时间:2023-03-08 15:37:32
导言:作为写作爱好者,不可错过为您精心挑选的10篇文化学术论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
一、前 言
传统数学教学常常只将重点放在知识与技能的传授方面,而在培养学生对数学这一门学科的文化内涵、思想体系的认识上往往重视不够.这种教学的结果常常使学生感到枯燥无味而失去学习数学课程的热情与兴趣.而且,随着人们文化水平的不断提高与对数学文化知识重要性的不断了解,其巨大的教育价值更加受到教育工作者的重视.
数学课程应该是数学历史及发展趋势以及对人类文明发展作用的反映.张奠宙教授曾强调,数学文化应当与数学教学相结合,使学生在实际教学中真正感受数学文化并与之产生共鸣.在推崇综合发展、文理交融的现代社会,我们更要转变教学观念,将数学文化与大学数学教学很好地结合在一起.
二、数学文化内涵及其对高等数学教学的重要性
“国家级教学名师”、南开大学数学科学院院长顾沛教授对数学文化内涵的定义分为:数学文化从狭义来讲,指的是数学思想、方法、精神、语言、观点及其形成与发展;从广义上来讲,还包括数学美、数学史、数学与人文的交叉、数学教育、数学与其他文化的关系.大学数学教学的目的不仅是向学生传授知识,更应当培养学生适应社会发展所必需的判断力、理解力以及解决实际问题的能力,最大可能地激发学生的创造力.所以,现代大学数学教学应将更多的精力倾注在学生数学能力的培养上,而这个目标的实现就是要将数学文化与数学教学有机结合起来.
三、如何将数学文化与数学教学有效相结合
1.更新教师教育观念,提高其文化素养
教师更新数学教学观念,提高自身文化素养,是传授数学文化学生的前提条件.现代的大学教师不仅要专业知识扎实,而且要知识面足够宽广,对数学哲学、数学史等方面的基本知识足够熟悉,掌握高等数学的历史背景、发展现状、应用价值与前景,并能将课程知识与这些知识很好地融合后再传授给学生.具体来说,应做好以下几方面的工作.
首先,教师应深入钻研教材,合理组织教学,加强与其他专业老师的合作.由于所有教材都有其缺点,因此在备课过程中教师应尽可能地参考多种教材,选择优秀部分进行教学.由于所教学生的专业不同,特点也不同,大学数学教师在教学时就应当根据学生的专业选择内容,根据专业需要的内容进行细讲,而那些用不到的知识就可粗讲甚至忽略.比如傅里叶级数这部分知识对计算机专业学生的专业知识学习比较重要,因此应进行重点讲解;在讲解重点内容时,还可以将人多的大课堂分成小班教学,并依据学生的基础不同进行合理教学,使所有学生都能很好地学到知识.
其次,教师间也要重视对教学思路的探讨,在进行教学内容顺序的安排时,既要遵循由浅入深、从特例引出一般的原则,又要具体情况具体分析.比如,由于微分与定积分、不定积分联系非常密切,因此可以将定积分与不定积分合为一章,先讲解定积分概念和性质,然后依据微积分基本定理,建立定积分与不定积分(原函数)之间的联系,最后讲解基本积分法,这样安排既方便学生理解,还能突出重点.
2.优化课堂教学内容
第一,以数学内容自身作为出发点,体现其文化价值.大学数学教育的最高境界是培养学生的理性精神.严谨规范的数学知识,有益于学生形成团结协作、踏实细微、严肃认真的作风.数学中的常量与变量、有限与无限、微分与积分等都是量变与质变、对立统一等辩证唯物主义的极好的教学材料,有助于学生形成科学的方法论与世界观.
第二,让学生多了解数学家的事迹与思维过程,以及数学的有关史料和应用前景,使学生从中认识到所有科学都是经过认识与再认识、成功与失败的循环往复才不断发展的,科学上每一个小进步都是科学家不懈努力、刻苦钻研的结果,这将很好地调动学生学习数学的非智力因素.以我国数学家陈景润为例,他学习的条件极端艰苦,但是仍然热爱痴迷于数学,坚持不懈地进行数学研究,最终攻克“哥德巴赫猜想”这一世界著名难题.通过这一事例必将激发学生热爱数学和献身数学的精神.
第三,数学课程还应重视数学史料的教学,反映出数学文化的方法、思想、精神、语言、工具的作用,强调数学内容与日常工作生活相结合,突出思想方法与生活紧密联系的原则,增加统计、估算、线性规则、数据分析、运筹、图论等知识,提高学生学好数学的自信心与自觉性.
3.注重改变学生学习方式
数学教学的最终目的是使学生掌握独自学习的本领,而加强数学文化的教学能够很好地提高学生的自学能力.一方面,引导学生多接触和阅读有关的论文与文化书籍,使学生首先对数学知识的发展与应用过程有一定了解,进而更深刻地理解数学知识的意义,这样在增加学生知识面的同时又使其学会了一定的自学方法.另一方面,增设一些活动课与探讨课,鼓励学生积极走入社会,具体实践过程可采用“提出问题建模求解应用”的模式.鼓励他们合作交流与自主探索,增强他们学好数学的决心与愿望,提高他们应用数学知识的能力与意识,认真体会到不同知识的联系,得出研究问题的科学方法与宝贵经验.
四、总 结
现代的大学数学教学,应当是传授数学技能、知识与加强文化熏陶相结合,这样的教育方式才能使学生喜欢数学,更加理解数学,掌握数学的精髓,从而终身受益.而作为教书育人的高校数学教师,要不断提高自己的文化素养,更深层次地研究大学数学教学与数学文化的联系,在数学教学过程中使学生真正感受数学文化的魅力.
