时间:2023-03-06 16:06:24
导言:作为写作爱好者,不可错过为您精心挑选的10篇书愤教案,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
1、理解异分母分数加减法必须先通分的道理,掌握异分母分数加减法的计算法则。
2、能正确计算异分母分数加减法。
3、让学生体验数学中的“化归”方法。
教学重点:掌握计算法则,熟练计算。
教学难点:理解算理。
教学过程:
一、组题引新:
1、老师在投影仪下出示4张卡片:
(1)现在请你摸2张,有几种可能?(哪几种?)你是怎么知道的?
(2)如果由摸出的两个数组成一道加、减法算式,共有几道?
(3)请你把这12道算式写在草稿本上。(写完后学生说,老师板书)
二、理解算理,掌握法则。
1、这些题你愿意做一做吗?选择你会做的做。(师巡视,并提示可以用折纸、画图等方法来思考或验证。)
2、反馈:
(1)你认为这些题中,哪几题最好算?(+、-)为什么?等于几?板书)
(2)[1]揭题:
为什么剩下的题没有这两题好算?(因为它们是异分母分数加减法)对,今天这节课我们就一起来研究异分母分数加减法(板书课题)
[2]我们来看看这里的“+”你是怎么算的?还有别的方法吗?(画图的、计算、折纸都用投影出示)
[3]刚才我们用了哪些方法来计算这道题的?(通分、化小数、折纸、画图)同学们很会动脑筋。
[4]那么这儿还有哪几题也可以用这些方法来算的?
(-、-、+)结果分别是多少?
(3)剩下的题你们是怎么算的?(选一题投影说)同意吗?强调格式时指出:看这儿,如果我们用通分的方法来计算异分母分数加减法,就应该按照***(学生名字)的格式,把通分的过程写在计算过程中,不要单独列成一步。若错,师板演。
[1]这道题还有别的方法吗?(折纸、画图)这样的方法算起来太麻烦。为什么没人用化小数的方法?这说明异分母分数加减法一般、常用的方法是——通分。
[2]计算这样的题,为什么要通分呢?
[3]剩下的5题你可以任选一道加,一道减完成,快的可以都做。
[4]反馈。
3、那你们认为异分母分数加、减法该怎样计算呢?
(生答,教师板书:通分,同分母分数加减法)
三、巩固反馈:
1、计算,并验算。(投影显示)P1223
(1)现在我们来看P1223这儿几个要求,另起一行写出“验算”后再验算。可以任选一道加、一道减完成,快的同学可以都做(中间可提问:怎么验算的?)
(2)投影反馈,还有做另外两题的吗?
(3)计算了这几题后,你有什么想对大家说的吗?
(化简,验算方法,验算时要用原数)
四、课堂练习:
现在请同学们拿出练习卷
你可以任选A组或B组题进行练习,A组简单点,B组难一点。
A组:1、计算,并验算。(任选2题)
+-+-
2、P1224
B组:1、同上
2、计算阴影部分的面积。
(1)(2)
(3)(4)
……
2n-11
2n2n
这样一直做下去,将会出现什么情况?
2.进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。
教学重点和难点
掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。
教学过程设计
(一)复习准备
1.解答“一个数是另一个数的百分之几”用什么方法?(用除法)
2.解答“一个数是另一个数的百分之几”的应用题,关键是什么?(找应用题中的标准量,也就是单位“1”,谁是标准量,谁就做除数。)
3.口答,只列式不计算。(用投影出示)
(1)5是4的百分之几?4是5的百分之几?
(2)甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的数是乙数的百分之几?
(3)甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的数是甲数的百分之几?
4.板书应用题。
一个乡去年计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
分析:通过读题,在这道题中,谁是标准量?
你是从哪句话中找出来的?应怎样列式呢?
如果将这道题的问题变为“实际造林比原计划多百分之几?”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。
板书课题:百分数应用题
(二)学习新课
1.出示例3。
例3一个乡去年计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
(1)学生默读题。
(2)例3与复习题4比较,有什么异同?
(两道题条件相同,问题不同。)
问题不同在哪儿?
(复习题4求的是实际造林是计划造林的百分之几,例3是求实际造林比原计划多百分之几。)
教师在例3中用红笔画出“多”字。
(3)在这道题中,谁是单位“1”?是从哪句话中找到的?
教师用双引号画出单位“1”。
(4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。
(意思是:实际造林比原计划多的公顷数是原计划的百分之几?)
板书:多的公顷数是计划的百分之几?
(5)根据多的公顷数是计划的百分之几这句话,怎样列文字表达式?
板书:多的÷计划的
(6)怎样列式计算呢?
板书:
(14-12)÷12
=2÷12
≈0.167
=16.7%
答:实际造林比原计划多16.7%。
问:14-12是在求什么?
问:为什么除以12,而不除以14呢?
(7)还有其它的解法吗?(学生讨论)
汇报讨论结果:
板书:
14÷12-1
≈1.167-1
=0.167
=16.7%
答:实际造林比原计划多16.7%。
问:14÷12得到的是什么?再减去1又得到什么?
