速(超高速)宽带网络的首选。光纤接入网技术和光纤波分复用技术的创新推广应用中,光分插复用器(OADM)和光交叉连接设备(OXC)的成功研制,使得二者能够在基础通信设备基础上实现光路交叉,为光联网起步奠定坚实基础,能够进一步扩充网络系统,提升网络系统的透明性,使全光联网成为可能,掀起了SDH电联网之后又一次新的光通信发展,建设一个最大透明、高度灵活的和超大容量的国家骨干网络不仅可以为未来的国家信息基础设施(NII)奠定一个坚实的物理基础,而且对应我国信息产业和国民经济腾飞及国家安全有极其重要的战略意义。
1.4全新一代光纤
全新一代光纤是新时期电信光纤通信技术应用的核心内容。新的光传输网分为三层:光通路层(Och)支持终端到终端的传送客户信号。OMS光复用层把许多光波复用到一起后传动到光纤中。OTS光传送层把客户信号映射到单一的光道,再将许多单一的光道复用在一起后送上光纤。全新一代光纤具有频带宽通信容量大、损耗低,中继距离长、抗电磁干扰、无串音保密性好等优势特点。根据电信网络服内容不同,创新了传统光纤发展模式,呈现出大容量、长距离传输等优势。
二、电信光纤通信技术发展趋势的优势分析
伴随中国城镇化等宏观经济政策调整,我国城乡每年旧城改造和新屋建设达到20多亿平方米,至少可以容纳2000万户新居或数百万个企业,为光宽网建设提供了几乎海量的外在条件。伴随信息华社会的发展,人们随时随地办公、生活、学习、购物、娱乐的内在需求日益凸现,建设安全的全光信息网络已经提升为国家战略。科学技术水平提升使电信光纤通信技术提供的服务质量能够不断的满足人们的要求。电信光纤通信技术发展趋势优势明显,传输速度快、传输容量扩大,并且在长距离下实现信息容量提升、完善全光网络系统。在未来电信光纤通信技术发展状况下信息数据传输水平会在网络系统发展下实现高速发展。电信光纤通信技术发展具有重要的现实应用意义。
2.1全光网络
电信光纤通信技术发展中全光网络是重要的组成部分,同时也是电信光纤通信技术应用的关键核心,是人们对网络信息技术需求发展的表现。全光网络(ASON)在路由和信令控制下,完成自动交换连接功能。它首次将信令和选路引入传送网,通过智能的控制层面来建立呼叫和连接,实现了真正意义上的路由设置、端到端业务调度和网络自动恢复。探究全光网络特点对电信光纤通信技术进行研究,能够更好的实现电信光纤通信技术应用的全面发展。我国对电信光纤通信技术不断进行研究,创新了技术发展模式,在应用上取得了较大发展。伴随国务院《“宽带中国”战略及实施方案》的推进,联通等通信运营商加大力度推行“城乡一体化”光网改造工程,通过全光网络的方式向宽带中国目标靠近,不断地满足社会对现代网络光纤通信技术的应用需求。
2.2多业务承载能力
新时期为了进一步促进电信市场的发展,需要对电信市场发展模式进行改革创新,对运营模式进行重组改制,实现电信业务多元化发展。网络系统光纤接入技术的应用能够承载更多的业务项目,强化基础型承载业务水平,移动基站回传、语音等服务都是多业务承载能力提升的重点内容。从提高传输通道变为提高光业务的解决方案,使光网络能够提高多种高质量的带宽应用与服务,包括:1、OVPN;2、业务SLA;3、带宽出租、带宽批发、带宽贸易、实时计费;4、流量工程;5、分布式恢复;6、SPC(软永久连接)/SC(交换连接)/PC(永久连接)。传统接入网系统主要采用对接式网络结构,这种模式在一定程度上提升了运营系统管理成本投入,使网络系统建设经济效益受到影响。高接入带宽接入网应用之后能够更好的使系统与网络进行融合,实现网络系统高效运行,建立统一系统应用平台。电信光纤接入技术促进多业务承载能力的同时保证了系统客户的应用安全有效性,业务发展保证服务水平质量提升,同时能够承载更多的系统业务,并且针对个人系统应用要求强化电信光纤通信技术。除此之外,还能够提供高可靠性接入、高精度时钟传送、有效满足针对移动基站的回传业务。
关键词:光纤通信技术发展历史现状发展趋势
1、导言
目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。
自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。
2、光纤通信技术的发展历史总结
近十几年来,光纤通信技术有了长足的进展,其中的新技术也不断被发掘,大大提高了传统意义上的通信能力,这使得光纤通信技术在更大的范围内得到了应用。