二、数学文化融入大学数学教学的必要性
数学文化具有普遍的区域性和人文性双重特征。自从20世纪70年代末我国恢复高考制度以来,全国逐渐形成了教材、教学形式基本统一的数学教学格局,造就了数学教学的繁荣。但如果审视数学教学的文化属性,就会发现我国幅员辽阔的国土上,教育发展不均衡,加之国内各民族聚居区域有别、人口不一造成了全国各地人文文化的巨大差异。以数学文化的视角,显而易见,上述的两个统一是不满足协调关系的,基于此,数学教学组织的顶层设计是不合理的,故需倡导大学数学教学的层次性,满足数学教学的基本文化属性。通过数学教学的文化属性组织教学,通过区域性融入民族文化的教学,通过协调区域差异和文化差异的多模式存在,实现匹配的针对性数学文化教学实践。同时,也要注意数学文化作为文化范畴需要匹配东部地区、西部地区以及发达地区和欠发达地区的社会文化背景,不能盲目追求数学文化的文化属性,必须要将数学文化作为教学实践工具应用形式紧密结合抽象理性思维模式,必须清楚地认识到数学文化思想具有广泛的应用实践性和纯粹理论的抽象逻辑性的双重特征。
二、培养通透的数学教学文化感悟,让学生体验其美
数学是理性思维和想象的结合,其本身就是一种美的体现,体现在对称性、简洁性等诸多方面。如在研究三角形、函数时,会更加关注等腰三角形、二次函数的轴对称性,这体现了轴对称的美;在研究四边形时,会更加关注平行四边形的中心对称性,这体现了中心对称之美;对于最完美的图形———圆来说,我们则更加关注垂径定理……这种对称之美让学生感受到学数学不再是抽象的、枯燥的,而是一种美的享受和体验。数学的简洁美最直接地表现在数学符号上,它是全世界的通用语言,每个人都能从简单的表达式中读出其确切的含义。比如一些常见的数学符号及公式定理:圆周率π,三角函数sin,三角形的面积公式S=12ah,勾股定理a2+b2=c2等。这些符号公式言简意赅,学生可以从简洁的符号语言中明白其中的道理,体验到数学的简洁之美。数学之美包罗万象,不同的问题从不同的角度体现出一定的数学之美。比如列方程解决问题,要从复杂的问题中抽象出一个简单的等式,这既有抽象之美,又有简洁之美,还有逻辑之美。教师应着重引导学生去体验和感受这些美。
三、孕育严谨的数学教学文化精神,让学生改革其新
数学教学文化具有理性思考、客观认知、不断追求的精神,而这种精神的孕育就是在课堂上、在师生双边的教学活动中。在教学《三角形的内角和》一课时,笔者先设计了“量一量”这个环节:让学生利用量角器测量一个三角形的三个内角度数。通过测量学生发现,三角形三个内角之和大致在180°左右,这使得学生初步认识到三角形的内角和可能是一个定值,但是还难以达成一致。笔者接着让学生进行“拼一拼”:将三角形的三个内角按照顺序拼在一起。学生经过“拼一拼”就会发现三个内角组成一个平角,这使得学生在活动中巩固了对“三角形内角和为180°”的认识。但这样同样具有局限性,于是,笔者顺势引导学生进行推理证明:过一个顶点做对边的平行线,利用内错角互补的原理,将另外两个内角等量转换出来,使得三个内角成为一个平角。“拼一拼”“量一量”的教学环节目的是让学生初步感受到三角形的内角和为180°,同时也让学生对此操作的局限性有一定的认识:操作的粗糙性,测量和拼图总会存在一定的误差,严密性不足;操作的特殊性,测量和拼出某一个三角形的内角和180°这一结论难以推至其他三角形,普遍性不足。因此,适时恰当的推理证明可以有效提高学生的数学学习积极性,培养学生的改革创新的精神及思维的严谨性,并使这些逐步内化为学生的能力和习惯。
2精选实验内容,实施绿色化实验教学
无机化学实验教学长期处于理论课的附属,选择的实验内容基本上是都是对理论课上所讲的理论的验证。要想满足教学大纲所规定的培养目标的要求,就必须精心选择实验内容,尽量减少验证性实验的比例,增加综合性、设计性实验的比例,将绿色化学理念贯穿在实验教学过程中,减少有毒有害实验药品的用量,在实验过程中尽量避免有毒有害的化学产物或副产物的生成,减少对周围环境造成的污染。提高实验试剂的利用率和药品的使用率,将实验产生的废液集中存放并按要求进行无害化处理,尽可能的回收再利用,注重对学生环保意识的培养。
3在实验教学中引入多媒体教学手段
多媒体技术是近年来发展非常迅速的网络技术之一,在无机化学实验教学中,一些抽象的原理和现象,很难通过单纯的语言讲解让学生理解,因此可以通过多媒体教学把难懂的原理和现象,具体而形象的展现的屏幕上,来帮助学生理解与掌握。多媒体教学具有较强的直观性,引入的素材较多,能够声形并茂的将抽象的原理,形象直观的表达出来,提高知识传授的效率,充分调动学生的学习积极性,学生的主体地位能得到更深刻的体现。
4更新实验教学方法
目前无机化学实验的教学方法有很多种,包括注入式、启发式、探究式等,而在实际教学过程中并不是只用一种方法,二是采用多种方法并用的形式,我们要改变传统的知识灌输式的把知识全部灌输给学生,学生只是被动的接受,取而代之的是,引导学生去主动学习,学生对实验内容中的知识点进行小组讨论,老师在实验过程中只起到监督和指导的作用,及时纠正学生的实验过程中的不规范操作,引导学生认真观察、分析解释实验现象,并以小组的形式讨论实验结果,使学生正确的理解和掌握实验原理。在实际教学过程中,采用多种方法联合并用的方式,从而提高无机化学实验的教学质量和水平。
5改善实验室的硬件设施
