大学物理机械振动总结模板(10篇)

时间:2023-03-07 15:20:54

导言:作为写作爱好者,不可错过为您精心挑选的10篇大学物理机械振动总结,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

大学物理机械振动总结

篇1

2大学生大学物理课程的学习现状

在课堂学习效果方面[5],大学物理课堂里集中精力听课的学生相对于中学生下降了约34%,课堂上能够听懂的学生为43.42%,即大学物理课堂的听课效果不是很好。在课前预习方面,相对于中学生,大学生的预习状况更差。在笔者大学物理的教学中,同样发现许多理工科学生上大学物理课时基本上不预习。在课后整理复习方面,大学生基本上不再整理错题集,已认识到解答题不是学习物理的目的;遇到问题或者做习题时,大学生更倾向于通过自己查阅资料来解决,也有部分学生的作业存在抄袭现象。此外,在同老师的交流方面,相对于中学生,大学生同老师的交流大大减少了。对于课堂上的遗留问题,很少有学生在课后和任课教师主动联系解决的。

3对大学物理教学模式改革的建议

3.1教学内容改革方面

针对目前大学物理教学中存在的问题,有人认为应该根据不同专业开设相应的大学物理课程[4]。比如,生物学、化学专业对热学等理论要求较高,计算机、数学等专业对力学、电磁学要求较高。因而不同专业不能完全依靠统一的一门公共基础课。针对不同的专业,应设计相应的大学物理基础课程,即认为对于不同专业,教学内容应该有所取舍。然而,笔者认为大学物理课程的内容是一套系统完整的理论体系,只有通过系统的学习,才能够培养学生独立获取知识的能力、科学观察和思维的能力、分析问题和解决问题的能力。即使对于不同的专业,也不能随意删除讲授内容。当然,对于不同专业的大学物理课程,讲授内容可以有所侧重,在整个课程学时压缩的情况下,对于本专业要求较高的部分内容,讲授的学时可以相对增加。但是一定按照理工科类大学物理课程基本要求,保证教学内容的系统性和完整性。

篇2

微课是指时间在十分钟左右以内,内容短小且高效集中的讲述或解决教学难点或重点的短课程。微课具有内容精、时间短、移动性、便于传播和成本低等特征,即可以作为课程的一部分,也可以作为辅助教学资源。

大学物理是一门理论性比较强的基础学科,是理工科学生进入大学后的必修科目。传统大学物理课堂教学主要依赖教师的板书讲解和分析,或者结合多媒体教学模式,但由于物理学理论本身的抽象性和复杂性,使得较大篇幅的讲解很难吸引学生长时间的注意力。而随着互联网技术和移动终端的快速发展和应用普及化,新的微课教学模式因其便宜且简短的特性正受到教学理论研究者、教师和学生的广泛关注和重视。

本文主要针对大学物理教学本身的特点,并将微课视作课堂教学前后的重要支撑和辅助力量,对微课的选题及可行性进行深入而细致的分析。

1 大学物理教学分析

大学物理的主要内容包括了力学、热学、静电场、稳恒磁场、电磁场理论和近代物理基础,所涉及的概念、模型、定律、数学、思想、科学史都相当庞杂,也都无法一一在课堂教学中全部呈现,但它们对初学者理解和把握大学物理的内在规律和科学精神都是不可或缺的。大学物理课堂教学有其使命和条理性,但很少对某个知识点的历史背景和相关物理学家做出充分的解说;某些知识点的近现展在教材中一般只被略微提及,但并不被初学者所注意;大学物理经常用到的数学技巧如微元法带有一定的技巧性,而大学物理教材常将之归于数学,而并不考虑数学思想和方法如何在大学物理中的应用。

2 大学物理微课选题及分析

凭借微课教学,大学物理教学的以上缺憾可以一定程度上得到弥补。

2.1 大学物理中比较富于思想性的知识点

大学物理作为一门基础理论课,其概念和定理、定律都具有一定的抽象性,对于初学者而言,在理解和应用上都有很大难度,而概念、定律在物理教学中起到基础性的作用。例如牛顿力学中的绝对时空观念,既作为牛顿力学的逻辑前提,又为日后狭义相对论的时空观做铺垫;又如麦克斯韦提出位移电流概念对电磁对称性的考虑和分析,也可以在此引申到磁单子假说。

2.2 大学物理中典型题的分析及求解过程

在学学物理中必不可少的一个环节便是习题练习,教师可以在每一章选取几道典型的例题、习题做细致的分析和讲解,以期学生可以以此类推触类旁通。

2.3 大学物理知识点的系统化梳理

在大学物理中结束每一章的学习时,教师有必要将本章知识整理有脉络的知识系统,有助于学生形成合理的知识框架。

2.4 大学物理相关知识点的前沿发展

由于教学的课时所限,相关物理知识的大量前沿发展并不能都在课堂教学中展开,但其对培养学生对物理的重视和兴趣极其重要。如陀螺在定位导航中的应用、物质的磁性和超导体的磁现象、纳米材料的超疏水性等等。

2.5 工业或生活中现象分析与探讨

工业以及生活中有大量有趣的物理现象,这些现象对学生领会物理学相关知识和原理很有帮助。如演示二维驻波的克拉尼图案,如墙上两个挂钟的锁频现象等等,可以借助这些现象对大学物理中的理想模型及相关方法进行深化和启发。

