桥梁设计论文模板(10篇)

时间:2023-03-16 17:31:46

导言:作为写作爱好者,不可错过为您精心挑选的10篇桥梁设计论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

桥梁设计论文

篇1

1.1计算机辅助设计系统发展从1963年美国MIT机械工程Coons,首次提出了计算机辅助设计系统(CAD)概念开始,军工、航空航天以及精密制造业等领域就开始了CAD的研究与开发。到20世纪80年代,CAD技术开始走向成熟,并广泛应用于商业领域,开始出现在PC终端系统中。1989年,PTC公司推出Pro/Engineer产品,用参数化的特征设计为CAD三维设计建立了新的标准。此后,随着全球经济的发展,三维CAD设计开始普遍应用于航空航天、船舶、汽车及精密仪器制造业等领域[1-3]。

1.2三维设计应用在国内外的基础建设领域,三维设计技术也正在蓬勃发展,其中在水利水电、公用与民用建筑等行业已经取得较为广泛的应用,初步实现了二维设计向三维协同设计的转换。如图1所示。图1水电厂房剖切视图对于公路工程,特别是桥梁设计领域,CAD设计系统的发展相对较为缓慢,大多还处于二维阶段,或者应用其他主流的三维CAD平台对桥梁结构进行三维展示,中国交通部公路科学研究所研发的桥梁三维造型系统Bridge3D,尝试了采用参数化技术进行桥梁结构外观造型设计。但是,相对于制造行业的参数化、变量化的三维CAD设计系统差距还很大[4-5]。

2基于BIM技术的工程设计概念

2.1BIM技术定义建筑信息模型(BuildingInformationModeling,简称BIM)技术和理念由AutoDesk公司于2002年率先提出,它是通过数字化技术,在计算机中建立一座虚拟的建筑,一个建筑信息模型就是提供了一个单一、完整、逻辑的建筑信息模型[6-7]。BIM是贯穿在工程整个生命周期中,使设计数据、建造信息及维护信息等大量信息保存在BIM中,在建筑整个生命周期中得以重复、便捷地使用,如图2所示。

2.2BIM技术在桥梁工程中的延展BIM的发展是始于建筑行业,但其内涵及外延早已超出了模型的范畴,也延伸出了建筑行业,甚至覆盖了整个工程建设行业。对于桥梁工程而言,可以参考美国国家BIM标准,对桥梁信息模型(BIM)阐释如下:(1)一个桥梁工程物理和功能特性的数字化表达。(2)一个共享有关桥梁建设项目所有信息的资源数据库。(3)一个分享有关桥梁工程的信息,为该工程从概念开始的全生命周期的所有决策提供可靠依据的过程。(4)在项目不同阶段、不同利益相关方,通过在BIM中写入、提取、更新和修改信息,以支持和反映各自职责的协同作业,如图3所示。图3BIM技术支撑的工程范畴

3三维数字化设计与二维设计对比

对于桥梁设计而言,采用BIM的理念与传统CAD相比,改变的是整个设计流程与设计方法。(1)从线条绘图转向构件布置。(2)从单纯几何表现转向全信息模型集成。(3)从各工种单独完成项目转向各工种协同完成项目。(4)从离散的分步设计转向基于同一模型的全过程整体设计。(5)从单一设计交付转向工程全生命周期支持。对于桥梁设计行业,采用BIM技术不仅仅意味着效率与质量的提升,更重要的是设计方掌握了工程项目最核心的信息模型资源,不仅向业主方提供工程设计服务,而是向全寿命周期内各个工程参与方提供高附加值的服务与咨询,使工程项目的潜在价值向设计阶段前移[6]。

4基于BIM技术的桥梁三维设计技术

4.1信息需求的系统分析了解桥梁工程对三维设计技术的需求是建立三维设计系统的基础,虽然其他行业的三维设计技术已经较为成熟,也有了成功的工程案例,但是桥梁工程建设对三维工程信息的要求有自身的特点,并不能将其他行业的工程需求照搬过来。因此,需要重新根据桥梁设计、施工与管理的特点分析其对工程信息的实际需求。只有得到各个工程参与方对三维信息的需求,才能使三维信息模型发挥其在工程建设中的核心数据平台的作用。

4.2信息模型的参数化建立方法三维设计技术的核心是信息化的三维模型,通过前期分析得到各方的信息需求后,如何建立赋含上述信息的三维模型就成为关键。抽象化、变量化、参数化的设计技术是一种高效、直接和便于修改的信息化模型建立方法,该方法的核心思想是把工程项目中具有特征变化的图元要素的特征值抽象为某个函数的变量,通过修改变量值,或者改变函数实现算法,就能够获得赋含各种信息的模型。主要工作在于寻找各类要素的特征变量及其与整个模型的逻辑函数关系[8-10],桥梁三维模型如图4所示。

4.3CAD-CAE信息共享技术桥梁设计的重要特点是结构计算分析在设计中占有极其重要的位置,计算分析结果决定了主要构件尺寸与构造形式,桥梁结构计算工作量在整个设计流程中占据较大的比例,对于复杂桥梁甚至是控制性的节点工作。因此,实现设计平台与计算平台的信息共享乃至无缝结合,对提高设计效率有着积极的作用。

4.4数字化工程的交付方式与标准数字化虚拟工程移交是三维设计发展的必然结果,因为传统的二维图纸载体已经被全信息模型所取代。基于BIM技术的桥梁工程设计产品是一个包含了各阶段、各参与方所需信息的核心数据模型,这就需要针对不同信息接收方制定不同的产品交付方式与标准,交付方式与标准的确立,标志着三维设计阶段转向了三维信息化的施工与运营管理阶段。

4.5一体化协同设计与管理技术从单点、离散式的分布设计转向基于同一模型的一体化协同设计是BIM技术的重要标志,对于项目管理的效率与质量有着质的提升。同时,协同设计不仅仅指设计方内部的流程与设计过程管理,还包括设计产品交付、进入施工与运营阶段后的协同信息交流与管理,甚至可以延展到工程全寿命周期内的各个参与方的协同工作。只有掌握了一体化协同设计与管理技术,才能发挥三维数字化设计对工程全寿命周期的技术支撑作用[7]。