2.把例3中的问题改为“原计划造林比实际造林少百分之几?”
问:你怎样理解“原计划造林比实际造林少百分之几”这句话的?
问:谁做单位“1”?(实际公顷数)
问:怎样用文字算式表达?
板书:少的÷实际的
问:怎样列式计算?
投影订正:
(14-12)÷14
=2÷14
≈0.143
=14.3%
答:原计划造林比实际造林少14.3%。
问:14-12得到什么?为什么再除以14呢?
问:还有不同的解法吗?
板书:1-12÷14
问:为什么例3与改变后的题得数不同?(单位“1”不同。)
问:这两道题有什么相同之处?(解题思路完全一样。)
3.把例3的一个条件改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。实际造林比原计划多百分之几?
(1)学生独立思考解答。
(2)指名说解题思路。
(3)板书算式:
多的公顷数÷计划的
2÷12≈0.167=16.7%
答:实际造林比原计划多16.7%。
问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)
4.把3题的问题稍作改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。原计划造林比实际造林少百分之几?
(1)学生只列式不计算。
(2)说解题思路。
板书:少的÷实际的
2÷(12+2)
(三)课堂总结
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了求一个数比另一个数多(或少)百分之几的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
(四)巩固反馈
1.分析下面每个问题的含义,然后列出文字表达式。
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)1999年电视机的价格比1998年降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)第二季度的产值比第一季度提高了百分之几?
(7)十一月份比十月份超额完成了百分之几?
(8)男生人数比女生人数多百分之几?
2.在练习本上只列式不计算。(投影出示)
(1)某校有男生500人,女生450人。男生比女生多百分之几?
(2)某校有男生500人,女生450人。女生比男生少百分之几?
(3)一种机器零件,成本从2.4元降低到0.8元。成本降低了百分之几?
(4)某工厂计划制造拖拉机550台,比原计划超额了50台。超额了百分之几?
3.判断题。
2、会解答已知一个数的几分之几是多少求这个数的实际问题。
3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。
4、能运用比的知识解决有关的实际问题。
单元重点:
一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。
单元难点:
一个数除以分数的计算法则的推导。
1、分数除法
(1)分数除法的意义和整数除以分数
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教学过程:
一、复习
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3××××6×
二、新授
1、教学例1
(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
A、3盒水果糖重300克,每盒有多重?300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
×3=(千克)÷3=(千克)÷3=3(盒)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
2、巩固分数除法意义的练习:P28“做一做”
3、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
4÷2
5
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、÷2==,每份就是2个。
B、÷2=×=,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、练习
÷3÷3÷20÷5÷10÷6
教学目标:
1、知识目标:
使学生初步理解单位"1"和分数单位的含义,经历概括分数意义的过程,理解分数的意义,知道分数的分子、分母分别表示的意义。
2、技能目标:
培养学生分析综合、观察比较、抽象概括等初步的逻辑思维能力。
3、情感目标:
通过创设互助协作、积极探索的学习情境,使学生主动地参与数学活动,感受分数与生活的联系,增强数学学习的信心。
教学重点:
理解分数的意义
教学难点:
建立单位"1"的概念及分数意义的归纳
教(学)具准备:
多媒体课件一套。每个小组1张正方形纸,1条1分米长的纸带,8枚棋子。
教学过程:
一:回顾旧知,揭示课题:
谈话:同学们知道我们今天一起要来学习什么内容吗?(认识分数)
提问:你们认识分数吗?说说看你对分数已经有哪些认识,可以举例来说明。(板书)
谈话:看来大家对分数确实已经有一些认识,今天我们就在这个基础上更深入地认识分数!(板书课题:认识分数)
二:自主活动,探索新知:
1、动手操作:
谈话:大家认识了这么多分数,你能动动手,表示出分数吗?请大家拿出材料,表示出它的1/4,不好表示的可以用水笔打上阴影。完成的放在面前,向你的同桌介绍一下你是怎样表示1/4的。
指名口答。突出强调:平均分、每份是这张纸的1/4。
相机说明:1分米的1/4也就是1/4分米。
2、比较、概括单位"1":
谈话:同学们真棒,能将不同的物品通过平均分,分别表示出它们的1/4中。观察一下这里的4份物品,你有没有发现在表示1/4时有什么不同的地方呢?(相机插入板书:一个物体,一个计量单位,许多物体)
提问:把长方形纸、1分米、4枚棋子、8根小棒平均分成4份,其中这里1份是1个长方形,这里1份是2.5厘米,这里是1枚棋子,这里是2根小棒,物体不同,数量也不相同,为什么都可以用相同的分数1/4表示呢?(指答)
结合学生回答引导说明:这些"整体"在数学中通常用自然数1表示,但因为这里的1表示的是整体,和我们平时所用的1不同,所以这里通常加上双引号,我们把它叫做单位"1"。概括一下,这里都是把()平均分成几份,表示其中的()份,所以都用()表示。
3、深化理解,概括分数意义:
谈话:通过平均分,我们表示出了这些物品的1/4,那它们剩下的部分又分别可以用几分之几表示呢?(指答)你是怎样想的?