光纤通信技术是指把光波作为信息传输的载波,以光纤作为信息传输的媒介,将信息进行点对点发送的现代通信方式。光纤通信技术的诞生及深入发展是信息通信史上一次重要的改革。光纤通信技术从理论提出到工程领域的技术实现,再到今天高速光纤通信的实现,前后经历了几十年的时间。
上世纪六十年代开始的光纤通信技术最开始起源于国外,当时研制的光纤损耗高达400分贝/千米,后来,英国标准电信研究所提出,在理论上光纤损耗能够降低到20分贝/千米,然后,日本紧接着研制出通信光纤的损耗是100分贝/千米,康宁公司基于粉末法研制出了损耗在20分贝/千米以下的石英光纤,到最近的掺锗石英光纤的损耗降低至0.2分贝/千米,已经接近了石英光纤理论上提出的损耗极限。
由以上光纤通信技术的发展历程,可以把光纤通信技术分为大致五个阶段,即850纳米波段的多模光波,到1310纳米多模光纤,到1310纳米单模光纤,再到1550纳米单模光纤,最后是长距离进行传输的光纤通信技术。
3、光纤通信技术的现状研究
(1)光纤通信技术中的波分复用技术。即WDM,充分利用了单模光纤低损耗区的优势,获得了大的带宽资源。波分复用技术基于每一信道光波的频率和波长不同等情况出发,把光纤的低损耗窗口规划为许多个单独的通信管道,并在发送端设置了波分复用器,将波长不同的信号集合到一起送入单根光纤中,再进行信息的传输,而接收端的波分复用器把这些承载着多种不同信号的、波长不同的光载波再进行分离。
(2)光纤通信技术中的光纤接入技术。光纤接入网技术是信息传输技术的一个崭新的尝试,它实现了普遍意义上的高速化信息传输,满足了广大民众对信息传输速度的要求,主要由宽带的主干传输网络和用户接入两部分组成。其中后者起着更为关键的作用,即FTTH(意思是光纤到户),作为光纤宽带接入的最后环节,负责完成全光接入的重要任务,基于光纤宽带的相关特性,为通信接收端的用户提供了所需的不受限制的带宽资源。
4、光纤通信技术的发展趋势
下面介绍在未来将会大有发展的几种光纤通信技术,如下图1所示。
(1)光接入网通信技术的更进一步发展。现存技术上的接入网依旧是双绞线铜线的连接,仍然是原始的、落后的模拟系统,而网络中的光接入技术的应用使其成为了全数字化的,且高度集成的智能化网络。
光接入网通信技术所要达到的主要目标有:最大程度的使维护费用得到降低,故障率得到明显下降;可以用于新设备的开发和新收入的不断增加;与本地网络相结合,达到减少节点数目和扩大覆盖面范围的目的;通过光网络的建立,为多媒体时代的到来做好准备;另外,可以最大化的利用光纤本身的一些优势特点。
(2)光纤通信技术中光传输与交换技术的融合一光接入网通信技术的后延。基于上述光接入网通讯技术的成熟发展,网络的核心架构己经得到了翻天覆地的改变,并正在日新月异的变化发展着,在交换和传输两方面来讲也都早已进行了好几代的更新。光接入网技术和光输与交换技术的融合技术,前者较后者在技术应用上有了一些技术上改进,从而也就提高了全网的往前的进一步有效发展,但此项技术相对来讲仍不成熟。
Abstract: Due to the optical fiber communication with low loss, wide bandwidth, large capacity, small volume, light weight, resistance to electromagnetic interference, is not easy to crosstalk and other advantages, has been the industry favor, very rapid development. This paper describes the characteristics, optical fiber communication technology, and analyzes its advantages, and puts forward some corresponding countermeasures for the development of optical fiber communication in our country, to promote its development trend.