5三维数字化设计发展存在的问题

(1)全行业对三维数字化设计的认识有待统一。目前整个交通建设行业的三维设计刚刚起步,政府主管部门、工程业主单位、设计单位与施工单位等各方对三维设计的理解与需求是不同的,而以上各方都应该是三维设计的参与方,也是受益方。因此,在交通行业发展三维数字化设计需要全行业对其有一个统一的认识。(2)从设计单位看,意味着设计习惯、工程流程与管理体系的再造。二维设计向三维设计的转变,必然是一个缓慢的过程,大干、快上不符合技术发展规律。在三维设计起步阶段,由于设计人员的技术不熟练,设计系统不够完善,管理体系还不健全,可能会导致工作效率降低。因此,需要在工作中寻找发展与稳定生产的平衡点,这是一个不断摸索、发展与调整的实践工作。(3)从整个交通建设流程看,各个环节的发展节奏不一致。目前交通行业三维数字化的工作与重点集中在设计阶段,大部分的实践工作由设计院承担。但是,设计阶段只是工程建设的中间环节之一,其设计基础数据的获得要依靠前期的规划与勘测方,后期产品要交付于审查与施工方,如果各个环节发展脱节,就难以发挥三维数字化的优势。所以,三维数字化技术的变革比当年“甩图板”工程涉及的范围更广,难度也更大。

篇2

2结合盖梁预应力,对施工材料优化组合

在盖梁设计过程中,通过设计预应力盖梁,需要促使施工过程中结构安全不受影响,在营运状态下,盖梁的安全性也需要得到保证。因此,在设计的过程中,就需要将较大吨位钢束给应用过来,促使有效预应力得到提升;要分成两批来张拉钢束,如果有着较多的张拉次数,就会影响到正常的施工;如果有着较少的张拉次数,施工和营运要求无法得到满足。对钢筋合理布置,如果我们用骨和肉来分别比喻预应力筋和混凝土,那么筋就是普通钢筋,预应力结构只有具备了普通钢筋,方可以正常的运行。因为盖梁有着较大的尺寸,那么就需要对普通钢筋的直径严格控制,箍筋保证在11以上,纵筋要控制在15以上。同时,要科学加密箍筋间距,这样承受力方可以得到提升。在桥梁施工过程中,还需要充分重视空心预制板的使用;笔者认为,结合盖梁预应力,在设计过程中,选择的空心预制板需要具备较高的强度,并且整片梁顶板厚度在8厘米以上;如果空心板顶板度在7厘米以内,就需要将开仓处理措施应用过来,凿除掉那些厚度不够的部分,对芯模重新装上,并且将补强筋增加过来,浇筑的混凝土相较于原来的混凝土,有更高一级的标号,这样顶板厚度方可以与设计要求所符合。采取一系列的防水处理措施,如果是空心板底板密实程度不够,或者是没有足够的钢筋混凝土保护层,有渗水漏水问题出现,混凝土有着符合要求的强度,能够顺利通过静载试验,就可以将防水措施应用过来,在不密实的混凝土底板顶面上喷涂赛柏斯防水材料,经过渗透化学作用,混凝土密实度和强度就可以得到显著提升。如果预制空心板建筑高度比设计要求要高,那么就会对桥面铺装层的厚度产生直接影响,如果桥面铺装厚度与设计要求无法符合,那么就可以对墩台帽或者垫石高度进行调整,或者是将较厚的顶板部分给凿除掉,如果已经安装了上构,无法调整墩台帽和垫石,可以对纵坡科学调整;将这样的设计方法给应用过来,工程施工质量可以得到保证,桥梁的承载力也可以得到提升。

篇3

桥梁的结构性能的评比

桥梁的安全性和耐久性并不是被动的等到桥梁出现破损甚至倒塌才能够鉴定出桥梁的建设及使用情况,专业的数据评估制度是完善桥梁建设的标准。在国家建立的专业的桥梁检测标准中对使用年代较旧的桥进行检测。对于桥梁的负荷承载标准比较低和桥梁存在隐患的城市桥梁按标准进行技术评价。对于不能够达到建设时所设定的承载量的桥梁及时设置警示标志。桥梁的评比也只是集中在桥梁的几个重要方面,桥梁的变形观测、桥梁路面的线形弧度、剪力、轴力和基准线方向的偏离等等。国家还明确的规定了桥梁各个部件所使用的比例和限定额,在桥梁的施工后各项指标都不能够低于国家的标准。这也就有利于相关部门的审查与判断,数据的使用也预先知道桥梁的建设情况,保证其使用的安全性。

安全性是桥梁建设的根本出发点

质量桥梁建设的生命,桥梁作为沟通城市与城市之间的纽带,保证桥梁的畅通性。车辆行驶在桥梁上更加注重的是其安全性以及舒适型,因此有关部门必须高度重视桥梁的安全。一般的桥梁主桥部分为钢筋混凝土建成,钢索使用预应力混凝土的斜拉桥,建设过程中因地制宜的加筑排水孔,这些措施都是为了保证桥梁的安全性能。安全性是国家和人民都重视的问题,也是桥梁的基本特性,同时也是桥梁使用的意义所在。桥梁的施工、监理等工作也是相互合作关系,施工方需要接受工程师的监督、管理,这是创造监理工作的核心所在。安全性则满足设计的要求,施工工艺以及施工标准也均达标。只有坚持严格的检查,实行严格的责任问责制才能够换来桥梁的安全使用。