谈话:把这四类不同的物品分别看作单位"1",通过平均分得到了1/4、3/4这样的分数,在以前我们学习时,我们已经知道我们的身边处处有分数,你能把我们身边的某个物体、计量单位或者很多物体看作单位"1",通过平均分表示出更多的几分之一、几分之几这样的分数吗?(板书:1/()、()/[])先思考一下(指答,板书)。
谈话:同学们的回答很精彩!但是同学们想过没有,写了这么多分数,到底什么是分数?分数的意义又是什么呢?(引导学生说各分数的意义,结合学生回答逐步概括出分数的意义。)
指名学生再说说各个分数的意义。
4、认识分数单位:
谈话:请同学们打开书,找到分数的意义,读一读。
提问:理解了吗?书中除了介绍了分数的意义,还介绍了什么?(板书)什么叫分数单位?(指答,板书)你理解分数单位了吗?3/4的分数单位是多少?它里面有几个1/4?你能像这样说说这些分数的分数单位的情况吗?(指答)
提问:听同学们回答得又对又快,你是不是有什么诀窍啊?(指答。板书()/[]-()个1/[])
5、小结:刚才我们一起认识了单位"1",并且概括出分数的意义,认识了分数单位。而且我们的同学很聪明,还发现了分数中分母是几,分数单位就是几分之一,分子是几就表示有几个分数单位。学习到这里还有不清楚的地方吗?
四、巩固练习:
1、练一练
课件出示,要求:独立完成上面的填写,完成的同桌相互交流一下下面的问题。
指名口答。第一个提问:"空白部分可以用什么分数表示?合起来是多少?",第三个提问:空白部分有几个分数单位?一共有几个分数单位?
2、分数意义
谈话:写了这么多分数,那你理解这些分数的意义吗?
(1)汉族人口占全国总人口的23/25。
引导学生说:把什么看作单位"1"?平均分成了多少份,什么有这样的几份?
(2)地球表面有71/100的面积被海洋所覆盖。
(3)一根木料长8/9米,李师傅锯下了它的2/5。
提问:看了上面的分数,你知道些什么想到些什么?
3、分圆木问题:
谈话:张老师家这几天在装修,有一根木料也要分一分,想看看吗?
提问:从图中你得到哪些信息?(再出示:张老师想先截下它的1/3)
提问:你认为张老师大概在什么位置锯呢?指名上台指出。
提问:这里又不知道圆木的长度,你是怎样想到在这儿锯呢?你的意思是不管圆木有多长,把它看作"单位1",平均分成3份,锯下其中的1份就可以了。是吗?
再出示:再截下剩下的1/3,你又觉得该在什么地方锯呢?你是怎样想的?
再出示:如果再截下剩下的1/3,你觉得又该在什么地方锯呢?说说你的想法。
提问:锯到这里老师有点看不懂了!为什么三次都是锯下1/3,但三次锯下的长度却不相同呢?(指名口答)单位"1"越来越怎样了,那他的1/3呢?
提问:想象一下,如果继续这样锯下去,会出现什么情况?
异分母分数的大小比较是第四单元“分数的意义和性质”最后一节新授课,本单元内容丰富(老教材两个单元的内容合并成了一个单元),在本节课之前学生分别学习了分数的意义、真分数假分数带分数、分数的基本性质、约分和通分等内容。本课时教材的编排,给学生留出充分的独立思考的空间,鼓励他们用不同的策略解决异分母分数大小比较的问题。同时,教材也突出先通分再比较这种方法的应用价值。这也是教材把比较异分母分数大小编排在通分的后面教学的目的。
学情分析:
学生在三年级初步认识分数时,已经借助图形比较同分母分数的大小,以及分子是1的异分母分数的大小。本单元前面的教材里也有比较同分母分数的大小、比较两个同分子分数的大小,还有比较一个分数与一个小数大小的练习。因此,学生对比较分数的大小已经有了一些经验。本节课的重点是让每一个学生掌握先通分再比较的方法,难点是理解不同比较方法并能灵活应用。
设计思想:
基于学生的已有经验,我在设计本课时充分尊重教材,努力挖掘例题的教学价值,注重培养学生数学化的习惯和能力,注重培养学生创新精神和实践能力。练习的设计在教材的基础上有所改编,有所突破,让学生在掌握比较分数大小基本方法的同时,能够根据数据的特点灵活选择合适的方法比较大小。
教学目标:
1、使学生理解和掌握异分母分数比较大小的方法,能正确地比较两个分数的大小,并能灵活运用方法进行分数大小的比较。
2、使学生经历探索、交流分数大小比较方法的过程,感受引用已有知识可以探索、解决问题,体会知识的联系;理解不同的比较方法,体验方法的多样,培养分析、推理、判断等思维能力,进一步发展数感。
3、使学生体会数学知识与现实生活的联系,能通过比较分数的大小解决简单实际问题,增强应用意识。
教学重点:
掌握通分比较分数大小的方法。
教学难点:
理解不同比较方法并灵活应用。
教学过程:
一、复习引入
1、出示:比较分数的大小
指名回答。
提问:前两组分数,你是怎样直接比大小的?后两组呢?
