时间:2023-03-16 17:34:04
导言:作为写作爱好者,不可错过为您精心挑选的10篇cdma技术论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
CharacteristicsandFunctionsforcdmaTechnology
Abstract:Thisissuemainlysetsforththecharacterandstrongpowerofthe3thgenerationmobiletelecommunicationtechnology-CDMA.Telecommunicationaltermshavetranseredfromnarrowservices,suchastelephone,sendingorreceivingmessages,tomultimediumofbroadband.PDSNisentrygateway,whitchlinkingwirelessnetandpackagenettogether.PDSNalsoservingforusers`enteringpackagedatenet.AAAservercanprovideusers`identificationbyprobingpre-registedlogininformation,thendecidewhetherpermittingmobileusersusingsomenetworkresourse,atthesametimeitcalculatingfee,audittin,allottingofcostoranalysisingoftrend.CDMAprovidingpowerfulguaranteefordevelopmentofmobilecommunication.
Keywords:CDMA;AAAserver;Internet;Intranet
1引言
CDMA(CodeDivisionMultipleAccess码分多址)是近年来被应用于商业的一种数字接口技术。他拥有频率利用率高、手机功耗低等优点。CDMA手机是指基于CDMA网络的移动通信终端。目前,19家企业被批准有资格生产CDMA终端产品。
CDMA手机除了能够提供GSM手机的通话功能和信息服务外,还具有高速无线数据传输和多媒体功能。能提供的服务主要有:
(1)基本增值服务,如呼叫转移、信息提示等。
(2)语音邮件服务,如邮件、传真、新闻等语音信息。
(3)短信息服务,如天气、交通、证券、广告等。
(4)无线智能网服务,如虚拟网络、个人号码识别等。
(5)无线互联网服务,如网络浏览、电子商务、电子邮箱、网络游戏等。
2CDMA所具有的优点
与GSM手机相比,CDMA手机具有以下优点:
(1)CDMA手机发射功率小(2mw)。
(2)CDMA手机采用先进的切换技术——软切换技术(即切换是先接续好后再中断),使得CDMA手机的通话可与固定电话媲美,而且不会有GSM手机的掉线现象。
(3)使用CDMA网络,运营商的投资相对减少,这就为CDMA手机资费的下调预留了空间。
(4)因采用以拓频通信为基础的一种调制和多址通信方式,其容量比模拟技术高10倍,超过GSM网络约4倍。
(5)基于宽带技术的CDMA使得移动通信中视频应用成为可能,从而使手机从只能打电话和发送短信息等狭窄的服务中走向宽带多媒体应用。
在第三代移动通信的无线接口国际提案中,WCDMA和CDMA2000都是极为重要的技术。这两种宽带CDMA方案,除了码片速率、同步方式、导频方式等有所不同外,其他如功率、软切换等基本技术并无大的区别。
CDMAOne是基于IS-95标准的各种CDMA产品的总称,即所有基于CDMAOne技术的产品,其核心技术均以IS-95作为标准。CDMA2000是美国向ITU提出的第三代移动通信空中接口标准的建议,是IS-95标准向第三代演进的技术体制方案,这是一种宽带CDMA技术。CDMA2000室内最高数据速率为2Mb/s以上,步行环境时为384kb/s,车载环境时为144kb/s以上。
CDMA2000-1X原意是指CDMA2000的第一阶段(速率高于IS-95,低于2Mb/s),可支持308kb/s的数据传输,网络部分引入分组交换,可支持移动IP业务。
