高电压技术论文模板(10篇)

时间:2023-03-13 11:24:56

导言:作为写作爱好者,不可错过为您精心挑选的10篇高电压技术论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

高电压技术论文

篇1

欧洲专家介绍了近海岸直流电网示范工程的研究结论,这项研究工作包括近海岸间歇性能源,直流电网经济,控制保护等问题。两个著名硬件设备开发商参与了该项目,完成用于测试控制技术开发的低功率模拟器,并证明保护算法可用于直流电网,开发出了基于电力电子和机械技术创新的直流断路器;另有专家提出了利用有限的直流断路器操作,设计具有故障清除能力直流网络,模拟研究表明使用直流断路器可迅速隔离直流侧电网故障,即可在点对点的电缆方案中使换流器继续支撑交流网络。针对此问题,中国专家发言指出可采用全桥型子模块拓扑结构来清除直流侧故障,实现与电网换相换流器(LCC)相同的功能。德国专家提出了关于采用电压源换流器(VSC)的交直流混合架空线运行的特殊要求,虽然混合运行可提高现有输电通道的容量,但存在一系列挑战,包括利用可控、有效的方式实现多终端的操作管理,交直流系统的耦合效应,直流电压和电流匹配原则以及机械特性差异等。韩国专家提出了用于晶闸管换流阀的新型合成运行试验回路,该回路可向测试对象施加试验用交、直流电压和电流脉冲,并配置了可在试验前给电容充电的可控硅开关,以及为试验回路中晶闸管门极提供触发能量的独立高频电源。

1.2可再生能源的并网

美国专家提出了近海岸高压直流输电系统设计方案的可靠性分析方法,研究了平均失效时间和平均修复时间等可靠性指标,并结合概率(蒙特卡洛)技术来评估风速波动对风电场的影响,且评估不同的系统互联、系统冗余以及使用直流断路器与否等技术方案的能量削减水平,提议将能量削减作为量化直流电网可靠性的指标。为设计人员选择不同的技术方案、拓扑结构和保护方案提供依据。近海岸直流输电换流站选址缺乏相关的标准、项目参考及工程经验,难以给项目相关者提供合理的建议,并且可能会在项目的开发过程中引入风险。挪威专家针对此情况提出了一种从石油和天然气行业经验总结得出的技术资格要求,将有助于更加快速、高效、可靠地部署海上高压直流输电系统。

1.3工程项目规划、环境和监管

哥伦比亚和意大利专家提出了哥伦比亚与巴拿马电气互联优化设计方案,初步设计方案额定容量为600MW/±450kV,经过综合比较,方案优化为300MW/±250kV,400MW/±300kV的双极结构,并使用金属回线作为最佳的技术和经济解决方案。线路长度由原来的600km变为480km,但考虑到哥伦比亚输电系统的强度问题,决定保留原来的输电路线。贝卢蒙蒂第一条800kV特高压直流输电线路项目规划构想了额定参数为2×4GW/±800kV双极结构,直流线路长2092km,连接巴西北部与南部的直流输电工程方案;印尼第一条Java-Sumatra直流输电工程,额定参数为3GW/±500kV,双极结构,直流线路包含架空线和海底电缆,考虑采用每极双十二脉动换流器和备用海底电缆来提高系统的可靠性和可用率;太平洋直流联接纽带介绍了延长太平洋北部换流站寿命的最佳方案,将原有的换流器变为传统的双极双换流器结构,但保留多余的2个换流器阀厅,现以3.8GW/±560kV为额定参数运行。

1.4工程项目实施和运行经验

新西兰和德国专家提出“新西兰直流工程新增极3的挑战和解决方案”,该工程不仅要保证设备能承受较高的地震烈度,保障其在弱交流系统中安全稳定运行,还要设计合理的设备安装地点,以及新建极与原有极的一体化控制保护系统;巴西互联电力系统的Madeira河项目中SanAntonio发电厂对400MW的背靠背中第一个模块及额定参数为3.15GW/±600kV双极中的第一极进行充电,工程因交流系统没有足够的短路容量而延迟工期,后通过安装500kV/230kV联接变压器得以解决。印度的Champa-Kurukshetra±800kV/3GW高压直流工程首次在特高压输电工程中采用金属回线返回方式运行,输电线路长1035km,远期增加容量3GW,双极功率传输容量可达6GW;法国与西班牙东部互联案例中采用双回VSC-HVDC馈入交流网络,研究认为VSC-HVDC是首选的技术解决方案。

2FACTS装置及技术应用

2.1可再生能源并网

丹麦专家开发了多电平静止同步补偿器(STATCOM)通用电磁暂态模型,并基于伦敦Array风力发电厂多电平STATCOM现场测量和电磁暂态仿真结果对比研究进行了验证,仿真结果与现场测量结果比较相符,并显示出良好的相关性。

2.2提高交流系统的性能

加拿大专家提出了用于工程规划的通用VSC模型,开发了基于PSS/E的稳态和动态模型。验证了该模型部分交流侧和直流侧故障,结果表明具有良好的相关性,可在新的工程规划和规范研究中应用。伊朗专家提出了分布式发电并网中基于自适应脉冲VSC的新型控制方法,与另外两种控制方法相比,谐波补偿和电能质量改善比较表明,分布式发电中谐波含量减少,从而减少谐波注入交流网络。“智能电力线路(smartpowerline,SPL)实验研究项目”引入了在架空输电线路嵌入微型变电站的概念。电源交换模块,保护模块和在线监测系统可使输电线路变得更智能,该技术还可以用于管理功率潮流和额外参数测量。

2.3FACTS工程项目规划、环境和监管

印度专家进行了动态补偿装置在印度电力系统的配置及选址研究,以易受故障扰动影响的印度西部地区为重点研究区域,并提出了无功功率控制补偿器的最佳位置和动态范围。

3电力电子设备的技术发展

3.1直流断路器、直流潮流控制器和故障电流限制装置

Alstom进行了120kV直流断路器的开发和测试研究,该断路器包括电力电子元器件,超快速机械断路器,串联电容器和避雷器等重要组成部分,可在5.3ms内开断电流。ABB提出混合型直流输电工程断路器为未来高压直流系统的解决方案,描述了混合直流断路器的详细功能、控制方式和设计原则,混合断路器的核心部件同样为超快速机械断路器。ABB的专家还提出了低损耗机械直流断路器在高压直流电网中的应用,其可替代混合直流断路器,开断参数最大为10kA/5ms。断路器包含电磁制动器、并联谐振电路,已完成一个额定参数为80kV的断路器样机,并成功通过了开断目标电流的试验。

篇2

(2)降低杆塔的接地地阻,使跳闸遇到打雷时跳闸率降低,另外,通过此种方法,还可以有效提高输电线路的耐雷击水平,从而起到很好的避雷效果。

(3)在有些地区,还可以采用氧化锌避雷器。这种避雷击措施对电压很敏感,当雷击使电压超过一定幅度后,就会自动为雷击电流提供一个通路,从而避免高压线路被雷击,目前已被多数地区采用。