学生回答后指出:同分母分数看分子,分子大的分数大;分子都是1看分母,分母小的分数大。
板书:同分母分数看分子,分子大的分数大;
分子都是1看分母,分母小的分数大。
2、揭题:这是我们在三年级学习的分数大小比较的知识,今天的数学课继续学习分数的大小比较。
(设计意图:课始,复习同分母分数和分子都是1的分数大小比较,唤醒学生已有的知识经验,为新知的学习做好铺垫。)
二、自主探究
1、引发比较需求
出示例15:
提问:轻读题目……想一想这里的和分别表示什么意思?
指名回答。
引导:和单位“1”都是什么,因此要比较谁看的页数多,就只要比较什么?
2、自主探究,组内交流
抛出数学问题:想一想,和怎样比较大小呢?
先把比较的过程在作业纸上表示出来,然后在小组内交流一下方法。
学生活动,教师巡视,收集不同的方法。
3、展示多种方法
谈话:大家的方法多种多样,老师收集了几种,我们一起来看一看,听一听。
学生边指边说。
预设:
方法一——画图比较(圆、直条、数轴等)
点评:画一画的方法比大小虽然费了点时间,但是很直观。
方法二——找一个标准比较
点评:找到一个标准,然后把两个分数分别与这个标准比大小,这种方法很灵活。
方法三——先化成同分母分数再比较
点评:运用通分的知识,把两个分母不同的分数转化成同分母分数,就可以用以前的方法来比出大小了。
板书:通分
谈话:让我们再来回顾一下这种方法,先把和化成分母是45的分数=
=,
然后再比大小,
因为>,所以>。
随回顾板书过程。
方法四——先化成同分子分数再比较
点评:你能联系分数的意义,讲一讲比较的具体过程吗?
方法五——先化成小数再比较
点评:可以吗?
结合课件演示小结:刚才有的同学想到了画图,有的同学想到了找一个标准比较、有的同学转化成同分母或者同分子分数再比较等等,方法不同,但都是在联系旧知学习新知。的确,很多新的数学知识都是从学过的知识中延伸出来的。
(设计意图:例题教学首先引导学生从现实情境中抽象出数学问题,要知道谁看的页数多,只要比较和的大小。对学生来说,比较这两个分数的大小虽然是新的问题,却有许多知识经验可以应用,因此鼓励学生独立解决,在交流中体会策略和方法的多样性。让学生独立解决新颖的问题,有利于创新精神和实践能力的培养。最后,教师引导学生比较多种方法,虽然具体的过程不同,但都是应用学过的知识学习新的知识。这样开放地安排学习活动,既重视数学知识本身的探究过程,又无痕渗透了“转化”这种重要的数学思想方法。)
4、突出先通分再比较的普适性
出示:
提问:这几组分数你准备怎样比大小?
学生回答第一题后追问:为什么不画图比较?/为什么不找一个标准比较?
指出:这四组分数,大家都想到了先通分再比较的方法。看来,这种方法是比较分数大小的基本方法,所以我们每一个同学都要掌握它。
下面就请同学们先通分,再比较每一组分数的大小,在作业纸上做一做。
学生练习,教师巡视。
学生练习后交流,关注出错的学生。
5、比较总结
课件出示:
提问:同学们,今天学习的比较分数大小和以前的有什么不同?比较的方法又有什么联系?先想一想,然后在小组里说一说。
指名回答。
指出:分母不同,我们把它们叫做异分母分数。
板书课题:异分母分数比较大小
小结:比较异分母分数的大小,一般可以先通分,化成同分母分数,再按同分母分数比较大小。
当然,遇到一些特殊的情况,我们也可以采用不同的比较方法。比如……
(设计意图:通分是比较分数大小最常用的方法,适合大多数学生使用。为了让学生体会这种方法的普适性,我把教材练一练第一题稍作改变,学生观察后发现画图太麻烦,找一个中介数这种方法也走不通,于是不约而同想到了通分。此时,抓住时机提出通分后比较是最基本的方法。这样安排,通分比较这种方法不是教师硬生生要求学生去做,而是学生自己体悟,觉得需要这样去做。)
三、巩固深化
1、练一练第2题
(1)出示
提问:先观察,再思考怎样比较它们的大小?
学生逐一回答。
追问:大家都发现每组分数的分子相同。分子相同,也可以直接比较大小。谁能举例解释一下道理。
学生任选一二说说。
明确:把单位“1”平均分的份数越多,一份越小,相应的几份也越小;平均分的份数越少,一份越大,相应的几份也越大。
(2)比较小结
出示:
谈话:同学们,其实课刚开始的复习题中我们已经接触到了同分子的情况,谁能用一句话简洁的概括一下同分子的两个分数怎样直接比较大小。
根据学生回答,改写板书:同分子分数看分母,分母小的分数大。
指出:同分母或者同分子分数都可以直接比较大小。
2、出示:用你喜欢的方法比较每组分数的大小。
学生练习,教师巡视。
交流:第一组你是怎样比较的?为什么选择这种方法?第二组、第三组呢?
