平行四边形的面积教案模板(10篇)

时间:2022-08-24 14:59:22

导言:作为写作爱好者,不可错过为您精心挑选的10篇平行四边形的面积教案,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

平行四边形的面积教案

篇1

例1、例2

课型

新授课

教学

目标

1、利用割补、拼摆等方法,探索并掌握平行四边形面积的计算方法。

2、会计算平行四边形的面积

3、在平行四边形面积计算方法的探索过程中,感悟“化归”的数学思想,并获得成功体验。

教学重点

掌握平行四边形的面积计算公式。

教学难点

理解平行四边形面积公式的推导过程。

评价关注点

学习兴趣:活动兴趣;学习习惯:操作习惯

;学业成果:简单应用

教学技术与学习资源应用:

平行四边形纸片、平行四边形模型、多媒体课件

教学

环节

目标指向

师生活动

评价

关注点

一、复习导入

认识平行四边形;知道平行四边形的基本特征;理解平行四边形与长方形、正方形之间的关系。

1.说一说下面各是哪些图形?

2.我们最近研究的是哪些图形?(长方形、正方形、平行四边形)

3.请同学们回忆一下,长方形的面积是怎样计算的?

4.

揭题:那么平行四边形的面积怎样求呢?今天我们就一起来研究平行四边形的面积。

能有针对性、清晰有效地运用相关的数学语言表达与交流。

二、探究新知

利用割补、拼摆等方法,探索并掌握平行四边形面积的计算方法。

经历面积的推导过程,具有一定的猜想能力和实际操作能力。

会计算平行四边形的面积。

在平行四边形面积计算方法的探索过程中,感悟“化归”的数学思想,并获得成功体验。

(一)猜测

1、首先我们通过数格子来看看这个长方形的面积是多少?并在课堂练习本上记录。

2、还是通过数格子来看看这个平行四边形的面积是多少?也做好记录。

3、比较两次记录结果,你发现了什么?(长方形的面积和平行四边形的面积相等)

4、比较这两个图形,你还发现了什么?(长和底,宽和高相等)

4、根据这个发现,你觉得平行四边形的面积可以怎样求?(平行四边形的面积=底×高)

(二)推导

通过刚才的学习,我们初步了解到用平行四边形的底乘以对应边上的高求面积的方法是正确的,怎样推导平行四边形面积的公式呢?现在做个实验:把平行四边形剪一刀,拼成一个长方形。想不想试一试?

1.(学生操作后)提问:

①你是沿着哪条线把平行四边形剪开的?

②剪开后,你是怎样拼成长方形的?(边回答边演示)

2.学生操作后教师提问:

平行四边形转化成长方形后,什么变了?什么没变?长方形的长与平行四边形的底有什么关系?长方形的宽与平行四边形的高有什么关系?根据这些条件,你能推导出平行四边形的面积计算公式吗?(形成完整的板书)

长方形面积

=

长×宽

平行四边形面积=

底×高

3.用字母表示平行四边形面积公式。S=ah

(三)应用

1.根据公式,说说要想求出平行四边形面积必须知道哪两个条件?

填表

2.判断题

(1)

两个平行四边形的高相等,它们的面积就相等。

(

)

(2)

两个平行四边形的面积相等,它们的底和高不一定相等。

(

)

3.求下面平行四边形的面积。

正确明白操作要求,能够主动利用提供的材料进行操作,并且边操作边认真记录。

认识平行四边形;知道平行四边形的基本特征。

理解平行四边形面积公式的推导过程,并能正确地计算平行四边形的面积。

通过观察、操作、验证等活动,亲历探索平行四边形特征的过程,发展空间观念,增强应用数学的意识。

经历动手操作、探索、发现的过程,并在此过程中体验成功的喜悦。

对解决问题有充足信心,能主动思考、积极作答。

独立完成课堂练习,并且正确率高。

三、巩固练习

在平行四边形面积计算方法的探索过程中,感悟“化归”的数学思想,并获得成功体验。

1、一块近似平行四边形的地,面积是24平方米,底是6米,求这块地底边上的高是多少米?

2、选择合适的条件计算面积。

合作学习的意愿强烈,积极参加小组活动。

在学习过程遇到困难,能积极寻求同伴合作,解决问题。

感受图形与日常生活的联系,体会平行四边形在生活中的应用,初步了解数学的价值。

四、总结:

师:今天我们学习了什么本领?(平行四边形的面积)让我们知道了平行四边形的面积公式如何推导,如何运用公式解决实际问题的。你对你今天的学习评价如何?

平行四边形的面积

解:S=ah

=5×2.5

=12.5(㎡)

答:这个平行四边形停车位的面积是12.5㎡。

平行四边形的面积=

底×高

S

=

a

h

长方形的面积=

长×宽

转化

书面作业设计

校本练习册

教学反思

课题

平行四边形的面积(2)P65

试一试

课型

练习课

教学

目标

1、会计算平行四边形的面积。

2、初步学会利用平行四边形的面积公式求有关数据。

3、能根据平行四边形的面积和底(高),正确地求高(底)。会应用平行四边形的面积计算公式解决简单实际问题。

4、经历观察图形、分析数据的学习过程,寻找必要条件计算相应数据。

5、初步形成仔细观察图形、认真计算的良好学习习惯。

教学重点

掌握平行四边形的面积计算公式。用公式正确地计算平行四边形的面积,解决,解决生活中的实际问题。

教学难点

根据题意灵活仔细地整理数据计算面积以及对同底等高的平行四边形的分析理解。

评价关注点

学习兴趣:活动兴趣;学习习惯:操作习惯

;学业成果:简单应用

教学技术与学习资源应用:

平行四边形纸片、多媒体课件

教学

环节

目标指向

师生活动

评价

关注点

一、基本练习

能用公式正确地计算平行四边形的面积,解决生活中的实际问题。

能根据平行四边形的面积和底(高),正确地求高(底)。会应用平行四边形的面积计算公式解决简单实际问题。

1、求下面平行四边形的面积(单位:CM)

(1)

(2)

(3)

师:逐题统计做对的人数,第(3)题,你为什么要用20×10来计算?

生:平行四边形的形外高是10CM,对应的边是20厘米,所以我用20×10求情形四边形的面积(两三人说)

2、求下面平行四边形的面积

(1)

平行四边形的底是2分米,高是8厘米,它的面积是多少平方分米?

(2)

平行四边形的高是50厘米,比底长10厘米,求他的面积

(3)

第65页的第3题

师:第(1)题要注意什么,他的面积是多少平方分米?

生:第(1)要注意把8厘米化为0.8分米,他的面积是1.6平方分米。

师:第(2)题的底是几厘米,他的面积是多少?

生:第(2)题的底是40厘米,他的面积是2000平方厘米。

生:我先算草坪的面积,再算铺平共需多少元,算式是24×31×47(两三人说)

师:逐题统计做对的人数

小结:我们已经学会了用公式计算平行四边形的面积,并能解决了平行四边形面积相关的实际问题。

理解平行四边形面积公式的推导过程,并能正确地计算平行四边形的面积。

经历观察图形、分析数据的学习过程,寻找必要条件计算相应数据。

二、变式练习

初步学会利用平行四边形的面积公式求有关数据。

能根据平行四边形的面积和底(高)正确地求高(底)

经历观察图形、分析数据的学习过程,寻找必要条件计算相应数据。

师:大家把书翻到65页,做第2题

1、师:展示学生练习,全对的举手,在平行四边形中,怎样求高,怎样求底的长度

生:底边=平行四边形的面积÷高

高=平行四边形面积÷底(两三人说)

小结:在平行四边形中:S=ah

h=S÷a

a=S÷h大家要熟记三个数量关系。

2、用平行四边形的是指解决下面的问题,

(1)S平50CM2

求C平

(2)C平=70CM,求S

师:第(1)题要求平行四边形的周长平行四边形的边有什么特征?

生:平行四边形的特征是相等的

师:已经知道了一条边是25厘米,要先求什么,才能求他的周长?

生:先求他的另一条边长才能求他的周长

师:大家做这两题

解:500÷20=30CM(底)

解:70÷2-25=10CM(底)

(30+25)×2=110CM(周长)

10×20=200CM2(面积)

师:第(1)题做对的举手,第(2)题做对的举手

小结:我们要运用平行四边形边的特征,平行四边形面积计算公式解决相关的问题,既发展了我们的思维又提高了解决问题的能力

3、独立练习

(1)

平行四边形的面积是10平方分米,他的底是2.5分米,高是几分米?

(2)

平行四边形的底是10分米,是高的2.5倍,他的面积是多少平方分米?