(4)最后一种是避雷针的安装采用防阻绕形式,起到避免输电线路被雷击的效果。

1.2做好杆塔组立施工技术

杆塔施工一般分为:全体组立施工和分解组立施工。在全体组立施工时,对混凝土的抗压强度要求特别严格,应达到描绘强度的100%。分解组立施工时,抗压强度应达到描绘强度的70%。这样才能保证杆塔的稳定。

1.3施工前做好施工人员的技术培训

在工程施工前,应对施工员工进行技术培训,让他们深刻领会技术环节在整个工程建设中的作用,只有将输电线路建设中的每个技术环节做好,才能保证在输电运行时不出现故障。另外,在进行技术培训时,让他们及时和技术人员沟通,真正明白输电线路的运行原理,使他们将这种技术重点贯穿到整个施工阶段。技术培训展开方式有举办培训班、进行现场指导及举行专家讲座等。

1.4引进新的施工技术

主要表现在以下几个方面:

(1)横担吊装技术。使用这种技术前要观察塔形的形状。当塔形为酒杯型时,对抱杆承载能力、横担重量及塔杆具置进行考察,考察合格后,选取比较适合的酒杯型塔形,实施分片式吊装方式的吊装。当塔形为猫头型时,首先对抱杆承载能力进行衡量,然后对铁塔周围的场地条件进行考察,最后从前后分片吊装和横担整体吊装两种方式中选取一种。

(2)抱杆提升技术。此技术优点是铁塔的组装和提升可同时进行。提升抱杆前,要将铁塔的组装材料预备好,铁塔组立被提升到一定高度时,将螺丝拧紧。在安装铁塔时,由于抱杆较重,所以在提升时必须选择普通滑车组和平衡滑车组,将这两套滑车

组合在一起进行抱杆的提升。此外,还需要腰环和顶部落地拉线两种工具的配合,它们是抱杆提升过程中重要的控制工具。

(3)塔腿吊装技术。该技术有单根吊装和分片扳立两种方式,安装时根据塔腿实际重量选取合适的方法。

2高压电力施工中的安全管理

2.1施工过程中安全制度的建立

在工程建设中,安全工作落实是否到位,对施工进度及质量起到重要的作用。所以,项目管理人员在施工前,应明确施工人员的责任,将安全工作贯穿于整个施工阶段。此外,在项目工程安全管理中,应将安全预防和重点预防结合在一起,向施工人员讲述企业安全制度及国家安全文件,让他们深入学习,确保施工中工程质量合格,保障职工的人身安全。

2.2施工现场安全管理措施

主要表现在以下几个方面:

(1)施工过程中,关注员工的安全,此外,还要对机器设备进行保护和维护,以免机器由于运行中出现故障而影响到施工人员的安全。

(2)施工前,管理人员及技术员工应详细调查施工设计、计算文件及工程设计图纸,认真考察工程所在地的地理特征、基础类型及工程数量,对工程实施中的不利因素及时分析,制定出合理的安全方案。

(3)施工前,对施工材料、机器设备及人员合理规划。施工进后,管理人员召集技术员工进行工程的安全技术交底工作,以确保施工人员对施工中的安全事项有全面了解,提高他们施工的规范性,防止发生安全事故。

2.3加强施工人员的安全培训

电力工程构建时,通常会遇到气候因素变化,对工程进度影响较大,也使工程充满安全隐患。遇到这种情况,施工人员应落实应对气候因素的安全措施。此外,在工程建设中,管理人员应定期对施工人员进行安全保护技能培训,提高其业务技能。另外,针对一些安全事故进行预演习,以提高施工人员的应变能力。还有,将施工人员安全保证工作纳入施工管理范畴内,并与工资挂钩,使他们主动注意安全工作。

篇3

2高压变频技术在火力发电厂中应用的重要作用

2.1有利于节能减排工作的开展

在传统的火力发电厂中需要使用挡板和阀门来调节发电设备的风量和水量,挡板和阀门对能量的需求较高,在火力发电厂中使用了高压变频技术之后,通过驱动水泵和风机来代替挡板和阀门,不但能够解决掉使用阀门和挡板调节方法给设备运行带来的不足,还能实现节能减排,降低企业对发电厂的成本投入,有利于企业经济效益的提高。

2.2使用方便快捷,减少设备故障出现的频率

高压变频技术在应用的过程中往往同电子信息技术相结合,电子信息技术的使用不断的提高了企业的经营管理水平,还有效的减少了企业在人力物力方面的投资。火电厂设备的正常运行需要发电机的协调合作,火电发电厂中有两种型号的发电机,同步发电机和异步发电机,同步发电机使用直接启动的方式,异步发电机使用间接启动的方式,在发电机启动的过程中会造成大量的电量消耗,在启动过程中会产生较大的振动对设备产生冲击,在很大程度上影响设备的使用寿命。通过使用高压变频技术能够缓解启动过程中产生的机械振动,提高了设备的运行效率,在保证设备正常运行的同时,提高了设备的使用寿命,在一定程度上减少了发电厂在设备上的成本投入,有利于企业经济效益的提高。

3高压变频技术的分析研究

3.1高压变频器的DCS控制方式分析

分散型的控制系统也就是DCS在火电发电厂中的主要控制系统,手动控制DCS控制是高压变频技术中的主要控制,在高压变频技术中的控制方式有很多种,主要总结如下:采用闭环控制方式对设备的压力和流量进行控制;采用开环控制方式对设备的转速进行控制;使用开环控制方式对设备的频率进行控制,通过在设备的屏幕上直接输出数值,然后边频率器的边频率的控制得出数值。

3.2高压变频器工作旁路的切换方式分析

在火电发电厂中,风机和水泵设备属于持续运作的负载,为了减少设备使用过程中故障出现的频率,较少设备检修的次数,在应用高压变频技术时同时使用工频旁路,工频旁路的设置方式主要有手动和自动两种形式,一旦高压变频出现故障,就要及时的采用采用手动或者是自动的方式对贡品旁路进行切换,手动旁路是一种可以通过手动控制进行高压隔离的开关,手动控制在高压旁路中的应用较为广泛,因为本身结构较为简单,操作简单,成本较低,开关设置明显,应用在高压变频中之后,有利于高压变频器的检修。

4高压变频技术应用的具体措施

随着其他能源方式不断创新和发展,传统的火力发电将面临着越来越大的压力,火力发电厂要想在激烈的市场竞争中站住脚,就必须提高火力发电的使用率,在符合国家节能减排的规范要求的同时,减少火力发电的成本投入,采用高压变频技术就能够很好的解决以上的问题。

4.1安装和调试变频设备的具体措施

传统的设备运行方式是采用了一拖二二拖三的方法,这样的方法在很大程度上增加了设备的回路难度,为了减少设备运行回路变频和工频之间故障出现的频率,在对设备进行安装的过程中要主义防范措施。