耐久性对桥梁建设的重要意义

篇4

1.1隔震设计的概念和原理

桥梁隔震设计就是利用隔震器,使桥梁获得一定的水平支承,使得桥梁在水平方向上的固有周期变长,并且利用阻尼器增强隔震体系的阻尼效应,最终降低地震损害的一类桥梁工程的减震设计,旨在保护桥梁工程所有结构的整体效果。且隔震设计属于桥梁工程抗震设计中比较新颖的减震方式,把隔震设计使用于桥梁设计中能够有效降低地震造成的损害,然而并不能完全阻止地震灾害。过去,通过提升桥梁工程的强度抗以及变形能力来提升桥梁的抗震能力,和以往不一样,隔震设计的特点就是加装了一个隔震装置,达到降低桥梁结构与水平地面关联性的目的,当有地震发生时,桥梁结构的反应加速度明显比地面的加速度高,所以桥梁结构构件很难被破坏。另外,还在桥梁设计中使用了阻尼设计,这样能够消耗地震产生的能量,最终作用在桥梁构件上的力减小了。

1.2隔震设计的特点

在设计桥梁抗震的过程中,要求在符合相关标准的条件下,通过隔震装置,使桥梁结构周期得到延长,且消耗地震产生的能量,使桥梁结构的响应减小。隔震设计通常具有以下特点:有足够的竖向刚度以及强度来支撑桥梁上部结构的所有重量;提高地震时桥梁结构的稳定性;引入隔震设计,能够分散减小后的地震力于桥梁下部结构支座间的大小分布,旨在保护桥梁的基础和桥墩。出现强烈地震时,能在一点程度上延长桥梁结构的自振周期,降低地震输入能量的能力;比较于以往的非隔震桥梁,有强地震发生后,更加容易对隔震装置进行更换,同时减少维修的费用及时间。以往在桥梁抗震加固工作上会花更多的时间和费用。在桥梁的结构横向地震反应中引入隔震技术,能够调节其横向刚度,所以能够改善结构的平衡作用,有效减少地震力。进行水准地震的设计时,桥梁上部结构的隔震能够消除或者解决桥梁下部结构弹性超过的问题,在不容易修复的位置,比如一些埋置的桥墩以及桥墩的基础,可减少这些不明显部位的非弹性变形问题的发生。在结构横向地震反应中引入隔震技术,能够调整一定的横向刚度,所以能够改善结构的平衡,有效较少地震力。引入隔震体系后,在一样造价条件下能够得到比以往抗震设计更好的抗震性能,比如降低墩柱延性需求,保护墩柱等。在功能得到正常使用情况下,使用的隔震支座因为温度、徐变等变形产生的抗力非常小,这或许能够实现伸缩缝的减小。

2桥梁设计中隔震设计的运用

2.1运用隔震设计的条件

根据桥梁基础周边地基及结构等条件而言很多桥梁都可以引入隔震设计。然而部分桥梁并不可以,所以要分析详细的地基和结构条件,判断是否可以在此桥梁中引入隔震措施。可以引入隔震设计的桥梁需要满足的条件是:桥梁周边的地基基础良好,这样发生地震时才会稳定;桥梁下部结构刚性好且桥的固有周期不长的条件。这2个条件确保实行隔震技术后,桥梁体系可以达到长周期化的目的,最终实现地震力的降低。如果桥梁下部结构刚度比较强,通过桥梁系统的固有周期,其固有周期可以长达不采用隔震装置的2倍,如果桥梁的上、下部结构的固有周期区别很大,那么上部结构和下部结构之间就没有大的藕联振动效应产生,通常桥面运动才可有效反映隔震装置的减震能力。以下条件下的桥梁不适合引入隔震设计:桥梁的下部结构刚性不强,且固有周期长的桥梁;置于较柔的场地,周期长会出现共振现象;桥梁基础的地荃不牢固,发生地震容易摇晃的桥梁。

2.2桥梁设计中的隔震设计

(1)隔震装置的设计。桥梁隔震设计的第一步是隔震装置的设计,要想达到预期的隔震效果,隔震装置的设计就要有一定的刚度和能量吸收能力。进行桥梁隔震设计过程中,可以利用隔震装置降低桥梁结构的惯性力。所以需要设计出隔震效果良好的阻尼器和隔震器。通常情况下通过弹性反应谱法设计的隔震要不断更新和优化。在隔震设计过程中,要严格控制其隔震装置的力学性能。(2)细部构造的设计。在进行隔震设计时桥梁附属结构的功能非常大,桥梁附属结构通常包括限位装置、防落梁装置、伸缩缝。大量的地震调查和动态时程研究表明:这些结构属于支撑桥梁结构的动态响应和振动隔离效果的主体。然而大部分设计人员不重视甚至忽视桥梁的细节结构,所以,进行细节结构设计时,要求设计人员注意加强设计,尽力提高桥梁的抗震能力。

2.3隔震设计的合理运用

在不同水准地震条件下,一方面要明确结构构件在抗震中起到的作用和结构的预期性能。另一方面,在不同的水准地震作用的情况下,结合结构的预期性能设计人员才能知道该如何去做。想要实现这个目标,就要充分利用设计人员的实践经验,充分掌握在地震作用下的结构性能,最后完成科学合理的设计,详细的构造细节和合理的构造举措,并不是通过复杂的分析计算而得出的。所以,进行隔震技术设计时,要充分掌握整个桥梁系统的抗震传力路径,通过有效的细节构造措施的实行,保证在地震作用下的情况下隔震装置可以正常发挥关键作用。

2.4隔震设计的运用

中出现的问题目前我国的隔震设计规范还不够全面,同时经验积累不足,特别是在桥梁的构造细节和措施上,构造细节和措施的不科学,会影响减隔震装置的正常发挥。大跨桥梁结构的应用是长期发展的结果,但粘滞阻尼器在世界桥梁中的使用时间很短,同时投入使用的过程中部分厂家粘滞阻尼器经常有漏油等事故发生。迄今为止,我国还没有更加完善的产品标准、设计规范及检测标准。这点使得隔震设计造我国的广泛使用,再者,部分不符合要求的产品被引入桥梁结构的设计,存在一定的安全隐患,如果有地震发生,就会对桥梁产生严重的影响。所以在使用粘滞阻尼器的过程中,要严格控制产品的质量检测,保证产品参数符合设计的标准;再者,要着重检测产品的耐久性能、疲劳性能等特性,而且要及时检测和保养桥梁的阻尼器,如果有问题出现要马上作维修或者更换工作。所以,要求相关部门尽快制定科学合理的检测标准和产品标准。要想保证在地震作用下隔震支座能够有效发挥作用,且可以对隔震支座作一定的变形,就要保证足够的位移空间。所以要随时关注防落梁措施、伸缩缝间隙的设置等构造措施的设置。