(3)

平行四边形两条相邻的边分别是30米和20米,在它的四周每隔5米种1棵树,共要种几棵树

(4)

平行四边形的周长是60厘米,底是20厘米,另一条边上的高是15厘米,求平行四边形的面积。

师:第(1)题做多的举手,第(2)题做对的举手用10÷2.5=4,先求出高,

师:第(3)题先求周长,再求种几棵树,做对的举手

师:第(4)看图,先要用60÷2-20=10求出另一条边的长度,再用20×10求出他的面积

做对的举手。

对解决问题有充足信心,能主动思考、积极作答。

独立完成课堂练习,并且正确率高。

合作学习的意愿强烈,积极参加小组活动。

在学习过程遇到困难,能积极寻求同伴合作,解决问题。

感受图形与日常生活的联系,体会平行四边形在生活中的应用,初步了解数学的价值

三、总结

初步形成仔细观察图形、认真计算的良好学习习惯。

拓展:

比较平行线间两个平行四边形的面积。

师:今天我们学习了什么本领?(平行四边形的面积)让我们知道了如何运用公式解决实际问题的。你对你今天的学习评价如何?

对解决问题有充足信心,能主动思考、乐于探究、积极作答。

平行四边形面积

S=ah,

a=S÷h

h=S÷a

周长=邻边长度的和×2

边长=周长÷2-另一条边长

篇2

课堂上,学生的一举一动,一个表情,一声叹息,都逃不过潘小明的眼睛。

一次,潘小明给学生上《平行四边形面积》一课。一开始上课,他就给每个学生发了一张印有一个平行四边形的纸,让学生想办法求纸上这个没有注明尺寸的平行四边形的面积,并探究平行四边形面积的计算方法。

如此开放的教学方法,如此大胆的教学设计,令在场的每一位听课教师都捏了一把汗:要是教学中出现什么问题,该怎么办?老师们仿佛看见了学生茫然、探究夭折、教程断裂的“悲惨”场景。

明确任务后,学生们根据自己的知识经验,用自己的思维方式积极地进行探究。8分钟后,学生们展示出自己的答案:①(7+5)×2=24(平方厘米);②7×5=35(平方厘米);③7×4=28(平方厘米)。

“怎么有这么多的答案,你们说说?”在潘老师的课上,学生是主体。很快,学生们通过讨论(生生互动)排除了做法①,而对做法②、③却久久争执不下。

这时,潘老师让采取这两种不同做法的同学大胆求证。采取做法③的学生展示了剪拼法来求证自己的做法;而采取做法②的学生认为平行四边形具有不稳定性,可以把它拉成一个长方形,这样,平行四边形的两条相邻的边就变成了长方形的长和宽。这时,很多学生领悟过来了,原来采取做法②的学生认为把平行四边形拉成长方形,只是形状改变,而面积没有改变(其实面积变大了)。

之后,潘老师利用课件演示了平行四边形“底不变,高改变”引起的面积改变。学生们终于明白了,原来平行四边形的面积同底和高有关!这一过程中,学生不仅掌握了计算公式,更重要的是化归了数学思想方法,特别是对割补转化、实行化归有了深切体悟。

“教师只有在教学前十分清楚学生已经知道了什么,尚未获得哪些学习经验,才能开始新知识的传授;只有清楚了解每一个学生的‘锚桩’(即起点)在哪里,才能使满载新知识的航船停靠。”这是潘小明在多年教学中的体会。他也因此形成了自己的课堂特色:每一次提问,出发点都是学生。

篇3

学生小组互助合作式教学是以导学稿为抓手,以发现问题、解决问题为主线展开的. 适宜的导学稿是引导学生自主学习、培养学生学习兴趣的有效载体. 优化导学稿编制是提升学生小组互助合作式教学质量的重要方面.

心理学研究表明,学生的发展有两种水平:一种是学生的现有水平,指独立活动时所能达到的解决问题的水平;另一种是学生可能的发展水平,即学生在他人帮助下能够达到的发展水平,两者之间的差异就是最近发展区. 教学应着眼于学生的最近发展区,为学生提供带有恰当难度的内容,调动学生的积极性,发挥其潜能,促成学生达到下一个发展阶段的水平,然后在此基础上进行下一个发展区的发展. 教学要想对学生的发展发挥主导和促进作用,教学设计就必须置于学生的最近发展区中,为此,教师必须深入研究学生,洞悉学生的最近发展区,优化导学稿编制.

教师基于学生的最近发展区编制导学稿,借助导学稿开展教学,有利于引导学生通过课外自学、课堂上的互助合作学习达成教学目标,使学生们“跳一跳,摘到苹果”,激发学生的学习热情;反之,脱离学生的最近发展区,盲目编制出的导学稿,往往不能有效地引导学生自主学习,甚至有的内容,学生虽然尽心竭力,但是仍不能领会,会挫伤学生的学习积极性.

2012年5月,在一所普通初中,笔者采用学生小组互助合作式教学模式上了一节公开课,内容是浙教版初二数学下册“5.3.1平行四边形的性质”,深有感触. 开课前一天,本备课组编制了如下导学稿,供学生们课前自学.

课题:平行四边形性质(1)

No.050301?摇 姓名______?摇?摇 第___小组

【学习目标】

1. 掌握平行四边形对边相等的性质和推论.

2. 运用平行四边形对边相等的性质和推论,解决有关平行四边形简单的计算与证明问题.

【重点与难点】

重点:平行四边形的性质定理――“平行四边形的两组对边分别相等”.

难点:平行四边形性质定理和推论的应用.

【基础部分】

1. 到目前为止,你知道平行四边形有哪些性质?请结合图1写出来.

2. (1)任意画一个平行四边形ABCD,量一量它的对边,你发现了什么?

(2)请证明你的发现.

已知:如图2所示,四边形ABCD是平行四边形,求证:AB=CD,AD=BC.

(3)归纳:平行四边形的两组对边______.

几何语言叙述:因为四边形ABCD是平行四边形,所以______.(?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇 )

3. (1)如图3所示,l1∥l2,AB,A1B1是夹在l1与l2之间的平行线段,AB与A1B1相等吗?请说明理由.

(2)若AB,A1B1是夹在l1与l2之间的垂线段(如图4所示),AB与A1B1还相等吗?请说明理由.

(3)归纳:①夹在两条平行线间的平行线段______.

②夹在两条平行线间的垂线段______.

几何语言可分别叙述为:

①(如图3所示)因为l1∥l2,AB∥A1B1,所以______. (?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇)

②(如图4所示)因为l1∥l2, ABl2,A1B1l2,所以______. (?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇)

4. 已知平行四边形相邻两边之比为3 ∶ 4,周长为28 cm,则这个平行四边形的四条边长分别为______.

5. 在?荀ABCD中,已知AC=3 cm,ABC的周长为9 cm,则平行四边形ABCD的周长为______.

6. 如图5所示,E是直线CD上的一点,已知?荀ABCD的面积为32 cm2.

(1)ABE的面积为______cm 2.

(2)若AB=4 cm,则AB和DE间的距离为_____cm.

【要点部分】

1. 如图6所示,E,F分别是?荀ABCD的边AD,BC上的点,且AF∥CE,求证:DE=BF.?摇

2. 如图7所示,在?荀ABCD中,∠B=30°,AD=3,CD=2.

(1)求AD与BC间的距离;

(2)求?荀ABCD的面积.

变式:(1)平行四边形的两邻边长分别为8和10,两条较长边之间的距离为4,求两条较短边之间的距离.

(2)如图8所示,在?荀ABCD中,AEBC于点E,AFCD于点F,若AE=4,AF=6,?荀ABCD的周长为30,求?荀ABCD的面积.

3. 已知点A(3,0),B(-1,0),C(0,2),以A,B,C为顶点在图9中画平行四边形,求第四个顶点D的坐标.

【拓展部分】

如图10所示,在?荀ABCD中,AB=6 cm,AD=4 cm,∠BAD的平分线交CD于点E,∠ABC的平分线交CD于点F,求线段EF的长.

【课堂小结】

本节课你学到了哪些知识?在探索知识过程中你用了哪些方法?请写下来.

【当堂检测】

1. 已知?荀ABCD的周长为16,若AB=5,则BC=________.

2. 如图11所示,?荀ABCD的周长为18 cm,AB=4 cm,AE平分∠BAD交BC边于点E,则EC等于(?摇 )

A. 1 cm?摇?摇?摇 B. 2 cm?摇?摇?摇?摇C. 3 cm?摇?摇?摇?摇D. 4 cm

3. 已知直线a∥b,夹在a,b之间的一条线段AB的长为6 cm,AB与直线a的夹角为150°,则夹在a,b之间的距离为______.

4. 在?荀ABCD中,AB=2,BC=3,∠B=60°,则?荀ABCD的面积为______.