4.2合理设置变频器和上级开关保护功能

变频器在运行的过程中经常会出现跳闸的现象,为了防止这种现象的发生,一般的在事故按钮上采用一拖二的方法,在事故按钮上安装两个电源断路器,一般的选取两个节点,在一个节点上使用工频跳闸回路,在一个节点上使用变频跳闸回路。这样不论出现何种情况,都能很好的预防跳闸现象的发生。

4.3设计可靠的风机和控制电源

为了保障设备的正常运行,就要保证变频器电流输入值趋于正常,如果输入电流变化较大,就容易出现跳闸的事故,所以为了防止这种现象的发生,要对设备进行不间断的检测和维修,为设备提供充足的电能。

篇4

一、

选题背景及其意义

近年来,随着我国电力工业的迅速发展,电网规模的不断扩大,电力系统的安全、经济运行已成为电力生产的重大课题。必须不断采用新技术在保证电力系统安全运行的前提下,提高电能质量、降低网络元件中的电能损耗,从而获得满足安全运行条件下的最大经济性和最好的电能质量。其中电网的自动电压控制及无功优化(简称AVC)就是电力生产中提高电能质量,降低网损的重要手段。国家电力调度中心已经把这一项目列入了“十一五规划”。

自动电压无功调控系统AVC系统将发电厂母线电压的调整由人工监控改为自动调控,具有以下意义:

1.提高稳定水平:网内电厂全部投入装置后,通过合理分配无功,可将系统电压和无功储备保持在较高的水平,从而大大提高电网安全稳定水平和机组运行稳定水平。

2.改善电压质量:电压监督电压合格率得到大幅度提高。

3.消除了人为因素引起误调节的情况,有效降低了运行人员的工作强度。

二、国内无功电压控制现状

国内目前对发电厂无功电压的管理考核方式,主要是由调度中心按照高峰、平谷和低谷等不同时段划分母线电压控制范围,按季度向各发电厂下达曲线指标,发电厂则根据曲线要求,实行人工24小时连续监视盘表,及时调节发电机无功出力,以维持母线电压在合格范围内。这种沿用了多年的就地分散控制管理模式,在当前电网结构日益复杂的形势下逐渐暴露出了一些弊端,存在的主要问题是:

1.事先给定的电压曲线和无功设备运行计划是离线确定的,并不能反映电网的实际情况,按照这种方式进行调节往往带来安全隐患。

2.电网运行人员需要时刻监视系统电压无功情况,并进行人工调整,工作强度大,而且往往会造成电网电压波动大;

3.电厂之间,无功调节对相互母线电压影响大,无功调节矛盾突出。由于各电厂只关注自身母线电压,没有从全局角度协调无功分配,电网无功功率无谓搬运现象突出,经常出现无功环流现象,造成不必要的有功损耗。各厂、站无功电压控制没有进行协调,造成电网运行不经济。

上述问题的存在,既增加机组进相深度,影响机组和电网安全稳定运行,也使网损增加,影响经济性。因此,有必要发展AVC(自动电压控制)系统,从全局对电网无功潮流和发电机组无功功率进行协调控制,实现电厂母线电压和无功功率的自动调控,合理协调电网无功分布,以保证电网安全稳定运行,提高电压质量和减少网损,降低运行人员劳动强度。近几年来国际上几次重大的电网事故如美加大停电,都有无功电压的问题造成电压崩溃,致使电网瘫痪。无功电压自动控制技术越来越引起重视,在华北电网,基于分层分区控制技术的二/三次电压控制技术在某些电厂逐步进入应用,而本论文依据包头第二热电厂现场改造的实际情况,将重点讲述电厂侧无功电压控制方案在包头第二热电厂的应用。

三、课题研究的主要内容:

发电厂侧AVC实施方案

信息来源:http:/1. 自动电压无功调控系统控制方案

在发电侧增设一套电压无功自动调控系统,与调度中心共同组成AVC系统,以主站-子站星型网络方式运行,主站和子站系统之间通过现有数据采集系统及数据通信网互连并完成信息交换。 发电侧AVC子站通过远动专线接收内蒙省调AVC主站下发的电厂侧220KV母线指令。中控单元在充分考虑各种约束条件后,计算出对应的控制脉冲宽度,以通讯方式下发至AVC执行终端,由执行终端输出增减磁信号给励磁系统(或输出至DCS),调节机组无功功率,发电机无功出力与机端电压受其励磁电流的影响,当励磁电流发生改变时,发电机的无功出力与机端电压也随之增减,并通过机端变压器进一步影响到母线电压的高低,励磁电流的增减可通过改变励磁调节器(AVR)给定值实现。所以系统的无功电压控制通过励磁系统来实现。自动电压调控系统AVC是通过改变发电机AVR的给定值来改变机端电压和发电机输出无功的。信息来自:输配电设备网

包头第二热电厂300MW机组自动电压控制(AVC)系统框图

2.合理的设备配置方案

2.1.安全可靠的硬件配置

本工程采用中控单元/执行终端配置方式,共安装两套独立的系统,每套设备配置台中控单元(主/备)和2台AVC执行终端,终端与机组一对一配置。AVC子站中控单元接收内蒙省调AVC主站下达的电厂侧高压母线电压指令,在充分考虑各种约束条件后,计算出对应的控制脉冲宽度,下发至AVC执行终端,执行终端输出增减磁信号给励磁系统,由励磁系统调节机组无功功率。

中控单元有主备功能,主中控单元故障时,可切换至备用中控单元,保证系统正常运行。主中控单元恢复后,自动切回主中控单元控制。

本工程共有中控单元2台,执行终端2台。

2.2.人性化的发电厂AVC子站软件配置方案

2.2.1.包括完整的数据采集、处理、通信和诊断等各种软件,应具有告警、具体故障内容的中文提示及事故记录功能。软件配置满足功能规范的要求,具有良好的实时性和可维护性。

2.2.2软件遵循国际标准,满足开放的要求。

2.1.3.便于用户的二次开发和在线安装、生成、修改新的应用功能。

2.1.4.配备一套完整的、可运行的软件备份。

2.2.5.系统有较强的防计算机病毒、反入侵能力,提供硬件防火墙或其它安全设施的接入能力。

2.2.6.具备较强的数据存储功能,能够长时间存储运行数据、运行事件、系统参数和离线电压设定曲线等数据。

3.对功能模块的要求

3.1计算模块应具有下列功能:

ü

根据高压母线电压调整量目标值计算电厂对应机组发出无功功率目标值。

ü

按照给定的无功分配策略,将总的无功目标值分配给各台机组。

ü

选择需要调整的机组,给出合适的调整指令。

ü

自动识别母线检修,双母线结构一条母线检修,控制母线自动切换至另一条母线。

3.2.运行约束条件:

ü

AVC主站下发的调节信号突变限值;

ü

AVC主站控制无效时间限值;

ü

发电机参与调节的有功功率限值。

ü

发电机在不同的有功出力下对应的无功功率上下限;