实验室是无机化学实验教学实施过程的主要场所,学生在这里不仅增长了实验技能,也提高了实践创新能力。在无机化学实验的内容里会涉及一些基本仪器的使用操作,这些仪器的更新程度直接反映出实验室的教学水平。随着时代的发展,科技的进步,仪器设备的更新换代非常快,只有跟上发展的步伐,引入先进的仪器设备,才能培养出与国际接轨的人才。因此,高校要增加实验经费的投资,建设高标准、高水平的无机化学实验室,健全实验室的管理体制,完善基础设施建设,建立更高级别的无机化学实验教学基地。
二、数学:科学的语言有不少自然科学家、特别是理论物理学家都曾明确地强调了数学的语言功能。例如,著名物理学家玻尔(N.H.D.Bohr)就曾指出:“数学不应该被看成是以经验的积累为基础的一种特殊的知识分支,而应该被看成是普通语言的一种精确化,这种精确化给普通语言补充了适当的工具来表示一些关系,对这些关系来说普通字句是不精确的或过于纠缠的。严格说来,量子力学和量子电动力学的数学形式系统,只不过给推导关于观测的预期结果提供了计算法则。”(注:《原子物理学和人类知识论文续编》,商务印书馆1978年版。)狄拉克(P.A.M.Dirac)也曾写道:“数学是特别适合于处理任何种类的抽象概念的工具,在这个领域内,它的力量是没有限制的。正因为这个缘故,关于新物理学的书如果不是纯粹描述实验工作的,就必须基本上是数学性的。”(注:狄拉克《量子力学原理》,科学出版社1979年版。)另外,爱因斯坦(A.Einstein)则更通过与艺术语言的比较专门论述了数学的语言性质,他写道:“人们总想以最适当的方式来画出一幅简化的和易领悟的世界图像;于是他就试图用他的这种世界体系来代替经验的世界,并来征服它。这就是画家、诗人、思辨哲学家和自然科学家所做的,他们都按照自己的方式去做。……理论物理学家的世界图象在所有这些可能的图象中占有什么地位呢?它在描述各种关系时要求尽可能达到最高标准的严格精确性,这样的标准只有用数学语言才能做到。”(注:《爱因斯坦文集》第1卷,商务印书馆1976年版。)
一般地说,就像对客观世界量的规律性的认识一样,人们对于其他各种自然规律的认识也并非是一种直接的、简单的反映,而是包括了一个在思想中“重新构造”相应研究对象的过程,以及由内在的思维构造向外部的“独立存在”的转化(在爱因斯坦看来,“构造性”和“思辨性”正是科学思想的本质的思想);就现代的理论研究而言,这种相对独立的“研究对象”的构造则又往往是借助于数学语言得以完成的(数学与一般自然科学的认识活动的区别之一就在于:数学对象是一种“逻辑结构”,一般的“科学对象”则可以说是一种“数学建构”),显然,这也就更为清楚地表明了数学的语言性质。
数学作为一种科学语言,还表现在它能以其特有的语言(概念、公式、法则、定理、方程、模型、理论等)对科学真理进行精确和简洁的表述。如著名物理学家、数学家麦克斯韦(J.C.Maxwell)的麦克斯韦方程组,预见了电磁波的存在,推断出电磁波速度等于光速,并断言光就是一种电磁波。这样,麦克斯韦创立了系统的电磁理论,把光、电、磁统一起来,实现了物理学上重大的理论结合和飞跃。还有黎曼(Riemann)几何和不变量理论为爱因斯坦发现相对论提供了绝妙的描述工具。而边界值数学理论使本世纪二三十年代的远距离原子示波器的制成变为现实。矩阵理论为本世纪20年代海森堡(W.K.Heisenberg)和狄拉克引起的物理学革命奠定了基础。
随着社会的数学化程度日益提高,数学语言已成为人类社会中交流和贮存信息的重要手段。如果说,从前在人们的社会生活中,在商业交往中,运用初等数学就够了,而高等数学一般被认为是科学研究人员所使用的一种高深的科学语言,那么在今天的社会生活中,只懂得初等数学就会感到远远不够用了。事实上,高等数学(如微积分、线性代数)的一些概念、语言正在越来越多地渗透到现代社会生活各个方面的各种信息系统中,而现代数学的一些新的概念(如算子、泛函、拓扑、张量、流形等)则开始大量涌现在科学技术文献中,日渐发展成为现代的科学语言。
三、数学:思维的工具数学是任何人分析问题和解决问题的思想工具。这是因为:首先,数学具有运用抽象思维去把握实在的能力。数学概念是以极度抽象的形式出现的。在现代数学中,集合、结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物。与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依赖于演绎证明。数学家像是生活在一个抽象的数学王国中,然而他们在数学王国的种种发现,即数学结构内部和各种结构之间的规律性的东西,最终还是现实的摹写。而数学应用于实际问题的研究,其关键还在于能建立一个较好的数学模型。建立数学模型的过程,是一个科学抽象的过程,即善于把问题中的次要因素、次要关系、次要过程先撇在一边,抽出主要因素、主要关系、主要过程,经过一个合理的简化步骤,找出所要研究的问题与某种数学结构的对应关系,使这个实际问题转化为数学问题。在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识、判断和预测。这就是运用抽象思维去把握现实的力量所在。