Key words: optical fiber communication technology; trend; FTTH; all-optical network
中图分类号:TN91文献标识码:A文章编号:
1 光纤通信技术
光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。
光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大; (4)信号的分离;(5)信号的接收。
2 光纤通信技术的特点
频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。
损耗低 ,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。
抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。
无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。
3 光纤通信技术应用的主要对策
波长就是一个信号系统,把从前的电路交换,换成当前的光路交换。这种交换系统就是把光的传输和交换融为一体,把交换给取消了。希望今年能作出一个演示系统。这个问题是最简单最有效的解决如此困惑传输高速路的问题,宽带推广应用就有很好的基础。
第一个是可变波长激光器、高频调制器;第二是波分复用/解复用器/滤波器;第三是增益平坦和锁定的SCL 波段放大器;第四是RAMAN 放大器;第五是高频光探测器、MEMS光开关。我国建立环保型的微电子和光电子的生产基地,我国的硅石材料是非常丰富的。多晶硅是未来最清洁的能源。
21 世纪,要发展光网络与移动通信式的结合,这是一个很大的商机。光网络与毫米波的结合,如果成功的话,也是很大的具有革命性的进步。再一个是制造高精度的光纤陀螺。这不仅仅是未来航空系统,导弹系统要用它,国外的汽车里面也有陀螺。此外,新型实用化电流传感器、电压传感器,光纤光栅应力传感器,光纤光栅温度传感器。
虽然这几年来,我国光缆电缆技术有很大发展,有一些具有自主知识产权的技术已在发挥作用,但是应该看到这种比例仍是很小的,国内有近200 家光纤光缆厂,但大多产品单一,没有自主的知识产权,技术含量较低,竞争力不强。实际上我国的光纤光缆技术应该说与国际水平己差距下大,因此我们作为世界第二的光缆大国,应该把开发具有自主知识产权的技术作为我们工作的重中之重,争取创造更多的光纤光缆专利。
西部大开发是国家的重大策略,国家制定了有利的政策,政府对发展通信等行业也给予了大力的支持。西部是一个地域复杂、分布较宽、通信相对落后的地区。经济大发展中,通信要先行,需要一些与之相适应的光纤光缆及通信电缆的先进产品来配合发展的需求。因此,符合条件的产品将会在这里找到很好的市场,光纤光缆和通信电缆的各种技术、产品及成果都会在西部开发中得到发挥。
4 光纤通信技术的发展趋势
对光纤通信而言, 超高速度、超大容量、超长距离一直都是人们追求的目标, 光纤到户和全光网络也是人们追求的梦想。
(1) 光纤到户
现在移动通信发展速度惊人, 因其带宽有限,终端体积不可能太大, 显示屏幕受限等因素, 人们依然追求性能相对占优的固定终端, 希望实现光纤到户。光纤到户的魅力在于它有极大的带宽, 它是解决从互联网主干网到用户桌面的“最后一公里”瓶颈现象的最佳方案。随着技术的更新换代,光纤到户的成本大大降低, 不久可降到与DSL 和HFC 网相当, 这使FTTH 的实用化成为可能。据报道, 1997 年日本NTT 公司就开始发展FTTH, 2000年后由于成本降低而使用户数量大增。美国在2002 年前后的12 个月中, FTTH 的安装数量增加了200%以上。在我国, 光纤到户也是势在必行, 光纤到户的实验网已在武汉、成都等市开展, 预计2012 年前后, 我国从沿海到内地将兴起光纤到户建设。可以说光纤到户是光纤通信的一个亮点, 伴随着相应技术的成熟与实用化, 成本降低到能承受的水平时, FTTH 的大趋势是不可阻挡的。
(2) 全光网络
传统的光网络实现了节点间的全光化, 但在网络结点处仍用电器件, 限制了目前通信网干线总容量的提高, 因此真正的全光网络成为非常重要的课题。全光网络以光节点代替电节点, 节点之间也是全光化, 信息始终以光的形式进行传输与交换, 交换机对用户信息的处理不再按比特进行, 而是根据其波长来决定路由。全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性, 并能提供巨大的带宽、超大容量、极高的处理速度、较低的误码率, 网络结构简单, 组网非常灵活, 可以随时增加新节点而不必安装信号的交换和处理设备。当然全光网络的发展并不可能独立于众多通信技术, 它必须要与因特网、ATM网、移动通信网等相融合。目前全光网络的发展仍处于初期阶段,但已显示出良好的发展前景。从发展趋势上看, 形成一个真正的、以WDM技术与光交换技术为主的光网络层, 建立纯粹的全光网络, 消除电光瓶颈已成未来光通信发展的必然趋势, 更是未来信息网络的核心, 也是通信技术发展的最高级别, 更是理想级别。