ü

发电机的机端电压上下限;

ü

发电机的机端电流上下限;

ü

高压侧母线电压上下限;

ü

AVR自动信号消失;

ü

实时数据波动过于剧烈,超过设定值;

ü

实时数据不刷新;

ü

省调通信中断;

ü

RTU通信故障;

ü

机组有功越闭锁值;

ü

机组无功越闭锁值;

ü

机组机端电压越闭锁值;

ü

机组机端电流越闭锁值;

ü

母线电压越闭锁值。

ü

机端电流耦合校验

AVC子站在满足以上运行约束条件时,装置闭锁输出并发出增减闭锁信号,一旦运行条件正常,增减闭锁信号消失,装置自动恢复正常运行。

3.3AVC子站的控制模式

ü

退出:只能工作在研究方式下。

ü

闭环:AVC主站与子站闭环运行。

ü

开环:AVC子站系统根据本地设定电压运行

3.4防误措施

ü

中控单元计算错误时有保护措施,能可靠保证不误输出。

ü

执行终端掉电时不会误输出。

ü

任一硬件模块或连线损坏,均不会造成设备误输出。

ü

防止输出控制节点粘死措施,当输出节点粘死导致输出控制脉冲过长时,应自动切断控制输出信号保证机组安全。

4.GPS对时接口

子站系统提供RS485串口(RS232口备用),可与厂内卫星定时系统GPS实现精确对时(对时误差不大于1ms)。

5.自动电压无功调控系统调试中注意问题。

自动电压调控系统的各种限制功能必须与发电机励磁系统AVR的各种限制以及和发变组保护很好的配合。根据发电机励磁系各种限制数据以及发电机P-Q曲线、发变组保护定值对自动电压调控系统定值进合理整定,杜绝配合不好带来的不良后果。

试验时,调度及电厂运行加强监视控制点参数,必要时,无条件退出AVC运行,并恢复参数。 调试中注意和发电厂侧进相数据的配合,调整中要保证6KV厂用电系统的稳定运行,如果调整中6KV电压过低,有必要调整发电机电压定值。

在无功调控设备中采取措施防止增磁和减磁出口继电器接点粘连。

四、

研究的难点和重点

(1)

本文着重阐述该系统如何通过合理的硬件配置实现安全可靠运行、如何实现人性化、可视化、智能化的软件系统配置。

(2)

在参数设定中,既要保证电网电压及无功优化问题、又要考虑到本厂汽轮发电机组在调节过程中的安全稳定问题,因此AVR执行终端的无功功率调节死区、脉冲计算斜率、最大脉冲宽度的定值是AVR成功运行的关键因素,也是本文的重点和难点。

(3)自动电压调控系统的各种限制功能必须与发电机励磁系统AVR的各种限制以及和发变组保护很好的配合。根据发电机励磁系各种限制数据以及发电机P-Q曲线、发变组保护定值对自动电压调控系统定值进合理整定,杜绝配合不好带来的不良后果。

五、预期成果

本课题研究成功投入使用后,将发电厂母线电压的调整由人工监控改为自动调控,消除了人为因素引起误调节的情况,有效降低了运行人员的工作强度,保证系统电压低于规定的最大数值,以适应电力设备的绝缘水平和避免变压器过饱和,并向用户提供合理的最高水平电压; 信息来自:tede.cn 大机组无功出力分配必须满足系统稳定的要求,单机无功必须满足P-Q曲线,保证了机组安全运行,尽可能地降低了电网的有功功率损耗,取得较好的经济效益。

参考文献

1. 唐茂林.庞晓艳.李曼.刘柏私.尹晓澜.张蓓.李建.郭庆来.孙宏斌 计及梯级电站的省地一体化AVC系统研究及实现方案 [期刊论文] -电力自动化设备2009(6)

2. 惠建峰.焦莉.张世学 自动电压控制系统建设与应用分析 [期刊论文] -陕西电力2009(2)

3. 李钦.温柏坚 广东电网电厂AVC子站建设研究 [期刊论文] -电力系统保护与控制2008(21)

4. 郭庆来.孙宏斌.张伯明.吴文传.王彬.李柱华.汤磊.王蓓.宁文元.郑燕涛.袁平 自动电压控制中连续变量与离散变量的协调方法(一)变电站内协调电压控制 [期刊论文] -电力系统自动化2008(08)

5. 郭庆来.孙宏斌.张伯明.吴文传.王彬.李柱华.汤磊 自动电压控制中连续变量与离散变量的协调方法(二)厂站协调控制 [期刊论文] -电力系统自动化2008(09)

6. 孙鸣.吴兆文.李家仁 电厂侧AVC子站系统控制策略的研究 [期刊论文] -仪器仪表用户2008(03)

7. 杨银国.崔丽华.李扬絮.李力.向丽玲.杨雄平 广东电网2007春节电压调控存在问题与对策 [期刊论文] -广东电力2008(04)

8. 郭庆来.张伯明.孙宏斌.吴文传 电网无功电压控制模式的演化分析 [期刊论文] -清华大学学报(自然科学版)2008(01)

9.

Sancha J L.Fernandez J L Secondary Voltage Control:Analysis Solutions and Simulation Results for the Spanish Transmission System 1996(2)

10.

Vu H.Pruvot P.Launay C An Improved Voltage Control on Large-scale Power System 1996(3)

11.

Lefebvre H.Fragnier D.Boussion J Y Secondary Coordinated Voltage Control System: Feedback of EDF 2000

12.

篇5

【关键词】铅酸蓄电池;反激变换器;高频变压器

【Keywords】lead-acid battery; fly-back converter; high frequency transformer

【中图分类号】TN86 【文献标志码】A 【文章编号】1673-1069(2017)04-0119-02

1 引言

开关电源主电路拓扑结构对于车载充电电源的设计有着至关重要的作用。我们根据需要分析电路的功率、效率、成本等方面内容,再分析各个主电路的拓扑结构,选择合适的电路。在隔离型的DC/DC变换器电路中有很多种拓扑电路,如正激电路、反激电路、全桥电路、半桥电路和推挽电路。这里设计的电路是小功率的,全桥电路结构比较复杂,成本高,半桥电路因有直通危险的可能性,且该电路适用于大功率的场合范围,故不选。我们选用反激式DC/DC变换器,因为反激式DC/DC变换器与正激变换器相比的优点是电路简单,少一个输出滤波电感及续流二极管,降低了电路成本,减少了体积和重量,增加了电路可靠性,非常适用于小功率的车载充电电源,故论文设计了72W铅酸蓄电池充电电源,电路采用单管反激式DC/DC变换器拓扑结构。

2 反激变换器主电路参数的选择

论文设计一台小功率铅酸蓄电池充电器。充电器主要技术指标如下:

输入电源:单相交流工频电源170~260V;

输出电压:48V;

最大充电电流:1.5A;

工作频率:100kHz;

2.1 整流滤波直流电压范围

最大直流电压纹波由下式计算:

ΔVDCmax=

其中,Dto为输入端整流滤波的导通占空比,可以令Dto=0.2;Cin为输入端的滤波电容;将各个参数带入计算,我们可以计算出最大纹波电压为26V。

2.2 变压器设计

反激电路中主电路的参数设计中,最值得我们重点对待的是高频变压器的设计,它是反激电路的核心部分。为了提高高频变压器的利用率,高频变压器的原副边变比应可能大一些。

2.2.1 开关管峰值计算

实际变压器原边匝数取42匝,则变压器副边匝数N2=42/2.5=16.8,取17匝。

3 反激电路反馈环路设计

输出隔离反馈电路如图1所示,采用光电耦合器PC817和可控精密稳压源TL431组成了反馈回路的设计。PC817和TL431构成隔离反馈时,其作用相当于误差放大器。TL431是动态响应速度快,设置两个电阻就可以得到TL431二极管阴极到阳极电压为2.5~36V,输出电压纹波低,因此可以得到很好的稳定性能,稳压精度高,并且可以通过与PC817将变压器两边的地相隔离,最终使负载端地和输入端地相隔离。

该电路中,Uo为电路输出电压,通过电阻R15和R16的分压到TL431的可调到范围内,再由电阻R26和R29分压后连接到TL431的REF端,其正常工作电压等于其内部基准电压UREF,则输出电压由电阻R30和R31分压比决定。输出电压的计算公式:

Uo=UREF(1+R25/R29)

通过调压电阻R26和R29的分压比就能够改变输出电压。当电网电压或者输出负载变化引起输出电压Uo升高时,TL431的REF端电压将会随之改变,进而使线性光藕PC817的二极管的工作电流IF变大,从而使线性光耦PC817的三极管的集电极电流Ic变大,最后通过线性光耦PC817的集电极连接的PWM控制电路来调节占空比D,使占空比D减小,进而使Uo减小,最终保持Uo不变。电路中R33是线性光耦PC817的二极管的限流电阻,R34为TL431的偏置电阻,使TL431流过合适的工作电流,改善其稳定性能。C27、R28和C19为环路补偿网络,可防止稳定环路产生振荡。

4 结语

论文从主电路的选择到小功率铅酸蓄电池充电电源主电路参数的设计,通过理论的计算到实际电路的取值,对电路进行了优化,提高了变换器的效率。

【参考文献】

篇6

一般说来,超级电容电池具备很多优点:容量大、充电快、比功率大、重复深度放电次数可超50万次、低温lunwen. 1KEJI AN. COMlunwen. 1KEJI AN. COM提供写作论文和发表服务,欢迎您的光临性能良好、安全系数高、免维护时间长等。

LTC6803-4的应用是比较便捷、灵活的,同时又具备高测量精度和高稳定性的芯片,特别适合在超级电容电池组管理上的应用。

2 LTC6803-4并联级联独立寻址技术的应用

2.1 LTC6803-4的特性及工作原理

LTC6803-4主要包括参考电压、12位ADC、串行SPI接口的电池监测专用芯片、还有高电压输入的多路复用器。每一个LTC6803-4都能够监测电池,最多12串。如果是一个具有多片的LTC6803-4,是能够通过利用并联级联的测量方式及方法来测量超过12串的串联电池组的。还有,每一个LTC6803-4,都具备一个串行接口,能够独立寻址,这样的方式能够方便主控器、LTC6803-4进行同步的通信、操作环节,LTC6803-4最多是16片。LTC6803-4的全局测量精度比0.25%小的时候,一般都能达到大多数工程项目对电池电压测量精度的标准。

2.2 LTC6803-4主要引脚功能

LTC6803-4主要有44个引脚,比如有C0~C12:电池电压输入引脚。VREG:线性电压整流输出。V-:LTC6803-4最低电势端。A0~A3:地址输入。SCKI,SDI,SDO,CSBI:SPI数据通信接口。

3 系统设计

3.1 采集系统结构

测量方法是用2片LTC6803-4并联级联实现24节超级电容电池的单体测量级管理。

3.2 LTClunwen. 1KEJI AN. COMlunwen. 1KEJI AN. COM提供写作论文和发表服务,欢迎您的光临6803-4并联式级联的工作方式

LTC6803-4在SPI上的地址用户是能够自行配置的。本文中只有2片,LTC6803-4是在同一SPI总线与主控器进行通信,所以只要独立地址数比2大或是同2等同,那么便能利用地址将不同的LTC6803-4划分。

3.3 SAF-XC886C-8FF5V芯片

3.3.1 MCU的选择

MCU作为超级电容管理器的主要部件,是通过XC886C汽车级芯片来完成的。

SAF-XC886C工作频率为24 MHz,以八位的市场价格,提供16位产品的性能。拥有8通道10位的精度,三个独立定时器,4个PWM通道,以及后台E2PROM模拟。

3.3.2 单体电容电压检测芯片的挑选

每个LTC6803可以同时测量十二个超级电容器或串接电池的电压,并且拥有单独寻址的串行接口,能够把16个LTC6803-4元件接入同一个控制处理器中运行。LTC6803-4把电池组的底端与V分开,因此,可以改变第一节电池的测量精准度。

3.3.3 信号隔离器的选择

通过分析信号的可靠性,以及电气的安全性。挑选出满足需要的ADUM1411及ADUM1201这两种芯片。传输速率为10Mbps,隔离电压为2500 V。

3.3.4 隔离电源的选择

为了保证安全,选用多规格的双列直插的隔离电源模块。

3.4 系统软件配置

本文所概述的2个芯片通过0Ω电阻将地址主要是分别配置为80和81,所以1#LTC6803-4芯片地址为0B10000000,2#LTC6803-4芯片地址为0B10000001。

4 实验结果与误差

根据实验验证的结果,来验证电池单体电压能不能达到电池管理系统对单体电池电压监测的实际测量目标的。实验的目标用超级电容电池电压为1.60 V,容量为20 Ah、24只,为了验证该系统电压测量的精度是lunwen. 1KEJI AN. COMlunwen. 1KEJI AN. COM提供写作论文和发表服务,欢迎您的光临多少,使用万用表测量得到电池电压的真实数值。在实验还没有开始的时候,通常主要是通过放电的方法,将电池的电压改为不均衡的状况,通过这样的方法,能够检验系统电压检测精度是否正确。实验的结果证明,所有电池单体电压测量误差都在0.19%内,能够达到对单体电池电压监测的实际测量目标。

5 结语

综上所述,超级电容电池具有很多的优点,LTC6803具一个精准参考电压、一个高电压输入的多路复用器以及一个串行SPI接口的超级电容监测专用芯片同时,可以允许主控器与至多16片同时进行通信和操作。为了能够保护好超级电容动力电池,并逐渐的延长电池的使用时间,同时又能增加行驶的距离,那么便要求建立一个有效的电池管理系统,所以说电动汽车产业的发展及推广是一项非常关重要的系统工程。

参考文献

篇7

中图分类号:TE08 文献标识码:A 文章编号:

一.前言

我们知道,电力网在输送电能的过程中,电能损耗是十分惊人的,在这巨大的电能损耗中低压(380V/220V)配电网占有相当大的比重。主要原因是低压配电网电压低、电流大,特别是负荷功率因数低,更加大了电能损失。若能有效降低低压配电网的线路损耗,对于提高整个电网的经济运行将具有重大意义。在进行输电线路设计时,选择导线截面的传统方法是:按导线机械强度、允许电压降和导线长期允许安全载流量等因素而定。但从节约能源的原则出发,应将“电能损耗大小”作为配电线路选择导线截面的依据之一。即在经济合理的原则下,适当增大导线截面积以减少输电线路电能损耗,从而达到在不增加发电能力的情况下而增加供电能力的目的。

二.低压配电线路导线截面选择

工程设计时,离不开电气设计,而电气设计直接关系到人民的生命财产安全、环境保护和其他公众利益,成功的导线截面设计,应当是安全、合理、经济和可行的。而导线截面设计则是电气工程设计的重要组成部分之一。由国家建设部颁发的《工程建设标准强制性条文》对电气方面要求就更加严格。因此,我们在低压配电线路导线截面设计中,不仅要使导线截面有足够的安全储备,而且要限制导线截面过大造成的经济浪费,来保证电气设备的安全运行。低压线路导线导线截面设计,一般应根据以下几方面的要求来选择:

1.选择导线截面,首先满足发热条件这一要求,即导线通过的电流,不得超过其允许的最大安全电流。通常,当负荷电流通过导线时,由于导线具有电阻,导线发热,温度升高。当裸导线的发热温度过高时,导线接头处的氧化加剧,接触电阻增大;如果发热温度进一步升高,可能发生断线事故。当绝缘导线( 包括电缆) 的温度过高时,绝缘老化和损坏,甚至引起火灾。因此,导线应能够承受长期负荷电流所引起温升。各类导线都规定了长期允许温度和短时最高温度,从而决定了导线允许长期通过的电流和短路时的热稳定电流。选择导线截面时,应考虑计算的负荷电流不超过导线的长期载流量,导线的额定电流可以从工具书中查到。

2.为保证导线具有必要的机械强度,要求导线的截面不得太小。因为导线截面越小,其机械强度越低。低压线路的导线要经受拉力,电缆要经受拖曳。所以,规程对不同等级的线路和不同材料的导线,分别规定了最小允许截面。按机械强度选择导线的允许最小截面,可参考表一。

3.选择导线截面,还应考虑线路上的电压降和电能损耗。电压损失导线的电压降必须限制在一定范围以内。按规定,电力线路在正常情况下的电压波动不得超过正负百分之五临时供电线路可降低到百分之八。当线路有分支负荷时,如果给出负截的电功率P和送电距离L,允许的电压损失为ε,则配电导线的截面( 线路功率因数改为I) 可按下式计算

式中P为负载电功率,千瓦;

L为送电线路的距离,米;

ε为允许的相对电压损失,=;

C为系数,视导线材料,送电电压而定( 表二)

Kn为需要系数,视负载用电情况而定,其值可从一般电工手册和参考书中查到。

表二公式中的系数C值

例:距配电变压器400米处有1台电动机,功率为10千瓦,采用380伏三相四线制线路供电,电动机效率为η=0.80,COSΨ=0.85,Kn=1,要求, ε=5%应选择多少截面的铜导线?

解(1) 按导线的机械强度考虑,导线架空敷设铜绝缘导线的截面不得小于4平方毫米

(2 ) 按允许电流考虑,求出电动机工作电流( 计算电流)

从电工手册查得S=2.5平方毫米的橡皮绝缘铜线明敷时的允许电流为28 安培,可满足要求Ij=Ie

(3 ) 按允许电压降考虑,首先计算电动机自电源取得电功率

若选用铜线则C=77,Kn=1,求出导线截面为

为满足以上三个条件,可选用S=16平方毫米的BX型橡皮绝缘铜线

选择导线截面,一般来说,应考虑以上三个因素。但在具体情况下,往往有所侧重,针对哪一因素是主要的,起决定作用的,就侧重考虑该因素。根据实践经验,低压动力线路的负荷电流较大,一般先按发热条件选择导线截面,然后验算其机械强度和电压降。低压照明线路对电压的要求较高,所以先按允许电压降来选择导线截面,然后验算其发热条件和机械强度。在三相四线制供电系统中,零线的允许截流量不应小于线路中的最大单相负荷和三相最大不平衡电流,并且还应满足接零保护的要求。在单相线路中,由于零线和相线都通过相同的电流,因此,零线截面应与相线截面相同。例如,对于长距离输电线路,主要考虑电压降,导线截面根据限定的电压降来确定;对于较短的配电线路,可不计算线路压降,主要考虑允许电流来选择导线截面;对于负荷较小的架空线路,一般只根据机械强度来确定导线截面。这样,选择导线截面的工作就可大大简化

三.结束语

虽然我国低压供配电系统设计中依然存在着一些问题和缺陷,但是,随着我国经济实力和科学技术实力的进一步增强,将会为我国的低压配电节能的发展奠定更为坚实的发展基础,为了保证用户电器的正常运转,提高我国低压配电节能能力,可以实施独立的供配电系统,同时,要进一步完善各种应急措施,比如设置应急的电源,如此,可以在发生一些突发事件时候,保证企业的供配电能够正常进行,对企业的财产形成更强有力的保证。在进行企业的供配电设计时候,要充分考虑到企业建筑供电要求高,供电负荷复杂的特点,要在综合考虑整个企业生产设备和功能的基础上,采取有效的设计工艺,严格设计流程,在企业相关各个部门共同的配合下,加强双方的沟通,保证供配电设计能够充分满足企业各方面的需求,同时,要在实践中,不断促进整个企业供配电系统的优化。

参考文献:

[1]刘平甘 陈洪波 刘凡紫外检测技术在电力系统中的应用及其展望 [会议论文],2009 - 中国电机工程学会高电压专业委员会2009年学术年会

[2]吴栩 冯鹏英 高压电气设备的在线检测技术 [期刊论文] 《中国房地产业》 -2011年8期

[3]张川 刘乃涛 贺福敏 李林 李成龙 高压电力设备的在线绝缘检测技术 [会议论文],2011 - 中国石油和化工自动化第十届年会

[4]曾晓晖 聂端 基于绝缘在线检测技术的状态维修 [期刊论文] 《中国农村水电及电气化》 -2005年9期

[5]陈伟球 赵吴鹏 尹忠东 周浩 张瑜 在线检测技术可行性分析 低压配电网无功负序不平衡现象的节能降损解决方案 [期刊论文] 《电网与清洁能源》 -2009年7期

篇8

 