其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段。在数学中,每一个公式、定理都要严格地从逻辑上加以证明以后才能够确立。数学的推理步骤严格地遵守形式逻辑法则,以保证从前提到结论的推导过程中,每一个步骤都在逻辑上准确无误。所以运用数学方法从已知的关系推求未知的关系时,所得结论有逻辑上的确定性和可靠性。数学的逻辑严密性还表现在它的公理化方法上。以理性认识的初级水平发展到更高级的水平,表现在一个理论系统还需要发展到抽象程度更高的公理化系统,通过数学公理化方法,找出最基本的概念、命题,作为逻辑的出发点,运用演绎理论论证各种派生的命题。牛顿所建立的力学系统则可看成自然科学中成功应用公理化方法的典型例子。
第三,数学也是辩证的辅助工具和表现方式。这是恩格斯(F.Engels)对数学的认识功能的一个重要论断。在数学中充满着辩证法,而且有自己特殊的表现方式,即用特殊的符号语言,简明的数学公式,明确地表达出各种辩证的关系和转化。如牛顿
(I.Newton)—莱布尼兹(G.W.Leibniz)公式描述了微分和积分两种运算之间的联系和相互转化,概率论和数理统计表现了事物的必然性与偶然性的内在关系等等(注:孙小礼《数学:人类文化的重要力量》,《北京大学学报》(哲学社会科学版),1993年第1期。)。最后,值得指出的是,数学还是思维的体操。这种思维操练,确实能够增强思维本领,提高科学抽象能力、逻辑推理能力和辩证思维能力。
四、数学:一种思想方法数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。
任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第行星——海王星的发现,就是由亚当斯(J.C.Adams)和勒维烈(U.J.Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。
数学作为推理工具的作用是巨大的。特别是对由于技术条件限制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。
值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A.N.Whitehead)认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(L.E.Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。
数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。
五、数学:理性的艺术通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。
数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。
艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。
艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。(3)简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。(4)象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。
艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。
在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材(注:黄秦安《论艺术与数学的普遍意义及基本关系》,《陕西师大学报》(哲学社会科学版),1994年第
2期。)。
六、数学:充满理性精神数学犹如一棵正在成长着的大树,它是不断发展和丰富着的理论知识体系。数学充满着理性精神,它不断为人们提供新概念、新方法。有的数学家说:“数学在人类历史中的地位绝不亚于语言、艺术和宗教,今天数学正对科学和社会产生着翻天覆地的影响。”(注:〔美〕L.A.斯蒂恩主编《今日数学》第26页,上海科技出版社1982年版。)
(二)教师应该因材施教在文化创意产业发展得背景下,教师对于学生的美术学教学的引导方式是多重多样的,但是最重要的是,教师要善于因材施教,对于不同的学生实行对其最有效的教学方案,教师要注重培养学生的对于美术学的创新能力和审美能力,定期检察学生的美术作品,认真分析他们存在的问题,然后认真监督他们认识自己的不足,并且加以修改,尽量确定学生正确的学习方向,重点培养学生的正确的审美能力和优秀的创新能力和以及实践能力,对其作品进行点评,并且根据学生的具体情况制定适合学生发展的学习方式。此外,教师应该加强与学生的沟通交流,及时了解学生的学习情况,了解他们在学习过程中出现的问题和困惑,积极的帮助学生去解决这些问题,把自己当做学生的知心朋友,能够完全走进学生的内心世界,了解他们,理解他们,然后根据他们的具体情况,掌握他们性格以及兴趣和风格,从而引导每个学生走自己的风格路线,积极创新,让每一个学生都能够创造出属于自己的,有创意的美术风格。每个学生都有自己的性格和行事方式,教师应该尽量让自己的教学方式灵活,保证每个学生都可以自由发展自己的个性,从而更加有效的学习美术,提升自己的创新思维。
