时间:2023-03-08 15:41:01
导言:作为写作爱好者,不可错过为您精心挑选的10篇压缩技术论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
Abstract:Digitalimagecompressiontechnologyisofspecialintrestforthefasttransmissionandreal-timeprocesssingofdigitalimageinformationontheinternet.Thepaperintroducesseveralkindsofthemostimportantimagecompressionalgorithmsatpresent:JPEG,JPEG2000,fractalimagecompressionandwavelettransformationimagecompression,andsummarizestheiradvantageanddisadvantageanddevelopmentprospect.Thenitintroducessimplythepresentdevelopmentofcodingalgorithmsaboutarbitraryshapevideoobject,andindicatesthealgorithmshaveahighcompressionrate.
Keyword:Digitalimage;Imagecompression;Compresstechnique;Arbitraryshapevisibleobjectcode
一、引言
随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,也给现有的有限带宽以严峻的考验,特别是具有庞大数据量的数字图像通信,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。
图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天已经有50多年的历史了[1]。在此期间出现了很多种图像压缩编码方法,特别是到了80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。本文对当前最为广泛使用的图像压缩算法进行综述,讨论了它们的优缺点以及发展前景。
二、JPEG压缩
负责开发静止图像压缩标准的“联合图片专家组”(JointPhotographicExpertGroup,简称JPEG),于1989年1月形成了基于自适应DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。
1.JPEG压缩原理及特点
JPEG算法中首先对图像进行分块处理,一般分成互不重叠的大小的块,再对每一块进行二维离散余弦变换(DCT)。变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表进行量化,量化的结果保留了低频部分的系数,去掉了高频部分的系数。量化后的系数按zigzag扫描重新组织,然后进行哈夫曼编码。JPEG的特点如下:
优点:(1)形成了国际标准;(2)具有中端和高端比特率上的良好图像质量。
缺点:(1)由于对图像进行分块,在高压缩比时产生严重的方块效应;(2)系数进行量化,是有损压缩;(3)压缩比不高,小于50[2]。
JPEG压缩图像出现方块效应的原因是:一般情况下图像信号是高度非平稳的,很难用Gauss过程来刻画,并且图像中的一些突变结构例如边缘信息远比图像平稳性重要,用余弦基作图像信号的非线性逼近其结果不是最优的[3]。
2.JPEG压缩的研究状况及其前景[2]
针对JPEG在高压缩比情况下,产生方块效应,解压图像较差,近年来提出了不少改进方法,最有效的是下面的两种方法:
(1)DCT零树编码
DCT零树编码把DCT块中的系数组成log2N个子带,然后用零树编码方案进行编码。在相同压缩比的情况下,其PSNR的值比EZW高。但在高压缩比的情况下,方块效应仍是DCT零树编码的致命弱点。
(2)层式DCT零树编码
此算法对图像作的DCT变换,将低频块集中起来,做反DCT变换;对新得到的图像做相同变换,如此下去,直到满足要求为止。然后对层式DCT变换及零树排列过的系数进行零树编码。
JPEG压缩的一个最大问题就是在高压缩比时产生严重的方块效应,因此在今后的研究中,应重点解决DCT变换产生的方块效应,同时考虑与人眼视觉特性相结合进行压缩。
三、JEPG2000压缩
JPEG2000是由ISO/IECJTCISC29标准化小组负责制定的全新静止图像压缩标准。一个最大改进是它采用小波变换代替了余弦变换。2000年3月的东京会议,确定了彩色静态图像的新一代编码方式—JPEG2000图像压缩标准的编码算法。
1.JPEG2000压缩原理及特点
JPEG2000编解码系统的编码器和解码器的框图如图1所示[4]。
编码过程主要分为以下几个过程:预处理、核心处理和位流组织。预处理部分包括对图像分片、直流电平(DC)位移和分量变换。核心处理部分由离散小波变换、量化和熵编码组成。位流组织部分则包括区域划分、码块、层和包的组织。
JPEG2000格式的图像压缩比,可在现在的JPEG基础上再提高10%~30%,而且压缩后的图像显得更加细腻平滑。对于目前的JPEG标准,在同一个压缩码流中不能同时提供有损和无损压缩,而在JPEG2000系统中,通过选择参数,能够对图像进行有损和无损压缩。现在网络上的JPEG图像下载时是按“块”传输的,而JPEG2000格式的图像支持渐进传输,这使用户不必接收整个图像的压缩码流。由于JPEG2000采用小波技术,可随机获取某些感兴趣的图像区域(ROI)的压缩码流,对压缩的图像数据进行传输、滤波等操作[4]。
图1JPEG2000压缩编码与解压缩的总体流程
2.JPEG2000压缩的前景
JPEG2000标准适用于各种图像的压缩编码。其应用领域将包括Internet、传真、打印、遥感、移动通信、医疗、数字图书馆和电子商务等[5]。JPEG2000图像压缩标准将成为21世纪的主流静态图像压缩标准。
四、小波变换图像压缩
1.小波变换图像压缩原理
小波变换用于图像编码的基本思想就是把图像根据Mallat塔式快速小波变换算法进行多分辨率分解。其具体过程为:首先对图像进行多级小波分解,然后对每层的小波系数进行量化,再对量化后的系数进行编码。小波图像压缩是当前图像压缩的热点之一,已经形成了基于小波变换的国际压缩标准,如MPEG-4标准,及如上所述的JPEG2000标准[2]。
2.小波变换图像压缩的发展现状及前景
目前3个最高等级的小波图像编码分别是嵌入式小波零树图像编码(EZW),分层树中分配样本图像编码(SPIHT)和可扩展图像压缩编码(EBCOT)。
(1)EZW编码器[6]
1993年,Shapiro引入了小波“零树”的概念,通过定义POS、NEG、IZ和ZTR四种符号进行空间小波树递归编码,有效地剔除了对高频系数的编码,极大地提高了小波系数的编码效率。此算法采用渐进式量化和嵌入式编码模式,算法复杂度低。EZW算法打破了信息处理领域长期笃信的准则:高效的压缩编码器必须通过高复杂度的算法才能获得,因此EZW编码器在数据压缩史上具有里程碑意义。
(2)EBCOT编码器[8]
优化截断点的嵌入块编码方法(EBCOT)首先将小波分解的每个子带分成一个个相对独立的码块,然后使用优化的分层截断算法对这些码块进行编码,产生压缩码流,结果图像的压缩码流不仅具有SNR可扩展而且具有分辨率可扩展,还可以支持图像的随机存储。比较而言,EBCOT算法的复杂度较EZW和SPIHT有所提高,其压缩性能比SPIHT略有提高。
小波图像压缩被认为是当前最有发展前途的图像压缩算法之一。小波图像压缩的研究集中在对小波系数的编码问题上。在以后的工作中,应充分考虑人眼视觉特性,进一步提高压缩比,改善图像质量。并且考虑将小波变换与其他压缩方法相结合。例如与分形图像压缩相结合是当前的一个研究热点[2]。
(3)SPIHT编码器[7]
由Said和Pearlman提出的分层小波树集合分割算法(SPIHT)则利用空间树分层分割方法,有效地减小了比特面上编码符号集的规模。同EZW相比,SPIHT算法构造了两种不同类型的空间零树,更好地利用了小波系数的幅值衰减规律。同EZW编码器一样,SPIHT编码器的算法复杂度低,产生的也是嵌入式比特流,但编码器的性能较EZW有很大的提高。
五、分形图像压缩
1988年,Barnsley通过实验证明分形图像压缩可以得到比经典图像编码技术高几个数量级的压缩比。1990年,Barnsley的学生A.E.Jacquin提出局部迭代函数系统理论后,使分形用于图像压缩在计算机上自动实现成为可能。
1.分形图像压缩的原理
分形压缩主要利用自相似的特点,通过迭代函数系统(IteratedFunctionSystem,IFS)实现。其理论基础是迭代函数系统定理和拼贴定理。
分形图像压缩把原始图像分割成若干个子图像,然后每一个子图像对应一个迭代函数,子图像以迭代函数存储,迭代函数越简单,压缩比也就越大。同样解码时只要调出每一个子图像对应的迭代函数反复迭代,就可以恢复出原来的子图像,从而得到原始图像[9]。