1 工程概述及特点华能日照电厂二期2×680MW工程3号机组采用发电机-主变压器接线方式。发电机出口电压等级为20kV,发电机出线经810MVA升压双卷变压器升压至220kV接入220kV升压站,220kV升压站为双母接线,经2回220kV线路接入后村变电站;发电机组并列同期点为主变高压侧断路器203,同期系统只设自动准同期装置,取消了传统的手动并列方式;同期系统的投退由DCS控制;3号发电机组于2008年11月13日并网自动并列一次成功,发电机三相定子电流平稳,并列后机组运行正常。

2 设备主要技术规范装置型号:深圳智能SID-2CM

电源输入:220V±20% DC 或AC(用户选择)。

电源输出:+5V,±12V, +24Vk。

纹波系数:1%。

取同期点两侧PT的同名线电压或相电压,100V(或100/√3 V),50Hz。

电压测量精度:±0.5%。

频率测量精度:±0.01Hz。

相角差测量精度:±0.5°。

3 试验仪器3.1 微机型继电保护测试仪PW60A。

3.2 兆欧表3007A。

3.3 发电机特性试验记录仪PMDR-102。

4 同期系统静态试验4.1 试验前应具备的条件

4.1.1 核对同期系统的设备型号和配置与设计相符,外观检查,设备无损坏现象。免费论文。

4.1.2 根据设计接线图和厂家接线图校验接线,核实同期系统接线正确无误。

4.1.3 检查同期系统合闸输出中间继电器,继电器接点动作可靠,接触良好。

4.1.4 采用250V兆欧表检查同期系统的绝缘电阻均100MΩ以上。

4.1.5 自动准同期装置上电,装置均显示正常。

4.1.6 自动准同期装置静态调试时通道参数设定按照正规定值输入装置。

4.2 自动准同期装置静态测试

4.4.1 试验接线方法

自动准同期装置所加电压为二次电压,发电机电压Ug接继电保护仪的A相和B相,两相都加57.74V,其线电压为57.74x√3=100V;220kV电压接继电保护仪C相和N相,C相加100V.,见图4-1。自动准同期装置比较Ug和Us,在满足电压差、频率差和角度差后,发出合闸指令。免费论文。

图4-1 接线图

4.4.2 模拟量精度检查。

自动准同期装置对精度要求很高,如果自身的精度不高的话,影响并网的点不在最小的角度,会对发电机造成冲击,影响机组寿命。精度采样见表4-1、表4-2

篇9

1954年,世界第一条高压直流输电联络线被运用到了商业之中,随着它日益成熟的技术为海底电缆、远距离大功率以及两个交流系统间的非同步联络等各方面提供了十分广泛的电力效益。但是,由于在经济和技术方面存在着一定的局限性,因此导致近距离小容量输电场合和的高压直流输电未能得到充分利用。然而,在电力半导体特别是绝缘栅双极晶体管(LGBT)的大力促进下,使得高压直流电更加轻型化。目前,以电压源换流器(VSC)与绝缘栅双极晶体管为基础,使高压直流输电的容量几MW扩大到了几十MW。这类小功率的轻型高压直流电以其各种优势充分展现了它的发展前景。

1、轻型高压直流输电的技术特点

(1)电压源换流器的电流可以自动断开并工作在无源逆变方式,因此它无需另外的换相电压。与传统高压直流输电的有源网络不同的是,轻型高压直流输电的受端系统是无源网络的,因此克服了受端系统必须是有源网络的根本缺陷,继而促进了高压直流输电对远距离孤立负荷进行送电的实施。

(2)同传统的高压直流输电正好相反,在潮流进行反转的时候,直流电流方向能在直流电压极性不变的情况下进行反转。HVDC的这个特点能够促进不仅为潮流控制提供便利且提供较为可靠的并联多段直流系统的构成,继而使传统多端的高压直流输电系统在并联连接时不方便进行潮流控制以及串联连接时影响可靠性的问题得到有效解决。

(3)对轻型电压直流输电进行模块设计能够极大的缩短其设计、安装、生产以及调试周期。与此同时,电压源换流器所采用的脉冲宽度调制(PWM)技术,其有着相对较高的开关频率,在高通的滤波后便能够产生所需的交流电压,省略了变压器不仅简化了换流站的结构,同时还大大减少了所需滤波装置的容量。

(4)传统的高压直流输电因为其控制量只有触发角,所以传统HVDC是无法对无功功率和有功功率进行单独控制的。而轻型高压直流输电在正常运行的时候,其电压源换流器能够对有功功率以及无功功率同时进行独立控制,甚至可以使功率因数为1。此种调节不仅能够提高完成效率,还能对之加以灵活的控制。另外,电压源换流器不但无需交流侧提供无功功率并且还起着静止同步补偿器的作用,使无功功率的交流母线得到动态补偿继而促进交流母线电压的稳定性。换而言之,即使是在故障的情况下,只要电压源换流器的容量足够就可以使轻型高压直流输电系统对故障系统进行无功功率紧急支援或有功功率紧急支援,从而促使系统的电压稳定性以及功角稳定性的提高。

2、轻型高压直流输电的发展及前景

在我国,轻型高压直流输电技术的发展一直以来都受到电力工作者的重视,并且对之展开了一系列的初步的研究。另外,一些应用单位逐渐认清了轻型高压直流输电的具体优势,因此也开始考虑采用HVDC于实际输配电工程之中。然而从整体上来讲,轻型高压直流输电的研究在我国依旧是匮乏的且基本处于空白期。因此我们要尽可能快的促进研究水平的提供以将之能够迅速的有效利用起来,此项研究不仅十分迫切且具有相当重要的现实意义。所以,笔者就研究工作的展开提出以下几点建议。

(1)在轻型高压直流输电中建立数字仿真研究手段,因此电力工作者要在研究过程中制定出轻型电压直流系统全部一、二次设备的数字仿真新方法与新兴数学模型;(2)经过对电压源换流器的故障以及运行特性的分析,电力工作者要在研究过程中具有针对性的提出适合VSC运用的PWM技术和相关的保护措施;(3)构建一个轻型高压直流输电的物理模型,然后通过高速数学新高处理芯片对轻型高压直流输电的控制器进行研制;(4)对于电压源换流器连接构成的控制方式(电压控制、无功潮流控制、有功潮流控制)、多端直流系统的运行特性,还有轻型高压直流系统的保护措施进行一系列研究与制定;(5)对于整个电网电能质量,轻型高压直流输电有着怎样的影响且如何对之加以控制都需要电力工作者进行更深一步的研究;(6)对技术经济进行论证,从而确定轻型高压直流输电技术对于我国电力技术发展的可行性与必要性。

随着电力半导体以及其控制技术的不断发展,尤其是IG-BT的日益进步从而衍生了轻型高压直流输电技术。即将投运以及已经投运的各项轻型高压直流输电技术工程的成功建设已经充分表明了HVDC技术正在日渐地成熟与发展着。可再生能源的全面开发、高新技术的飞速发展,还有电力技术的不断进步与完善,都对电网灵活且可靠的运行以及高品质电能质量提出了进一步的要求,从这一系列情况的显示来看,轻型高压直流输电的使用范围正在不断扩大,这势必会使HVDC light在我国得到进一步的研究与重视。