(三)培养学生对于美术学基础课程的兴趣美术学基础课程是一个学生学好美术的根本,所以教师一定要努力提升学生对美术学基础课程的兴趣。首先,教师应该让自己的课堂活跃起来,美术学基础课程不一定要上的那么枯燥,教师可以让学生在课堂上积极讨论发挥自己的观点和见解,这样不仅能提升学生的学习兴趣,而且能够培养学生形成正确的价值观。或者教师也可以通过野外写生的方式来上美术学的基础课程,这样,学生既可以享受到学习的乐趣,还可以高效学习。
1.欧阳询。意法并重是欧阳询的书法文化理论追求,欧阳询可以说将楷书技法的难度发挥到了顶峰,他与虞世南、褚遂良、薛稷合称为“初唐四家”。欧阳询通过总结别人的书法文化,创新性地提出了书法文化的“八诀”,如,横若千里之阵云,竖如万岁之枯藤……,他的书法文化作品集中体现了统一风格———险劲。欧阳询以严谨工整、平正峭劲、气势奔放、气韵生动等书法文化特点,将楷书的书法文化推向程式化、规范化模式,由此也在书法文化史上确定了自己的重要地位。从欧阳询诸多令人瞩目的书法文化作品和书法文化理论中,可以看出他涉及最多的还是具体用笔和结字的方法。他的用笔讲求稳健流畅,用笔方整,挥洒自如,笔力刚劲;间架结构则要求四面亭匀,八边具备。在用墨方面,欧阳询提出了“墨淡则伤神,绝浓必滞笔锋”的观点,可以看出,“冲和之美”的儒家美学思想已经渗透于其审美思想之中。
2.李世民。对书法文化艺术尽善尽美的追求,从李世民对王羲之书法文化的推崇中得到深刻的体现。唐太宗李世民不仅是一位卓越的政治家、军事家,还是一位出色的书法文化家。他极力倡导王书,朝野上下对王书的学习成为一种风气,李世民的书法文化作品中不乏传世精品,其书法文化理论著作也赢得了极高的评价。李世民认为王羲之的书法文化神气冲和,不激不厉,优美无比,他对王书倍加推崇,称之“详察古今,研精篆素”。李世民认为,王书表现出了一种创新,这从某种意义上与开国之君励精图治、继往开来的精神相融合。不可否认,这也是它对王书赞赏的因素之一。李世民认为,书法文化创作如同战争,必须有指挥,就是书法文化中所指的“心”。李世民“以阵喻心”的说法,更加强调“骨力”的作用,他所追求的书法文化形态体现了筋骨劲键、笔墨温润的特点。
3.虞世南。他所追求的书法文化美是“冲和之美”,楷体风格具有内柔外刚、萧散洒落、圆润遒劲之美,在书法文化创作中,注重对书意的理解,在他看来那些模拟性的作品不能称之为书法文化,只有领悟书意的书法文化,才是书之妙道。此外,虞世南的书法文化中还美融入了儒道的“太冲“”太和”之气。
4.孙过庭。其书法文化美学思想是情动形言,强调书法文化是人本性的流露,是由情而发,是书法文化家表现自己精神世界的物质形式,不论哪种字体,哪种表现形式,都是字如其人,蕴涵了书法文化家的性情和修养。孙过庭推崇不激不厉、文质彬彬的书法文化美学思想,这一点继承了李世民的观点,把王羲之推为典范。对于书法文化的创作状态,以及书者与作品的关系,他提出了了具有重大影响的“五乖五合”之说,论述了创作中的五个方面的问题。孙过庭的《书谱》,对此时的书法文化美学作出了较为全面的总结,从中也看到了盛唐浪漫主义书风的曙光。
二、盛唐代书法文化美学思想:狂逸恣情,情怀壮美
盛唐是大唐帝国的黄金时代,“开元盛世”的局面,让社会的物质和精神都得到了极大的丰富,这一时期,美学思潮彰显了自由、豪放、典雅、包容等特点,表现在书法文化上非实用性的狂草,似乎饱蘸了这个时代的浪漫主义审美色彩,迅速兴起,书法文化美学上充满了对逸气纵横的壮美情怀的追求,这在张怀瓘的书法文化理论中得到了集中的体现。
1.无形之象,无声之音张怀瓘之书论无论数量及哲理性都是罕有人及的,他的美学体系堪称博大精深。其美学思想体系中贯穿始终的是“意象”,他在对自己的草书进行探讨时,提出了一个十分重要的理论就是:“探彼意象,入此规模”。意象最早起源于《易•系辞》,首次将“意”“象”共用于文论的是南北朝的南朝梁代文学理论家、文学批评家刘勰。张怀瓘所说的“意象”包括“意”和“象”两个方面,他认为书法文化美的“意”是高深玄妙的,难以用语言来表达的,非世智所能诠释。书法文化之意必须要传递才能赋予作品之中,那么,就只有以“象”为载体来表现。张怀瓘在《六体书论》中提出:“臣闻形见曰象,书者法象也。”“书者法象”指的是在书法文化创作中,要善于效法和运用自然之象,将其精神、气势等融会贯通于书法文化,凡是那些具有极高艺术造诣的书法文化作品,无不是借助“象”来表现字势与体势,达到出神入化的艺术境界。他认为,书法文化不是再现现实之象,是在创造意识和宇宙意识的启发下,获得现实之象的意味。意象之美令人回味无穷,遐思不尽。
2.风神骨气,阳刚之美张怀瓘对风神骨气的审美价值情有独钟,尤其是对“风神”倍加关注。风神是书法文化家在自己的作品中所表现出来的精神、风韵、胸怀、修养、才华等。书法文化艺术的欣赏,要着眼于作品中书法文化家的学识、气质、道德、情感等精神境界。张怀瓘认为书法文化是一种满怀激情的创造,是全力以赴的投入,书法文化家的作品应该是自己的精神与字体神采、志趣的融合。他认为神采是一种生命本质的自由表现,大自然中的花鸟草虫、飞禽走兽都是各具神采的,书法文化家的艺术神采与其天性具有直接的关系,其成就首先要依靠天分,其次才是锲而不舍的练习功夫。他要求,书法文化的学习者首先要对自己的禀赋有准确的把握,然后再结合实际制定学习的目标。在张怀瓘的书法文化理论中,风神的内核是书者的个性修养。张怀瓘推崇具有阳刚之美书法文化,他认为草书表现充满着活力感、节奏感的壮美,十分欣赏王献之书法文化中所蕴含的动态美,横溢而出的逸气,喷涌奔泻的活力,具有扣人心弦的阳刚之美。这种美不露筋骨,率意、率性,自由,他书法文化理论独到、精深,形成了深远的影响,他的意象理论为宋代的“尚意”,拉响了序曲。