2.几种主要分形图像编码技术[9]
随着分形图像压缩技术的发展,越来越多的算法被提出,基于分形的不同特征,可以分成以下几种主要的分形图像编码方法。
(1)尺码编码方法
尺码编码方法是基于分形几何中利用小尺度度量不规则曲线长度的方法,类似于传统的亚取样和内插方法,其主要不同之处在于尺度编码方法中引入了分形的思想,尺度随着图像各个组成部分复杂性的不同而改变。
(2)迭代函数系统方法
迭代函数系统方法是目前研究最多、应用最广泛的一种分形压缩技术,它是一种人机交互的拼贴技术,它基于自然界图像中普遍存在的整体和局部自相关的特点,寻找这种自相关映射关系的表达式,即仿射变换,并通过存储比原图像数据量小的仿射系数,来达到压缩的目的。如果寻得的仿射变换简单而有效,那么迭代函数系统就可以达到极高的压缩比。
(3)A-E-Jacquin的分形方案
A-E-Jacquin的分形方案是一种全自动的基于块的分形图像压缩方案,它也是一个寻找映射关系的过程,但寻找的对象域是将图像分割成块之后的局部与局部的关系。在此方案中还有一部分冗余度可以去除,而且其解码图像中存在着明显的方块效应。
3.分形图像压缩的前景[2]
虽然分形图像压缩在图像压缩领域还不占主导地位,但是分形图像压缩既考虑局部与局部,又考虑局部与整体的相关性,适合于自相似或自仿射的图像压缩,而自然界中存在大量的自相似或自仿射的几何形状,因此它的适用范围很广。
六、其它压缩算法
除了以上几种常用的图像压缩方法以外,还有:NNT(数论变换)压缩、基于神经网络的压缩方法、Hibert扫描图像压缩方法、自适应多相子带压缩方法等,在此不作赘述。下面简单介绍近年来任意形状纹理编码的几种算法[10]~[13]。
(1)形状自适应DCT(SA-DCT)算法
SA-DCT把一个任意形状可视对象分成的图像块,对每块进行DCT变换,它实现了一个类似于形状自适应GilgeDCT[10][11]变换的有效变换,但它比GilgeDCT变换的复杂度要低。可是,SA-DCT也有缺点,它把像素推到与矩形边框的一个侧边相平齐,因此一些空域相关性可能丢失,这样再进行列DCT变换,就有较大的失真了[11][14][15]。
(2)形状自适应离散小波变换(SA-DWT)
Li等人提出了一种新颖的任意形状对象编码,SA-DWT编码[18]~[22]。这项技术包括SA-DWT和零树熵编码的扩展(ZTE),以及嵌入式小波编码(EZW)。SA-DWT的特点是:经过SA-DWT之后的系数个数,同原任意形状可视对象的像素个数相同;小波变换的空域相关性、区域属性以及子带之间的自相似性,在SA-DWT中都能很好表现出来;对于矩形区域,SA-DWT与传统的小波变换一样。SA-DWT编码技术的实现已经被新的多媒体编码标准MPEG-4的对于任意形状静态纹理的编码所采用。
在今后的工作中,可以充分地利用人类视觉系统对图像边缘部分较敏感的特性,尝试将图像中感兴趣的对象分割出来,对其边缘部分、内部纹理部分和对象之外的背景部分按不同的压缩比进行压缩,这样可以使压缩图像达到更大的压缩比,更加便于传输。
(3)Egger方法
Egger等人[16][17]提出了一个应用于任意形状对象的小波变换方案。在此方案中,首先将可视对象的行像素推到与边界框的右边界相平齐的位置,然后对每行的有用像素进行小波变换,接下来再进行另一方向的小波变换。此方案,充分利用了小波变换的局域特性。然而这一方案也有它的问题,例如可能引起重要的高频部分同边界部分合并,不能保证分布系数彼此之间有正确的相同相位,以及可能引起第二个方向小波分解的不连续等。
七、总结
图像压缩技术研究了几十年,取得了很大的成绩,但还有许多不足,值得我们进一步研究。小波图像压缩和分形图像压缩是当前研究的热点,但二者也有各自的缺点,在今后工作中,应与人眼视觉特性相结合。总之,图像压缩是一个非常有发展前途的研究领域,这一领域的突破对于我们的信息生活和通信事业的发展具有深远的影响。
参考文献:
[1]田青.图像压缩技术[J].警察技术,2002,(1):30-31.
[2]张海燕,王东木等.图像压缩技术[J].系统仿真学报,2002,14(7):831-835.
[3]张宗平,刘贵忠.基于小波的视频图像压缩研究进展[J].电子学报,2002,30(6):883-889.
[4]周宁,汤晓军,徐维朴.JPEG2000图像压缩标准及其关键算法[J].现代电子技术,2002,(12):1-5.
[5]吴永辉,俞建新.JPEG2000图像压缩算法概述及网络应用前景[J].计算机工程,2003,29(3):7-10.
[6]JMShaprio.Embeddedimagecodingusingzerotreeofwaveletcoefficients[J].IEEETrans.onSignalProcessing,1993,41(12):3445-3462.
[7]ASaid,WAPearlman.Anewfastandefficientimagecodecbasedonsetpartitioninginhierarchicaltrees[J].IEEETrans.onCircuitsandSystemsforVideoTech.1996,6(3):243-250.
[8]DTaubman.HighperformancescalableimagecompressionwithEBCOT[J].IEEETransactionsonImageProcessing,2000,9(7):1158–1170.
[9]徐林静,孟利民,朱建军.小波与分行在图像压缩中的比较及应用.中国有线电视,2003,03/04:26-29.
[10]MGilge,TEngelhardt,RMehlan.Codingofarbitrarilyshapedimagesegmentsbasedonageneralizedorthogonaltransform[J].SignalProcessing:ImageCommun.,1989,1(10):153–180.
[11]TSikora,BMakai.Shape-adaptiveDCTforgenericcodingofvideo[J].IEEETrans.CircuitsSyst.VideoTechnol.,1995,5(1):59–62.
[12]TSikora,SBauer,BMakai.Efficiencyofshape-adaptive2-Dtransformsforcodingofarbitrarilyshapedimagesegments[J].IEEETrans.CircuitsSyst.VideoTechnol.,1995,5(3):254–258.
[13]EJensen,KRijk,etal.Codingofarbitrarilyshapedimagesegments[C].Proc.WorkshopImageAnalysisandSynthesisinImageCoding,Berlin,Germany,1994:E2.1–E2.4.
[14]MBi,SHOng,menton“Shape-adaptiveDCTforgenericcodingofvideo”[J].IEEETrans.CircuitsSyst.VideoTechnol.,1996,6(6):686–688.
[15]PKauff,KSchuur.Shape-adaptiveDCTwithblock-basedDCseparationandDeltaDCcorrection[J].IEEETrans.CircuitsSyst.VideoTechnol.,1998,8(3):237–242.
[16]OEgger,PFleury,TEbrahimi.Shape-adaptivewavelettransformforzerotreecoding[C].Proc.Eur.WorkshopImageAnalysisandCodingforTV,HDTVandMultimediaApplication,Rennes,France,1996:201–208.
[17]OEgger.Regionrepresentationusingnonlineartechniqueswithapplicationstoimageandvideocoding[D].Ph.D.dissertation,SwissFederalInstituteofTechnology(EPFL),Lausanne,Switzerland,1997.
[18]SLi,WLi,etal.Shapeadaptivevectorwaveletcodingofarbitrarilyshapedtexture[S].ISO/IECJTC/SC29/WG11,MPEG-96-m1027,1996.
[19]WLi,FLing,HSun.ReportoncoreexperimentO3(Shapeadaptivewaveletcodingofarbitrarilyshapedtexture)[S].ISO/IECJTC/SC29/WG11,MPEG-97-m2385,1997.