5. 如图12所示,在?荀ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.

课前,笔者批阅了学生们交上来的导学稿,发觉学生们认真进行了课前自学,导学稿中的基础部分做得很认真.

上课伊始,笔者创设情境,调动起学生们的学习热情,明确本堂课的学习目标,开展学生小组展示活动.学生们兴趣盎然,认真参与小组对学、群学,学生们积极讨论遇到的疑难问题. 经过学生们的自主、合作探究,得出平行四边形的性质定理1及其两个推论,并运用已学的基础知识灵活解决了基础部分的问题4、问题5及问题6.

学生们从基础部分学习顺利地过渡到要点部分学习. 在大展示环节,在教师的引导下,“兵教兵”,学生们依旧非常投入. 讲解要点部分问题1时,学生们能运用新学的知识一题多解;讲解要点部分问题2时,学生们能灵活地运用所学知识解答,条理清晰;但当解答要点部分问题3时,学生遇到了很大的困难. 笔者看了各组学生的解答结果,发现学生们都没有完全做对,笔者就该题引导学生开展小组讨论、合作探究. 通过激烈的讨论与探究,学生们逐渐得出第四个顶点D的坐标有3种情况:(-4,2),(4,2),(2,-2).

大展示后,笔者引导学生进行了课堂小结和当堂检测,学生们表现积极,当堂检测结果良好,学生初步达成了本堂课的学习目标. 但是课后,学生们也提出了对要点部分问题3“第四个顶点D的坐标”的确定仍不甚理解,原因出在哪里呢?

课后,笔者与本备课组老师一起分析了这个问题,我们认为,引起这种情况的主要原因是:该题解答对学生的要求超越了学生当时的“最近发展区”. 课中,学生利用平行四边形的定义学习平行四边形的性质,而该题的解答涉及了平行四边形的判定,并要求学生分类讨论. 方法一,根据平行四边形的判定定理,当AB是平行四边形的一边时,分两种情况分别画出图形,得顶点D的坐标分别为(-4,2)和(4,2);当AB是平行四边形的一条对角线时,画出图形,得顶点D的坐标为(2,-2). 方法二,根据平行四边形的判定定理,分三种情况,画出图形,可知当AB,BC是平行四边形的一组邻边时,顶点D的坐标为(4,2);当AB,AC是平行四边形的一组邻边时,顶点D的坐标为(-4,2);当AC,BC是平行四边形的一组邻边时,顶点D的坐标为(2,-2). 由于学生还未学过平行四边形的判定定理,虽然导学稿上印有网格图,学生通过作图得出了顶点D的坐标,但是对于此时的学生来说,仍不甚理解,不能领会顶点D的坐标的求解过程. 教学实践表明,这个问题放在学生学习了平行四边形的判定定理之后解答,情形就完全不同了.

篇4

苏霍姆林斯基说过:在人的心灵深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者,而在儿童的精神世界上,这种需要特别强烈。尽管每次上课前,虽然教师已经作了充分的准备,尽量地去估计课堂上可能出现的情况,总是难免有疏漏的地方。若能倾听学生的发现,把这种发现转化为教学资源,便可收到意想不到的效果。所以,让学生先开口,可以使教师对学生已掌握的知识水平、能力发展水平有一个较清晰的认识,避免超前,防止滞后,根据学生的认可程度决定如何因人分层施教,增强教学的针对性。

二、由此及彼,趁热打铁

课堂上,学生常常会有一些很有意思的话,如果教师能够及时抓住这些“话”,巧用这些“话”,灵活地调整教学方案,就会使课堂出现一些让人记忆深刻的闪光点,从而取得出其不意的效果。比如,我在教学“分数的意义”时,先让学生说说怎样写一个分数,并说出这样写的理由。一位学生认为应该先写分数线,再从下往上写,问他理由时他竟然说了这样一句话“没有妈哪来的儿子”,顿时教室里哄堂大笑,而我却鼓励他继续说下去,他说:“分母表示平均分的份数,分子表示所取的份数,先有平均分的份数才能有所取的份数,所以把平均分的份数叫分母,把取的份数叫分子,不就像先有妈后有儿子吗?”话音刚落,教室里已是掌声不断。由此及彼,我马上想到了真假分数,于是趁热打铁,打破教材的课时界限,将下一课时的真假分数提到当前来上,继续引导学生:“那么在分数世界里有没有‘儿子’比‘母亲’大的?”从而形象地得出:“儿子”比“母亲”小的分数是真分数,“儿子”比“母亲”大或相等的分数是假分数。这样灵活机动地处理教材,学生印象深刻,甚至终身难忘,比起冷却之后又另起炉灶的做法,效果要好得多。

三、将错就错,因势利导

新知教学时,学生限于自己的知识水平,在思考的过程中出现一些错误想法是很正常的。教师如果从伴随着教学过程中出现的错误想法出发,进行引导点拨,引出正确的想法,得出合乎逻辑的结论,将会收到意想不到的效果。比如,我在教学“平行四边形的面积计算”,首先出示一个长方形,要求学生说出面积计算的方法:长×宽(a×b)。接着我在电脑上将这个长方形拉成一个平行四边形,让学生猜想这个平行四边形的面积怎样计算?由于受负迁移的影响,不少学生认为是两边相乘(a×b)。此时,我就将错就错,进行因势利导:如果是“a×b”,那么长方形和平行四边形的面积应该相等。接着,运用电脑动画将平行四边形移到长方形图上,引导学生比较两个图形是否一样大?经过仔细观察比较,学生就会发现两个图形的面积不一样大,其中阴影部分就是长方形面积比平行四边形面积大的部分,从而明白了“a×b”不是平行四边形的面积。于是,我进一步引导:平行四边形的面积到底怎样计算呢?通过直观图,多数学生都能说出将长方形外的小直角三角形平移进来,将平行四边形转化成长方形来推导它的面积公式,最终得出“平行四边形的面积=底×高”的结论。

四、巧用意外,乘胜追思

学生是活生生、有思想的人。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。数学教育家波利亚曾经说过:“学生的尝试越是五花八门,探究活动越是新颖灵活,那么,他们也就是越有可能得到异乎寻常的结果”。当前,随着课程改革的不断推向深入,数学课堂的面貌发生根本性的转变。教学过程成了师生平等相处、真诚交往、共同探究、获取知识的过程。在这样的课堂里,学生的思维不断得到涌现,正是在这种师生、生生之间的互相碰撞中,随时会发生一些教师事先没有预料到的事情,打乱教师的教学思路。那么,我们教师应该如何去面对这些教学中意外呢?有的教师担心出现这样的小插曲,生怕自己处理不好,下不了台,也担心它会使整个教学流程失去应有的严谨和流畅。于是,就对学生的“意外”,轻则视而不见,不予理睬,重则冷嘲热讽、批评指责。这是违背新课程理念的不明智的做法。教学过程应该是师生之间相互沟通,共同合作学习的过程。我们教师要树立以学生为本的意识,善待课堂教学中的意外,耐心等待仔细倾听学生的每一次思维颤动,也许,它会让动态生成更加精彩。因此,在数学课堂上,我们广大教师要善待这些“意外”,用敏锐的眼光去捕捉学生学习过程的“意外”,留给学生足够的思考空间和表达的机会。要知道,源自学生的精彩才是真正的精彩。

篇5

《读懂学生,构建小学数学高效课堂》是我区数学科组正在开展中的课题研究。研究的主要手段是通过尝试使用非线性小组合作学习模式进行课堂教学,达到提高学生的思维流量、思维容量和思维能量,从而实现高效课堂的目的。就此看来,这样的模式仿佛与“读懂学生”没有关系。其实,参与实验的老师发现,使用非线性小组合作学习模式进行教学,必须是在读懂学生的前提下实施的。读懂学生不只是读懂学生知识的真实起点,还得读懂学生的兴趣、情绪、信心等等。由此看来,教师和学生成了课堂教学中的双主体。

但是,在一次集体对“三角形的面积”一课的磨课中,我们为该不该顺着学生的问题生成来组织教学产生了分歧。一方认为,面积公式的推导应依照学生课堂问题生成的顺序来进行;另一方认为,不需要那么急切地去关注学生的想法,学生只需要跟着老师设计好的思考路线走下来,同样能找出答案。我参与了整个磨课的过程,在处理公式推导的环节上,有不同的声音,在多种方案的对比上,我有了自己的看法。

一、磨课回放

片段一:课始老师让学生汇报通过充分的预习后提出他们的疑惑。学生们提出的第一个疑惑是“计算三角形面积为什么要除以2?”第二个疑惑是“计算三角形的面积为什么要用底×高?”