第四组又是怎样比较的?有没有不同的方法?第五组呢?
学生回答第四组后指出:这两个假分数化成带分数再比较,只要比整数部分就行了,十分简便。
小结:看来,比较分数大小的方法多种多样,我们要根据分数的特点选择最简便的方法。
板书:灵活选择
3、补充
用分数表示除法算式的商,再比较每组商的大小。
3÷5和5÷8
11÷12和12÷11
11÷12和10÷11
学生练习,教师巡视。
交流:每组的两个商分别是怎样比较大小的?
学生回答第二组时追问:一个商是真分数,一个商是假分数,能
否直接比较,为什么?
明确:所有的真分数都比假分数小。
学生回答第三组时追问:除了用原来的分数通分比较大小外,能
不能换个角度比一比?
先给学生独立思考的时间,然后结合学生的回答课件演示:把一
个圆平均分成12份,取其中的11份,还剩下几份,也就是剩下这个圆的十二分之几;如果把这个圆平均分成11份,取其中的10份,剩下几份,也就是剩下这个圆的十一分之几?
因为小于,所以大于
指出:把比较和的大小转化成比较和的大小,也不失
为一种灵活的方法。
4、解决实际问题
出示:
指名读题。
提问:平均步长是什么意思?要知道谁的平均步长长一些,实际上只要比较什么?
学生独立做一做。
交流:你是怎样列式计算的?
指出:列式计算时通常要把结果化成最简分数。
补充:如果老师走9米用了10步,谁的平均步长长呢?
(设计意图:巩固练习循着从基本到灵活,从简单到复杂的线索设计,引导学生边练边总结,从而得出比较分数大小的几种常见情况:同分母分数,分子大的分数较大;同分子分数,分母大的分数较小;分子不同、分母也不同的分数,一般先通分,转化成同分母分数进行比较。这些经验是比较分数大小的基本方法,所有学生都必须掌握。)
创新已成为教育的关键词。新的数学课程强调,学生的数学学习应当是现实的、有意义的、富有挑战性的,要利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。下面就以一节几何课的教学案例,简要发表一下我对创新教学的一些看法。
教材内容: 人教版九年级义务教育初中教科书《几何》第三册《圆的内接四边形》
教学目的: 使学生理解圆内接四边形和四边形的外接圆的概念,理解圆内接四边形的性质定理;并初步学会应用性质定理进行有关命题的证明和计算;使学生体验到用运动的观点来研究图形的思想方法;同时,借助计算机技木,培养学生在数学学习中的动手实践能力;通过让学生充分感受发现问题和解决问题带来的愉悦,培养学生的数学创新意识。
教学过程;
习旧引新
(1 )在 O 上,任取三个点 A 、 B 、 C, 然后顺次连结、得到的是什么图形?这个图形与 O 有什么关系?
(2) 由圆内接三角形的概念,能否得出什么叫圆的内接四边形呢(类比)?
概念学习与探究
1 、概念学习
(1) 什么叫圆的内接四边形 ?
(2) 如图 1 ,说明四边形 ABCD 与 O 的关系。
2 、探究
( 1 )前面我们己经学习了一类特殊四边形 ---- 平行四边形、矩形、菱形、正方形、等腰梯形的性质,那么要探讨圆内接四边形的性质,一般要从哪几个方面入手?(从角、边、对角线入手)
( 2 )打开《几何画板》,让学生动手任意画 O 和 O 的内接四边形 ABCD 及其外角(教师适当指导)
( 3 )量出可度量的所有值(圆的半径和四边形的边、内角、外角、对角线),计算对角之和、对边之和、对角线之和、周长、面积。
( 4 )改变圆的半径大小,这些量有无变化?由( 3 )通过计算观察得出的某些关系有无变化?
( 5)证明猜想
已知:如图 2, 四边形 ABCD 内接于 O. 求证:
∠ BAD +∠ BCD = 180° ,∠ ABC +∠ ADC=180° ,
∠ ECD= ∠ A 。
知识运用
1 、尝试解疑
问题 1 :已知:如图 3 , AD 是 ABC 的外角∠ EAC 的平分线,与 ABC 的外接圆交于点 D 。
求证: DB=DC 。
问题 2 :如图 4 , O1 和 O2 都经过 A,B 两点,经过点 A 的直线 CD 与 O1 交于点 C, 与 O2 交于点 D, 经过点 B 的直线 EF 和 O1 交于点 E, 与 O2 交于点 F 。
证明: CE ∥ DF
方法:(学生分组讨论下列问题)
①要证明两条直线平行可以用那些定理?
②本题中我们要让 CE ∥ DF 需要什么?