CDMA2000-1XEV是在CDMA2000-1X基础上进一步提高速率的增强体制,采用高速率数据(HDR)技术,能在1.25MHz(同CDMA2000-1X带宽)内提供2M/s以上的数据业务,是CDMA2000-1X的边缘技术。3GPP已开始制订CDMA2000-1XEV的技术标准,其中用高通公司技术的称为HDR。
与CDMAOne相比,CDMA2000有下列技术特点:多种信道带宽,前向链路上支持多载波和直扩两种方式;反向链路仅支持直扩方式;可以更加有效地使用无线资源;可实现系统平滑过渡;核心网协议可使用IS-41,GSM-MAP以及IP骨干网标准;前向发送分集;快速前向功率控制;使用Turbo码;辅助导频信道;灵活帧长;反向链路相干解调;可选择较长的交织器。CDMA2000-1X采用扩频速率为SR1,即指前向信道和反向信道均用码片速率1.2288Mb/s的单载波直接序列扩频方式。因此他可以方便地与IS-95(A/B)后向兼容,实现平滑过渡。运营商可在某些需求高速数据业务而导致容量不够的蜂窝上,用相同载波部署CDMA2000-1X系统,从而减少了用户和运营商的投资。由于CDMA2000-1X采用了反向相干解调、快速前向功控、发送分集、Turbo编码等新技术,其容量比IS-95大为提高。在相同条件下,对普通话音业务而言,容量大致为IS-95系统的两倍。
3CDMA关键技术所在
CDMA2000-1X关键技术包括以下几个方面。
(1)前向快速功率控制技术CDMA2000采用快速功率控制方法。即移动台测量收到业务信道的Eb/Nt,并与门限值比较,根据比较结果,向基站发出调整基站发射功率的指令,功率控制速率可以达到800b/s。由于使用快速功率控制,可以达到减少基站发射功率、减少总干扰电平,从而降低移动台信噪比要求,最终可以增大系统容量。
(2)前向快速寻呼信道技术此技术有2个用途。一是寻呼或睡眠状态的选择。因基站使用快速寻呼信道向移动台发出指令,决定移动台是处于监听寻呼信道还是处于低功耗的睡眠状态,这样移动台便不必长时间连续监听前向寻呼信道,可减少移动台激活时间和节省移动台功耗。二是配置改变。通过前向快速寻呼信道,基地台向移动台发出最近几分钟内的系统参数消息,使移动台根据此新消息作相应设置处理。
(3)前向链路发射分集技术CDMA2000-1X采用直接扩频发射分集技术,有2种方式:一种是正交发射分集方式,方法是先分离数据流再用不同的正交Walsh码对2个数据流进行扩频,并通过2个发射天线发射。另一种是空时扩展分集方式,使用空间两根分离天线发射已交织的数据,使用相同原始Walsh码信道。使用前向链路发射分集技术可以减少发射功率,抗瑞利衰落,增大系统容量。
(4)反向相干解调基站利用反向导频信道发出扩频信号捕获移动台的发射信号,再用梳状(Rake)接收机实现相干解调,与IS-95采用非相干解调相比,提高了反向链路性能,降低了移动台发射功率,提高了系统容量。
(5)连续的反向空中接口波形在反向链路中,数据采用连续导频,使信道上数据波形连续,此措施可减少外界电磁干扰,改善搜索性能,支持前向功率快速控制以及反向功率控制连续监控。
(6)Turbo码使用Turbo码具有优异的纠错性能,适于高速率对译码时延要求不高的数据传输业务,并可降低对发射功率的要求、增加系统容量,在CDMA2000-1X中Turbo码仅用于前向补充信道和反向补充信道。Turbo编码器由2个RSC编码器(卷积码的一种)、交织器和删除器组成。每个RSC编码器有两路校验位输出,2个输出经删除复用后形成Turbo码。Turbo译码器由2个软输入、软输出的译码器、交织器、去交织器构成,经对输入信号交替译码、软输出多轮译码、过零判决后得到译码输出。转(7)灵活的帧长与IS-95不同,CDMA2000-1X支持5ms,10ms,20ms,40ms,80ms和160ms多种帧长,不同类型信道分别支持不同帧长。前向基本信道、前向专用控制信道、反向基本信道、反向专用控制信道采用5ms或20ms帧,前向补充信道、反向补充信道采用20ms,40ms或80ms帧,话音信道采用20ms帧。较短帧可以减少时延,但解调性能较低;较长帧可降低对发射功率的要求。