我的思考:读懂孩子的疑惑

应该说学生在学习新知时有疑惑那是再正常不过。必须提醒各位注意的是,孩子们一开始就提出第一个问题符合孩子们的学习天性。如果我们细心地去搜集一下孩子们脑中的公式库,有“×2”的,也有“×4”的,但从没有出现过“÷2”的。这个“÷2”在孩子眼中犹如长着一只眼睛的外星人,神秘莫测。谁都想问一句:“你是谁?”

片段二:教师针对孩子们提出的第一个问题,启发学生,把一个平行四边形按对角分开得到两个完全一样的三角形。再引导学生比较三角形面积与原平行四边形面积的大小关系。从而使学生自主发现三角形的面积就等于原平行四边形面积的一半。于是,在求三角形面积时必须把平行四边形面积÷2。

我的思考:读懂孩子的情绪

学到这里,绝大部分学生都明白了三角形面积公式中最抢眼的“÷2”是怎么回事。学生的好奇心得到极大的满足。更开心的是揭开“÷2”这一神秘面纱的人就是学生本身,他们的学习兴趣愈发浓烈。学习积极性更加高昂。对于继续解决公式中“底×高”的含义,他们充满信心。如果当时有那么一个人能指引你去寻找答案,你该有多么的高兴、多么的满足。

片段三:教师因势利导。引导学生,利用学具找出三角形与平行四边形同一位置上的一组底和高。并通过对比发现三角形与平行四边形有等底等高的关系。由此发现,如果用“底×高”计算的其实是与三角形等底等高的平行四边形的面积。至于要求平行四边形里面其中的一个三角形面积自然就应当是用“底×高”÷2了。

我的思考:关注课堂的生成,课堂显得精彩纷呈

课堂上的精彩来自于学生。整个公式的推导都源于学生的生成。这样的新课处理重视课堂生成多于教师的预设。从学生的实际需求出发,摸准了学生的学习起点,关注了学生的学习兴趣、情绪、信心。使学生成为学习的主人。而在课堂上老师则更像是一个学生学习的向导。师生的合作与互助是如此的和谐、自然。学生在这样的课堂下,自然是学得轻松、学得满足、学得开心、学得深刻、学得受人尊重、学得自主。这样的课堂何愁无效了?事实证明在课后的小测中,100%的学生能自然地记住了在计算三角形面积时要“÷2”。

有经验的老师一定知道,以往的学生在计算三角形面积时总是习惯于漏写“÷2”。可是我们在一味地埋怨学生边学边忘的同时,我们可能都忽略了一个问题。那就是我们在处理新课时,我们关注了“谁”?在过去,我们比较习惯于关注一节课下来有没有出现“突发事件”和“偶发事件”。我们都习惯于关注我们是否照着预设好的过程按部就班地把教案执行到底。今天我们可以继续思考过去的这些关注都对吗?需要调整吗?调整的价值何在?

片段四:学生汇报通过充分的预习后提出的第一个疑惑“为什么要除以2”?教师先把问题放下,并引导学生转化问题。让学生明白只要知道问为什么要用“底×高”?就能明白“÷2”的原因了。于是,让学生先按教师预先设计好的活动,一一进行简单操作。最后得出结论。

附课堂上学生活动的学案:

活动一:用三角形的“底×高”求出的是什么图形的面积?

学习提示:

(1)三角形的底与原平行四边形的底有什么关系?

(2)三角形的高与原平行四边形的高有什么关系?

我们发现:三角形的“底×高”求出的是形的面积。

活动二:为什么要除以2?

学习提示:

(1)把平行四边形分成两个完全一样的三角形。

(2)一个三角形的面积与原来的平行四边形有什么关系?

我们发现:三角形的面积等于与它_____的平行四边形面积的____。

二、教学反思

不可否认,就三角形面积公式的推导而言,无论是“÷2”还是“底×高”都是不可分割的一部分。如果孩子们明白了“底×高”求出的是等底等高的平行四边形的面积以后。公式中为什么会有“÷2”这一个疑惑就能迎刃而解了。反之亦然。关于三角形的面积,不同版本的教材有不同的处理方式。目前的教材对三角形面积公式的推导无非是两种。一种是拿来两个完全一样的三角形通过平移旋转拼成一个平行四边形,然后通过比较平行四边形与三角形的关系来推导三角形面积的计算公式。另一种就是用折的方法,把三角形折成一个长方形,通过计算长方形面积来发现三角形的面积公式。两种方法没有优劣之分,只是介入的角度不一样。关键还是转化。但是,方法以外的一些因素,比如,教具的设计、课前、课上、课后对学生的各种解读反而是需要我们在平常的教学中要高度重视、深度关注的。

所以,在引导学生学习三角形的面积时,无论是基于上面的两种处理方法中的任意一种都是有道理的。我们大可不必用二元对立的观点来评价两种处理方案。平心而论在第二种处理方案无疑在知识的系统性和层次以及严谨度上都无可挑剔。然而这一方案的死穴在于过渡强调了以上的几大优点从而忽略了学生的实际情况。这样的课堂绝对的“安全”。可“安全”的背后,可以看到学生俨然一个木偶让老师牵着鼻子走,最终还是浑浑噩噩、一知半解。这里面并不涉及设计是否完美的问题,我觉得关键点在于我们读过学生的需要没有。打个比方,你带着一个问题来找我,我不能马上给你答案。而是先带你游“花园”。你想想,你会很用心地听我的解释吗?我想一定不会。因为我没有立即地对你的问题给予回应。我没有考虑你的心理需要,我自顾自地分析,忽略了你的情绪。显然,我做得不够好。

在整个磨课的过程中,我们不断地尝试。在每当老师问及“通过预习你还有什么疑问?”时,孩子们第一时间发问的都是针对为什么要除以2?我个人认为这并不是因为老师的刻意引导或者学生的偶然巧合。如果是偶然而致。那怎么可能在五个班上尝试,学生都不约而同地首先对此问题发问。其中肯定有其关乎于学生年龄特点的,甚至是心理层面的需要。我想我们要是读不懂这一微小的细节,必定影响我们的设计理念。一次磨课结束了,却带给我更多的教学感悟:读懂学生,并不能仅仅停留在语言上,必须辅以实际行动。从每一个细节上着手,才能让读懂来得更实在,才是实施高效课堂的有力保证!

篇6

[中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2017)08-0045-01

关于教学预设与生成关系的话题,今天再度提出来,旨在探讨在小学数学教学中教师如何科学地把握课堂的去向,如何更好地贴近教学预设,如何激发学生的潜能,调动学生学习的积极性,让学生在课堂上活力四射。

【案例一】师:这里有2个完全一样的三角形,你能把它们拼成什么图形?

生:平行四边形,长方形,大三角形。

师:对于拼成的长方形,你发现了什么?

生1:它是由2个直角三角形拼成的,一个直角三角形的面积是长方形面积的一半,能够得出三角形的面积=底×高÷2。

师:从拼成的平行四边形中能得到这个结论吗?

生2:可以的,平行四边形的面积=底×高,所以一个三角形的面积=底×高÷2。

师:大家都很聪明,现在会计算三角形的面积了吗?

【案例二】师:我们已经知道长方形、正方形、平行四边形等面积的计算方法,你还想计算谁的面积呢?

生:梯形,圆形,三角形……

师:很好!今天我们就先研究三角形的面积。你打算怎样研究呢?

生1:把长方形沿对角线剪开,得到2个完全一样的三角形,所以三角形的面积等于长方形的面积的一半,长方形的长是三角形的底,长方形的宽是三角形的高,得出一个三角形的面积=底×高÷2。

生2:我们是把2个完全一样的锐角三角形拼在一起,发现能拼成一个平行四边形。平行四边形的面积=底×高,那么一个三角形的面积=底×高÷2。

【思考】

1.预设应贴近学情

教学预设是什么?是剧本,是脚本,是师生教学活动的基本框架。从上述两个案例中不难发现,这两份“剧本”的定位是不一样的,因此在推进“剧情”发展的过程中呈现的态势也大相径庭。

案例一中,教师给定学具,让学生在既定的框架中操作,这样的实践只能算是经过,而不是经历,更谈不上学生感知的积累和视野的拓展,学生很难获得深刻的感悟。案例二则给予学生很多的机会,学生既可以在剪纸中,也可在折纸中、拼图中获得知识。不一样的实践,会有不一样的感受,在这种学习情境中,学生的感知必定丰富。

从学情入手,从引导学生反思处着力,教学A设就会为有效学习助力,成为快乐学习的基本保障。

2.预设应关注探究

精心设计是教好数学的基本保证,精简设计是教学智慧的体现。因此,教学预设要更多地关注学生的探究活动,让学生在解读一个个数学现象中发现知识的真谛。

在案例二中,教师的放手体现了教学的智慧,教学预设不再是教学的紧箍咒,它加速了学生智慧火花的碰撞,有利于学生探索热情的再现。这种灵活多变的、富有弹性的教学掌控,让数学教学流淌着智慧的灵光,更为学生的自主学习、创造性学习提供了坚实的平台。