③在无法证明时,你能在图形中找到圆内接四边形吗?怎样找?(连接 AB )
四、布置作业
对教学案例的分析
这一教学案例看作是培养学生创新意识的初中数学课堂教学的尝试,其中许多环节还需要进一步改进完善。但其较为真实地反映了目前数学课堂教学的一些情况,一些教学环节的处理还是值得肯定的。
1. 突出了数学课堂教学中的探索性
本教学案例利用《几何画板》采取了让学生动手画一画、量一量的方式,使学生通过对直观图形的观察归纳和猜想,自己去发现结论,并用命题的形式表述结论。这种探索性的数学教学方式在其后的例题讲解中亦得到了进一步的贯彻,这样既调动了学生学习数学的积极性和主动性,增强了学生参与数学活动的意识,又培养了学生的动手实践能力、观察能力、归纳能力和自学能力。同时,也向学生渗透了实践 ---- 认识 ---- 再实践 ---- 再认识的辩证观点。
2. 引进了计算机(《几何画板》)技术
本课例在引导学生得出圆内接四边形的性质时通过使用《几何画板》,从而实现了改变圆的半径,移动四边形的顶点等,从而使初中平面几何教学发生了重大的变化,那就是让图形出来说话,充分调动学生的直觉思维,这样一来不仅极大地激发了学生学习的兴趣,而且比过去的教学更能够使学生深刻地理解几何。当然,本教学案例在这方面的探索还是初步的,有待于今后进一步完善。
3. 引入了数学开放题
本教学案例在增大数学课堂教学的探索性,计算机技术进入数学课堂的同时,在学生作业中不定期增加了开放题(作业 2 ),为学生创造了更为广阔的思维空间,对此应大力提倡。
在数学教学中还可将一些常规性题目改造为开放题,如教材中有这样一个平面几何题 “ 证明:顺次连接四边形四条边的中点,所得的四边形是平行四边形。 ” 这是一个常规性题目,我们可以把它改造为 “ 画出一个四边形,顺次连接四边形四条边的中点,观察所得的四边形是什么样的特殊四边形,并加以证明。 ” 我们还可用计算机来演示一个形状不断变化的四边形,让学生观察它们四条边中点的连线组成一个什么样的特殊四边形,在学生完成猜想和证明过程后,我们进而可提出如下问题: “ 要使顺次连接四条边的中点所得的四边形是菱形,那么对原来的四边形应有哪些新的要求?如果要使所得的四边形是正方形,还需要有什么新的要求? ” 通过这些改造,常规题便具有了 “ 开放题 ” 的形式,例题的功能也可更充分地发挥。
2.掌握按比例分配应用题的特征及解题方法.
3.培养学生应用所学知识解决实际问题的能力.
教学重点
掌握按比例分配应用题的特征及解题方法.
教学难点
按比例分配应用题的实际应用.
教学过程
一、复习引入
(一)填空
已知六年级1班男生人数和女生人数的比是3∶2.
1.男生人数是女生人数的()
2.女生人数是男生人数的(),女生人数和男生人数的比是().
3.男生人数占全班人数的(),男生人数和全班人数的比是().
4.全班人数是男生人数的(),全班人数和男生人数的比是().
5.女生人数占全班人数的(),女生人数和全班人数的比是().
6.全班人数是女生人数的(),全班人数和女生人数的比是().
(二)口答应用题
六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?
1.学生口答:100÷2=50(平方米)
2.教师提问
这是一道分配问题,分谁?(100平方米)怎么分?(平均分)
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?
这样分还是平均分吗?
3.谈话引入
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题.(板书:分配)
二、讲授新课
(一)把复习题2增加条件“如果按3∶2分配,两个班的保洁区各是多少平方米?”
(二)教师提问
1.分谁?(100平方米)
2.怎么分?(按3∶2分)
3.求的是什么?(两个班的保洁区各是多少平方米?)
(三)思考:由“如果按3∶2分配”这句话你可以联想到什么?
1.六年级的保洁区面积是二年级的倍
2.二年级的保洁区面积是六年级的
3.六年级的保洁区面积占总面积的
4.二年级的保洁区面积占总面积的
……
(四)尝试解答:用你学过的知识解答例题,并说一说怎么想的?
方法一:
3+2=5100÷5=20(平方米)20×3=60(平方米)20×2=40(平方米)
方法二:
3+2=5100×=60(平方米)100×=40(平方米)
方法三:
100÷(1+)=60(平方米)60×=40(平方米)或100-60=40(平方米)
方法四:
100÷(1+)=40(平方米)40×=60(平方米)或100-40=60(平方米)
(五)比较思路:这几种方法中,你认为哪种方法好?为什么?
(第二种,思路简捷,计算简便)
1.说说第二种方法的思路?
(1)求出总份数
(2)各部分数量占总量的几分之几?
(3)按照求一个数的几分之几是多少的方法解答.
(六)这道题做得对不对呢?我们怎么检验?
1.两个班级的面积相加,是否等于原来的总面积.
2.把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3∶2.
(七)练习
一个农场计划在100公顷的地里播种大豆和玉米.播种面积的比是3∶2.两种作物各播种多少公顷?
(八)教学例3
学校把栽280棵树的任务,按照六年级三个班的人数,分配给各班.一班有47人,二班有45人,三班有48人.三个班各应栽树多少棵?
1.讨论:这道题与前面所做的题有什么区别?