2.6 相关物理学家和物理学史的介绍

由于课堂教学内容的局限,并没有充裕的时间对物理学家生平和物理学相关领域的历史发展做比较充分的讲解,而重要物理学家的人和事本身又对物理学的发展起着关键性的作用。物理学史主要侧重于对于同一个问题不同物理学家的探索和研究,而对物理学家的介绍则侧重于其人生的履历和大事件,这些故事性的内容可以激发学生对大学物理的感性认知。

2.7 大学物理中相关的数学知识和技巧

大学物理的学习和解题过程中涉及到大量的数学知识和技巧,但是大学物理中的数学又和纯粹的数学有所区别,更侧重于技巧和应用。如机械振动一章的旋转矢量法、刚体定轴转动中进动和章动的方向等等。

3 大学物理微课实践中应当注意的问题

3.1 微课教学应处于辅助课堂教学的地位

大学物理教学内容的系统性和连贯性,决定了微课视频选题和互动上的局限性,也决定了并非所有大学物理知识都适合处理为微课模式。微课教学是为了学生更好的回归课堂,更好的领会和理解物理的认知模式和思想方法。

3.2 微课视频中的讲解应轻松活泼且点到为止

微课中的讲解应不同于课堂讲解,因为学生进入“微课堂”本身是自由的,并不能被严格约束在其中,所以如何使学生感兴趣便显得非常重要。语言上的活泼是为了拉近与学生的距离,而点到为止是为了启发更进一步的思考。

4 总结

综上可见,微课可以在大学物理教学中发挥更多的支撑或辅助功效。大学物理微课可以激发学生学学物理的兴趣和热情,也可以加强课堂教学中对教学重点难点的理解。通过适当的微课选题,将大大改善大学物理的教学效果,为理工科学生学习后续课程奠定良好的基础。

【⒖嘉南住

篇3

关键词:

转型发展期;大学物理;教学现状;教学改革

引言

教学模式问题是地方本科院校转型发展所面临的一个亟待解决的难题。地方本科院校在课程实施过程中大多属于保守性教学,一直沿用“以教材为中心、以课堂为中心、以教师为中心”的教学模式,“教师负责讲,学生负责听”的传统灌输式教学方法依然沿用。[1]虽然,国家和地方政府教育行政部门在下发的相关文件中多次提出倡导“启发式、探究式、讨论式、参与式”教学;推行“基于问题、基于项目、基于案例”的教学方法和学习方法;加强“产教融合、工学结合、顶岗实习、校企合作”;“改革考试方法,注重学习过程考查和学生能力评价”,但是在实际教学环节中,由于缺乏推进教学改革的“组织激励”和“个人激励”机制,传统教学方式和教学习惯在教师教学过程中依然根深蒂固的存在,未见任何成效。[2]作为理工科各专业学生的通识性公共必修基础课程,大学物理课程的教学目的在于一方面为学生较系统地打好必要的物理基础;另一方面使学生初步学会科学的思维方式和分析问题的方法。该课程的学习能够使学生思路开阔、探索和创新精神得到激发、适应能力得到增强。[3-4]因此,大学物理课程教学将直接影响后续课程的学习及对人才的培养。适逢地方高校转型发展的关键时期,作为先行学科的大学物理课程,教学过程中要不断优化教学方法、教学手段,解决地方本科院校转型发展所面临的教学模式改革难题。

一、大学物理教学中存在的问题

当前大学物理教学存在着短板,亟待解决。我们对全校理工科中5个专业的284名学生进行了问卷调查,被调查的学生均已经过大学物理课程的学习过程,调查目的在于了解我校学生对大学物理课程学习的真实感受,同时,依据我校大学物理课程教学实际状况,我们对全校正在讲授和曾经有过大学物理课程教学经历的7位教师进行了访谈。当前我校大学物理教学中突出问题表现在:第一,统一模式的教学内容,与学生所学专业衔接不好。作为各专业学生学习的基础课程,教师在讲授大学物理的过程中较多的强调它的系统性和基础性,不考虑学生所学的专业而采用学大纲和同一授课标准,多年来教学模式从未改变,专业课程之间交叉衔接不良,导致学生对大学物理的学习感到枯燥疲惫,缺乏学习兴趣,久而久之,在学生的脑海中就会形成大学物理对专业知识的学习无帮助的错误认识。第二,课时不多,内容不少。在修订培养方案时,各专业不断增加本专业课程的学时数,致使像大学物理及其实验课程这类非专业课程的学时数一再被缩减,而教师为完成教学大纲要求的教学任务,只好照本宣科,根本没有时间对大学物理课程的知识点与实际生活及专业方向之间联系的拓展,导致学生感觉学习乏味,知识的应用性也得不到体现。第三,课程考核结构单一。成绩考核基本上是由平时成绩和期末考试组成,平时成绩看考勤,期末成绩看试卷,不能够客观地、真实地反映大学物理教学效果,更甭提调动学生学学物理的积极性了。第四,教学方法单调。大部分教师仍以传统的板书和PPT授课相结合的讲授式教学方法为主,老师扮演了知识传递者这个主角,学生自然地就变成了知识的被灌输者这个配角,这些也会导致学生学习过程中不积极主动、缺乏学习兴趣根源。