5 结束语
现在光通信网络的容量虽然已经很大,但还有许多应用能力在闲置,今后随着社会经济的不断发展,作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力,推动通信网络的继续发展。因此,光纤通信技术在应用需求的推动下,一定不断会有新的发展。
二、当前光纤通信技术的优势
1.通信容量大、频带非常宽
在光纤的通信系统中,光纤的传输带宽比电缆或铜线大很多,单模光纤的宽带具有几十GHz•km。对于单波长光纤通信系统来说,因终端设备出现电子瓶颈反应,而使光纤带宽的优势难以发挥出来,一般选取各种不同技术进行传输容量的增加,尤其在当前密集波分复用技术的应用中,极大地使光纤的传输容量得到了增加,能够让光纤的传输容量扩大几倍甚至可达到几十倍之多。从现在来看,单波长光纤通信的传输速率通常在2.5Gbps至10Gbps之间,在采用该技术可以实现的是多波长传输系统的传输速率比单波长传输系统高出数百倍之多,其巨大的带宽优势使得单模光纤成为当前电信宽带综合业务网的首推介质。
2.光纤芯径超细、重量非常轻、柔软无比、铺设简易
光纤的芯径非常细,其直径大约是0.1毫米,采用多芯光纤构成光缆的直径也相当的小,八芯光缆的直径大约为10毫米之小,而标准的同轴电缆却达到47毫米之大。如若选取光缆作为信道传输,可使减少传输系统占用大的空间,让空间得到有效的释放,使地下管道拥挤的难题得到解决,同时极大地节省了地下管道的投资成本;另外,光纤的重量非常轻,柔软性十足,其重量与电缆比较起来轻很多,光纤通信可以应用在人造卫星、宇宙飞船与飞机上面,能够有效减轻卫星、飞船与飞机等的重量,其发展意义不言而喻。
3.电磁抗干扰性能相当强
大家都通晓光纤主要是以石英制作而成的绝缘性材料,绝缘性非常好,且不易于被腐蚀。同其有关的还有一个优势是光波导对电磁干扰的免疫力,自然界中的太阳黑子活动、雷电与电离层的变化都难以对它进行干扰,甚至人为释放的电磁也不会受到其中的干扰与影响,并且还能应用在同电力导体密切组合构成一种复合光缆或者与平行铺设到高压电线。其作为非导电介质的一种,交变电磁波在其中不会产生同信号毫无相关的噪声。如此说来若将它平行铺设到高压电线与电气铁路旁,也难以受到电磁干扰的影响。
4.中继距离长、损耗相当低
石英光纤是当前光纤通信系统中使用最多的一种,该种光纤的传输损耗与任何一种传输介质的损耗相比较都显得低,所以由其构成光纤通信系统的中继距离比起其他的系统要长很多。若将来选取非石英极低损耗的光纤,从理论而言其损耗可以下降得更加低。这说明经由光纤通信系统能跨越更加大的无中继距离;而对于长途传输线路而言,因减少了中继站的数目,所以大大降低了系统成本与复杂性。在当前由石英光纤构成的光纤通信系统中,其最大中继距离有200多公里,而由极低损耗非石英光纤组成的通信系至数公里之长,这样有利于提高通信系统的可靠性与稳定性,更可降低其运作成本。
5.保密性能非常好
随着不断发展的科学技术,电通信方式的保密性存在着一定的缺陷,易于被人偷窃监听,只需在电缆或明线周边布设一个接收器,就能够获得传送的信息,而光纤通信系统却可解决反窃听这一难题,其保密性非常好。光纤通信同电通信有所不同,光纤的设计独特无比,在光纤中传输的光波基本没有跑到光纤的外面,已被局限于光纤的纤芯与包层邻近进行传输。尽管在弯曲半径十分小的地方,泄漏的可能性也非常微弱。所以泄漏到光缆之外的光基本上没有,更况且中继光缆与长途光缆通常均埋在地下,由此可知其保密性能相当不错。
三、电信光纤通信技术的发展与实际应用
光纤技术的发展有赖于通信技术的不断发展,在全新时代的背景下,人们对光纤通信需求将与日俱增中,下面简要介绍四种光纤通信技术的应用情况。
1.电信光纤到户接入技术
随着社会经济的迅速发展,人们的物质生活水准得到了大大的提高,网络信息传递的高速化已成为每个人心目中所要追求的目标,光纤到户接入技术却能使人们的这一种需求得到满足,该技术能够实现宽带波长的不断变化,也能允可同时使用多个用户,使信息传输的高速化得到了实现,让多媒体技术与高速信息传输真正走进人类社会的实际应用当中去。
2.波分复用技术
波分复用技术能够按信道光波的频率或不同波长,以光纤的广播当作信号载波,经合波器进行有效合并,通过一根光纤传输,采用分波器于接收端处把不同的光波加以分开,这样可实现复用传输。在波分复用技术应用的过程中,使光纤通信的大容量传输得到了实现,同时极大地节省了通信运作成本,使通信技术获得了一个新的制高点,并且为运营商们提供了非常大的便利。
3.光联网的实现
波分复用技术主要是以点至点为基础的通信,若在光路上也能让交叉连接得到实现的话,就能够产生光联网。光联网的发展潜力可谓前途一片光明,不但让网络得到了扩展,而且使网络透明性增加了不少,其必然将会成为全球电信网络建设的核心项目。
4.全新一代光纤
随着不断增加的IP业务量,电信网络架构传输容量大的光纤就成了全新一代网络应用的根本。传统旧有的一模光纤在进行超高速长距离传输时,已显得有点乏力,全波光纤作为全新一代的研发已经拉开序幕,同时也是电信通信业作为开发的核心目标。