1临床资料
1.1一般资料
96例中男45例,女51例,年龄55~90岁(平均68.5岁)。所有患者均摄X线片和CT扫描,其中82例加行MRI检查,排除肿瘤所致脊椎继发性骨折,均确认为骨质疏松脊椎压缩性骨折。骨质疏松程度根据L3骨小梁变化分级[1]:I度33例,II度45例,III度18例。骨折部位C6~L5,其中胸腰椎92例,颈椎4例;单处骨折70例,2处及2处以上骨折26例。80例有轻微外伤史,其中腰扭伤22例,平地跌倒58例。16例仅有轻微腰背痛,初次就诊时患者未意识到已发生骨折。
1.2治疗方法
本组96例患者其中30例行经后路椎弓根螺钉复位固定术,手术适应证:(1)伴有神经损伤;(2)虽然无神经症状,但脊柱后凸成角>20°,椎管占位>椎管矢状位50%,椎体高度压缩>50%;(3)全身情况较好,能耐受手术,伤前生活能自理者。全身情况较差,不能耐受手术及重度骨质疏松应为手术禁忌证。其余66例行非手术治疗。
2结果
30例手术患者术后X线片示脊柱后凸成角恢复正常,压缩椎体回复或基本恢复正常高度,其中5例神经损伤者6个月后神经功能恢复正常,2例行椎体成形术。本组96例患者均在卧床4~8周后在腰围保护下开始下地行走,所有患者根据不同情况给予性激素、降钙素,钙剂或维生素D等药物治疗,经随访,手术组30例无腰背痛或腰背痛较轻,无需长期服用止痛药,非手术组66例中,42例有腰背痛,22例发生进展性后凸畸形。
3讨论
3.1骨质疏松脊椎压缩性骨折临床特点
老年骨质疏松脊椎压缩性骨折与青壮年外伤性骨折有很大差别,外伤性脊椎压缩性骨折均有不同程度的胸腰部疼痛和活动受限,按Denis分类,仅涉及前柱压缩者为压缩型,同时涉及前柱和中柱压缩者为爆裂型。典型爆裂型骨折表现有椎体向四周爆裂,椎体前缘均压缩,椎管均有不同程度狭窄点,椎弓根间距增宽和椎板纵向骨折[2]。骨质疏松脊椎压缩性骨折主要发生在老年人,本组患者平均年龄68.5岁。随着患者年龄的增大,机体内骨无机盐成分减少,骨弹性减少而脆性增加,骨代谢出现负增长,以骨吸收为主,长期积累导致骨量缺失,骨密度降低,骨骼的质和量均降低,出现骨质疏松,轻微外伤即可发生脊椎压缩性骨折。骨折类型以楔形骨折最多见,向四周爆裂较轻,很少有椎弓根间距增宽和椎板纵向骨折,伴有神经根传导功能受损者较少。
3.2骨质疏松脊椎压缩性骨折手术方法的选择
基于老年骨质疏松脊椎压缩性骨折的特点以及患者对预期生活质量的期望,要求医者应采取积极的治疗方法,在患者全身情况许可无严格手术禁忌证的情况下重建脊柱正常序列和稳定性,早期离床活动,纠正和防止后凸畸形。本组96例患者30例行经后路椎弓根螺钉复位固定术,此手术可撑开、复位、固定骨折、恢复脊柱的生理弯曲和椎体高度,扩大椎管内径,重建脊柱稳定性,但骨质疏松时固定螺钉容易松动、脱出,因此固定时可选用直径较粗、长度较长螺纹较深的椎弓根螺钉,以增加螺钉的把持力[3]。
3.3术后早期功能锻炼
术后早期离床活动,可减少长期卧床并发症,治疗纠正骨质疏松。老年骨质疏松脊椎压缩性骨折患者,只要符合手术适应证,原则上都应早期手术,早期活动,可以降低褥疮、下肢深静脉血栓形成、肺部感染、泌尿系统感染等并发症,而且可以避免长期卧床引起的骨量丢失。早期活动功能锻炼及适当的药物治疗可以增强骨质量和骨强度[4,5]。另外,手术治疗可以避免晚期由于脊柱应力分布异常所引起小关节的退变、相邻脊柱的异常活动和生理曲度的改变,以及椎管狭窄所致的腰痛,纠正后凸畸形,避免因非手术治疗椎体高度不能完全恢复致离床活动脊柱负重后加重后凸畸形[6]。
【参考文献】
1戴力扬,徐印坎.老年人骨质疏松和脊椎压缩性骨折.中华老年医学杂志,1991,10:58.
2殷渠东,郑祖根.胸腰椎爆裂骨折的研究进展.中国脊柱脊髓杂志,1995,5(1):43.
3赵必增,贾连顺,李家顺,等.椎体成形术及其进展.骨与关节损伤杂志,2001,16(6):470.
一、数据压缩知识
数据压缩技术的发展。
随着计算机技术的飞速发展,数据压缩作为解决海量信息存储和传输的支撑技术受到了人们的极大重视,对数据压缩算法的研究也不仅局限于信息论中有关信源编码的范畴,数字图像信号、语音信号的分析和处理等技术被大量引入到有关的研究领域。
1977年,两位以色列科学家Jacob Ziv和Abraham Lempel发表了名为“A Universal Algorithm for Sequential Data Compression”(顺序数据压缩的通用算法)的论文,提出了一种不同与以往的基于字典的压缩方法——LZ77,他们在1978年又提出了LZ77的改进算法——LZ78,这两个算法吧数据压缩的研究推向了一个全新的阶段。1984年,Terry Weleh发表的论文“A Technique for High Performance Data Compression”(高性能数据压缩技术)描述了对LZ78算法的改进和具体实现技术,成为LZW算法。目前,无损数据压缩领域中流行的数据压缩方法多是基于字典的压缩技术。UNIX系统上的一个实用压缩软件COMPRESS和Windows系统下的压缩软件Winzip和Winrar中所使用的压缩算法都是基于字典压缩技术的。
当数据压缩被用于减少存储空间时,可以减少程序的总执行时间。这是因为存储量的减少将导致磁盘存取次数的减少,虽然数据的压缩/解压缩过程会增加额外的程序指令,但由于程序的执行时间通常少于数据的存储时间,因此中的执行时间将减少。也正因如此,数据压缩技术在计算机技术飞速发展的今天仍然有着很重要的作用。
二、XML压缩索引
(一)XML压缩背景
上文中已经述说了XML的优点,但和其它形式的数据表示相比,XML文档往往很大。因此有些时候,传输速度和存储空间会非常重要。具体来说:
1.XML是一种清晰而易用的文本标记格式,但它的弱点就是当有大量数据需要交换,而程序内部处理部分又非常少时,会导致XML文档非常大,这样过大的空间占用意味着更大的处理代价;
2.由于本文压缩算法多年来一直是大量研究项目的课题,目前已经非常成熟。这种类型的算法都能方便的将XML进行压缩,但将XML文本作为一般文本文件进行压缩,这类算法都不大可能改善处理的速度,而且还会增加了解压后再解析的步骤;
3.我们把XML文档用于索引结构,这样就不能只保持了XML文档的结构而无法对XML进行索引搜索。也就排除了一些简单的XML压缩算法。
(二)XML压缩方法
当压缩文档时,通常首先考虑常用的压缩算法,如:Lempel-Ziv和Huffman,以及在它们上面实现变化的一些常用实用程序。在类Unix平台上通常是gzip;在其它平台上,zip更为常用,比如:PKZIP、Info-ZIP和WinZip。但这些实用程序实际上意在充分地减少XML文件的大小。但是,都没有保持了XML文档的结构,或是无法对XML文档进行索引。这样本文选择使用BWT压缩算法而不是顺序Lempel-Ziv算法。
(三)BWT数据压缩
利用BWT压缩算法,我们先把字符文本进行转换,然后进行压缩,这样就解决了XML文档过大的弊端。而且BWT压缩算法要比顺序LZ算法,解压时速度有所提高。BWT算法的具体介绍我们在第5章进行讲解。
三、系统设计
(一)XML文件整体输出
首先,我们先不考虑XML文件的结构,这样把XML数据文件提交给程序,会按照普通文本文件的方式进行处理。程序先读取整个文件的内容,之后将它们作为一个字符串,进行后缀数组排序,然后BWT转换。但是这样的结果并不如意,有以下两个缺点:
1.程序执行的效率不高,文件内容如过大,导致整体的速度下降;
2.不便于查找,整体进行排序换转后打乱了文件结构,不能成为索引;
(二)以XML文件结构进行输出