二、针对大学物理教学改革的探讨

(一)以培养应用型人才应用能力为基础,改革教学内容

在改革大学物理教学内容之初,我们首先对各专业的培养方案进行了认真分析,并与讲授各门主干专业课程的老师座谈,了解各专业的需求和学科交叉领域,然后,梳理大学物理教材中的知识点,根据不同专业的要求适当的调整教学基本内容,尽量缩减与各专业关联小的章节的课时,增加与专业知识内容联系紧密的知识点的课时。教师根据不同专业对知识需求不同,在教学过程中突出重点,充分利用各专业学生对专业知识的渴求,来提升学生对大学物理课程学习的兴趣。我校理工科专业对大学物理知识的需求主要集中在:(1)对力学、热学和机械振动(机械波)知识需求较高的土木工程类专业;(2)对力学、电学和磁学需求较高的机械工程类;(3)对电学、磁学和光学需求较高的电子信息工程类。在确保大学物理教学基本需求的前提下,根据三类专业对大学物理知识需求的侧重点不同,我们对不同类专业教学内容进行适度调整,重新修订大学物理课程教学大纲内容。同时,对不同类专业相同知识点的深度、广度及教学方法加以区别,特别突出与专业课程关系紧密的知识点的重点讲授。另外,结合生产和生活以及科学研究中所涉及的实际的物理现象和问题,有针对性的重新编写例题和习题,并根据各专业的实际需要调整其教学内容,使所编写的例题和习题能够充分体现其在各个领域的实际应用价值,而不是泛泛的针对抽象的物理模型编写习题和例题,从而增强学生学学物理课程的兴趣,进而在培养学生解决实际问题的能力方面起到积极的作用。

(二)以培养应用型人才创新能力为目标,改革教学方法

结合应用型人才能力培养要求,我们逐步推进以学生为中心,以启发式、合作式、参与式教学为主流的大学物理课程教学方法改革与推广。我们强调以激发学生学习兴趣、培养创新能力为主的大学物理课程教学,在开课的前两学时,结合实际案例向学生介绍当前科学技术领域的新发现和新成就,对物理学的知识领域、思维方式方法和分析处理问题的方法在现代科技发展中所起的重要作用进行详细阐释,来达到提高学生对学学物理重要性认识的目的,在课程讲授过程中适当引入课内实践环节,使学生掌握大学物理与其他专业课程之间的联系,关注物理知识在生产技术等实践活动中的应用,从而使学生在比较和综合中学习,培养运用知识的能力,培养学生的创造性思维和创新能力。教师针对不同专业的授课对象,提炼出与所学专业知识联系紧密,且有实践应用价值的题目。例如:讲授圆周运动时提及航天技术,讲授静电场中导体时提及静电屏蔽原理应用,讲授安培力时提及磁悬浮技术,讲授光的衍射时提及测量技术中的应用等。使学生真正感受到高科技并不是高不可攀,其应用的基本原理就在我们所学习的大学物理课程之中。授课教师把班级成员分成若干课内实践小组,要求以小组为基本单位,进行与课内实践题目相关的知识的课外调研,然后,结合在大学物理课程中所学知识及所学相关专业知识完成一份小报告,阐述与这些实践题目相关专业知识在各领域的具体应用,然后由授课教师组织讨论并总结。学生对科技前沿的知识方面的普遍表现是很感兴趣,所以,在课内实践教学环节中会提出很多问题,进行不断的分析讨论,因此,通过引入课外调查研究、课内分析讨论的课内实践教学环节,激发学生对大学物理学习兴趣,同时也能够培养学生调查研究能力、分析总结的能力,也可以提高学生的实践创新能力,使学生在学习过程中受益。

(三)以培养应用型人才综合素质为核心,改革课程考核方式

课程考核是课程教学的重要环节之一,也是影响教学质量的重要因素。我校传统的大学物理成绩评定以期末考试成绩为主,总评成绩侧重三七分,平时成绩占30%,期末成绩占70%(甚至所占比例更高),这种考核方式弊端在于重结果而轻过程,很难提高学生学学物理的积极性。针对我校课程考核方式所带来的弊端,我们改革考试方法,注重学习过程考查和学生能力评价。增加课堂考勤、期中考试、随堂测验、课后作业、调研小报告(小论文)等学习与考核环节,并将考核成绩折合后计入课程考核总分,重点提出大学物理课程成绩考核的“五+五”评定结构,即,平时成绩和期末成绩各占总成绩的50%,平时成绩中,课堂表现部分占10%、课内(包括理论课及实验课)实践部分占30%、课外作业部分占10%,而且课堂中学生学习表现和课外作业情况评定要求均不低于3次,课内实践情况评定不少于3次,另外,学生平时成绩或期末成绩中如有一项不及格,那么,该生总成绩视为不及格。课内实践成绩评定的适当提高,有利于调动学生主动参与大学物理知识的学习,巩固学生对大学物理知识点的理解和掌握,提升学生对大学物理知识与自己本专业知识之间联系的认知,遏制目前存在的学生考前突击复习应付考试及部分学生考试违纪等现象。改革课程考核内容和形式就是要加强对学生学习过程的管控,以保证学生有足够的精力、足够的时间投入到大学物理课程的学习。

结束语

教学模式问题是地方本科院校转型发展所面临的一个亟待解决的难题。本文结合培养应用型人才要求,针对应用型本科院校理工科大学物理教学中存在的问题,提出根据不同专业对大学物理教学知识点需求调整教学内容,激发学生学习兴趣;根据所学专业知识衔接关系引入课内实践教学环节,提高学生自主学习的能力;根据“三七分”考核方式存在的弊端提出“五+五”结构的考核方式,强化学生对知识的理解等方面教学改革,有效调动学生学习的积极性和主动性,培养学生独立思维能力和创新能力,提高教学效果。大学物理课程教学改革不是一朝一夕一蹴而就的工作,作为教学改革的探索者,要带着实施求实的态度,不断深入教学一线调研分析,掌握各自学校的教学模式和学生实践情况,制定合理有效的措施,才能解决当前地方本科院校转型发展所面临的教学模式改革中的难题。

作者:张继德 车立新 马宏源 肖俊平 单位:白城师范学院物理与电子信息学院

参考文献:

[1]孙泽平.关于应用性本科院校应用型人才改革的思考[J].中国高教研究,2011(4):55-57.