(8)增强的媒体接入控制功能媒体接入控制子层控制多种业务接入物理层,保证多媒体业务的实现。他实现话音、分组数据和电路数据业务同时处理,提供发送、复用和Qos控制,提供接入程序。与IS-95相比,他可以满足更高宽带和更多业务的要求。CDMA1X网络的关键设备,分组数据服务节点(PDSN)、鉴权、授权、计费服务器(AAA)、本地(HA)是CDMA1X系统支持分组数据业务的关键设备,为此对他们进行专门的介绍。PDSN是连接无线网络和分组数据网的接入网关,为移动Internet/Intranet用户提供分组数据接入服务。除了使点到点协议(PPP)封装的IP包能在无线网络和IP网络间正确传输外,PDSN还与其他各种接入服务商的IP分组网络连接,从而为终端用户提供诸如互联网接入、电子商务、WAP应用等多种业务。PDSN同时还完成AAA服务器所需的合并的分组会话计费数据和无线会话计费数据搜集功能,并且支持移动IP的外部(FA)和用户设备的85认证功能,同时还能提供移动IP业务,满足终端用户丰富多彩的移动互联网业务需求。
AAA服务器完成的功能有:用户注册信息的认证,即通过验证一些预先登记的信息来提供用户身份认证;数据业务的授权,即决定是否授权移动用户访问特定的网络资源;计费信息的处理,即搜集资源使用信息,用于进行计费、审计、成本分配或趋势分析等。此外,他还须实现与PDSN,HA及其他AAA服务器的交互功能,向移动用户提供分组数据业务。AAA服务器具有下列特征:使用RADIUS协议,支持大规模的外部和漫游业务,RADIUS能向外部的RADIUS服务器提供可靠的AAA功能;通过目录支持功能和程序化的配置接口,完成配置、计费和其他业务管理部件的集成,从而降低运营成本和加快业务推出速度;通过支持集中化的IP地址分配和对跨多地理区域接入设备会话的限制,高效使用管理资源。
只有使用“移动IP”时才需要HA。作为一个独立的网络单元,HA用来完成对移动IP和移动IP用户的移动性管理功能。HA通过移动终端登记来定位移动用户,同时把分组数据转发到用户当前所登记的FA(位于PDSN内)。HA同时支持动态的IP地址分配和反向隧道。HA具有冗余备份功能,可由一个HA替代另一个HA。这样,新的HA可以用原有IP地址和转换地址维护关联表,保证移动关联表处于同步状态。此外,这种方式还能保证解决方案的可用性和可扩展性。
近一段时间以来,联通开始大举推广CDMA1X网络,并明确宣称将把重心放在无线互联的移动数据业务上。而目前,无线局域网成熟的标准可达到11Mb/s的速率,新的标准最高达54Mb/s的速率,这对移动用户具有非常大的吸引力。
早在2003年4月的博鳌亚洲论坛首届年会上,海南联通在当地建了3个CDMA1X的基站,并向前来采访年会的记者分发了近300张的无线上网卡,CDMA1X+WLAN方案的数据业务更是引起了广泛关注。按照设想,海南联通甚至要为沿海渔民以及钻井平台上的工作人员提供包括天气预报等在内的移动数据服务。
WLAN这种早已被电信网通普遍采纳的无线接入技术,一经与CDMA1X融合,就显示出其独特的魅力。一般说来,虽然WLAN可以提供高速的数据业务,但WLAN却缺少对用户进行鉴权与计费的成熟机制,而且无线局域网的覆盖范围较小,一般都在热点地区,用户使用时受到地点的限制。而CDMA1X网络经过了几十年的研究与实验,不仅有成熟鉴权与计费机制,并且具有覆盖广的特点。CDMA1X网络可以利用WLAN高速数据传输的特点以弥补自己数据传输速率受限的不足,而无线局域网不仅充分利用了CDMA1X网络完善的鉴权与计费机制,而且可结合CDMA1X网络覆盖广的特点,进行多接入切换功能。这样就可实现WLAN用户与CDMA1X用户统一的管理。
为了获得无线局域网提供的数据业务,终端必须处于无线局域网的信号覆盖范围内,即首先要连接到AP。当终端发起数据业务的呼叫时,先在APGW和PDSN之间建立RP连接,然后到PDSN进行分组网络的注册,才可进行数据业务,其具体连接过程如下:
(1)终端在WLAN网络系统中检测WLAN的信号,并连接到AP。