三、中晚代唐书法文化美学思想:崇尚法度,遍寻禅意
中晚唐时期,随着儒学的兴盛,书法文化领域的美学思想也随着发生了变化,尚法之风逐步形成,替代了曾经在盛唐风行的书法文化美学思想,自然、抒情、性灵等书法文化美学思想也寂然沉默。在此,对颜真卿、韩愈两位代表人物及晚唐五代禅境的追求,作如下分析论述。
1.颜真卿。强调法度美是颜真卿书法文化美学思想的集中体现。在中唐时期,经世致用的儒学得到了特别的重视,受之影响在书法文化领域内尚法之风也逐步形成。以韩愈、颜真卿为代表的艺术家,追求的是一种雄强豪放的精神气概,并用法度将其固定下来。颜真卿的书论中对“筋骨”与“雄媚”的联系着墨最多,他认为刚劲有力的点画为结构的字体,书品雄阔媚好,在此观点的指导下,“颜体”逐渐展示出了清新端庄、气宇不凡、丰腴秀丽之美,颜真卿的书法文化技艺理论,大多能够将自己所感悟到的书法文化意象联系起来,并寓技法于意象之中。
2.韩愈。韩愈是一位大文学家,虽然他不是书法文化家,却以特有的艺术敏感,对当年张旭的创作草书的情景,给予热情的描述,表达了自己书法文化的美学思想理论。书艺情表可以说是韩愈的书法文化美学思想。韩愈站在儒家积极入世的立场指出,书法文化蕴含和表现的是一种情感,动乎于心,发之于书。与张怀瓘所强调的书法文化表现情感的观点不同,韩愈所说的情感是一种强烈的、一触即发的情感,在其内心是一种“不平则鸣”的心态。他认为,书法文化家只有在这样的心态下,才能表达出自己的情感。韩愈所倡导的书法文化理论,在当时只能是非主流的状态,因为,当时浪漫主义难以取代对法度之美的推崇。
3.禅境的追求,晚唐五代法美学思想。晚唐时期,佛教兴盛,随着禅宗思想的发展,一大批禅僧书法文化家出现。禅宗认为,世界万物,佛我僧俗,都是我心的幻化,要达到佛我合一的境界,需要心悟。对于书法文化创作,自己的心悟也是至关重要的。在禅僧书家看来,书法文化理论不是言传身教的,需要在心悟中获得灵感,他们主张书法文化要能“通”“变”,他们在书法文化上所追求的禅境,主要表现为超尘脱俗,自然清新。另外,晚唐书法文化审美还体现出对“逸”之美的追求,“逸”作为一种超凡脱俗的生活态度和精神境界,被书僧运用到身法之中,表现出一种超脱,一种韵致。
二、如何在信息化条件下进行小学数学教学
工欲善其事必先利其器,教师若想充分利用信息化的成果,必然努力提升自己的计算机操作能力,熟悉常用数学软件,了解最新信息产业动态,将科学成果以最快的速度应用于日常生活。
(一)设备教学
如今,多媒体教学在各校已较为普遍,教学实践因此获益颇多。多媒体教学为原本“死气沉沉”的课堂增添了几分激情与活力,更关键的是,课堂效率大大提高,学生学习小学数学的热情更加高涨。例如,在中学数学教材中讲立体几何这一部分,很多学生空间想象能力极差,学习起来甚是吃力,不能够对涉及立体几何的知识有相对明晰的把握,而立体几何对于教师来说,由于没有合适的足够的模型,讲解的难度也比较大,尤其是个别题目的讲解。从前教学的棘手难题,如今有了多媒体的帮助,可以说是迎刃而解。无论遇到何种题目,3D模型均可以做到,学生也在一次次的演示中,逐步建立起空间想象能力。这种教学方法能够使学生在学习的过程中,紧密联系日常生活,使学生在生活中感受到数学知识的重要性,同时有利于学生理论联系实际,激发学习兴趣。
(二)在线教学
现如今,各种网络教学网站充斥互联网。虽然水平参差不齐,但是,巨大的市场潜力无疑证明了潜在的趋势性。网络教学以其自由度高,不受时间与空间的限制,以及不必担心口音、语速问题而导致的听课效果欠佳等显著优势而受到广泛关注。数学教师有专业优势,有丰厚的经验完全可以建立专门的教学网站,网站内容主要涵盖两个方面:1.课堂内容的提炼升华,课后习题的补充及详细讲解,以便于学生预习及复习。2.课堂知识的拓展,上传名师教学视频,补充学习背景资料。比如,定理研究中的小故事,数学家的逸闻趣事等等,加深对课堂知识的了解,增加学生对数学的学习兴趣。更为关键的是,通过在线网络学习可以增强学生许多在课堂不能获取的能力,现略举几例:(1)利用网络获取知识的能力,培养学生独立解决问题的习惯,教会其解决问题的方法。(2)利用电脑构建数学模型,解决数学问题的能力,可以设置专栏教给学生如何用专业的软件构建数学模型。(3)创造性思维,勤于钻研。通过数学家的逸闻趣事,潜移默化培养学生发现问题解决问题的能力。
(三)课堂教学
数学本身就是一门逻辑性和理论性非常强的科目,学生在学习的过程呈现出“死气沉沉”的局面,不仅会影响学生学习的情绪,还直接影响着数学教学质量。倘若我们能够充分利用多媒体的音、像、动画,增加课堂教学的冲击力,甚至营造一种独特的教学氛围,那么学生必然改变对数学的传统看法。只要能够扭转学生的观念问题,那么他们就能从根本上喜欢数学,爱上数学,那样他们学习数学才能逐渐有了自己的方法,养成好的习惯,最终提高数学成绩。
二、图形教学中的渗透