篇5

一、引言

近十年来,世界相继发生了多次重大地震,1989年美国LomaPrieta地震(M7.0)、1994年美国Northridge地震(M6.7)、1995年日本阪神地震(M7.2)、1999年土耳其伊比米特地震(M7.4)、1999年台湾集集地震(M7.6)等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。

近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。

中国现行《公路工程抗震设计规范》(JTJ004-89)在80年代中期开始修订,于1989年正式发行。随着中国如年代经济起飞,交通事业迅猛发展,特别是高速公路兴建、跨越大江,大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。

本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。

二、主要国家桥梁抗震规范基础抗震设计的概况

本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的AASHTO规范、Cal-tans规范、ATC32美国应用技术协会建议规范,新西兰规范NZ,欧洲规范EC8,日本规范JAPAN)进行基础抗震设计方面的比较。

中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于阪神地震的经验,地震后桥梁上部结构的修复和重建都比下部基础经济和省时、省力,因此桥梁基础的抗震能力的要求应比桥墩高。

三、日本桥粱基础抗震设计方法细节

1.按流程,先用震度法设计。震度法基本概念是把设计水平震度

Kh乘以结构Kh的计算方法如下:

其中Cz--地区调节系数;

Kh0--设计水平震度的标准值。

其中,δ是把抗震设计所确定的地基面以上的下部结构质量的80%或100%和该下部结构所支承的上部结构质量的100%之和作为外力施加到结构上在上部结构惯性力作用点位置发生的位移。

2.用震度法设计以后,如果基础结构是桥台基础或者桥墩的扩大基础,不需要用地震时保有水平耐力法设计。这是因为设计桥台基础时,地震时动力压力的影响非常大,此外结构背面存在的主体也使结构不容易发生振劾。而对于扩大基础来说一般地基条件非常好,因此,地震时基础某些部位转动而产生非线变形可以消耗许多地震能量。

3.用地震时保有水平耐力法设计时,首先要判断基础水平耐力有没有超过桥墩的极限水平耐力。这是因为地震时保有水平耐力法的基本概念是尽量使地震时在桥墩而不是在基础出现的塑性铰。如果在基础出现塑性铰,发生损伤后,修复很困难。所以,我们要把基础的行为控制在屈服范围内。

如果基础水平耐力小于桥墩的极限水平耐力,则要判断桥墩在垂直于桥轴方向的抗震能力是不是足够大(按式(3))。因为如果桥墩在垂直于桥轴方向具有足够大的抗震能力(例如壁式桥墩),而且基础的塑性反应在容许范围以内,则基础的非线能吸收大量的振动能量并且基础仍然是安全的。

桥墩的极限水平耐力Pu≥1.5KheW(3)

Khco--设计水平震度的标准值;

Cz--地区调节系数;

μa--容许塑性率;

W-一等价质量(W=Wu十CpWp);

Wu--振动单位的上部结构质量;

Wp--振动单位的桥墩质量;

Cp--等价质量系数(剪断破坏时1.0,剪断破坏以外是0.5)。

4.桥墩的极限水平耐力满足Pu≥1.5KheW时,对基础塑性率进行对照检查。虽然基础的非线行为能吸收大量振动能量,但是对于有的基础部件来说,可能会遭受过大的损伤。所以要控制基础的反应塑性率,按如下要求:

μFR≤μFL(4)

式中μFR--基础反应塑性率;

μFL--基础反应塑性率的限度。

5.发生液化时,要降低土质系数。随后的计算(对照和检查)同上述方法基本一致。

篇6

2山区公路桥梁与其他建设工程的关系

2.1山区公路桥梁与隧道的关系

山区地形多变,地质复杂,水文特征多变,地面沟壑很多,并且坡度很陡,时而也会有泥石流等地质灾害发生。山区公路受以上条件影响横坡较陡,易受山谷水流冲刷,在U型山谷必须转弯。山区公路桥梁与隧道连接起来是跨越河流,在U型山谷转弯所做的必要措施,也是最好的解决办法,被称为“两桥一遂”方案,设计这种方案需要桥梁和隧道紧密结合。在地形平缓,变化不大的地质条件下可以调整桥台侧墙的高度和长度完成连接,对于地形复杂,隧道明洞无法延伸的情况下,需要增添桩柱式台以及桥梁主梁放置于隧道明洞完成对接。

2.2山区公路桥梁建设与路基的关系

山区公路要适应地形多变环境,需使用错台路基(两端路基不等高)。但是错台路基在需设置转向车道时,很难运用到施工中。由于两端路基不等高需设计半幅桥来进行衔接。当路基一侧要求填土的高度15m左右时,必须综合考虑地质、水文等条件,把加筋挡墙、弃土方案与半幅桥进行比对,来决定最合理的方案。

3山区公路桥梁设计要点

公路桥梁是交通运输领域中不可或缺的重要部分,随着人们生活水平的提高,公路桥梁的设计和管理也应该提高,有一个好的施工质量对公路桥梁的使用和维护起着非常大的作用。山区公路特点地形起伏,地质复杂。山区路线布置的平面、纵向、横向三个方面都被限制,对于山区公路桥梁的设计,考虑到山区的特点,从上部结构设计、下部结构设计来说明。