由于不能破坏XML文件的结构,只能按照XML现有的标签内容进行。这样我们就引入了XML解析器,它可以分析出XML文件的结果和具体内容。先用解析器解析XML文件,我们就方便的判断出,什么是标签,什么是数据。把每个标签或者数据,单独进行排序转换。
具体过程:
1.XML解析器读取分析XML文件;
2.建立一个空的XML文件,进行添加排序转换后的数据;
3.如分析出标签开始,则提取此标签,对其进行排序转换,把结果插入新的XML文件;并记住此标签的级别,用于插入下级标签时使用;
4.如分析出数据,则对数据进行排序转换,并直接把新数据插入包含它的标签中;
5.如分析出标签结束,则关闭此级标签,结束数据转换;并记录新的标签级别,用于插入平级标签时使用。
参考文献:
中图分类号:TP309 文献标识码:A 文章编号:1009-3044(2012)36-8763-02
数字水印技术是数字产品版权保护的重要手段。通过将版权信息有效合理地嵌入到数字产品中,在版权认证时又能够及时将其提取出来,从而有力地保证了数字产品的版权。分形压缩[1]着眼于图像的自相似性(或局部自相似性),以IFS(迭代函数系统)和拼贴定理为基础,对原始图像进行分形编码,从而大大减少了表示图像的信息量。该文将数字水印技术与分形压缩技术紧密结合,使得水印的鲁棒性得到了很好的提高。
1 数字水印技术
对于一个静态图像,对其原始信号的频域空间(通过将原始信号进行频域变换),运用某种算法加入一个水印信号,或在一个宽信道上传送一个窄带信号[2] ,都可以看成是数字水印技术的应用体现。
如果用X表示数字产品的集合、W表示水印信号的集合、K 表示水印密钥、G表示水印信号生产算法、E表示水印信号加入算法、D表示水印信号检测算法,整个水印处理系统可用一个六元体(X,W,K,G,E,D)来描述。各个部分之间的关系可以理解成:G 利用K和X生成W,E再将W加入到X中,待到需要时,用D从已加入水印信号的X中提取出W,进而对数字产品的版权进行认证。
2 分形压缩技术
分形压缩技术主要是通过分形图像的自相似性(即图像的局部与整体具有某种相似性),进而对原始图像进行压缩编码与解码的过程。通常可分为图像分割、分割码本、等距变换、编码、参数量化、解码六个子过程(如下):
3 分形压缩在数字水印中的应用
由于分形压缩可将一幅图像大幅压缩,比如一个256*256像素的灰度图像,需要65536B去存储,而经过分形压缩,仅需3954B存储空间即可。在数字图像中嵌入水印信号的时候,通过将原始水印信号分形压缩后,再将水印信号的分形码嵌入数字图像中,而非像原来那样嵌入水印原始信号,就可将水印信息成倍地嵌入。换句话说,原来数字图像中只有一个水印信号,而现在却有多个水印信号备份,即使有局部水印信号被篡改了,也可以通过其他备份信息来加以还原,因此水印的鲁棒性大大提高。
参考文献:
[1] 李水根,吴纪桃.分形与小波[M].北京:科学出版社,2002.
中图分类号:G710 文献标识码:A 文章编号:1003-2851(2012)-08-0224-01
本世纪九十年代随着通信技术、网络技术以及多媒体技术的快速发展,一种新型的数字化学习方式E-learning得以产生并在全世界迅速发展。在我国,E-learning首先被一些国有大中型企业发展应用,尤其在金融、IT以及能源交通等行业,很多知名企业在内部建立了E- learning系统。随着对E-learning技术观和学习观的重新认识,E-Learning以学习为本位、以学生为中心的教育理念得到了广泛的关注与发展,并被广大的培训机构和高校应用到了教育教学体系中。
E-Learning并不只是意味着远距离的教与学,同样可以在传统校园的教学环境中发挥重要的作用。现阶段基于知识元的E-Learning教学模式完全取代传统的课堂教学是不现实的,传统课堂教学在有些方面仍然具有一定优势。E-Learning作为近年来出现的新生事物,在我国的福建、广东和江浙一带,被广泛的应用到了企业的培训课程中,被越来越多的企业所接受。我国E-Learning教育市场目前主要以职业教育、培训教育和高等教育为主,其中尤以高等教育市场最大,前景也最广阔。目前发展比较好的有新东方教育、华东理工网络教育、网上人大等教育教学单位和机构。发展较完善的E-Learning系统有中驿E-Learnin品、上海久隆E-Learnin品等。但是这些系统大多基于传统的科目式教学模式,很少见到以知识元为中心的教学模式的体现
近年来可以看到与E-Learning紧密相关的软件,从大型的LMS、CMS平台系统到小型考试软件不下上百种。虽然开放源码的E-Learning软件不少,可是真正投入到实际应用的软件却寥寥无几。E-Learning开放源码软件没有被普遍应用的问题出现在“最后一公里”上,这是因为开发者的精力都投入在系统设计和编码上,而对于语言本地化、界面设计等问题不够重视,给应用带来了一定困难。而哈通咨询公司的做法很有借鉴价值,它通过与德国科隆大学的开放源码项目ILIAS的合作,通过咨询、实施、服务的方式推广了ILIAS学习管理系统。
从开发平台所使用的关键技术方面分析,目前主要有以下几个方面:
(1)协同工作技术(CSCW技术):CSCW改变了人们单纯依赖某一台计算机进行工作的方式,它将使人们在一组计算机的支持下合作完成某项任务,比如:大规模的工程设计,合作编著书稿,远程专家会诊,远程教学实施等。其中在E-Learning教学方面,最典型的应用就是协同课件编辑,虚拟教室中的发言权并发控制等。
(2)多媒体信息处理技术:多媒体(Multimedia)技术目前以被广泛的应用到了学校的日常教学过程中,但是多媒体信息本身的数据量比较大,要想实现其在互联网上高效地传输,就必须使用压缩与解压缩技术。多媒体压缩技术可分为无损压缩技术和有损压缩技术两大类,每一类又有多种压缩编码方法。无损压缩技术的压缩比要小于有损压缩的压缩比,无损压缩技术中比较典型的算法有:哈夫曼编码、行程编码、算术编码和LZW编码;有损压缩技术中比较典型的算法有:预测编码、变换编码(含DCT编码、小波编码等)、模型编码(含分形编码)、混合编码等,其中目前最为流行的是离散余弦编码(DCT编码)、小波编码和和分行编码。以离散余弦编码为例,它对静态图像的编码在20倍左右的压缩比下仍然能保持很好的图像质量,对动态图像的编码在120倍的压缩比下,数据流所恢复的视频信号信噪比还是相当高的。
(3)流媒体技术:在多媒体信息的传输方法中主要有下载传输和流式传输两种。下载传输是指将一个音视频文件整体由服务器传输给客户机,并保存到客户机本地硬盘上的过程,主要特点就是只有当某个文件全部传送到客户机后才能够开始播放。然而由于一般的多媒体文件都比较大,所以传输时延很长,同时对客户机的存储空间也有一定要求。流式传输是指将多媒体文件经过特殊的压缩方式分解为一个个压缩包,再由服务器向用户计算机连续地、实时地传送信息的一种传输技术。流式传输中多媒体文件可以边下载边播放(即时播放),不占用客户硬盘空间,但需要有一定的网络带宽支持,如果带宽低于多媒体流需要的带宽,会造成视频和音频数据的停顿。
(4)多媒体通信技术:E-Learning系统中,师生所在实际地理位置不受限制,虚拟教室中师生之间要进行实时的交流与通信。多媒体通信技术中有单播、组播和广播三种形式。被广泛应用的组播技术是一种基于组的广播,组播的源和目的地之间是一种基于组内的一对多的关系,组播方式中服务器只需发送一个信息包,路由器一次将数据包复制到多个通道上,这样发出请求的所有客户机便可以共享该信息包。
参考文献
[1]郝兴伟.基于知识本体的E-learning系统研究.[山东大学工学博士学位论文].山东大学信息科学与工程学院,2007,6:34-36.
[2]陈活.IPv6下远程多媒体教学系统网络服务质量研究[J].软件导刊,2011,3:2-5.