篇4

作者简介:李玲(1980-),女,湖北荆州人,长江大学工程技术学院,讲师。(湖北 荆州 430020)

基金项目:本文系长江大学工程技术学院教研基金项目(项目编号:JY201112)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)08-0122-02

一、大学物理课程的意义

物理是自然科学的基础性学科,它的知识体系和思维方法贯穿人们学习自然科学知识的始终,培养人的科学精神,陶冶人的科学思维,教会人应用科学方法解决具体问题。大学物理是工程技术学院(以下简称“我院”)相关系部许多专业课的理论基础,但因有些学生认识不到这门课的重要性,经常在课程中期出现畏难厌学现象。现通过改革课堂教学内容,提高学生对物理的学习兴趣,以期提高教学质量。

物理学史上的许多名人轶事及其主要研究成果的研发过程都对今人有积极的指导作用,如光学波粒二象性对立统一的认知发展过程。若能结合教学内容将物理学史中有代表性的知识体系发展融入教学过程,既可激发学习兴趣,改变满堂灌的理论推导,又可有机地将物理知识要点与科学的世界观及哲学发展理论结合起来,有利于学生知识底蕴的累积和眼界的开阔。

表1 大学物理全模块教学内容及课时分配

我院经过数年的大学物理模块化教学改革[1]后,将学科内容分为六个模块(表1),参考课时分配,本文讨论如何在课堂教学中将物理学发明史、名人史等容易激发学生兴趣的内容导入,以及导入后其对课题教学可起到的积极作用,课程内容以我院现在使用的大学物理教材[2]为准。

二、大学物理全模块教学内容

1.力学

力学部分的讲授内容比较多,是物理学实践探索方法与思想体系建立的基础。质点运动学有两次课,第一次课绪论开端讨论物理学科的研究范围,介绍从古人对自然的朴素的感性认知,到近代利用微积分等数学工具归纳推导大量天文观测数据及实验室数据而获得的经典物理学基本定理与定律,再到近现代的量子物理和相对论,物理的发展史即人类文明的发展史。这两次课中要将大学物理用到的微积分、矢量等数学知识进行系统化介绍,而微积分的发明者之一牛顿正是近代物理的标志人物。

牛顿定律部分由于学生熟悉内容,在理论讲授部分很容易分散注意力,因此,介绍相关物理学史知识可以有效地激发学生兴趣。如被称为近代物理学之父的伽利略,其著名的比萨斜塔落体实验、斜面实验皆入选最美丽的十大物理实验,[3]其物理思想如惯性、力与运动的关系等,是牛顿定律得以建立的基石。而牛顿在1687年发表的《自然哲学的数学原理》里提出的万有引力定律以及他的牛顿运动定律是经典力学的基石。质点动力学的最后一节非惯性系略有些抽象。以科里奥利命名的旋转参考系中的惯性力有许多常见实例,很容易激发学生探究兴趣,如台风气旋、下水方向、河道两边的不对称冲刷,以及著名的列入十大最美物理实验之一的傅科摆。[3]

刚体力学三次课相对来讲较难较抽象,需要用到微积分、空间立体几何及矢量叉乘知识,质点的角动量守恒可以将开普勒第二定律的反向证明作为计算实例,而历史上牛顿正是由开普勒第二定律推导定义角动量的概念。在大段相对沉闷的概念讲解和定理推导之后,第谷与开普勒师生的历史故事以及他们对物理学发展的贡献很容易引起学生的兴趣。

2.振动与波

由于简谐振动的振动方程、平面简谐波的波动方程等都比较抽象,其对应物理量的计算和转换多,所以此处学生最易产生厌学情绪。

机械振动两次课,第一节课可用中国2013年6月太空课堂的单摆实验导入;第二次课的利萨,及其后的阻尼振动及共振在生活中的应用及历史中的实例就更多了,例如著名的18世纪拿破仑士兵齐步过桥致桥塌事件。在西方,波动现象的本质首先是由达芬奇发现的。机械波致质点受迫振动也可举共振的例子,如中国古代战场上利用共振器判断敌军多寡和方位、唐朝寺庙钟磬声波共鸣等事例。第二次课中可以用1842年多普勒在散步时的“多普勒效应”导入,目前该效应应用很广。

3.热学

热学部分我院仅勘工和化工类专业需要学习。气体动理论部分的两次课中涉及到微积分的计算不太多,学生们对克拉伯龙方程也有一定基础,总体难度不大。第二次课讲自由度及麦氏速率分布率时,由于涉及到统计学,相对比较枯燥且理论公式冗长。可以在前期已观察到学生状态及接受水平的基础上,淡化理论,介绍一下科学家麦克斯韦生平。麦克斯韦被誉为牛顿与爱因斯坦之间最伟大的物理学家,其一生对物理学的卓越贡献不仅表现在对后世产生巨大影响的电磁学上。他在热力学方面提出的麦克斯韦速率分布式也是应用最广泛的科学公式之一,在许多物理分支中起着重要的作用。同时代的科学家玻尔兹曼将麦克斯韦速率分布式应用到保守力场中,提出了玻尔兹曼速率分布律,在热力学研究中也具有重要地位。玻尔兹曼把物理体系的熵和概率联系起来,阐明了热力学第二定律的统计性质并引出了能量均分原理。