3.1山区公路桥梁上部结构设计

山区公路桥梁多采用施工容易,造价低廉的标准化,预制装配化结构,而大跨径桥梁方案比较少。山区公路桥梁常采用标准化、装配化桥梁,标准化、装配化跨径一般有16m、20m、25m、30m、40m、50m。当跨径小于30m时,有三种构造分别是空心板、小箱梁、T梁。当跨径为40m、50m时,由于梁的受力特点适于采用T梁。山区公路桥梁没有严格的空间限制,且平面较小的山区公路,会把较高缓和的路段出现在桥上,使用空心板和小箱梁时,架梁的四个支点调平困难,会引起支座脱空,质量无法保证。对于山区公路桥梁标准横断面需采用T梁。当跨径在50m时,山区公路交通运输条件差,场地不能扩大,很难使大型机具进入,50mT梁单片重达150吨,而且架设设备要求很高,难以控制它的运输和安装过程,50mT梁一般不被使用。山区公路桥梁常用标准跨径为20m、25m、30m、40m。

篇7

混凝土是我国目前公路桥梁建筑中普遍采用的基本材料,在施工中,混凝土一方面对桥梁的桥体起到稳固作用,提高桥体结构的稳定性和耐久性;另一方面也为桥梁桥体起到防水的作用,防止桥体受雨水的腐蚀。若在施工中,使用的混凝土和易性不佳,就会降低其防水性能的正常效果,致使混凝土表层内形成气泡,气泡水分蒸发导致混凝土表层形成蜂窝小孔,长久以后,混凝土表面产生裂缝,造成桥梁桥体严重的质量问题。

1.2防水措施的技术问题

我国在公路桥梁建筑施工中采取的防水措施,主要是沿用传统的工艺和学习国外的技术,一方面受我国公路桥梁建筑施工发展时间较短的影响,另一方面则是因为在施工初期没有重视防水措施的实际使用。防水措施的技术水平较低,是造成桥梁桥体受雨水腐蚀进而大大缩减了桥梁实际使用年限的又一因素。

2公路桥梁设计的原则及要求

2.1公路桥梁的设计原则

公路桥梁的设计原则,根据桥梁的上下分布主要分为两个部分:2.1.1公路桥梁上部的设计原则公路桥梁上部的设计原则,主要在于重视桥梁上部分的结构构造,如主梁、搭板、伸缩缝等,在主梁的设计上:对于跨径在10m内的主梁,设计原则一般采用通用的混凝土钢筋结构,若单孔跨径超过10m,则应当选用含预应力技术的混凝土结构;若桥梁长度小于100m或单孔跨径小于20m,即宜选用空心板结构;若施工的桥梁跨河,难以利用支架进行浇筑工作,则应当选用连续的空心板结构。另外,考虑到实际桥梁桥面的平曲线以及通车运营时的平稳性,就应当在施工中适当减少伸缩缝数量,如单孔跨径16m以内的桥梁,在设计中仅需1道伸缩缝即可,注意在另一端利用连续结构进行施工,确保桥面的平曲线;若单孔跨径大于16m,应当将伸缩缝施工在桥墩,利用连续对桥两端进行施工,这不仅是考虑通车运营时的平稳性,更是减少安全事故的发生几率。2.1.2公路桥梁下部的设计原则桥台和桥墩等结构构造是进行桥梁下部设计时应当注意的,在桥台的设计上:填土高度对于保障桥台的质量具有重要作用,一般而言,在软土土层的路段,填土高度应当保持在6m内,在一般土层的路段,填土高度适宜保持在10m内;同时,桥台的受力方式一般都会采用重力式,这主要考虑到施工方便和成本控制,对于8m以上台身的墙面,一般而言宜用斜坡,斜率为10:1,需要注意的是对于水平方向存在高度差的地面,则应当选用阶梯式的前墙设计方式。在桥墩的设计上:若桥梁设计为一般结构,宜使用框架式桥墩,即直接在桥墩上盖梁;若在水平方向存在高度差的地面,选用桩柱式桥墩更符合设计原则;若桥梁不同跨径的桥孔的斜交角在30°以内,则桥墩设计应当采用双柱式;若桥梁不同跨径的桥孔的斜交角在30°以外,则桥墩设计应当采用三柱式。

2.2公路桥梁设计的要求

2.2.1设计和环境的结合桥梁的设计需要根据实际的地理环境,实现设计和环境的结合,这是公路桥梁设计的第一个要求。一般而言,公路桥梁的设计,是为了保障建成后的质量,这是进行施工的首要目标;同时,考虑到桥梁建成后的经济成本以及美观价值,则需要确保设计中要将实际环境作为参考依据。2.2.2达荷载标准达荷载标准,这是公路桥梁设计的第二个要求,公路桥梁的建设,是为了实现交通便利和促进经济的发展,达到通车荷载标准,这是公路桥梁实现其使用价值的必须要求。

3公路桥梁的防水措施

对建成的公路桥梁采取相应的防水措施,这对于避免桥梁主梁、桥面等出现裂缝、坍塌等情况的质量问题具有重要作用,同时也是对延长桥梁实际使用年限的有效措施。主要的防水措施有以下两个方面:

3.1建立防水体系

防水体系的建立和实施步骤主要分为四个部分:①桥面的清洁工作,对整体桥面的外观进行简单的清理,如油污、浮浆等污渍,保持桥梁桥面的干净;②基层处理剂的涂刷工作,使用配套的处理剂进行均匀涂刷工作,需要引起注意的是,在实施热熔操作的基层处理剂作业时,要确保桥面是在干燥状态,若桥面处于潮湿状态则可能发生安全事故;③防水层的铺贴工作,先使用喷灯等设备对桥面和防水卷层进行均匀加热操作,再弹出下坡面的基准线,待桥面干燥和卷材外层出现融化情况后及时进行铺贴工作;④接缝处的密封工作,完成铺贴工作后,需要注意接缝处的密封情况,使用喷灯对接缝处进行加热处理,做好密封处理。