案例一的教学,从表面上看,学生能够动手实践了,在活动中也有发现了,但教师提供的实践素材是固定的,是单一的,这样一来,学生的选择是有限的,思维的空间也是狭窄的,学生被动执行操作指令的痕迹是明显的。这样的学习不是真正的自主学习和合作学习。

3.生成应充满灵气

学生是人,有自己的情感、思考和待人接物的态度。因此,教学应在预设的架构上进行适度、适宜、灵活的删减,使之更加符合课堂教学,贴近教学走向,让课堂充满和谐与灵动。

如案例二的后续还出现了这样的对话“我有一个新发现,把三角形的顶角部分剪下来后可得到梯形,再沿梯形的中位线剪开,也能拼成平行四边形!”“不对!你剪下的那部分放哪了呢?”……学生有直觉思维,它是一种灵感,也是一种创新。因此,给学生充分交流的机会,让争辩使学生的感知越加清晰,让交流使学生的思维得以碰撞。

篇7

如明确教学目的;把握一节课中的重点、难点;安排课堂教学流程、制定严谨的教学结构;课堂练习设计以及教师对学生真诚的关爱等内容,在现在乃至将来,仍值得教师进行进一步的认识、理解。

二、要改进教师备课的现状和存在的问题

1.分析学生流于形式。考虑了学生“应该的状态”,而忽视了他们“现实的状态”。

(1)以教师的水平看学生,结果把学生看高了,课堂上学生“跳了又跳,还是摘不到果子”;学习新知识前把学生看成一张白纸,忽视了他们的生活经验,这又把学生看低了,课堂上学生“根本用不着跳,便摘到了果子”,从而不利于他们的发展。

(2)把学生看作是永恒不变的教育对象,忽视了地区的差异、城乡的差异、不同学校的差异、同一学校不同班的差异。

2.处理教材未能很好地发挥教师的主动性和创造性。对教学内容的处理大多只限于补充、调整一些习题,而很少更改例题;把着眼点放在理顺教材本身的知识结构上,而忽视了学生学习的内在需要,忽视了他们的学习心理。

3.制定目标时过分重视认知性目标,而忽视了发展性目标,即使有所涉及,也只是“走过场”,应付上级部门的检查。

4.设计教学过程时忽视了其生成性。把错综复杂、动态的教学过程以“剧本”的形式加以具体描述,所形成的教案是“直线型”的,对教学重点或难点可能发生的“教学资源”没有充分应对,一旦遇上便“置之不理”或“束手无策”。

5.撰写教案模式化。一些教师认为,一节课必须要有“旧知铺垫―学习新知―巩固练习―全课小结―布置作业”这几个环节,但笔者认为,有些课不需要“铺垫”,有些课则不一定要进行“巩固练习”,一切都应从学习的内容和学习的需要出发。

三、要执行课堂教学设计的主要策略

1.客观分析教材,深入了解学生,找准教学的起点。人教版第九册“一般应用题”:一个服装厂计划做660套衣服,已经做了5天,平均每天做75套,剩下的要3天做完,平均每天应做多少套?根据对四年级和五年级两班学生的调查发现,不需任何提示,绝大部分的学生都能独立完成例题。基于这个事实,假如我们将教学目标定在学生会做上,就太肤浅了。实际上,编者的意图是以例题为信息载体,以引导学生掌握分析问题、解决问题的方法,即培养解应用题的能力。同时,还要注意培养学生反思自己的学习过程和结果的意识、能力,要有自觉验算的意识,并努力掌握验算方法。只有经过这些方法的训练,才能为进一步探究复杂的应用题做好知识、能力、方法上的准备。

2.运用“原创思维”,筛选学习资源,推动教学进程。当学生面临问题时,首先有一段含有价值判断的“似真推理”,窥测方向,然后才是带有一定逻辑意义的行动,并用可以言传的方式表现出来。我们把学生面临问题时最初的思考方向称为“原创思维”,它是新课程理念下课堂教学中非常重要的学习资源,现以《平行四边形面积计算》一课的教学为例,加以说明。

(1)在格点图上出示平行四边形,创设问题情境:凭你现有的经验,你觉得怎样才能求出这个平行四边形的面积?学生经过最初的价值判断后,引发了丰富的“原创思维”: ①受长方形面积计算方法的迁移,认为“邻边×邻边”;②经验比较丰富或通过其它渠道得到信息,认为“底×高”;③把平行四边形变成长方形后再来求面积;④可以用小方格来摆出它的面积;⑤其它方法。

(2)教师根据课堂上出现的实际情况,组织学生进行分组学习。(安排好桌位,提供给学生探究的材料,并提出探究的要求。)

对第一种可能出现的情况:提供三个平行四边形,相邻的两条边一样长,但面积明显不同。(每生一份)

要求:根据你的猜想,请算一算这个平行四边形的面积。

对第二种可能出现的情况:提供若干个平行四边形,要求证明:“平行四边形的面积=底×高”的道理何在?

对第三种可能出现的情况:同样也提供若干个平行四边形,要求:请想办法求出手中的平行四边形的面积。

对第四种可能出现的情况:提供(1)、(2)、(3)号三个平行四边形,其中,(1)号:底4厘米,高1厘米;(2)号:底4厘米,高2厘米;(3)号:底5厘米,高3厘米。

要求:用面积单位为一平方厘米的小方块尝试摆出这三个平行四边形的面积。

教师在各组独立探究的过程中,巡视指导,及时调控。同时,允许学习快的小组参与其他小组的活动,或指导、或质疑。这样,不同的想法在课堂上产生了碰撞,并开始逐渐融合。最后,各小组进行学习情况汇报,师组织辨析,并引发争论……

经过思考,同学们发现:虽然“出发点”不同,但最终都聚焦为一点,即运用“化归”的数学思想,把平行四边形转化为长方形,并利用长方形面积计算、推导出平行四边形的面积。

在这样的教学方式下,教师关注的不仅仅是知识的获得,最重要的是以学生借助平行四边形面积公式的推导过程为“载体”,拓展学习内容,改变学习方式,尊重学生人格,并提高他们的创新能力。

3.学习提高,刻苦锤炼“隐性”基本功。一直以来,人们都把写一手漂亮的粉笔字、讲一口流利的普通话、有较强的教学设计能力作为一名教师的教学基本功。但随着教育形势的不断发展以及课程改革的不断深入,对教师教育基本功含义的理解又有了扩展,其中包括了教学中动态生成的调控能力、对学生的语言评价能力、对课堂环境的营造能力,等等。如果把前者称为显性基本功,那后者则可以称为隐性的基本功。随着新课程的不断实施,后者逐渐发挥了越来越重要的作用。

面对课堂教学过程中的生成性资源,教师的隐性基本功主要表现为:不仅是知识的“呈现者”、对话中的“提问者”、学习的“指导者”、学业的“评价者”、纪律的“管束者”,更重要的是课堂教学过程中呈现出的各种信息资源的“重建者”。教师在面对各种资源时,要学会筛选,以去掉无用的信息,并利用、重组有用的信息,从而推动教学进程。

4.智慧引领,使教师的主导作用更加适应学生主体的要求。常有学生感叹:“老师在课堂上只给我们压力,不给我们魅力。如果老师的课堂教学充满魅力,我们何尝不愿意好好听呢?”是呀!教师在课堂上给学生多的是压力、是纪律的约束、是制度的约束、是规矩的约束、是习惯势力的约束,缺少的就是魅力:缺少思想的魅力(只有编者的、作者的、参考书的思想);缺少文化的魅力(课堂上无文化魅力的语言,无诗一般的语言,少一份人文气息);缺少情感的魅力(“感人心者,莫乎于情”,课堂上激动学生的是情,打动学生的是情,震撼学生的仍然是情。“亲其师而信其道”亲其师而乐其课也);缺少艺术的魅力(停留在技术的层面,如何导入新课、如何提问、如何评价学生、如何板书、如何布置作业等都已成为了一套固定模式,千人一面,连表扬学生的方式都一样);缺少个性的魅力(本来人如其面,千姿百态各不相同,犹如白花园中的花朵:牡丹雍容华贵,芍药娇嫩鲜艳,月季月月吐新,迎春花小而灿烂。可是我们的课堂神州960万平方公里竟然惊人的相似。)因此,我们希望严谨的教师创造出严谨的课堂,豪放的教师创造出豪放的课堂,灵秀的教师创造出灵秀的课堂,幽默的老师创造出幽默的课堂。