中图分类号:U675.74 文献标识码:A 文章编号:1007-9416(2014)02-0224-01
1 固态雷达工作原理
调制器发出的调制脉冲被传送进入磁控管,并引发磁控管产生大功率超高频率的脉冲波,这种射频脉冲波经过天线发射,在遇到目标物体后,有目标物体弹回的反射波会再次被天线接收,最后接收机通过反射波的信息,进过处理,将信号以视屏信号的方式显现出来,这就是传统的脉冲磁控管雷达。脉冲磁控管雷达中最主要的部分就是磁控管,而新型的固态雷达却没有磁控管,取而代之的是固态器件。信号的发射和传统的雷达一样,接收后的信号不仅要进过接收器的处理还需要有脉冲压缩器的处理,之后才能将信息呈现在显示屏上。
传统的脉冲磁控管雷达发射的是大功率的脉冲波,而新型的固态雷达发射的确实低功率的射频脉冲,一般情况下固态雷达发射的射频脉冲的最大功率低至200W左右,但是却拥有较高的占空率。发射的信号经过接收机和脉冲压缩器的处理,可以高倍数的压缩信号,这就可以与传统雷达所发射的大功率高频率的射频信号想媲美,而固态雷达还具有较高的占空比,所以固态雷达在远距离的探测中更占有优势地位。
雷达探测的距离可分为近、中、远三种不同的距离,不同的探测距离的要求是不一样的,固态雷达发射出特定的射频脉冲来满足这些要求,这种特定次序的脉冲中包括短脉冲,中脉冲和长脉冲三种不同的脉冲波。同时,为了使脉冲容易被压缩,常常采用脉冲宽度和编码混合的方法,这样可以保证每次发射的脉冲在长度和编码上都是与众不同的。处理和比较就收会的脉冲信号,就可以判断目标的存在状况。而数字脉冲压缩器的作用就是压缩脉冲,这样就可以利用中脉冲和长脉冲来有效地确定距离,按照IMO的规定,雷达性能标准距离可以观察到40m。新体制的固态雷达与传统的脉冲磁控管雷达有巨大的改善,它使用了脉冲多普新勒技术,这项技术的使用时的航海雷达得到了更好地发展。固态雷达可以检测出雷达与目标之间的相对速度,将接受的反射波以特定的方式处理后,能够十分有效的将回波中的杂波剔除出去,这种滤波技术使得雷达能够在海浪和雨雪等恶劣情况下,对移动中的小目标进行精确地探测,这比起传统雷达的效果要好的多。通过对比,可以更加具体的说明两种雷达在有外界干扰的情况下探测性能的高低,新体制的固态雷达在雨雪天气可以清晰的扑捉到移动中的小目标,有效地派出了雨雪杂波的干扰;而传统的雷达对雨雪杂波的过滤效果不尽如意,即使后期通过其他手段抑制雨雪杂波的影响,取得的效果也不如固态雷达的效果好。
2 典型技术介绍
2.1 多普勒效应
声源和接受物体的相对运动而发生声源的频率发生改变(频移)称为多普勒效应。将多普勒效应使用在雷达中,这样可以提高雷达在有外界杂波的干扰下清晰观察到移动中的小目标能力。移动中的小目标与雷达之间沿径向有相对的速度或者是两者之间的距离变化时,这种多普勒雷达发射出的脉冲信号经过目标的反射后,雷达接收的收回波的频率和原来的发射的脉冲的频率有变化,根据这种频率偏移,我们就可以知道小目标的运动情况。雷达发射的脉冲信号和接受会的信号进过的路程是目标和雷达之间路程的两倍。多普勒雷达可以有效地减少杂波的干扰,使得目标情况可以清晰的显示出来。
2.2 脉冲压缩技术
除了多普勒雷达外,还有脉冲压缩雷达,它的主要技术是脉冲压缩。脉冲压缩技术就是通过对脉冲的相位和频率进行编码的长脉冲,将发射机发射的原有脉冲编码成远远大于相同情况下未编码的脉冲宽度。脉冲发射需要有足够的能量,而脉冲压缩技术的最大特点就是能够在较低的峰值功率下,有效地增大脉冲的宽度来确保脉冲顺利发射。脉冲压缩雷达还具有远距离探测能力和距离探测能力高等特点。
3 固态雷达的应用
3.1 固态雷达的运用特点
新体制固态雷达的出现,在航海雷达的发展史上具有跨时代的意义,多普勒技术、脉冲压缩技术等高新技术的使用,使得固态雷达相对于传统雷达具有许多优点。固态雷达不仅在远距离探测、距离分辨、抗杂波干扰、检测移动中的目标等方向的能力大大提高,而且因为新技术的使用,也降低了航海雷达的使用成本,延长了雷达的使用寿命。新的技术也是的固态雷达的工作原理发生了改变,这使得固态雷达获得了许多优点。首先,传统的磁控管雷达的主要工作部位磁控管,在开启雷达后需要长达三分钟的预热时间才能正常工作,而固态雷达却不需要时间来预热。其次,磁控管发射出的是大功率高频率的脉冲,这些脉冲并不稳定,一般情况下为了获得清晰地图像,需要对这些脉冲进行调制,但是固态雷达解决了这一问题,不再需要调制。再次,传统雷达使用的大功率设施需要经常更换,这就增加了雷达的使用成本,而新体制的固态雷达不需要经常更换这些器件,大大减少了成本。
3.2 固态雷达在运用中注意的问题
虽然固态雷达的性能在传统雷达的基础上有了很大的进步,但是在使用过程中,使用者还有一些地方需要注意,以保证安全有效使用航海雷达。首先,固态雷达在观测移动目标时需要目标与雷达间有径向移动,这一确定也会使得没有径向移动的目标别误认为是杂波过滤掉。其次,固态雷达采用的脉冲压缩技术在对杂波干扰进行过滤的时候,也会对小目标的发射波有影响,这样也会减弱对小目标的探测能力。所以使用者在使用固态雷达的时候,必须注意这些细小的问题,以免因为疏忽造成航海事故。
4 结语
航海事业的发展使得人们对于航海雷达的要求越来越高,随着未来科学技术的不断发展,航海雷达也会不断地改善。未来的航海雷达将在抗干扰能力、距离分辨率等方面做出巨大的突破。新体制固态雷达的出现为安全航海提供了有效地技术支持。笔者在这里对目前新体制固态雷达的现状和工作原理进行了简单的介绍,同时提出了现代新体制固态雷达的运用中的特点及其注意的问题,为雷达的使用者提供一份参考。
参考文献
线性调频信号具有非线性相位谱,能够获得较大的时宽带宽积;与其它脉压信号相比,很容易用数字技术产生,且技术上比较成熟;所用的匹配滤波器对回波信号的多卜勒频移不敏感,因而可以用一个匹配滤波器处理具有不同多卜勒频移的回波信号。这将大大简化信号处理系统,因此它在工程中得到了广泛的应用。采用这种信号的雷达可以同时获得远的作用距离和高的距离分辨率。
一、线性调频信号的产生方法
随着数字技术的发展,以前由模拟方法完成的许多功能逐渐被数字方法所取代,复杂的雷达信号的产生也基本完成了由模拟技术到数字技术的质的转变。因为与模拟方法相比,数字方法具有灵活性好、可靠性高、失真补偿方便,及易于实现相参等明显优越性,现己成为产生高性能线性调频信号的主要方法。数字方法产生线性调频信号的方法主要包括两种,波形存储直读法和直接数字合成法(DDS)。
波形存储直读法是一种经典的基带信号产生方法。它是预先根据采用频率、基带带宽、时宽等信号参数,通过线性调频信号的数学表达式分别计算出两路正交信号的采样值,按照顺序预先写入高速内存中。通过对采用时钟进行计数而顺序产生高速内存译码地址,依次从高速内存中读出预先写入的两路正交信号的采样值。I、Q两路分别经过数模变换、低通滤波产生两路正交线性调频基带信号。这种方法具有原理简单、成本低廉、对器件依赖小等优点,并具有较好的幅相预失真补偿能力,但是存在电路结构比较复杂、需要高速控制电路配合,也增加了软件的复杂度。经正交调制和倍频器,对基带信号进行带宽扩展和频谱搬移,输出所需带宽和频段的线性调频信号。直接数字合成(Direct Digital Synthesis,简称DDS)方法。用这种方法产生的线性调频信号的技术日益受到重视并广泛应用,它是根据线性调频信号的频率线性变化、相位平方变化的特点而设计的。直接数字合成法采用两级相位累加结构来得到线性调频信号的二次变化的相位,然后根据相位值查存储在ROM里的正弦、余弦表,将查得的值经D/A转化得到相应的I、Q两路基带线性调频信号。这种方法通过数控电路能对DDS输出波形、频率、幅度、相位实现精确控制,可在调频带宽内对雷达系统的幅度和相位进行校正,产生近乎理想的线形调频信号。只要改变某些电路的参数设置,就可以改变线性调频信号的时宽和带宽。但由于DDS的全数字的全数字结构,杂散电平高是其自身固有的缺陷。
二、线性调频脉冲信号压缩的实现方法
线性调频脉冲信号的压缩通常有两种方式:模拟压缩和数字压缩。目前模拟式脉冲压缩器件有:具有大带宽、小时宽的声表面波(SAW)器件;中等时宽和中等带宽的体声波反射阵列压缩器等。随着高速、大规模集成电路器件的发展,对于大时宽大带宽信号的脉冲压缩通常采用数字方式压缩。