3.2具体防水措施

严格设计和控制混凝土的配合比和浇筑的施工质量,确保钢筋混凝土结构内不会产生气泡,从而影响内部结构的稳定性,条件允许情况下利用机械设备对混凝土表层进行清理工作;严格控制伸缩缝的施工,首先确保施工操作的规范性,其次使用防水性能较好的材质,最后确保钢梁的受力安全情况,保证其位移的均匀性。

篇8

1.1道路桥梁设计考虑不周详

在进行道路桥梁设计的时候,如果道路桥梁设计人员考虑不全面,则会直接导致道路桥梁设计中出现缺陷和隐患,经常会出现道路桥梁结构失衡,道路桥梁局部受力过大的情况,同时在施工材料方面也会存在着一些问题,这样对道路桥梁的安全和耐久性都会有很大的影响。

1.2道路桥梁设计思想陈旧

在道路桥梁设计观念方面出现落后问题,非常容易导致设计中缺乏创新意识,同时也会给工程的安全以及施工带来很多的问题。在道路桥梁设计方面进行创新是非常必要的,同时在实际设计过程中,也要对施工材料的选择和工艺结构进行必要的研究,这样能够更好的改善道路桥梁的质量。

1.3道路桥梁设计准备不充分

在进行道路桥梁设计的时候,时间非常短,设计人员在工作中要承担非常大的工作量,开发商只重视经济效益,导致了在设计过程中无法更好的进行研究。在设计过程中也存在无法和其他设计进行比较的情况,经常会出现模仿以前设计的情况,在设计方面没有创新意识。

1.4道路桥梁设计管理和监督不力

为了更好的对道路桥梁设计进行审核,国家制定了相应的制度,但是在一些情况下,会出现审核制度被外力介入的情况,这样也使得桥梁设计中缺乏竞争机制,失去了审核的意义,在公平和公正方面没有得到体现。

2道路桥梁隐患的解决措施

2.1提高道路桥梁设计的工程质量

一方面,在道路桥梁设计中要将耐久性和安全性作为首要问题,要在道路桥梁设计中坚持科学的观点,加强对道路桥梁设计的监督与检查,做到对道路桥梁设计过程的全过程管理。另一方面,道路桥梁设计要结合道路桥梁施工,应该对道路桥梁项目的实际环境进行工程学和地质学的全面检验,以此来确保道路桥梁的功能与寿命,使道路桥梁的经济价值得到最大的开发,确保道路桥梁社会效益的持续发挥。在道路桥梁设计中提倡对先进理念和先进技术的应用,要通过对道路桥梁外观和结构的调整确保道路桥梁的安全与功能,当前应该在道路桥梁设计中大量运用计算机仿真和模拟技术,达到对道路桥梁施工和运行各种情况的有效预防,实现对道路桥梁设计隐患的先期控制和解决。

2.2提高道路桥梁设计的水平

一方面,道路桥梁设计工作要做好前期的准备,要对道路桥梁设计中所需的资料和信息做到全面整理与加工,这样不但可以提高道路桥梁设计时对目标工程的熟悉程度,更可以提升道路桥梁设计人员运用自身能力和素质的水平,充足的设计前期准备还可以为整个道路桥梁设计提供充足的时间,让道路桥梁设计人员可以加深对设计和工程的全面认知,在充分准备的基础上,使道路桥梁设计的隐患得到控制,进而做到道路桥梁工程质量的保证。另一方面,道路桥梁设计工作要具有风险意识,要在安全与风险、质量与进度之间做好权衡,尽量减小道路桥梁设计的风险,这是防范道路桥梁设计可能出现隐患的重要措施,同时也是提高道路桥梁设计的基本保障;道路桥梁设计中应该考虑实际施工,要力争道路桥梁质量和施工进度间良性的互动,在确保建设质量的同时做到对道路桥梁施工方经济效益的维护,这是高水平道路桥梁设计工作的重要体现。

篇9

2桥梁设计的注意事项

桥梁设计最主要的是结构设计,而结构设计的关键就在于结构分析的到位与否以及结构方案制定得是否合理,其次是构件与连接的设计,为保证安全性,所有设计都必须采用规范要求的安全系数和可靠指标。在现代桥梁的设计中,不少设计者并没有为了增强结构的安全性,而从设计到施工再到使用整个过程上进行全面综合的考虑。

2.1重视结构耐久性

我国大约从20年前开始重视桥梁结构的耐久性,当时仅仅局限于从材料的角度,利用模拟实验、统计分析进行研究,虽然也取得了不少的成果,但要想与时俱进,在技术上实现飞跃,必须适当地改变思路,从结构与设计上来分析改善桥梁的耐久性。同时要考虑到施工人员的接受度、操作方式和实际完成情况,重视细节处理。在研究结构计算方法时不仅要考虑桥梁总体构造,还要将自然灾害、交通事故等偶然因素包括在内。

2.2对疲劳损伤的进一步研究

桥梁在投入使用后,由于几乎每时每刻都在承受车辆以及风带来的荷载,而这些荷载都属于动荷载,这会使桥梁结构内部的应力不断变换,一般桥梁在建造过程中采用的都是混合材料,其或多或少都会存在一些微小的缝隙,而这些缝隙长期受到变化应力的作用,极有可能逐渐发展、合并,最终形成桥梁表面的宏观裂纹,影响桥梁结构的稳定性,例如在桥梁工程中被广泛使用的钢筋砼,由于其抗拉性能差,往往会出现裂缝,这就是累积造成的桥梁结构疲劳损伤,若不及时有效地采取措施处理和控制,将会造成桥梁结构脆性断裂等灾难性的后果。疲劳损伤在早期是很难被检测和发觉的,所以必须重视这项研究,防范于未然。

2.3桥梁的超载问题

目前国内超载现象屡禁不止,车辆超载对桥梁造成的损害不容忽视。由于超载,作用于桥体结构的荷载应力增大,加剧了疲劳损伤,严重的甚至造成桥梁表面结构被破坏;另外,作为桥梁安全性与耐久性的重要威胁,超载会对桥体内部造成不可逆转的损伤,从而改变了桥梁正常负载下的工作状态,严重影响桥体结构的寿命。