分配什么?按照什么来分?
怎样计算各班栽的棵数占总棵数的几分之几?
2.学生独立解题
(1)三个班的总人数:47+45+48=140(人)
(2)一班应栽的棵数:280×=94(棵)
(3)二班应栽的棵数:280×=90(棵)
(4)三班应栽的棵数:280×=96(棵)
答:一班、二班、三班各应栽94棵、90棵、96棵.
(九)小结
1.观察我们今天学习的两个例题有什么共同特点?
已知总数量和各部分量的比,求各部分量.
2.怎么解答?
先求总份数,各部分量占总数量的几分之几,最后求各部分量.
3.我们把具备上述特点,用这种特定方法解答的分配问题叫做“按比例分配”应用题.
板书(补充课题):按比例
4.教师提问:分谁?怎么分?
板书:把一个数量按照一定的比来进行分配.
三、巩固练习
(一)六年级(2)班共有42人,男、女生人数的比是3∶4,男、女生各有多少人?
(二)一个三角形三条边的长度比是3∶5∶4.这个三角形的周长是36厘米,三条边的长度分别是多少厘米?
1.还是按比例分配问题吗?
2.如果是四个数的连比你还会解答吗?
(三)判断
一个长方形周长是20厘米,长与宽的比是7∶3,求长与宽各是多少厘米?
7+3=1020×=14(厘米)20×=6(厘米)【错,要分的不是20厘米】
(四)思考:平均分是不是按比例分配的应用题?按照几比几分配的?
四、课堂小结
今天我们学习了什么新知识?这种应用题有什么特点?应该怎样解答?
五、课后作业
(一)一个乡共有拖拉机180台,其中大型拖拉机和手扶拖拉机台数的比是2∶7.这两种拖拉机各有多少台?
(二)建筑工人用2份水泥、3份沙子和5份石子配置一种混凝土.配置6000千克这种混凝土,需要水泥、沙子和石子各多少千克?
教学目标:
通过教学,使学生正确理解百分数的意义,了解百分数与分数的异同,正确读写百分数.
教学重点:
百分数的意义.
教学难点:
百分数与分数的异同.
教学过程:
一、复习引入:
教师小结:分数既可以表示数量,也可以表示关系.
2.下面各句中的分数表示什么意思?(学生回答,教师在黑板上画出线段图.)
提问:单位一是谁?分数表示谁与谁的关系?
二、新课:
1.意义:上面这些表示关系的分率和倍数都可以用一种新的数来表示,这种数叫百分数.
(板书课题,并把上面句中和图中的分数改成百分数,指导读法.)
(1)参加课外小组的人数占全年级的70%.(读作:百分之七十)
(2)已经修了一条路的25%.(读作:百分之二十五)
(3)今年的钢产量是去年的120%.(读作:百分之一百二十)
提问:这些百分数在各句中分别表示谁与谁的关系?谁表示100份?
像这样表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比.(补充板书)
追问:百分数是一种什么数?
2.指导写法:
写百分数时,先写分子,再写百分号(70%),百分号先写左上角的圆圈,再写斜线,最后写右下角的圆圈,两个圆圈写的要比分子小.
读百分数时,与分数的读法一样.(示范读法)
练一练:用手指在桌上写一写,然后读一读.
在本上写:25%16.7%1.25%100%131%
3.比较百分数与分数的异同:(小组讨论后指名发言,教师出示投影)
同:都是数,读法相同.
异:(1)意义不同:分数是表示把单位一平均分成若干份,表示这样的一份或几份的数,既可以表示数量,也可以表示关系.百分数是表示一个数是另一个数的百分之几的数,只能表示关系,不能表示数量.
(2)写法不同:写分数时,先写分数线,再写分母,最后写分子,分子、分母分别写在分数线的上下.写百分数时,先写分子,后面写上百分号.
(3)使用范围不同:分数的分子只能比分母小,分子大于分母的要化成带分数或整数,不是最简分数的要化成最简分数,分子必须是整数.而百分数的分子可以比分母小,也可以比分母大,还可以和分母相等,可以是整数,也可以是小数.
三、练习:
1.读百分数:(互相读)
1%5%99%100%300%0.6%38.3%233.3%
2.写百分数:(两组互相看)
百分之七百分之四十六
百分之五点三百分之三百一十点六
百分之五十五百分之四百
百分之零点一百分之百
3.把下图中的阴影部分用百分数表示,说说阴影部分、空白部分各占整体的百分之几.
4.用阴影表示下面的百分数,说说百分数表示谁占谁的百分之几.
5.判断:(用手势表示)
(1)一本书,已经看了它的75%,还有25%没有看.()
(2)一根绳子长50%米.()
(3)分母是100的分数叫百分数.()
2.进一步提高学生的分析概括能力及解题能力。
教学重点
找准单位“1”,巩固分数除法应用题的解答方法。
教学难点
掌握分数连除应用题的结构及数量关系。
教学过程
(一)复习
(投影)
1.找准单位“1”,并列式解答。
2.出示准备题。
(1)读题,请学生找出已知条件和未知条件。
(3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)
提问:美术组,生物组,航模组三个数量之间有什么关系。
(4)请一名同学列式解答,然后订正。
(二)讲授新课
老师把准备题进行改编。
指名读题,找出已知条件和未知条件。
1.指导学生画图。
提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)
提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)
老师按学生的回答,把准备题的图示进行修改。
2.找出含有分率的句子,进行分析。
(3)这道题中有几个单位“1”?美术组、生物组、航模组三量之间有什么关系?