数字脉冲压缩系统较之模拟方法具有一系列优点:数字法可获得高稳定度、高质量的线性调频信号,脉冲压缩器件在实现匹配滤波的同时,可以方便地实现旁瓣抑制加权处理,既可有效地缩小脉冲压缩系统的设备量,又具有高稳定性和可维护性,并提高了系统的可编程能力。科技论文,压缩方法。因此,数字处理方法获得了广泛的重视和应用。
1、线性调频脉冲信号的时域数字压缩实现
线性调频信号的时域数字脉冲压缩处理,通常在视频进行,并采用I、Q两路正交双通道处理方案,以避免回波信号随机相位的影响,可减少约3dB的系统处理损失。中频回波信号经正交相位检波,还原成基带视频信号,再经A/D变换形成数字信号,进行数字脉冲压缩处理。I、Q双路数字压缩按复相关运算(即匹配滤波)进行,双路相关运算输出经求模处理、D/A变换,输出模拟脉冲压缩信号;I、Q双路相关输出的数字信号还可送后级信号处理。
2、线性调频脉冲信号的频域数字压缩实现
由于高速A/D变换器、大规模集成电路技术以及快速傅立叶变换技术的应用,使宽带信号的实时处理成为可能。科技论文,压缩方法。采用DSP及FPGA的频域数字脉冲压缩处理的优点是处理速度高、工作稳定、重复性好,并且具有较大的灵活性。
3、线性调频脉冲压缩方案
根据线性调频信号的特点及其脉冲压缩原理,数字脉冲压缩系统首先要将回波信号经A/D采样变成数字信号,再进行脉冲压缩。时域数字脉冲压缩实际上是将回波数据与匹配滤波器进行复卷积,而频域数字脉冲压缩则是通过对回波数据进行FFT后,与匹配滤波器的系数进行复数乘法运算,然后再经过IFFT得到压缩脉冲的数字数据。对于N点长度的信号,在时域实现数字脉压,需要进行L2次复数乘法运算,而频域卷积法仅需2L1og2L次复数乘法运算,大大减小了运算工作量。另外,考虑到抑制旁瓣加权函数,若在时域实现数字脉压,不仅要增加存储器,而且运算量将增加一倍,在频域实现抑制旁瓣加权函数,不需增加存储器和运算量。
三、线性调频脉冲信号的加权处理
线性调频信号通过匹配滤波器后,输出脉冲的包络近似Sinc(x)形状。其中最大的第一对旁瓣为主瓣电平的一13.2dB,其他旁瓣电平随其离主瓣的间隔x按1/X的规律衰减,旁瓣零点间隔是1/B。在多目标环境中,这些旁瓣会埋没附近较小目标的主信号,引起目标丢失。为了提高分辨多目标的能力,必须采用旁瓣抑制的措施,简称加权技术。科技论文,压缩方法。加权可以在发射端、接收端或收、发两端上进行,分别称为单向加权或双向加权。科技论文,压缩方法。其方式可以是频率域幅度或相位加权,也可以是时间域幅度或相位加权。科技论文,压缩方法。此外,加权可在射频、中频或视频级中进行。科技论文,压缩方法。为了使发射机工作在最佳功率状态,一般不在发射端进行加权。目前应用最广的是在接受端中频级采用频率域幅度加权。
引入加权网络实质上是对信号进行失配处理,所以它不仅使旁瓣得到抑制,同时使输出信号包络主瓣降低、变宽。换句话说,旁瓣抑制是以信噪比损失及距离分辨力变差为代价的。如何选择加权函数这涉及到最佳准则的确定。考虑到信号的波形和频谱的关系与天线激励和远场的关系具有本质上的共性,人们应用天线设计中的旁瓣抑制原理,曾提出海明加权、余弦平方、余弦四次方加权等几种最佳加权函数。但是这些理想的加权函数都较难实现。因此,只能在旁瓣抑制、主瓣加宽、信噪比损失、旁瓣衰减速度以及技术实现难易等几个方面进行折衷的考虑选取合适的加权函数。
结语:随着数字技术和大规模集成电路技术的飞速发展,数字脉冲压缩(也称脉压)技术以其性能稳定、抗干扰能力强、控制方式灵活以及硬件系统更小型化等优点,逐步取代早期的模拟脉压技术,成为现代脉压系统的发展趋势。特别是近年来高性能通用数字信号处理器的出现,为雷达脉冲压缩处理的数字化实现提供了一种工程实现途径。数字脉压系统的实现可以满足体积小、功耗低和成本低等条件,其相关问题的研究成为国内外广大学者研究的热点问题之一。
参考文献:
1、王世一《数字信号处理(第1版)》[J]北京:北京理工大学出版社1997;
2、任培红《脉冲压缩信号的特点、产生、及压缩方法》[J]电讯技术1999(2);
1前言
随着多媒体计算机技术和通信技术的发展,产生了一种新的技术——多媒体通信技术,它是多媒体、通信、计算机和网络等相互渗透和发展的产物,兼收了计算机的交互性、多媒体的复合性、通信的分布性以及电视的真实性等特点,具有明显的优越性。目前,如何在IP网络中更好、更快地实现视频、音频的传送已成为当今的研究热点之一。
2基于IP网络构建视频会议系统的技术要求
随着IP网络的速率越来越高,从窄带走向宽带,承载业务从非实时走向实时,IP技术已成为实现视频、音频、数据等综合业务的最佳选择。在IP网络上建立视频会议系统需要多种技术支持,是比较复杂、完整的多媒体应用系统。
2.1要有足够高的带宽
要传送视频,必须要有足够的网络带宽,就像大车要有足够宽的马路才能通行一样,否则,视频数据无法通过网络。以一帧1024×768像素的图像为例,如果用12bit表示每个像素,则共需要9.4Mb,如果按照25帧/秒的传输速率,则1秒内需要传输的数据量就是235Mb。在现有的网络条件下,传输这么大的数据是无法接受的。
2.2要有好的压缩技术
只有采用高压缩比的压缩算法,有效地降低数据量,才能使视频、音频数据在IP网上传输成为可能。例如:在H.323会议系统中,图像编码主要采用H.261和H.263标准,支持CIF、QCIF的分辨率,而正在完善之中的H.264是比H.263和MPEG-IV压缩比更高的标准,节约了50%的编码率,而且对网络传输具有更好的支持,可获得HDTV、DVD的图像质量。
2.3要有基于IP网络的多播技术
多播是一种多地址广播,发送与接收是一对多的关系。在传输过程中,发送端只需发送一次数据包,位于多播组内的各个用户就可以共享这一数据包。在视频会议系统应用中,将一个节点信号传送到各个节点时,无论是重复采用点对点通信,还是采用广播的方式,都会严重浪费网络带宽,而多播技术将数据传送分布到网络节点中,减少了网络中的数据总量。
2.4要有相适应的传输协议
TCP、UDP协议均不能很好地支持视频会议系统,这就需要与之相适应的协议,如RTP、RTCP、RSVP等。RTP运行在UDP之上,音频、视频等数据被封装在RTP数据包中,每个RTP数据包被封装在UDP包中,然后再封装到IP包中进行传输。在底层网络支持多播的情况下,RTP还可以使用多播向多个目的端点发送数据。RTCP是RTP的控制协议,负责反馈控制、检测QoS和传递相关信息,对RTP的数据收发做相应调整,使之最大限度地利用网络资源。
2.5要提供服务质量保证
网络服务质量是网络与用户之间以及网络上互相通信的用户之间关于信息传输与共享的质量约定。第一,在任何网络中,时延总是存在的。视频会议系统具有较高的实时性和可靠性要求,为了获得各会场的真实的现场感,音频、视频的时延都要小于0.25s,最大时延抖动应小于10ms。其次,在视频会议系统中,还要求唇音同步,只有达到时间上的同步,才能自然有效地表达关于会场的完整信息。第三,允许一定的丢包率。因为人的感知能力有限,在一个视频会议系统中,个别分组丢失,人眼是感觉不到的,因此可以允许一定的传输误码,丢包率应控制在人能接受的范围内。
3基于IP网络构建视频会议系统的协议
基于IP网络构建视频会议系统的标准主要有:H.323和SIP。
H.323沿用了传统的电话信令模式,比较成熟,已经出现了很多产品,形成了比较成熟的应用体系和市场体系。SIP协议将音、视频传输作为Internet上的一个应用,增加了信令和QoS要求,借鉴了其它Internet标准和协议的设计思想,遵循简练、开放、兼容和可扩展等原则,比较简单,但其推出时间不长,协议并不是很成熟,应用也不是很多。
4结束语
随着网络、多媒体、通信技术的飞速发展和性能的提升,基于IP网络构建视频会议系统技术会不断被发展和完善,必将以其独特的优势广泛应用到Internet、Extranet、Intranet上,为政府机关、商业集团、科研院所、医疗机构及普通个人等进行异地交流提供方便条件,成为工作、学习、生活中不可或缺的工具。
参考文献
[1]张智江,张云勇,刘韵洁.SIP协议及其应用[M].北京:电子工业出版社,2006.