“图形与几何”是小学阶段重要的学习内容。无论从认识各种图形的特征到探究面积、体积的计算,无处不体现化归的思想方法。尤其在探索面积的计算公式时,渗透化归思想方法是极好的机会。在图形面积计算方法的学习上,北师大教材是分三次安排的:第一次安排在三下学习长方形、正方形的面积计算;第二次安排在五上学习平行四边形、三角形和梯形的面积计算;第三次安排在六上学习圆的面积计算。我们知道长方形面积的计算是平面图形面积计算的起始课,是以后学习平行四边形、三角形、梯形及圆等平面图形面积的基础,而平行四边形面积计算又是学生探究图形面积计算方法的节点,在这个节点上,化归思想方法得到很大体现。所以在探究平行四边形面积计算方法的教学中,引导学生从已有的知识和经验出发,通过数、剪、拼等一系列操作活动把平行四边形转化为我们已知的长方形或正方形,从而很容易的得出平行四边形面积的计算方法。教学中,要通过追问:你是怎样把一个平行四边形拼成了一个长方形?怎么剪的?为什么要拼成一个长方形?什么变了、什么没变?从而使学生明白:沿着平行四边形的任意一条高剪开都可以拼成一个长方形,拼成的长方形和原来的平行四边形相比,形状虽然变了,但面积没变。这样就可以化新为旧、化未知为已知。有了这部分化归方法的渗透,后面的三角形、梯形、圆面积计算方法的探究过程就会水到渠成。从而让学生真正体会到数学学习的成就感,享受数学探究的乐趣。
经济学的理论分析框架由三个主要部分组成:视角(perspective)、参照系(reference)和分析工具(analyticaltools)。第一,现代经济学提供了从实际出发看问题的视角。这些视角指导我们避开细枝末节,把注意力引向关键的、核心的问题。经济学家看问题的出发点通常基于三项基本假设:经济人的偏好、生产技术和制度约束下可供使用的资源禀赋。用经济学的视角看问题,消费者想买到物美价廉的商品,企业家想赚取利润,都是很自然的。经济学就是要探讨在个人自利动机的驱动下,人们如何在给定的机制下互相作用,达到某种均衡状态,并且评估在此状态下是否有可能在没有参与者受损的前提下让一部分人有所改善(即是否可以提高效率)。以此为出发点,经济学的分析往往集中在各种间接机制(比如价格、市场供求因素等)对经济人行为的影响,并以“均衡”、“效率”作为分析的着眼点。以这种视角分析问题不仅具有方法的一致性,且常常会得出出人意料,却合乎情理逻辑的结论。第二,经济学提供了多个参照系。参照系对任何学科的建立和发展都极为重要,经济学也不例外。这些参照系的重要性并不在于它们是否准确无误地描述了现实,而在于建立了一些让人们更好地理解现实的标尺。经济学家的头脑中总有几个参照系,这样,分析经济问题时就有可比性。比如讨论资源配置和价格问题时,充分竞争下的一般均衡理论就是一个参照系;讨论产权和法的作用时,科斯定理就是一个参照系。参照系的建立对经济学的发展起到了有效的推动作用。第三,经济学采用了一系列强有力的“分析工具”,它们多是各种图象模型和数学模型。比如:供需曲线图象模型,它以数量和价格分别为横、纵轴,提供了一个非常方便和多样化的分析工具。经济学家用这一工具来分析局部均衡下的市场资源配置、市场扭曲、市场失灵等问题和政府干预市场的政策效果。这种工具的力量在于,用较为简明的图象和数学结构帮助我们深入分析纷繁复杂的经济行为和现象。
二、数学工具对经济学发展的影响
现代经济学的一个明显特点是越来越多地使用数学(包括统计学)作为分析工具,绝大多数的经济学前沿论文都包含数学或计量模型。从经济学的分析框架来看,这并不难理解,因为参照系的建立和分析工具的发展通常都要借助数学。但是,在部分经济学家的理论研究中,逐渐形成了一个基于唯数主义的数学化倾向,这种倾向偏离了经济学研究的基本视角,不仅不能为非西方世界的经济学家所接受,而且在西方经济学家内部也颇存异议。因此,我们必须一分为二地看待数学工具对经济学发展的影响。
(一)数学在经济学中的应用从理论研究角度,借助数学模型有三个优势:第一,数学语言可以清楚地描述前提假定,这使得经济学的推理与分析过程呈现出数理逻辑的严谨性。例如,边际效应价值实际上是在对效用函数进行测定的基础上,运用一系列联立方程组推导的结果。社会资源最优配置的帕累托最优理论,也是运用联立方程组对生产和交换均达到最优配置下社会福利最大化的阐述。第二,数学方法使经济学拥有了一个统一的语话体系,并进而使经济学的发展具有了一个共同的基础,让后人较容易在已有的研究工作上继续开拓,也使得在深层次上发现似乎不相关的结构之间的关联变成可能。西方经济学就是在这一共同的话语体系下获得长足的发展。第三,数学表述具有文字性表述所不具备的确定性与精确性。数学推导具有数理上的逻辑性,运用数学模型讨论经济问题,学术争议便可以建立在这样的基础上:或不同意对方前提假设;或找出对方论证错误;或是发现修改原模型假设会得出不同的结论。这样就可以有效地避免经济学理解上的歧义,避免基于不同理解而发生的毫无意义的争论,因此,从整体上有利与提高经济学家工作的效率。从实证研究角度看,使用数学和统计方法的优势也比较明显:其一是以经济理论的数学模型为基础可以发展出用于定性和定量分析的计量经济模型;其二是证据的数量化使得实证研究具有系统性;其三是使用精致复杂的统计方法可以让研究者从已有的数据中最大程度地汲取有用的信息。因此,运用数学和统计方法进行经济学研究可以把实证分析建立在理论基础上,并从系统的数据中定量地检验理论假说和估计参数的数值。这就可以减少经验性分析中的表面化和偶然性,并分别确定它在经济意义下的显著程度。