2.4借鉴国外的经验与成果

纵观国内现状,由于施工质量与管理水平不够高,造成桥梁使用寿命较短,维护费用昂贵,安全事故频发。就目前来看,这些现象是有其存在的必然性的,设计人员必须正视这一点。在基础设施条件上,我们与国外是有差别的,在设计时要采用符合国情的安全度与设计方法来调节匹配施工管理与材料工艺,主动且有效地保证桥梁的使用性能。同时,对欧美国家先进的经验和技术成果可以适当地拿来借鉴。特别是在结构体系的选材以及细节处理上,这点在国外做得比较到位,比如欧洲国家在建筑设计上十分重视结构物的性能设计,设计内容会考虑到结构的裂缝和形变、受振动的情况以及美观性、疲劳度等,力求制造出来的成品具有美观、强健、耐腐蚀、抗疲劳等优良的性能。我国应学习并吸取这套结构物性能设计理论,从本质上对建筑结构使用过程中体现出的服务性能进行研究,分析其发生的规律与机理以及该性能受到弱化的原因,从而掌握并进一步开发出适合我国国情的新的结构设计方法与理念。

2.5仿生材料与新功能桥梁的探索

当今的桥梁建造技术主要得益于钢筋混凝土材料的发现和使用,而这亦是源于人类对大自然天然材料库的加工重塑。当初园丁通过对植物根部的探索与观察,受到启发,从而发明了钢筋混凝土材料,对建筑行业带来了极大的推动,在桥梁设计领域更是带来了革命性的转变。材料作为桥梁结构发展不可或缺的因素,需要与时俱进地开发与创新。如今倡导可持续发展,在建造桥梁方面,设计人员应当探寻如何运用现有建筑材料使其发挥最大特性的方法。随着科学的发展,仿生材料作为新生的物资,极有可能对桥梁工程改革发展的未来再一次掀起浪潮,它将完美地对传统钢筋混凝土材料进行改良,若设计精妙,甚至可以取而代之。工程师在设计时应该适当融入些大自然的规律,在提升桥梁使用性能的同时丰富桥体结构。比如利用研究自然界水消融和腐蚀的原理来设计研发桥梁防水材料与涂装层材料;新型蓄光型自发光材料凭借其优良的“自给自足”特性已广泛用于公路标志,设计师可尝试将其运用于桥梁涂装上,结合各种染色料,使桥梁结构白天充满丰富的色彩感,到了夜间可自发光照明,从而取代原始的电力照明,大大降低了能耗,实现了桥梁的可持续发展。

篇10

2山区公路桥梁结构的选择

一座安全、经济、实用的山区公路桥梁的建成,离不开科学、合理并与之特点相符合的桥梁结构。山区由于地形地质情况比较复杂,沟深坡陡,且多为季节性深沟,因此,很多情况下公路桥梁设计不仅受地形地质条件限制,还受水文条件影响,因此最好采用高桥墩的构造形式,不宜采用路基方案[2]。山区公路桥梁大部分都要跨越山谷,如果采用高桥梁结构设计方式,不仅可以应对季节性洪水问题,利于稳定路基,还不易对周围环境产生影响,既安全又经济。

3山区公路桥梁设计策略

本文将山区公路桥梁设计分为上部结构设计和下部结构设计两部分内容,下面将具体分析上、下部结构设计策略,以及设计中应该注意的相关问题。

3.1桥梁上部结构设计

3.1.1结构形式的选择

在山区有着很多的季节性河流,为了跨越这些河流往往需要架设桥梁,使得桥梁在山区公路中占有很大的比重,无形中加大了成本投入。为了使成本投入经济又合理,施工方便,桥梁上部结构经常采用标准化的预制装配结构[3]。但是因为每个施工现场有着不同工程地质条件,设计方案也会有所不同,为此,以下将重点分析公路桥梁标准化、预制装配结构的设计内容。近几年,山区公路桥梁工程常用的预制装配结构设计方案的标准跨径基本有16m、20m、25m、30m、40m、50m等,横断面形式基本采用空心板、T梁、小箱梁等。如果桥梁跨径小于30m,可从空心板、T梁、小箱梁中任意选择一种横断面形式,但是如果跨径大于30m,最好选择T梁形式的横截面形式。山区公路桥梁一般对净空无严格限制,加上山区公路平面半径比较小,超高缓和段及竖曲线不可避免,如果选择空心板和小箱梁形式的横截面,架梁时不易调平一片梁的4个指支点。4个支点如果不在一个水平线上,可能导致支座受力不平衡[4]。所以,大跨径的桥梁应尽量选择T梁形式的横截面,条件允许时小跨径的桥梁也应该选择T梁式横截面,利于保持受力点平衡、稳定。在这里需要强调的是,由于山区受到地形限制,基本上不存在较好的运输和预制条件,但是50mT梁架设对运输和安装的要求很高,为此,山区最好不易选择跨径大于50m的桥梁结构。

3.1.2桥梁上部结构设计中需要注意的问题

(1)处理好跨径和墩高之间的关系从美学角度出发,桥梁跨径与墩高之间的比值应在0.5~1.0之间,即桥梁跨径如果是30m,墩高最好在15~30m之间。将桥梁跨径与墩高之间最佳比值固定在0.5~1.0间,原因在于这样的设计比较经济实用,既不影响桥梁外形的美观度,也能达到控制投资成本的效果。但山区公路地形变化频繁,不易根据墩高来决定跨径,应根据公路地形的变化情况选择一种跨径。但是,如果地形起伏变化非常频繁,也可以选择组合跨径。通常一个公路桥梁工程不止有一种跨径方案,这种情况下,要经过多方对比分析,选择造价低、质量有保障的方案。