热力学基础三次课,可联系科学发展史上对永动机的探索导入。如第一类永动机不可能被创造出来是违背了能量守恒定律,但其探索过程为热力学第一定律的建立提供了实验基础;第二类永动机则违背了热力学第二定律。此外,热机的发明是工业革命的标志之一,第二次课的循环过程可借此话题导入。

4.光学

光学是一个古老而充满活力的学科。[4]从十七世纪中叶牛顿和惠更斯分别提出光的微粒学说和波动学说之后,对于光的本质的讨论一直是科学界热点话题,直到二十世纪爱因斯坦提出光的波粒二象性才告一段落。牛顿对光学的研究可视为近代光学的开端,其棱镜分解白光实验入选十大最美物理实验,[3]而牛顿环实验至今仍是大学普通物理实验室经典必选实验之一。因牛顿的权威,光的微粒学说在科学界占主导地位达一个多世纪。光的干涉第一次课以十九世纪初托马斯杨的双缝干涉实验导入,这一实验揭开了近代波动光学的序幕,亦是十大最美丽的物理实验之一。[3]第二次课薄膜干涉可以用牛顿环导入。第三次课中介绍在物理学史上有重要地位的迈克尔逊(1907年获诺贝尔奖)干涉仪。

在衍射部分,将菲涅尔等实验证明的著名泊松亮斑在第一次课中作简单介绍,可以很好激发学生的讨论热情,因泊松亮斑的相关历史很多学生都有所了解。第二次课的X射线衍射的发现过程亦十分有趣,伦琴(1901年获诺贝尔奖)夫人戴婚戒的手骨底片是第一张X光照片。

光的偏振总体上是介绍性质的讲授,重点是1808年发现的马吕斯定律和1815年布儒斯特定律,不作重点但比较有趣的双折射现象则是早在1669年就被人们发现的,其在生活中可作为辨别晶体与非晶体的一种方式。

5.电磁学

经典电磁学理论是大学物理中的必修模块,虽然理论推导多、微积分计算多,但现在电磁学在生活中的应用无处不在,且名人辈出,将课上得生动有趣并不困难。如静电学部分的库仑定律是1785年的库仑扭秤实验确立的,电荷的不连续性是由1909年密立根油滴实验证明,该实验是十大最美物理实验之一。[3]第三次课讲授的静电场高斯定理因“数学之王”高斯得名。高斯生平传闻轶事很多,尤其是其研究生时期,误将悬留两千余年未解的尺规作正十七边形问题作为导师布置的课后作业一夜解决的故事,与学生们发散讨论其心理学与教育学意义,对于学生打破心理设限努力钻研学习很有意义。

稳恒磁场八次课,第一次课可介绍中国古人在磁学方面的发现,司南和指南针的意义;1820年近代磁学标志性的奥斯特实验等,也是学生们熟悉且有兴趣的内容。第二次课的毕奥-萨伐尔定律,可介绍其定律的得出与安培、拉普拉斯等在数学上的帮助密不可分,再次强调大学物理学习中高数知识的重要性。安培是一位在数学、物理、化学领域都有很高造诣的科学家,约第四、五次课中学习的磁场安培环路定理、安培定律都由他发现,被称为“电学中的牛顿”。

电磁感应部分则由著名科学家法拉第的故事导入。被誉为电磁学领域的平民巨人,著名的自学成才的科学家法拉第,生于英国一个贫苦铁匠家庭,仅上过小学。1831年,他作出了关于力场的关键性突破,永远改变了人类文明。[4]法拉第是一位无以伦比的实验物理学家,在电磁学、化学、电解、气体液化等实验方面都做出了巨大贡献。而且法拉第十分幸运地在晚年遇到了既能理解他的物理思想,又长于数学的麦克斯韦,第三、四次课中的感生电场和位移电流假设都是由麦克斯韦提出。麦克斯韦于1873年出版了科学名著《电磁理论》,系统、全面、完美地阐述了电磁场理论,这一理论成为经典物理学的重要支柱之一。1888年,赫兹经反复实验,终于发现了人们怀疑和期待已久的电磁波,由法拉第开创、麦克斯韦总结的电磁理论,得以完美的证明。

6.相对论与近代物理

这部分内容我院只有全模块的勘工和建环专业按十六课时教学并考试,其他专业都只作为了解内容,用物理学史的故事串讲主要内容即可:

(1)被誉为20世纪最伟大物理学家的爱因斯坦,其狭义相对论的两个重要结论:时间延缓和长度收缩效应,及物理学史上著名的双生子佯谬已被实验证明,而为爱因斯坦赢得1921年诺贝尔奖的是光电效应的研究。

(2)光电效应方程中的普朗克常数对描述光的量子性非常重要,因研究黑体辐射而提出该常数的普朗克(1918年诺贝尔物理学奖)是量子力学的创始人。有趣的是,普朗克本人并不认同量子理论的许多观点,直到爱因斯坦利用能量子假设完美地解释了光电效应。

(3)被戏传一举拿下诺贝尔奖(1929)的德布罗意也是量子力学创始人之一,以物质波假设理论最初的确是在其博士论文中提出的,因德布罗意是法国公爵兼德国王子,使其曾被传闻是一位花花公子,事实上德布罗意终身献身于科学,深居简出,是个标准的工作狂。

(4)提出氢原子能级假设的天才玻尔是著名的哥本哈根学派创始人,量子力学的奠基人之一。

(5)概率波动力学的创始人薛定谔,提出著名假设“薛定谔的猫”。

三、结束语

本文按长江大学使用的《大学物理》教材[2]中各章节先后顺序列出各章可能提及的名人轶事,希望对执教于大学物理的同仁们在课堂教学中有所助益。

参考文献:

[1]李玲,梅丽雪.独立学院大学物理模块化教学探讨[J].华章,

2009,(9).