(4)根据三量之间的关系,列出等量关系式。
(5)这个式子的等号两边相等吗?为什么?
人。)
学生回答,老师板书:
3.根据等量关系列方程解答。
提问:根据上面的分析,应设谁为x?(设美术组人数为x。)
老师板书:
解设美术组有x人。
答:美术组有30人。
看方程提问:
(3)为什么要设美术组人数为x?
(因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)
师小结:对于含有两个“已知一个数的几分之几是多少,求这个数”这样条件的复合应用题,首先要找准单位“1”,在两个单位“1”都是未知的情况下,根据题中条件,准确设定其中一个单位1的量为x。
(三)巩固练习
(投影)
先讨论以下问题,再动笔做:找出单位“1”,画图并分析数量关系。
2.看图,找出数量间相等的关系,并列方程解答:
(1)说出这个图所反映的等量关系式。
(2)师小结:这道题出现了“小汽车是大汽车的4倍”,而不是几分之几,但它们的数量关系不变,解题思路也一样。
师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)
三好生4人。
学生动笔做,老师带领学生订正。
的高是多少厘米?
根据题意填空:
是()厘米。设()为x。
果树有多棵?
(四)课堂总结
今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的复合题。)
这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)
(五)布置作业
1.使学生理解分式的意义。
2.会求使分式有意义的条件。
教学分析
重点:分式的意义及其基本性质。
难点:分式的变号法则。
教学过程
一、复习
1、引言:我们已经学过了整式,知道可用整式表示某些数量关系;学习了整式四则运算,在此基础上学习了一元一次方程的解法和列方程解应用题,但是有些数量关系,只用整式表示是不够的。。
2、例题:甲、乙两人做某种机器零件。已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。求甲、乙每小时各做多少个?。
3、分析:设甲每小时做x个零件,那么乙每小时做(x-6)个。甲做90个所用的时间是90÷x(或)小时,乙做60个的用的时间是[60÷(x-6)](或)小时,根据题意列方程
=
可以看出、都不是整式。列出的方程也不是已学过的方程。学习本章内容就可以正确认识这样的式子及方程,从而解决问题。
二、新授
1.分式
在算术里,两个数相除可以表示用分数的形式。分数中的分子相当于被除数,分数中的分母相当于除数。因为零不能做除数,所以分数中的分母不能是零。
在代数里,整式的除法也有类似的表示。如前面的例题中,(90÷x)小时可表示成小时,[60÷(x-6)]小时可表示成小时。
又如n公顷麦田共收小麦m吨,平均每公顷产量(m÷n)吨,可用式子吨表示。
再如轮船的静水速度为a千米/小时。水流速度为b千米/小时,轮船在逆流中航行s千米所需时间[s÷(a-b)]小时,可用式子小时表示。
、、、
的分母中都含有字母。
一般地,用A、B表示两个整式,A÷B可以表示成的形式。如果B中含有字母,式子叫做分式。基中A叫做分式的分子,B叫做分式的分母。可见,上列各式都是分式。
由分式的意义可以知道:
(1)分式是两个整式的商。其中分子是被除式,分母是除式。在这里分数线可理解为除号,还含有括号的作用。
(2)分式的分子可以含字母,也可以不含字母,但分母必须含字母。式子、、都不是分式,因为它们的分母都没有字母。
(3)在分式里,分母代数式的值随式中字字母取值的不同而变化。字母所取的值有可能使分母为零。因为分式的分母相当于整式除法的除式,所以分母如果是零,则分式没有意义。因此在分式中,分母的值不能是零,例如在里,x≠0;在里,a≠b。
例1当x取什么值时,下列分式有意义?
(1);(2)。
解:(1)由x-2≠0得x≠2,即当x≠2时,分式有意义。
(2)由4x+1≠0得x≠时,分式有意义。
例2:当x是什么数时,分式的值是零?
解:由分子x+2=0,得x=-2。而当x=-2时,分母2x-5=-4-5≠0,
所以当x=-2时,分式的值是零。
问题:(1)分式的值为零就是分式没有意义吗?
(2)只要分子的值是零,分式的值就是零吗?以为例回答此题。
三、练习
练习:P60中练习1,2,3,4。
四、小结
1、本课学习了什么是分式。
2、本课还学习了使分式有意义的条件及使分式为0的未知数值的求法。
3、要特别注意分式中作为分母的代数式的值不得为零的教学。在分数里,分数的分母是一个具体的数,是否为零一目了然;而在分式里,要明确其是否有意义,就必须分析,讨论分母中所含字母不能取哪些值,以避免分母的代数式的值为零。