3、结语

综上所述,轻型高压直流输电作为一项新型的输电技术正通过其自身特点在各方面的应用中充分展示了其独特的优势,主要有对电压以及潮流的有效控制、对环境的影响不大、设计表转化、建设效率化、结构模块化且紧凑等各种优越性。综合这一系列优点,轻型高压直流输电不仅仅是引起国家以及各应用单位的重视,并且在未来将会渐渐地运用到建设当中去,最终会有利于促进我国科技以及经济的发展。

参考文献

篇10

1有载调压器的运用背景

电力与人民生活有千丝万缕的联系,是经济发展中最重要的能源,而电压质量是国民经济发展现状及人民生活水平的一个重要体现,如果电压的波动幅度较大,会严重影响用电设备的工作性能及效率,更有甚者会减短用电设备的使用寿命。由于我国电力储备量较小,电网系统薄弱,为避免受负荷的影响电压波动超出指标范围,造成电压质量事故。当代电力部门多是在变配电所使用有载调压器,有载调压器可以依据电压的实际需求,自动调节有载分接开关,使电压可以自动控制在需求指标之内,提供可靠、稳定的电压,确保供电系统的良好运行。

2 有载调压器的构成分析

2.1 有载调压器构成

变压器是变配电所的主要组成部分,它的运行状况好坏直接影响着供电电压的稳定。由于用电时间段的不同,导致用电负荷的不同,变压器的运行状态受到了很大的制约。为确保用电高峰电网电压幅值不致于过高、用电低谷电网电压幅值不致于过低的情况发生,可使用有载调压器来调节变压器的变比供电。有载分接开关的工作机理是依靠主变压器次级抽头调整电压值,在调节电压的过程中,其直接决定着变压器的运行质量,利用PLC对有载分接开关进行控制。其工作原理如图1-1所示。

2.2. 有载分接开关的构成

有载分接开关能够在变压器负载或者励磁状态下进行工作,主要作用是转换绕组分接位置,转换变压器的分接,来实现调节电压目的的设备。有载分接开关的主要设备有带过渡阻抗的切换开关、带转换器的分接选择器等,其操作指令由变压器箱壁内电动机构完成,主要是由传动轴和伞形齿轮箱传动执行。有载分接开关在转换过程中,必须要有足够的阻抗来限制分接点间的电流。

2.3有载分接开关的工作原理

电力系统中所用到的变压器有两种基本的调压方式:①无载调压。在调压开关转换档位过程中,分接开关没有带负载转换档位的功能,由于存在瞬时间的断开过程,断开负荷电流有可能发生拉弧现象,导致烧坏分接开关或者短路,因此,无载调压的过程中必须把变压器停电,只有一些对电压要求不高并且不需要频繁换档的变压器才使用这种方式调压。②有载调压。在变压器工作时,通过它另一侧的线圈中抽出一些分接头,利用有载分接开关,在不切断负荷电流的条件下,实现分接头之间的转换,变换线圈匝数,满足电压调整的需求。有载分接开关在转换档位的过程中,没有瞬时间断开过程,只是由一个电阻来完成过渡,实现了档位的转换,因此,有载分接开关在转换档位的过程中不存在拉弧现象。

有载调压分接开关的主要装置有选择开关、切换开关和操作执行机构等,还有由安全联锁、位置显示、计数器以及讯号发生器部件构成的附属装置。有载分接开关如果是在有负载的情况下变换分接档位,它应该同时满足两个条件:第一是分接开关在转换档位时,一定要确保不能是开路,电流始终保持连续性。第二是分接开关在转换档位时,分接开关不能短路。2.3有载分接开关的要求

有载调压变压器的调压范围及级数规定标准:110kV及以下的高压线圈为 ,220kV的高压线圈为 ,我们经常见到10kV以下的有载调压器一般有5-9个不同档位,每个档位值在±2.5%或者±5%,有载调压器的选择是由本地电压波动的具体实际情况而决定的。对一些电压波动幅度要求高并且需要频繁调档的变压器才使用有载分接开关。根据本地电压波动的实际情况调节电压,选择适合档位,即使电压保持在 ,以保证线路末端电压质量。有载调压变压器的使用,彻底解决了电力系统电压波动带来的影响,由于一些地区存在供电形势紧张、电力资源紧缺等的问题,只有应用有载调压变压器技术。

当系统电压发生变化,超出开关所设定的指标范围时,判断它的改变趋势,如果开关超出设定的间隔时间,则由PIC做出判断,并控制其移动。具体实现方式是由输出口输出脉冲信号,控制电机,传动机构牵引开关前进,机构前进过程中会有检测系统,若超过系统设定的时间机构未达到目标位置,则会自锁输出功能,当有载分接开关处于上、下两个极限分接位置时,可进行升档位或降档位操作。

2.4硬件电路的原理分析

由于PLC具有成本费用高,体积较大等特点,因此应该选择性价比高、安装方便的PIC16F877,从而来实现灵活、精确控制有载开关,达到有载开关档位的分接转换。由变压器输出的电压经电压测量线路进行检波,再经过运算放大器计算,得到的数值与设定电压比较,通过PIC16F877中A/D转换器,变模拟量为数字量,由PIC16F877判断电压是否正常,不管电压属于高或者低状态,驱动步进电机都会通过正转升档位升高电压值或者反转降档位降低电压值来使其恢复正常。步进电机步进分接的数量是由电压高低的具体数值决定,我们可以通过步进电机带动有载分接开关转换档位,实现调压的功能,有载分接开关的监视工作是通过单片机来完成的,显示器和按键对其进行监控和调节,避免其达到上限。PIC具有对开关极限位置监测、电压采集和计算、数据储存、控制档位升降和报警等功能。通过档位检测电路中加装光电耦合装置,在电测量电路中加装滤波装置,可以使其有较强的抗干扰能力,确保系统的安全稳定工作。

3结论

在选择有载调压器过程中首先有载调压器的调压范围及级数规定标准:110kV及以下的高压线圈为 ,220kV的高压线圈为 ,我们经常见到的10kV以下的有载调压器一般有5-9个档位,每个档位值在±2.5%或者±5%,有载调压器的选择是由本地电压波动的具体实际情况而决定的。对一些电压波动幅度要求高并且需要频繁换档的变压器才使用有载分接开关。根据本地电压波动的实际情况调节电压,选择适合档位,即使电压保持在 ,以保证线路末端电压质量。

有载开关控制调节器,采用单片机技术,控制性强、体积偏小、操作灵活便捷电动机使用单片机与步进电机进行连接,可以快速启停操作、步进准确、定位精准,符合有载调压步进分接的特点,采用显示器和按键对其进行监控和调节,智能化程度高。采用了光电耦合电路技术,增强了装置的抗干扰能力。采用集成运放构成的精密整流电路,提高了测量精确度,保证了控制系统的准确调节。

参考文献