(二)经济学数学化的误区在肯定数学在经济学中的重要作用的同时,更需要指出的是:经济学不是数学。首先,经济学并不是一些数学模型和概念的简单汇集,经济学家的工作也不是开拓数学理论前沿,而是运用这些理论所代表的分析框架来解释和理解经济行为和现象。经济学发展的关键绝不在于其对数学的运用是否精通,而是取决于经济理论分析和实证分析的深度。比如经济学家应用统计回归方法,不仅关心变量的估计值和变量间的相关性,更关心变量间的因果关系、模型假定对预测的影响以及计量结果背后的经济含义,这是计量经济学不同于数学或统计学的最重要方面。其次,经济学理论的发展必须从经济学独有的研究视角出发,数学和计量方法只是体现和执行经济想法的一种工具,而不是唯一的工具。目前,英美许多经济学杂志取舍稿件的重要标准之一就是是否建立了数学模型,是否采用计量分析,如果论文不是有意的使用一组代数符号的话,那么,该论文便会自动被视为毫无价值而遭拒绝。这种作法排除了其他解决问题的思路,使运用其他研究方法解决经济问题的个人没有得到应有的尊重。这种过分数学化的趋势,标志着经济学在逐渐失去其作为社会科学应有的特征(如对现存的社会经济结构的批判性,对人和人之间生产关系的揭示,对社会经济制度的揭示,对社会经济生活的直觉性感悟等),标志着经济学在唯科学主义道路上走过了头,以至于逐渐丧失了对活生生的人的关注与分析,同时在一定程度上也标志着经济学分析工具的贫乏与单一。因此,我们不能以数学水平的高低来衡量一名经济学家的水平,我们也不能以运用数学的多少和它的难易程度来作为评判经济学论文质量的标准。同时,经济学中的过度数学化倾向还表现在,一些经济学家把数学当作经济分析的唯一手段,不顾条件地加以运用。这种运用很大程度上是一种形式主义的运用,导致了经济研究的资源误置。经济学研究人类的生产、消费和分配的社会经济活动,而人类活动受道德、历史和社会的诸多因素影响,许多环节之间都有或明或暗的联系,这使得经济活动变得相当复杂,如果用数学变量来表示,那么必将形成一个极端庞大而又难以处理的数理模型,这就给使用带来了困难。而心理学的研究结果表明,在一些情况下人的决策与模型中的严峻假定有系统性偏差,修改某些有关数理模型条件下市场中人的经济行为,将得出很多与已有的理论不同的结论。要想使严峻假定下建立的模型具有可行性,就必须要不断的放松假定,加进新的变量,这样做会使问题变得越来越复杂,直到超出数学能力所限,使得数学方法的运用陷入死循环。必须承认,经济运行中存在着许多无法量化的因素,如果一味地追求对经济现象的数量分析而忽视数学分析方法本身的局限性,将必然会陷入“数字游戏”的怪圈。事实证明,单纯使用数学工具解决经济问题具有明显的局限性。超级秘书网
三、运用经济学分析工具的几点建议
应该说,在经济学中系统地运用数学方法是不应受到过多指责的,但是,任何方法的运用都需要遵循适度的原则,过度化只能造成相反的效果。第一,经济学是一门以现实中的经济行为和现象作为研究对象的社会科学,对理论的现实性非常关注。一方面,所有的经济学理论最终都要接受现实的检验;另一方面,新理论的创立和旧理论的发展也要受现实的启发。包括数学在内的任何分析工具都不能脱离这一范畴而孤立存在。经济学过度数学化使经济学家在研究问题时不自觉地接受了数学家的价值取向,把经济学变为基于一系列超现实抽象假定的科学,实际上忽视了经济学作为一门社会科学的特征。因此,解决经济问题必须考虑到经济学研究不同于自然科学研究的基本困难,是可控实验的不可行性和用经验数据直接检验结论的有限性,必须摒弃以主观局限的数学推导进行客观经济规律探索的方法论。第二,经济理论是描述一个理性的人如何在给定的条件下做出选择,以达到其目标最大化的过程,而选择结果便是理论所要解释的现象。因此,一个经济理论能否解释现实的关键就在于模型中限制当事人选择的给定假设条件是否合适。所谓合适,是指模型中的限制条件要尽可能地具有“普适性”(Robustness),也就是要具有一般性。例如,要素禀赋决定了一个经济中的各种要素的相对价格,是社会中任何经济决策都必须考虑到的条件,因此,要素禀赋是一个非常“一般”的条件,以发展目标和要素禀赋的矛盾来解释计划体制的产生,也就有了较强的“普适性”。运用要素禀赋理论就可以解释为什么不同社会性质的国家采用了类似的计划体制以及为什么我国的社会性质未变,而改革后却从计划体制转型到市场体制的现象。所以,我们要将经济理论的探讨建立在经济运行各个环节之间普遍联系的基础上。第三,从经济学引入数学以后100多年的历史来看,作为一种分析工具,数学的确显示出诸多值得充分肯定的优越性,我们应该不断加强经济学数学分析方法自身的完善,拓展其应用领域,进一步发挥其在经济理论研究和实践中的作用。在继承和发扬传统数学分析方法的基础上,学习和应用最新的数学分析方法,如博奕论方法、对策论方法、模糊数学方法、非线性系统方法等,使数量分析由单变量向多变量发展,由单目标向多目标发展,并且大力拓展计算机等相关技术领域,提高数学解决经济问题的能力。第四,经济现象本质上一种社会现象,其发展受到许多无法量化的因素制约,这要求我们进行经济研究的时候必然要经过一个定性到定量的分析过程。如果舍弃那些不可定量却对经济行为产生重要影响的因素,生硬地把经济现象抽象到数学模型当中,就会歪曲经济事物的本来面目,影响结论的科学性和有效性。因此,在加强数学工具运用的同时,我们绝不能局限于数学的分析方法,更不能局限于形式上的数学化,简单否定和排斥定性分析的作用。行为经济学之所以逐渐被主流经济学接受,正是因为它合理运用定性分析的方法,并且将通常的理性假设的情况包涵在其中,而不是单纯的依靠严峻假设下的数学模型来解决问题。
主要参考文献:
[1]程祖瑞.数学化,中国经济现代化的必由之路[J].经济经纬,2001(6).
[2]赵凌云.经济学数学化的是与非[J].经济学家,1999(1).