篇8

对“学什么”这一问题的思考,实际上就是对学生“学习目标(Objective)”的确定过程。如果把学生视为学习的主体,那么这样的学习目标相对于学生来说就具有客观性,是课程编制者或者教师对学生应当“学什么”的期望(Expectation)。对“怎样学”的思考,首先是将学习目标转变为学生应当执行并完成的学习任务(Task),之后是思考学生为完成任务所需要经历的学习活动(Activity)。对“学什么”和“怎样学”这两个问题的思考并不是截然分开的,二者的思考应当是融合在一起,并且都要基于对所学知识点及其认识过程本质属性的认识。

比如“平行四边形的面积”,[2]这一知识点反映的是一个平行四边形面积的大小与这个平行四边形内部元素(底边长度和高的长度)之间相互依赖与制约的关系,其本质属性是对客观规律的描述,此类知识的特点相对于学习者来说具有“确定性”,不依人的意志为转移。认识这种知识的基本方法是“发现(Discover)”,也就是通过观察并比较诸多不同对象,从中发现共性,这样的共性就成为了具有一定普遍意义的规律。

数学课程中另外一类知识其本质属性是人的“发明(Invention)”,这一类知识通常是依赖于人的主观“需求(Need)”而出现的。以分数为例,这种“需求”至少表现在三个方面。从语言的视角看,当表达数量关系的时候,同一种数量关系通常会有两种说法,这两种说法往往是“双向同义”的。如果说“甲的收入比乙的收入多100元”,就会有反过来并且意义相同的说法,即“乙的收入比甲的收入少100元”。如果说“甲的收入是乙的3倍”,需要反过来并且要求意义相同的说法,那么没有分数,这样的说法就难以实现。有了分数,就可以说“乙的收入是甲收入的三分之一”,从而实现了“双向同义”的语言描述。

历史上人们对分数的“需求”还表现在“量(Magnitude)”的测量方面。在没有度量单位的时候,人们对量与量之间的比较通常都是“用小量大”,当出现“量不尽”的情况时,就“用余量小”,如此反复,量尽为止。比如图1两条线段分别表示量A和量B,其中A是较大的量。

量A:― ― ― ― ― ―

量B:―――

图1 量的比较示意图

如果需要了解并且表达两个量之间关系的时候,人们首先就会用较小的量B去与较大的量A重叠测量,目的是为了知道几次量尽,从而就可以知道量A中包含了几个量B。但是测量过程中经常出现量不尽的情况,也就是有剩余的情况出现。(见图2)

量A:

量B:

图2 “量不尽”示意图

图2中用量B测量量A重叠2次后,出现了小于量B的剩余量C,这时候人们通常会用剩余的量C反过来去与量B重叠测量,如果仍然量不尽,就继续重复这一“用余量小”的过程。图2用C量B的结果恰好三次量尽。这时候就需要用数来描述量A与量B之间的关系,此时仅有整数就不够了,有了分数就可以说“A是B的2(或者)”,也可以说“B是A的”。用“比”的语言说就是A与B的比是7∶3,或者B与A的比是3∶7。

数学家对分数的“需求”还表现为对除法运算“封闭”的愿望。在整数范围内,两个整数相除,可能得不到整数的结果,这种情况就叫作“整数集合对除法运算不封闭”,也就是整数集合内两个元素的运算结果跑到了整数集合的外面了。因此需要扩大整数集合的范围,把分数合并到整数集合中来,由此形成了数学中的有理数集合,在这个集合中除法运算就能保证封闭了,即任何两个有理数相除的结果一定还是有理数。

“发现”的知识与“发明”的知识属性不同,当然学习的方式也就有了差异。发现的过程核心环节是“观察与比较”,发明的过程重在“需求与创造”。针对不同属性的知识,备课中就要思考如何为学生设计学习任务和学习活动。

二、如何设计“发现”的过程

对客观规律的认识至少应当包括两个方面。首先应当是定性的认识,比如对于“平行四边形面积”来说,应当认识无论什么样的平行四边形,其面积的大小都受制于底边长度和高的长度;在定性认识的基础上,就可以有定量的认识,即面积的大小等于底边与高的乘积。针对定性的认识,需要观察并且比较不同的平行四边形,在不同中发现共性,也就是所有平行四边形面积的大小都受制于底边长度和高的长度;而对于定量的认识,也就是平行四边形的面积等于底边与高的乘积,需要观察平行四边形与面积相等的长方形之间的关系而得到。如果把长方形视为特殊的平行四边形,那么就可以将定性的认识与定量的认识合为一体,把学习目标确定为“发现平行四边形面积的大小与底边和高的关系”。

既然这一学习目标的实现依赖于观察与比较,那么教师在备课中需要思考的就是如何设计能够沟通学习目标及观察与比较活动之间联系的学习任务。这种任务的设计是否有效,取决于两个前提,第一是观察者为什么需要观察,也就是要为学生提供观察的理由,这种理由可以使得学生具有观察的动机;第二是观察什么,也即需要为学生提供观察对象以及思考方向。学习任务的叙述可以是以问题的形式出现的,不妨称之为“问题型”任务。比如针对学习目标“发现平行四边形面积的大小与底边及高的关系”,可以设计如下的问题型任务:“下面是三组平行四边形,每一组中两个平行四边形面积是否相等?你是怎么得到结论的?”

图3 平行四边形面积比较图

第一组中两个平行四边形的底边长度不相等,但是高的长度相等;第二组中两个平行四边形的底边长度相等,但是高的长度不相等;第三组中两个平行四边形的底边长度相等,同时高的长度也相等。为了回答这样两个问题,学生可能的学习活动有用眼睛“看”,看不出来还可以用尺子“量”,当然也可以用剪刀把两个平行四边形“剪”下来重叠在一起“看”。所有的活动都是针对“是否相等”以及“为什么”这样两个问题,因此活动就不是盲目的,而是有目的的,活动的目的性使得学生具有了参与活动的动机。同时,教师为学生提供的三组图形相当于为学生的观察提供了对象。通过活动最终期望学生发现平行四边形面积的大小与底边以及高有关。

学习任务的叙述还可以是“指令性”的,就是指明要求学生做什么。比如在前面任务已经完成的基础上,为了能够发现平行四边形面积公式,可以给学生布置如下任务:“在方格纸上画出一个长方形,再画出一个与长方形面积相等的平行四边形,和你的同伴说说你的画法。”学生依据前面观察的经验,在画图过程中自然而然地就会把平行四边形的底和高与长方形的长和宽建立起联系。在以上学习活动的基础上,最后可以通过布置指令性任务:“请自己总结出计算平行四边形的面积公式,将你的结论写出来。”通过以上三项任务,学生经历一系列以观察与比较为核心的学习活动,就应当可以达成“发现平行四边形面积的大小与底边和高的关系”这一学习目标。

三、“发明”的过程需要经历

对于“发明”的知识,认识的核心环节是感受需求,并且经历自主发明的过程。以分数为例,分数的学习包括分数概念的形成与语言表述、分数之间的相等与不等关系、分数的运算以及分数与除法和比的关系等内容,这些内容需要一个螺旋上升的学习过程。如果把分数的本质属性定位于语言,那么其学习过程就应当遵循语言学习的规律。语言通常是按照“先听说,后读写”的顺序进行学习的。通过“听说”可以感受到分数的存在以及分数概念的含义,通过“读写”让学生经历“发明”的过程,感受数学中文字语言、图形语言以及符号语言之间的相互关系。学习分数之初,首先应当让学生感受到对分数的“需求”,体现“让知识因需要而产生”的教学原则。因此小学三年级“分数初步认识”的学习目标可以确定为如下三个:感受分数在语言中的存在及其必要性;经历分数符号从“多样”到“统一”的发明过程;了解分数的含义。

针对第一个学习目标,可以设计如下的学习任务:“钟表上表示的时间是‘7点半’,思考其中的‘半’是什么意思?与同伴交流自己的想法。”(见图4)

图4 钟表示意图

学生在执行并完成这一任务的过程中,自然要思考和交流分针转动一圈与半圈的关系,或者时针转动一格与半格之间的关系。这种思考与交流一方面感受到二分之一的现实存在,同时也能初步感受到分数用于描述局部与整体关系的含义。类似的任务还可以设计为如下的形式。

将一张长方形纸对折,折痕将整张纸平均分成了两部分。这两部分的大小是什么关系?用尽可能多的语言说说其中一部分的大小与整张纸之间的关系。

用尽可能多的语言说说“10元钱”与“2元钱”之间的关系。

这样的任务可以启发学生在思考和交流的过程中,沟通描述数量关系的多种语言之间的联系。比如关于“10元钱”与“2元钱”之间的关系,学生可能利用先前熟悉的描述加减关系的语言,说出:“10元比2元多8元”和“2元比10元少8元”。学生还可能利用二年级学习过的“倍的认识”说:“5个2元等于10元”或者“10元是2元的5倍”,此时恰好说明需要一种与之相反的说法:“2元是10元的五分之一”,“五分之一”自然而然地因需要而产生了。