[2]沈鑫剡,等.多媒体传输网络与VoIP系统设计[M].北京:人民邮电出版社,2005.
1前言
随着多媒体计算机技术和通信技术的发展,产生了一种新的技术——多媒体通信技术,它是多媒体、通信、计算机和网络等相互渗透和发展的产物,兼收了计算机的交互性、多媒体的复合性、通信的分布性以及电视的真实性等特点,具有明显的优越性。目前,如何在IP网络中更好、更快地实现视频、音频的传送已成为当今的研究热点之一。
2基于IP网络构建视频会议系统的技术要求
随着IP网络的速率越来越高,从窄带走向宽带,承载业务从非实时走向实时,IP技术已成为实现视频、音频、数据等综合业务的最佳选择。在IP网络上建立视频会议系统需要多种技术支持,是比较复杂、完整的多媒体应用系统。
2.1要有足够高的带宽
要传送视频,必须要有足够的网络带宽,就像大车要有足够宽的马路才能通行一样,否则,视频数据无法通过网络。以一帧1024×768像素的图像为例,如果用12bit表示每个像素,则共需要9.4Mb,如果按照25帧/秒的传输速率,则1秒内需要传输的数据量就是235Mb。在现有的网络条件下,传输这么大的数据是无法接受的。
2.2要有好的压缩技术
只有采用高压缩比的压缩算法,有效地降低数据量,才能使视频、音频数据在IP网上传输成为可能。例如:在H.323会议系统中,图像编码主要采用H.261和H.263标准,支持CIF、QCIF的分辨率,而正在完善之中的H.264是比H.263和MPEG-IV压缩比更高的标准,节约了50%的编码率,而且对网络传输具有更好的支持,可获得HDTV、DVD的图像质量。
2.3要有基于IP网络的多播技术
多播是一种多地址广播,发送与接收是一对多的关系。在传输过程中,发送端只需发送一次数据包,位于多播组内的各个用户就可以共享这一数据包。在视频会议系统应用中,将一个节点信号传送到各个节点时,无论是重复采用点对点通信,还是采用广播的方式,都会严重浪费网络带宽,而多播技术将数据传送分布到网络节点中,减少了网络中的数据总量。
2.4要有相适应的传输协议
TCP、UDP协议均不能很好地支持视频会议系统,这就需要与之相适应的协议,如RTP、RTCP、RSVP等。RTP运行在UDP之上,音频、视频等数据被封装在RTP数据包中,每个RTP数据包被封装在UDP包中,然后再封装到IP包中进行传输。在底层网络支持多播的情况下,RTP还可以使用多播向多个目的端点发送数据。RTCP是RTP的控制协议,负责反馈控制、检测QoS和传递相关信息,对RTP的数据收发做相应调整,使之最大限度地利用网络资源。
2.5要提供服务质量保证
网络服务质量是网络与用户之间以及网络上互相通信的用户之间关于信息传输与共享的质量约定。第一,在任何网络中,时延总是存在的。视频会议系统具有较高的实时性和可靠性要求,为了获得各会场的真实的现场感,音频、视频的时延都要小于0.25s,最大时延抖动应小于10ms。其次,在视频会议系统中,还要求唇音同步,只有达到时间上的同步,才能自然有效地表达关于会场的完整信息。第三,允许一定的丢包率。因为人的感知能力有限,在一个视频会议系统中,个别分组丢失,人眼是感觉不到的,因此可以允许一定的传输误码,丢包率应控制在人能接受的范围内。
3基于IP网络构建视频会议系统的协议
基于IP网络构建视频会议系统的标准主要有:H.323和SIP。
H.323沿用了传统的电话信令模式,比较成熟,已经出现了很多产品,形成了比较成熟的应用体系和市场体系。SIP协议将音、视频传输作为Internet上的一个应用,增加了信令和QoS要求,借鉴了其它Internet标准和协议的设计思想,遵循简练、开放、兼容和可扩展等原则,比较简单,但其推出时间不长,协议并不是很成熟,应用也不是很多。
4结束语
随着网络、多媒体、通信技术的飞速发展和性能的提升,基于IP网络构建视频会议系统技术会不断被发展和完善,必将以其独特的优势广泛应用到Internet、Extranet、Intranet上,为政府机关、商业集团、科研院所、医疗机构及普通个人等进行异地交流提供方便条件,成为工作、学习、生活中不可或缺的工具。
参考文献
[1]张智江,张云勇,刘韵洁.SIP协议及其应用[M].北京:电子工业出版社,2006.
[2]沈鑫剡,等.多媒体传输网络与VoIP系统设计[M].北京:人民邮电出版社,2005.