(2)处理好上部结构与平面线形之间的关系若不能处理好上部结构与平面线形之间的关系,可能导致出现曲线桥。曲线桥一般表现为内外弧差和中矢高。在布置墩台径向时,内外桥梁因受到曲率半径的影响会出现梁长不等的情况,半径越小,内外梁之间长度差距越大[4]。为了有效解决这一问题,必须处理好上部结构与平面线形之间的关系,否则极容易影响到内外桥梁的等长情况,并最终导致出现曲线桥。针对内外弧差这一问题,可以采用以下两种应对措施:根据平面半径的变化适当调整梁长;不改变梁长的前提下,通过加大帽梁、封锚端或加长现浇连续段的方式以适应平面半径的变化。第一种应对措施设计简单,规格统一,但往往需要很大场地堆放预制梁,场地不仅不易寻找,而且管理起来难度较大[5]。如果采用第二种应对措施,在半径比较大时可以采用内弧长等于标准跨径布置,如果半径比较小,可以采用中线弧长等于标准跨径布置。针对中矢高这一问题,如果中矢高在10cm以内,一般可通过调整护墙内缘的方式适应平面线形。在中矢高超过10cm时,不易调整护墙,以免影响桥梁整体外形的美观度和消弱护墙功能。最好的解决方式就是按照实际曲线情况预制梁外缘,以此来适应平面线形。

(3)弯梁桥横坡设置问题在山区公路上看到的桥梁,平面上多呈扇形。为了使弯梁桥满足行车要求,要求在结构横断面上做成一个外弧侧高、向内弧侧倾斜的横坡。横坡的设置方法有两种:一种是将梁横断面上的每根梁肋做成不等高;另外一种是将梁横断面上的每根梁肋做成等高,然后将内弧侧做成倾斜,同时将桥墩盖也做成倾斜,利用支座垫石和梁底设置的楔形垫块所产生的力量使支座受力均匀,保持稳定。

(4)结构体系公路桥梁结构体系基本包括全钢构体系、全连续结构体系等几大类。全钢构体系如果应用于多跨梁桥,由于多跨桥梁的桥墩高相差很大,必须通过调整桥墩的线刚度来改善桥墩的受力情况,这样必然存在着多种桥墩尺寸,不仅影响桥梁外形的美观,也不利于施工。全连续结构体系的舒适性比较差、墩台水平位移比较大,相应的墩柱尺寸也要比较大一些,既不利于节省材料也不利于结构优化。山区地形复杂,地形起伏变化比较频繁,因此桥梁多是弯桥或坡桥。无论是弯桥还是坡桥,作为曲线桥梁中的一种类型,在弯扭耦合作用下必然沿着某一点变形。如果采用全连续结构式的桥梁,当桥梁整体沿着某一点向下滑动时,必然不能保证桥梁结构受力平衡、均匀,如再出现支座脱空或破坏的问题,桥梁必然会受到前所未有毁坏[6]。从以上分析内容可知,选择某一种结构体系作为桥梁整体的构造并不是明智的选择。为了保证桥梁结构受力均匀、平衡,使用寿命长,设计人员应适当根据地形的高低合理调整墩高,保证中间桥墩较高,然后将刚度基本一致的相邻桥墩连接在一起,满足桥墩水平受力的要求,矮一些的桥墩则可通过设置滑板支座或橡胶支座以满足桥墩水平受力的要求,这样就可形成连续梁,无论是高桥墩还是矮桥墩,其受力性能都会得到有效的改善,桥梁整体也就能更加适应地形特点。由此,山区公路桥梁可以采用连续-刚构混合体系,既能满足桥梁的受力特点,又能适应平面线形。

3.2桥梁下部结构设计

3.2.1桥墩

桥梁跨径的大小决定着桥墩的高矮,一般情况下,矮桥墩设计由强度控制,高桥墩设计时要考虑稳定性问题。山区公路桥梁经常采用柱式墩,柱式墩中又分为圆柱墩和方柱墩。从外形来看,圆柱墩的外形比较好控制,质量也比较容易控制,也便于与桩基衔接。但方柱墩因为有棱有角,在外形上没有圆柱墩看起来那么美观,质量控制上没有什么区别,只要方法得当,桥墩质量都会得到有效控制。从受力角度来看[6],在圆柱墩和方柱墩截面积相等的情况下,方柱墩的抗弯刚度一般要大于圆柱墩,有着比圆柱墩好的受力性。至于为什么存在这样一种情况,主要原因在于当桥梁结构体系为连续钢构时,方柱墩可通过调整墩柱两个方向的刚度以达到调整墩柱受力的目的。但是,圆柱墩每个方向的刚度都是一样的,受力性的调整效果会比较差。尽管方柱墩在调整受力性上有一定的优势,但也有一定的缺点。除了外形不够美观外,墩柱与桩基之间要通过桩帽来连接,无形中增加了工程量。所以,具体设计中应根据实际情况决定选择方柱墩还是圆柱墩。如果地面比较陡,可适当采用双柱墩以增加稳定性。

3.2.2桥台

通过对大量资料分析得到,山区公路桥梁桥台一般采用U型台、肋板台、桩柱式台,其中U型台最常用。U型台的设计要根据施工现场的地形、地质条件而决定,以达到减少工程量、适应地形的目的。如果施工现场地质条件比较恶劣,可以在U型台下设置桩基,维持桥台结构的稳定性。

3.2.3基础桩

基础是山区公路桥梁最常用的基础,除此之外,扩大基础也是比较常见的方式。在地形地质条件比较好的情况下,适宜采用扩大基础,桩基础适用于地质情况比较恶劣的情况。地质条件非常恶劣,则可采用摩擦桩[7]。如果桥梁架构在斜坡上,无论采用扩大基础还是桩基础,在设计时都应考虑基础扩散角和覆盖层厚度,以及在施工过程中可能出现的问题。桩基础的施工方法多为挖孔桩和钻孔桩。尽管挖孔桩造价比较低,但是由于其不适用于地下水位比较高、易形成塌孔的地质条件,为此,是否选择挖孔桩应根据实际情况来决定。