通过“听说”初步感受分数的含义后,就需要用符号来表示分数。符号作为一种数学的语言,具有“人造(Artificial)”的特点,其发生与发展必然是从“多样”走向“统一”的过程。如果把分数的符号表示方法直接告知学生,表面看省时省力,但失去的是学生经历发明符号的思考过程。为了让学生经历这种“发明”的思考过程,针对第二个学习目标,可以设计这样的学习任务:“你认为应当用什么样的符号表示二分之一?向同伴介绍你的发明。”在北京小学万年花城分校“变教为学教学改革实验”的课堂中,发现学生依据这个任务开展活动后,的确出现了“多样”的符号表达。(见图5)

图5 学生分数符号表达

在这些符号表达中,学生运用斜线、横线、逗号等多种方式表达“分”的含义。而且还发现许多学生在写“二分之一”的符号时,喜欢将2写在左侧或者上面。这实际上反映出平时习惯的阅读和书写顺序(从左向右,自上而下)对学生认识分数的符号是有影响的。分数“二分之一”的读法是“先2后1”,因此学生书写也是这样的顺序。

在学生“多样”的发明充分交流和展示之后,教师可以补充一个学习任务:“同一个二分之一出现了这么多不同的符号,行吗?应当怎么办呢?”补充这个任务的目的在于引发学生思考,分数符号作为一种数学语言,其重要作用是用于交流,多样化会带来交流的困难,因此需要统一,统一的目的是让所有人看到后都能够知道其确定的含义。

在这两个任务之后,为了进一步沟通不同语言之间的联系,深化对分数含义的理解,可以再为学生布置一个任务:“举个例子说明的意思,在小组内交流不同的想法。”学生可以通过画图、折纸、讲故事等多样化的活动完成这个任务,在完成任务的过程中自然会加深对分数含义的理解。

如果时间允许,还可以设计数学与其他学科沟通联系的学习任务。比如中国传统文化中成语和诗词的学习通常是语文课程中的内容,如果引入到数学课程的教学中,一方面可以沟通不同学科知识之间的联系,同时也能够激发学生学习数学的兴趣,感受到数学学习的现实意义。在前面已经初步认识分数之后,可以利用成语“半斤八两”设计如下的学习任务:“中国古代用‘斤’和‘两’作为重量单位,16两为1斤。古代成语中有‘半斤八两’的说法,请你用今天学习的知识描述这个成语的意思。”这个任务的思考讨论实际上已经渗透了六年级将要学习的“正比例”的知识。如果把“斤”和“两”看作两类不同的量,那么其相互依赖的关系可以从表1中明显看出。

类似的成语还有“事半功倍”与“事倍功半”等。中国古代诗词中也有蕴含着分数含义的。比如明代诗人杜庠的题为“岳阳楼”的诗:“茫茫雪浪带烟芜,天与西湖作画图。楼外十分风景好,一分山色九分湖。”洞庭湖是湖南省和湖北省的分界,岳阳楼位于洞庭湖畔湖南省一侧,在楼中能够远眺君山。“楼外十分风景好,一分山色九分湖”可以用分数的语言描述为,把楼外的风景看作10,那么山景占了其中的,水景占了,描绘出了近大远小的视觉效果。

“变教为学”教学改革期望的是学生“自由、自主、自信”地开展学习活动,为此就需要教师在备课中准确把握知识的本质属性,合理设置学习目标。在此基础上,“把目标变成任务、把知识变成问题、把方法变成活动”,让学生在课堂学习活动中“爱做、能做、善做”。所谓“爱做”就是学生对于执行学习任务具有积极性和主动性,也就是所谓内在的动机(Motivation),让学习活动成为学生“自觉自愿”的主动活动,而不是“被逼无奈”的被动活动;所谓“能做”是期望每位学生都能够明白自己应当做什么和怎样做,而不是“部分人做,其他人陪”;所谓“善做”指的是每位学生都有做好的愿望,活动过程中有机会向同伴学习,也有机会与同伴分享自己的想法。真正做到“每位学生都有活动,每位学生都有机会”。

参考文献:

篇9

在实施对话教学中,生生对话更能促进学生思维的发展。在没有教师参与的对话活动中,学生不再畏惧教师的权威而拘谨,在宽松的氛围中有了自由、大胆表达的机会。学生在独立思考中,放松心情,驰骋思维,对问题的想象无拘无束,酝酿着独特的想法并准备对话。在小组交流与分享过程中,会有平淡的对话,也会有激烈的辩论,同学们虽然都会急于表达自己的独特观点,但也会认真倾听伙伴的想法,在不同的思维碰撞中,通过吸纳别人的意见,或坚持自己的观点,或修正自己的看法,达到不断更新自我认识的效果。学生在充满智慧的对话过程中,不仅收获对知识的理解,更是享受一种平等交流的快乐,感受到同学间的心灵沟通和彼此信任。在生生对话的课堂里,学生不再自我封闭,而是善于思考、表达和敢于质疑,在宽松的对话中理解知识、内化知识。如教授“平行与垂直”中“平行”概念的时候,学生画出几组两条不同位置关系的直线,教师引导学生分类,在分类过程中,观察图形“=”,有的学生认为这两条直线不会相交,有的学生认为会相交。此时,教师把不同观点的同学分成正方和反方两队,让双方都充分说明自己的观点是正确的,并展开对话。

2.教师与文本的对话

在对话教学中,教师与文本成为平等的主体,文本总带有编者的意图和思想,教师在认真钻研文本的同时,也带有自己的特殊体验和情感,使自己的教学源于文本,又高于文本。由于网络快餐文化的便捷,下载、模仿、拼凑教案等现象已成为很多教师正常化的工作。教学实践中,没有深入地解读教材,哪能有精彩的预设与生成,更谈不上有高效的课堂教学。因此,提高课堂的有效性应从深入解读教材、与教材深层的对话开始。讲授人教版五年级上册“平行四边形的面积计算”时,教材中呈现让学生通过数方格的方法求出平行四边形的面积,特别指出不满一格按半格算。如果教师以此照搬文本教学,势必影响学生探究效果,调查中发现,大多学生不明白为什么不满半格能按半格算。其实,编者的意图是让学生通过数方格,启发学生用转化的方法推导平行四边形的面积计算公式,但这样的文本,很难让学生联想到沿着平行四边形的高剪开拼成一个长方形。因此,教师与文本的对话就在于创造性地使用教材,让文本更好地为学习服务。教学中,教师让学生用数方格的方法求出平行四边形的面积,但不出现不满一格按半格算的提示语,而是改为问题:哪个同学能用好方法快速数出平行四边形的面积?这样的问题设计就逼着学生先数满格的,再数不满格的,而不满格的面积不一样,怎么办呢?学生细心观察后发现,原来图形中藏着秘密,最左上角的不满格移到最右上角的不满格的位置上,刚好拼成一个满格,这个发现就是移拼的转化方法。应用这个方法,学生观察整个左边的不满格都可以与右边的不满格拼成满格,但拼成的是一个不规则的图形,难于快速算出面积。再次观察后发现,如果沿平行四边形的高剪开,把左边的方块移到右边,就可以拼成一个长方形,再数方块就是最便捷的方法,学生对转化思想有了进一步的理解。最后,学生用所带的平行四边形图形进行剪拼实践,通过操作、观察、交流、推导,自主得出平行四边形面积=底×高的结论。这样的教学,教师并没有改变编者的意图,只是稍微改变文本的表述,却取得了显著的效果。因此,课堂教学中,教师不要把教材当权威,不要简单地认为学生都会想到把平行四边形沿着高剪开拼成长方形。可见,只有教师与文本的深入对话,根据学生的认识水平,合理并创造性地使用教材,才能使学生在最近发展区有效探索,提高学习质量。