1.中药蒸发浓缩技术的现状
近二十年来,我国中药生产企业提取液的浓缩主要采用双效、三效蒸发器,这两种蒸发器为我国中药产业改革原始的提取液蒸发浓缩方式,步入现代化工业生产的轨道,做出了很大贡献,在中药浓缩中得到广泛的应用和发展。然而,这二种蒸发器应用到中药生产,普遍存在由于蒸发过程中大量热量的排出,造成能源消耗较大,热量利用率不高。而随着技术的进步发展,近十年来逐渐发明了采用带热泵的双效蒸发器,实现了低温加热,低温蒸发,采用凝结水串级自蒸发结构,不仅可以回收凝结水的热量,而且各效间由于液封的存在,杜绝了各效间漏气,与传统双效蒸发器比:节约蒸汽36%以上,节水30%以上。而后随着蒸发浓缩技术的发展,逐渐产生了超滤和反渗透膜浓缩,大大降低了能源消耗,但由于超滤膜、反渗透膜等膜由于受中药的腐蚀、中药杂质较多等影响,造成膜寿命的降低,从而使浓缩成本上升,另外,由于对膜的影响,也是适用的范围有所局限。
2.MVR低温降膜蒸发技术的介绍
MVR(mechanicalVaporREcomression)蒸汽浓缩法是指利用涡轮发动机的增压原理、经特殊流体设计而组成的蒸汽机械增压式蒸馏浓缩系统的简称。这种工艺系统,将使密闭容器内经加热生成的二次水蒸汽,在通过蒸汽压缩机时被再压缩增压至107摄氏度的高压气体。这种增压蒸汽即可作为再生热源而循环应用于原水的继续连续蒸发,又在循环传热的过程中使增压蒸汽本身也得以迅速冷却或冷凝,直至成为洁净纯水,同时可以在这种结净冷凝水排放的过程中利用其残热对流入的原水实施热交换。
2.1.MVR低温降膜蒸发设备的组成:
2.1.1.预热器:很多情况待蒸发的原药液在进入蒸发换热器之前的温度较低,为了充分利用系统内的热能,经常采用列管式或板式换热器对原药液进行预加热,使其温度升高。
2.1.2.蒸汽压缩机:它是MVR系统的核心和关键部件,它通过对二次蒸汽进行压缩,提高系统内二次蒸汽的热焓,为系统连续提供热量。根据原药液的流量和沸点升高值等特性,可以选择罗茨或离心压缩机进行蒸汽的压缩,但由于中药具有成分的不确定性和较强的腐蚀性,因此压缩机的材质应采用耐腐蚀、不脱落、不对中药产生污染的材料,一般选用优质的不锈钢材质。
2.1.3.汽液分离器:它是蒸汽和浓缩液体进行分离的装置。对于有结晶的原液,可以将分离器和结晶器设计成一体,再加装强制循环泵,完成汽液分离,浓缩和结晶的功能。
2.1.4.蒸汽换热器:预热后的原药液通过进料泵将其载入蒸汽换热器与由蒸汽压缩机产生的蒸汽进行换热,使其迅速汽化蒸发。根据原液的特性(粘度,是否有结晶和结垢等)选择换热器的形式和面积。
2.1.5.控制中心:采用工控机和PLC构成MVR系列的实时监控中心。通过软件编程,实时采集各种传感器的状态信号,从而自动控制马达的转速、阀门关闭和调节、液体的流速和流量、温度和压力的控制和调节等,使系统工作达到动态平衡的状态。同时该设备还具有自动报警、自动记录参数和提供报表的各种功能。
2.2.MVR低温降膜蒸发设备的节能原理:
MVR低温降膜蒸发设备同原来的双效、三效不同的是,原来的三效、双效采用的二次蒸汽直接加热药液使其在降压状态下蒸发,二次蒸汽热晗较低,热量较低,致使蒸发量较少。而MVR低温降膜蒸发设备主要采用电能转换为机械能时二次蒸汽压缩产生热能,热能被循环利用,热能在系统内几乎无损失,将蒸馏水和浓缩液的输出热能与原液进行交换,使其热能得到高效利用。MVR节能蒸发器,其原理是利用高能效蒸汽压缩机压缩蒸发产生的二次蒸汽,把电能转换成热能,提高二次蒸汽的焓值,被提高热能的二次蒸汽打入蒸发室进行加热,以达到循环利用二次蒸汽已有的热能,从而可以不需要外部新鲜蒸汽,依靠蒸发器自循环来实现蒸发浓缩的目的。通过PLC、单片机、组态等形式来控制系统温度、压力马达转速,保持系统蒸发平衡。
2.3.MVR低温降膜蒸发设备的特点:
2.3.1.MVR低温降膜蒸发设备在浓缩过程中,由于采用物料输送泵进行料液的输送,提高了料液在管内的流速,使料液在物料管道内的停留时间只有数秒钟乃至数十秒钟。这样短的时间内, 而且管内存液量小, 故特别适用于热敏性料液的浓缩, 例如牛奶、橘子汁、医药的青霉素和链霉素、以及农药的春雷霉素和赤霉素等等, 可避免或减少物料的热分解。
2.3.2.MVR低温降膜蒸发设备结构简单主要有蒸发器、加热器和压缩机, 维修方便,可在减压、常压和加压下操作运行。
2.3.3.由于受料液流动方式的影响,该设备针对料液的浓缩比不能太高,如浓缩比过高, 则因料液少, 管壁湿润差, 会造成固体溶质粘附在壁上的“ 干管”现象, 不仅增加热阻, 而且容易堵塞加热管,造成药液的损坏。
2.3.4.只适用于蒸发中等粘度的料液,不适于有晶体析出的物料,不适于易结垢物料。
3.MVR低温降膜蒸发技术的应用及效果分析
随着人类社会的发展,随着科学技术的进步发展,人类对环境的影响越来越严重,温室效应,能源对科学技术的发展越来越重要和不可缺少。为进步节约能源,减少排放,我公司于2011年引进了MVR蒸汽浓缩设备,首先应用到了中药提取液的浓缩过程中,得到了较好的应用收到了良好的效果。
3.1.MVR低温降膜蒸发技术与常规蒸发器比较
3.1.1.MVR低温降膜蒸发技术每蒸发一吨水消耗20-70度电(视液体成分而定),而常规蒸发器消耗1.25-0.3吨鲜蒸汽,两者消耗都随溶液沸点、减水沸点的差值而增加,对同一种溶液,MVR低温降膜蒸发技术能源消耗量和生产成本显著低于常规蒸发器,是一种高新节能蒸发技术。
3.1.2.MVR低温降膜蒸发技术不需要循环冷却水,没有冷却水消耗。不需要建设高污染的燃煤小锅炉或高成本的燃油锅炉。蒸发器比常规蒸发器更节水、更节能环保。
3.1.3.MVR低温降膜蒸发技术应用范围广,所有常规蒸发器应用的领域都适用于该蒸发器,机械式蒸汽再压缩蒸发器蒸发温差小,更适用于热敏性溶液。溶液在蒸发器内流程短、停留时间短,因而溶质不宜变质。
3.1.4.MVR低温降膜蒸发技术采用全自动电脑控制,并且可以在低负荷下稳定运行。
3.1.5.MVR低温降膜蒸发技术属于国家科委颁布的高新技术范围,按高新技术认定分类该高新技术属于高效节能技术和环境保护技术,符合国家节能减排和环保高新技术推广范围。
3.2.MVR低温降膜蒸发设备具有以下特点
3.2.1.节能:该设备采用电能转换为热能,充分利用了二次蒸汽的热能,降低了能源消耗,同时产生的凝结水在充分和原药液进行热交换(预热),使其热能得到高效充分的利用,没有废热蒸汽排放,节能效果十分显著,相当于10效蒸发器的效果,另外产生的凝结水可再次利用,提高了能源的利用率。
3.2.2.设备环保:该设备在使用过程中可以不需要生蒸汽、不要锅炉、不需要烧煤、不需要冷却水,只要有电,就可以用机械压缩式蒸发器。从而降少了CO2,SO2的排放,减少了粉尘和固体废渣的排放,减少污染,改善我们的居住环境。
3.2.3.低运行成本:由于节能效果显著,使整个蒸发器的运行成本也大大降低,运行成本是传统蒸发器的三分之一到二分之一。
3.2.4.自动化程度高:MVR蒸发器配置设计的自动控制系统,技术先进,质量可靠。整个蒸发器实现在从原液加注、预热、蒸发、清洗、保养等步骤的自动化控制。避免了人为失误,降低了人力成本,提高了产品质量。
3.2.5.占地面积小:MVR蒸发器由于采用了压缩机来循环使用二次蒸汽,提高了能效,因此比传统蒸发器紧凑。
针对MVR技术的特点,热敏性强、浓缩比不高的液体均可以采用该技术。该技术最大的特点就是节约能源,经实际应用和对比,该技术相比以往的三效蒸发技术可节能达到57%,吨产品综合耗能成本为73.5元。
4.MVR低温降膜蒸发技术的推广和应用前景展望
由于MVR低温降膜蒸发设备具有较高的节能效果,使其受到各个企业的青睐,但目前由于蒸汽压缩技术国内技术还不够成熟,致使目前该设备的投资成本较高,一次性投资较大,因此目前只有经济实力较强的大公司才有能力得到应用。因此若使该技术能够得到更加广泛的应用,必须首先提高国产蒸汽压缩技术,降低一次投资成本。
另外,MVR低温降膜蒸发设备在实际的使用中,会降低中药浓缩成本50%以上,对于具有中等生产能力的中药生产企业,估计有一年的时间即可收回投资。
对于目前中国生产现状,与世界先进国家相比我们的技术水平还不好,设备技术处于高耗能阶段,面对中国目前能源状况,能源逐渐紧缺,能源消耗成本越来越高,MVR蒸汽压缩设备随着技术的进步完善和蒸汽压缩技术的国产化,我认为在未来的几年将迎来飞速发展,在中药浓缩领域将会得到更加广泛的应用和技术提高。