[2]康垂令, 伍嗣榕,李玲.大学物理[M].武汉:武汉理工大学出版社,2013.

篇5

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2015)09-0148-02

作为一所应用型人才为培养目标的三本院校,大学物理是学生们的必修基础课,其研究思想和方法在培养学生的专业基础和专业能力方面发挥着重要的作用,而三本院校的学生由于其群体特征,普遍觉得大学物理是一门比较难学的课程,学生基础又差,掌握物理知识较为困难,这就产生了矛盾势必影响大学物理教学的效果,因此,不断提高三本院校大学物理教学质量是适应时展,造就应用型人才的需要。

一、影响大学物理教学质量的因素

结合几年来的教学体会及对整个学校的调查,认为影响大学物理教学质量的因素主要有以下几个方面。

(一)学生群体自身的弱点

三本院校学生很多家庭经济条件较好并且又多是独生子女,这种优越的条件使他们从小养成了衣来伸手饭来张口的习惯,他们学习的内部动机因素的激励作用很小,对学习不感兴趣,学习目的不明确。学习纪律松散,自我约束能力差,在中学他们是在家长和老师的监督下被动的学习,没有养成很好的自制力。进入大学后面对全新的、宽松的学习环境就更不可能进行艰苦的学习。因此他们上课基本不听,课后基本不问,作业基本不做,要做基本照抄。也就领会不到大学物理的精髓,所以不能转化学习方式,对大学物理的知识理解还只停留在中学时代,不能运用高等数学知识来解决物理问题。

(二)教师群体自身的弱点

作为三本院校的教师,由于三本院校自身的特点,大多被引进学校以后,没有受到系统有效的课程培训,只能参考网络资料或者借鉴其他老师的方法。大多都是在简单的沿用一本二本的传统教学方法,并没有考虑到学生的整体情况,所以上课讲的内容对于基础差的三本生来说存在着听不懂的现在。教师所使用的教材没有针对性,与之有关联的课程老师之间缺乏交流。大多三本院校为了降低成本,老师的工作量比较大,大部分时间都在课堂上,没有时间和精力进行思考设计改善课堂教学质量。

二、提高大学物理教学质量的有效途径

(一)根据成果为本制定教学目标

在通识教育的大环境下“成果为本”教学已经成为一个国际性的趋势,学习成果就是学生在完成了学习之后达到的成果,应该包括:知识,能力,素质。这就需要我们实现两个方面的转变:一是从“内容为本”到“成果为本”的转变,我们传统的教学内容计划比较看重知识,以成果为本教学的话,根据学习成果为本计划就要包括知识,能力,素质,除了使学生具有知识之外更重要的是要使学生具有终身学习的能力,就是培养学生的观念和意识。二是要从教师角度向学生角度转变,也就是我们在制定教学目标时要与学生形成共识。因为学生的群体特征,普遍基础差,起点低,所以制定目标时要考虑学生的实际情况不能太高,制定教学目标时还应注意语言的应用,不要用空洞的词,要多用浅显具体的词汇。比如我们在写教案时,要达到的学习成果,往往都用“理解……,掌握……”这些就是空洞的。因为不同的人对理解的解释是不同的,教师对学生达到的较高层次的理解的渴望,往往会被学生解释为较低层次的理解。在讲高斯定理时我们就可以把理解掌握高斯定理写成能够独立分析并作出……习题。我们上课虽然都会给学生明确每章的教学目标,但由于学生的特点,他们往往都是左耳进右耳出,很少有记笔记。根据实际情况我们可以把教案改成学案,上课之前发给大家,并要求保存,定期检查,期末进行总结。以督促学生学习,提高教学和学习质量。

(二)教和学的活动要与评核方式建构性配合

篇6

在第二轮复习中,我们不可能再面面俱到,“眉毛胡子一把抓”,而且时间也不可能允许这样做。

概括起来高中物理的主干知识有以下方面的内容:

(1)力学部分:物体的平衡;牛顿运动定律与运动定律的综合应用;动量守恒定律的应用;机械能守恒定律及能的转化和守恒定律。

(2)电磁学部分:带电粒子在电、磁场中的运动;有关电路的分析和计算;电磁感应现象及其应用。

光学部分;光的反射和折射及其应用。

在各部分的综合应用中,主要以下面几种方式的综合较多:

(1)牛顿三定律与匀速直线运动的综合;

(2)动量和能量的综合;

(3)以带电粒子在电场、磁场中运动为模型的电学与力学的综合;

(4)电磁感应现象与闭合电路欧姆定律的综合,用力学和能量观点解决导体在匀强磁场中的运动问题;

(5)串、并联电路规律与实验的综合。

对以上的知识一定要特别重视,尽可能做到每个内容都能过关,决不能掉以轻心。

二、针对高考能力的要求,做好以下几个专项训练

高考《考试大纲》中明确表示学生应具有五个方面的能力,即:理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力和实验能力。针对以上能力的要求,要注意加强二个方面的专项训练。