4.学生与文本的对话

文本自己是不会说话的,但文本是有思想的,它是经过精挑细选的人类知识的精华,对学生传授知识、发展思维、培养能力具有重大的意义,而这种意义只有学生对文本的深入解读、丰富体验、深刻领悟,才能真正为学生所接受,文本也才能真正体现其内在价值。小学数学教材中的“你知道吗?”是实验教科书新增设的栏目,它是教学内容的延伸,是传承数学文化的有效载体。人教版六年级上册“比的应用”教学中安排了“你知道吗?”的内容,介绍了“黄金比”:你听说过“黄金比”吗?当一个物体的两个部分之间的比大致符合“黄金比”——0.618:1时,会给人以一种优美的视觉感受。如果学生只知道黄金比这个词,那就误读了教材的知识功能,更谈不上数学美的价值所在。学生在文本的启发下,通过网络查询、咨询家长,发现“黄金比”在日常生活中随处可见,不仅欣赏到蒙娜丽莎画像、古希腊女神维纳斯塑像的黄金比例的艺术品,还发现巴特农神庙、古埃及胡夫金字塔等建筑作品都隐含着神奇的黄金比,这就是与文本对话的价值。但是,生活中一般人很难达到维纳斯女神“黄金比”这样优美的身材,一般人的躯干与身高比都低于0.618这个数值,大约只有0.58——0.60左右,智慧的人们发明了让女人穿高跟鞋来改变比值,使得躯干与身高的比值更接近黄金分割的标准0.618,产生美的效果,从而人为地创造美。学生通过对文本的深入对话,不仅对比的知识有了深刻的理解,更是对数学美的充分挖掘。

二、对话教学中应注意的问题

1.对话不是简单的问答

作为课堂教学中的师生对话,不能简单地理解为师生问答,课堂中很多的师生问答并非真正的教学对话。真正的师生对话,是蕴含师生间的倾听和表达,是师生间敞开心扉的精神世界,从而获得心灵的交流和思想的分享。对话中不仅表现在提问和回答,更表现在倾听与独白、交流与辩论、欣赏与评价等方面。这是对话教学在“质”方面的要求。

2.对话并非越多越好

教学中的对话无论是作为一种理念,还是作为一种方法,必须为学习服务。组织对话教学应考虑教学内容而合理使用,对简单明了的知识、书上能直接找到答案的知识不宜运用对话教学,避免对话的滥用而导致形式主义。这是对话教学在“量”方面的要求。

篇10

随着教学经验的增加,对这一课的研究逐步深入。梯形面积计算是在学生学会计算长方形、正方形、平行四边形及三角形的面积的基础上进行教学的。在教学中渗透“转化”的思想,引导学生把梯形转化成已学过的图形,依照平行四边形和三角形面积计算公式的推导方法。用拼一拼、割一割、补一补等方法,发现梯形的面积公式S梯=(上底+下底)×高÷2,然后充分利用教具、多媒体课件等教学手段展示学生思维变化过程,让学生都能够了解并理解这个转化过程。

在哈尔滨市“苗苗杯”教学评比活动预选赛中,我又一次选择了这一教学内容,自己觉得对这一知识非常了解了,充满信心地进行了展示进入了决赛。于是,这节课曾经成为了我的招牌课。在省、市、区的研讨会上,在“支教支弱”活动中,在“送教下乡”活动中……不断地重复着。

转眼间,十几年过去了,“梯形的面积”这一教学内容已经记不清上过多少次了,随着对“梯形的面积”这一课题的关注和教学经验的积累,如今自认为已经能驾轻就熟地演绎了,还自己总结了一个套路――

一个情境:如,堤坝的横截面积,水渠的横截面积……

一次猜想:学生猜测计算梯形的面积可能与什么数量有关系……

一段推导:学生在学习平行四边形面积公式和三角形面积公式推导的基础上自己或小组合作完成梯形面积公式的推导。

一轮分享:学生将自己的推导过程与大家分享,统一计算方法。

一个公式:在学生分享交流的基础上,师生共同总结公式,反复夯实。

一堆练习:先是套用公式的练习,再是简单组合图形的练习,有时间的话再来一个求高的练习。

每上教学这一内容的时候,我都会为学生准备各种各样的梯形,而且大多都是两个完全一样的。这样学生在课堂上很轻松地就能利用两个完全一样的梯形拼成一个平行四边形,找到平行四边形的面积与梯形面积之间的关系,推导出梯形面积的计算方法。当然,也有的学生利用剪拼等方法推导出梯形面积的计算方法的(而这大多是在老师的桌前帮助下才完成的)。

又一次教学这个内容时,拿起教材翻到这个单元从头再看时,我突然在脑中产生了这样一个的想法:从平行四边形的面积到三角形的面积的推导过程已经是学会了“剪拼”和两个完全一样的图形“旋转平移”的转化方法。那么,这节课的定位就很重要,是把它当作前面已经学会的方法的综合应用课,还是另辟蹊径去寻找一个更强烈的刺激点让学生去体会数学的魅力?

五年级学生的心理特点是喜欢接受挑战的,怎样才能激起学生强烈的反应呢?

这样的思考困扰着我……

一天,我和女儿一起玩“走迷宫”的游戏,女儿每一次都比我早找到通往终点的路,这令我很是郁闷。女儿洋洋得意地告诉我:“我是从终点往回看的,找到路线之后,再从起点往终点走的,当然比你快啊!”……

是呀,反看一个事物也许会有新的收获!之前我们都是把梯形转化成学过的图形,那么,只给学生已经学过的图形,让他们利用这些图形制造梯形的时候能不能发现它们之间的关系,从而推导出梯形面积的计算方法呢?

于是,我的这节“梯形面积”就这样开展了!

…………

师:刚刚有些同学猜测看似都比较有道理。那么,根据同学的猜想能不能推导出梯形面积的计算公式呢?大家想不想试一试?

生:想。

师:好!老师给大家提供了一些学具,大家可以利用以前学过的知识找到梯形面积的计算方法。

(学生纷纷打开学具袋。学具袋里有:长方形、正方形、三角形、平行四边形。)

生:啊……

师:怎么了?

生:老师,我们研究梯形的面积,这个学具袋里怎么一个梯形也没呢?

师:噢?那怎么办呢?

(生窃窃私语……片刻。)

生:可以剪吗?

师:什么意思?

生:老师,我们可不可以把这些图形剪一剪变成梯形再来研究,行吗?

师:可以呀!(学生纷纷拿出剪刀跃跃欲试)可是,老师做这么多学具可不容易呀!剪可以!我有一个要求不能随便剪,要有目的地剪!

生:(七嘴八舌地)啊……到底让不让剪呀?……不让剪!……目的不就是要一个梯形吗?……

师:哈哈!老师现在请同学们看屏幕。(课件播放:平行四边形和三角形面积计算公式的推导过程。)看完之后,大家可以交流一下你受到了什么启发,就知道什么是有目的地剪啦!

(学生看完课件后便开始了讨论。)

师:好了!同学们,怎么才能做到有目的地剪呢?

生:我们小组看平行四边形的面积计算方法的推导过程,平行四边形的面积与剪拼后的长方形的面积是相等的,我们在想:有目的地剪就是要让面积相等!

师:说得好!这就是数学研究中的等积变形!(板书:等积变形。)也许可以试一试。其他小组还有什么想法呢?

生:我们看到两个完全一样的三角形可以接成一个平行四边形,以前我们做过一道填空题:两个完全一样的梯形可以拼成什么形。我们知道两个完全一样的梯形可以拼成一个平行四边形,所以我们想把平行四边形剪成两个完全一样的梯形进行推导,看一看是不是与三角形一样。

师:利用以有的知识经验,发现梯形面积与平行四边形的面积2倍的关系,也是算有目的地剪。(板书:面积的倍比关系。)

谁同意××同学的想法?(部分同学举手。)

同意××同学的说法的呢?(部分同学举手。)

没举手的同学呢?

(生摇头无语……)

师:哈哈!你们不同意或者不明白的原因是什么呢?

(那些没举手的同学好像犯了什么错似的低下了头……)

(前面两个同学的话说到我心坎里去了,我很高兴。看到这些同学的窘态,我有点儿无措,怀疑自己这样的尝试是不是给这些同学搅和乱了呢?哎!……正在这时我发现了&&同学有点儿不服气地看着我,我如获至宝地想听一听他要说什么。)

师:&&,我知道你有话要对我说,不要怕,说说吧!

他:我觉得他们的说法不太可行,梯形有上底、下底、高还有两个腰,他们的方法要么剪没了腰,要么剪没了上底和下底,我看不行!

我们研究的就是梯形你非要我们什么有目的地剪,还什么“等积变形”“倍比关系”的,我就想剪出一个梯形来,再对梯形剪剪拼拼再说……

师:说得好!我喜欢有自己观点的同学!(面向其他没举手的同学)你们是不是也这么想的呢?

(那些学生向勇敢的&&同学投去了赞许的目光,并如释重负地使劲点头)……

(我欣喜若狂,要没有&&同学,我还真不知道费多少话呢。)

师:剪出一个梯形也是有目的地剪!有想法一定要大胆地说出来!好!(我对&&同学竖起了拇指。)其实我说的有目的地剪就是让大家带着思考去研究。那大家就可以开始了,你可以自己研究,也可以与同伴一起研究。