(1)审题能力:虽是一种阅读能力,实际上还是理解能力。每次考试总有人埋怨自己因看错了题而失分,甚至还有一些人对某些题根本看不懂(主要是信息题,因题干太长,无法从中获取有用信息,有些同学对这类题有一种恐惧感,影响其他题的解答)。这都是审题能力不强的表现,如何才能避免呢?具体来说,在审题过程中一定要注意以下三方面的问题:

①关键词语的理解;

②隐含条件的挖掘;

③排除干扰因素。

(2)表达能力及解题的规范化训练。每次考试阅卷完后,总是感叹学生在表述方面存在相当大的差距,往往是语不达意,甚至一道综合应用题,有时就是聊聊几句就完事。使得该得分的得不到分,或得不到满分,实在可惜。提高语言表达能力、规范解题格式是目前广大同学应解决的重大问题。

三、量力而行,量体裁衣

在后阶段的模拟练习中,一般会遇到三种类型:

一是有十足的把握完成的;二是难啃得题,即有时反复看题都看不懂,很难进入物理情景的“生题、难题、怪题”,有时甚至通过老师的讲解都不明白的题目;三是中心无底的题,即解答过程中能找到一些头绪,好像能做的出,但心中又不能完全理解。

对于以上三种类型,分别应以三种不同的对策应付:对于第一种类型:可以采取“做过且过”,主要目的在于复习、巩固、加深印象。对于第二种类型:只好忍痛割爱,“得过且过”因为这类题型可能已超过你的能力水平范围,不要使自己钻入死胡同,浪费大好的时间。对于第三种类型的解决要作为重点对象,做到“坚决不放过”,正如阿杜所唱的“坚持到底”,因为只要你“跳一跳,树上的那个桃子就能摘得到”,是可望且可及的目标。而且也说明这方面对你来说是薄弱环节,因此要下狠功夫,决不能含糊。

四、 选题要“精”,评讲要“细”,做题要注意“精”“细”结合

选题要“精”,主要体现在新颖性、梯度性、适度性、针对性和创新性,在第二轮复习中,可谓是模拟试题满天飞,如何采用这些资料呢?首先要对手中的资料仔细分析,在此基础上针对性的选好题,采用拼盘的方式组织起来让学生练习。

评讲要“细”,即重思路、善引导、做示范、细纠正。每次评讲时,必须先对各题的得分情况进行具体的分析与总结,然后才能做到有的放矢,同时,要重视个别指导,对问题较大或问题比较明显的单独进行点评。

五、精读课本、不留死角

对物理学中的机械振动、机械波、光学部分,要求是比较低的,也正因为如此,往往复习中花的功夫不是很多。虽在这几方面难度不是很大,综合也并不是很多,但绝不能掉以轻心,在复习中要特别注意课本的重要性,课本是知识之源,对这几部分的内容一定要做到熟读、精读课本,看懂、看透,一次不够,二次,二次不行,再来,绝不能留任何死角。包括课后的阅读材料、小实验、小资料等。

篇7

中图分类号:O42文献标识码:A文章编号:1007-3973 (2010) 07-084-02

机械振动在媒质中的传播过程称为机械波。声波是一种机械波。适当频率和强弱的声波传到人的耳朵,人们就感受到了声音。弹性媒质的存在是声波传播的必要条件,人们很早做过一个简单实验也清楚地证明了这一点,把电铃放在玻璃罩中,抽去罩中作为弹性媒质的空气,结果只能看到电铃的小锤在振动,却听不到由它发出的电铃声。

波速是媒质的一种特性。流体只能传播纵波(表面除外),固体既能传播纵波,又能传播横波。波速随媒质中波的种类而异。在不均匀媒质中,各部分媒质的波速可以不同,在各向异性媒质中,沿各个方向传播的速度可以不同。这里我们仅讨论各向同性的均匀媒质。主要是讨论在空气中传播的声波的速度。

1流体中的平面波方程

为了使问题简化,我们仅讨论流体中平面声波的波动方程,并假定媒质为理想流体,不存在粘滞性,传播时没有能量耗损。没有声扰动时,媒质在宏观上是静止的,均匀连续。设静态压强P0、静态密度都是常数 0。声波传播时,媒质中稠密和稀疏的过程是绝热的。并且媒质中传播的是小振幅声波。

图1

设想在空间取一体积元,如图1所示,媒质中静止压强为P0,则有声波传播时,总压强P将在P0附近振动,这个交变振动的附加压强P就称为声压。由于声压P随位置y而异,因此作用在体积元左右侧面上的力是不相等的,其合力就导致这个体积元里的质点沿y方向的运动。当有声波传过时,体积元左侧面处的压强为P0+P,所以作用在该体积元左侧面(S为侧面积)上的力为F1(P0+P)S,因为在理想流体媒质中不存在切向力,内压力总是垂直于所取的表面,所以F1的方向是沿y的正方向。体积元右侧面处的压强为P0+P+dP,其中为位置从x变到x+dx以后声压的改变量, F2=(P0+P+dp)S,其方向沿y负方向。考虑到媒质静态压强P0不随y而变。因而作用在该体积元上沿x方向的合力 ,该体积元内媒质的质量为 sdx,它在力F作用下得到沿x方向的加速度,因此由牛顿第二定律有:

即: …………………………(1)

式中 为媒质的静态密度 0,因为对小振幅声波,媒质密度 0增量甚小于静态密度,u表示体积元的振动速度。

设y为体积元左侧的位移,则右侧面的位移可表为体积元的体积应变为:

流体的体积弹性模量k为 …………(2)

将式(2)的p代入式(1)

并考虑到 ,即得到平面声波的波动方程:

………………………………………………(3)

声波的传播速度应为:…………………………(4)

2空气中声速与温度的关系

如媒质可看成是理想气体,并把声波过程看作绝热过程,则根据绝热方程恒,得

………(5)

这里因为P=P0+dp,dp就是附加压强,式中r是定压比热与定容比热的比值,由此得到理想气体中的声速为

………………………………………………(6)

在1687年牛顿从等温过程得到声速公式 ,但是不久以后由实验中发现按照牛顿这一理论公式算出的声速比实际测定值小20%,直到1816年拉普拉斯才对这种情况作出了说明。认为声波在气体中的传播不是按照等温规律而是按照绝热的规律进行的。在频率高的振动中,根本来不及进行热交换。大批的实验证实了拉普拉斯公式(6)的正确性,从而人们最后确认了声振动过程确实是绝热的。

对于空气,r=1.402,在标准大气压p0=1.01305牛顿/米2,温度0℃时,密度千克/米3,按式(6)算得: 米/秒。

下面讨论空气中的声速与温度的关系,由理想气体状态方程:………………………………………………(7)

其中和T为m千克气体的压强、体积和绝对温度,为气体摩尔量,对空气=290-3千克/摩尔,R=8.31焦耳/开尔文•摩尔为气体常数。

将式(7) 代入(6)得:

(t℃)=…………………………(8)1

………………………………………(8)2

表明:空气中的声速随温度而升高。每升高1℃,声速增加0.6米/秒,例如,空气中温度为20℃时的声速 米/秒。

除空气外,其他的气体由于 及r值都不相同,声波速度也不同。例如:在1大气压,0℃时,氧中的声速315米/秒,氢中的声速1263米/秒,二氧化碳中声速258米/秒。

对于一般流体(包括液体),其压强和密度之间的关系比较复杂,很难求得类似于恒,这样的解析表达式。通常可以用式来计算声速。体积弹性模量k的倒数,叫做压缩系数,对于水20℃时千克/米3,=45.80-11米2/牛顿,则按式(4)算得 1480米/秒。由于水中压强和密度间的关系比较复杂,从理论上计算声速值与温度的关系比较困难,往往根据实验测定再总结出经验公式,通常水温升高摄氏1℃,声速约增加4.5米/秒。

3大气中的声速与高度的关系

地球表面上的空气层称为大气,估计地球大气层的总质量为5015千克。由地球大气过渡到宇宙空间去是逐渐实现的,因此不能指出地球大气准确的上部界限。大气全部质量的50%集中在5.5公里的高度以下。在10公里高度以下集中了大气全部质量的75%左右,而在20公里下则有着全部质量的94%,可见空气密度随着高度的增加而很快地减小。

人们把大气分为三层――对流层、同温层、电离层。大气的低层(在中纬度约11公里以下)叫做对流层,云、雨、雪就产生在这里。因为受到地面热反射的显著影响。在对流层气温随高度增加而降低。直接衔接在对流层上面的大气层,叫做同温层。温度随高度变化的程度是很小的(至少在30公里的高度以下是这样),同温层的温度在中纬度上大约为-55℃~ -57℃。大气的高层叫做电离层,约在30公里以上,这时温度开始随高度的升高而升高,到50公里平均温度+75℃,到80公里为-105℃,85公里开始又上升,在120公里平均温度+100℃。

大气的状态是非常多变的,甚至在同一高度上,纬度、季节,昼夜等都能对大气状态发生影响。为了消除这种不便,人们采用了一种假想的大气,叫做国际标准大气。提出了不同高度上空气各参数(温度、压强、密度)的平均值。将海平面作为零高度,零高度上的压强为76厘米水银柱高,而空气温度作为+15℃。

在对流层范围内,空气温度随高度的上升而下降。因此在对流层中声速值也随高度的上升而减小。如果按照国际标准大气计算,为了计算对流层内某一高度上的声速,可以利用下面这一近似公式:(米/秒)…………………(9)

式中的高度H用米为单位,按照这个公式,对流层中的声速每升高250米,即减小1米/秒。

在11公里(11000米)以上的高度,在同温层温度开始变为固定,按照国际标准大气,等于―56.5℃,因此在这些高度上的声速也应当认为是固定的由式(8)

…………………………………(10)

同温层的声速 米/秒

4声速与媒质质点的振动速度

声速代表的是声振动在媒质中的传播速度,它与媒质质点本身的振动速度是完全不同的两个概念,人们说话,声波在空气中的传播速度米/秒。那么空气中质点的振动速度u的最大值等于多少呢?下面我们作些估算。

由式(1),体积元的运动方程:

……………………………………………(11)

它把声压p和质点的速度u联系在一起。

在平面波情况下,质点的位移为:

速度:

………………………………………………… (12)

式中 是速度的最大值,称为速度振幅。

设声压的方程式为: ……………(13)

式中pm表示声压的振幅,表示声压和位移间的位相差。将式(12)(13)代入式(11),得:

所以:

因此声压的方程式为

…………………………(14)

表明:声压与振动速度成正比,并具有相同的位相,都按位移超前越大,同一声压下质点获得的速度u就越小;反之,则u越大。 称为介质的声阻,以z表示,即:

…………………………………………(15)

由上式可知,质点振动速度的幅值为,对空气,当温度为20℃时,密度千克/米3,声速v=344米/秒。如果设声压幅值帕(约相当于人们大声讲话时的声压),可求得质点振动速度的幅值为: (米/秒)

可见与u完全是两回事,也可看出声波的速度要比质点的振动速度大得多。