(2)当终端有数据业务的需求时,发起连接请求,在AP/APGW收到连接消息后,APGW向PDSN发送Au注册请求消息。若注册请求消息有效,则PDSN通过返回带接收指示的Au注册应答消息接收该连接,PDSN和APGW均产生关于A10连接的绑定记录。
(3)终端和PDSN建立PPP的连接,在建立PPP连接的过程中,如果是SimpleIP用户,PDSN会分配给终端一个IP地址(对MobileIp用户,还需进行MIP的注册)。
(4)PPP连接建立成功,终端可以通过GRE帧在A10连接上发送或接收数据。
(5)在Au注册生存期超过前,APGW发送Au注册请求消息以更新A10连接的注册。Au注册请求消息也用于向PDSN传送与计费相关的信息以及其他信息,这些信息在系统定义的触发点上传送。
(6)对于有效的注册请求,PDSN返回带接受指示和生存期值的A11注册应答消息。PDSN和APGW均更新A10连接的绑定记录。PDSN在返回注册应答消息之前保存与计费相关的信息(如果收到的话)用于进一步处理。
(7)如果用户或PDSN终止数据业务,则PDSN将终止和用户PPP连接,并拆除与APGW的RP连接。
WLAN网络,其中无线接入点(AccessPoint,AP)是无线终端接入固定电信网的连接设备,为用户提供无线接入功能,可提供话音和数据的接入服务。AP完成简单的对无线用户的管理和对无线信道的动态分配,并完成802.11与802.3协议的转换,经过AP转换后的数据包是以太网包。
接入点网关(AccessPointGateway,APGW)是将AP转换出的以太网数据包封装成IP包,并发送到PDSN的设备。一般PDSN设备放置的位置与无线网络侧设备AP、APGW离得比较远,要实现PDSN接入网关的作用经常需要将AP转换的二层数据包穿越三层网络以到达PDSN。因此,APGW功能实体就是为了完成此功能的转换设备。
参考文献
[1]TeroOjanpera.宽带CDMA:第三代移动通信技术[M].北京:人民邮电出版社,2001.
[2]杨大成.CDMA2000技术[M].北京:北京邮电大学出版社,2001.
多址干扰(MAI)是限制CDMA系统容量的一个关键因素。为了减小MAI的影响,多用户检测(Multi-User Detection,MUD)技术应运而生。其中一种重要的算法就是干扰删除多用户检测算法,该算法是根据各个用户已判决的信号再生多址干扰,并在总接收信号中将各类多址干扰相消。串行干扰删除(Successive Interference Cancellation, SIC)利用已判决的用户信号再生干扰然后相消以有利于其他未判决用户的检测。
(一) 串行干扰删除多用户检测原理
步骤:
1、 按照用户信号功率从大到小进行排列,分别编号为用户1、用户2、用户3……;
2、 用常规的解调方法(如:匹配滤波)将用户1解调出来;
3、 从总的接收信号总减去用户1重构的最强用户干扰,将用户2解调出来;
4、 用户3的信号减掉用户1、用户2的干扰,
……
按此顺序下去恢复所有的用户
【文献1】其原理结构图如下
图1:SICMUD基本原理图
通过上述过程可以看出,
1)串行干扰消除按信号功率从大到小依次相消,其性能很大程度上取决于用户接收信号的功率分布,用户接收信号的功率分布差别越大,性能提高就越明显。首先,信号最强的用户解调得到的可靠性最高;其次,从总信号中将最强用户信号先检测出来,对其他用户的收益最大,这是由CDMA系统的特性决定的。CDMA是自干扰系统,因此,把信号最强的用户检测出来的同时也减小了对其他用户的干扰。这种算法的结构导致最强用户在抗多址干扰方面没有得到任何改善,而对最弱的用户来说,它在抗多址干扰方面获得很大改善。同时这也导致SIC检测有一个显著的缺陷,就是它的性能在很大程度上取决于初始数据估计的可靠性。也就是说如果用户1和用户2功率差别不大,或者对用户1的估计值与真实值差别比较大,则会使系统误差较大。此外,每一级的检测错误将会在以下各级中累加,它会严重影响整个系统的检测性能。
2)在串行干扰删除检测器中,由于每解调一个用户便会引入一定的处理时延,当用户较多时,时延将累积到系统难以忍受的地步。因此,在SIC方案中,每个分组的用户不宜取太多,一般取4个用户即可。SIC可用于同步CDMA,也可用于异步CDMA中。
3)串行干扰删除需要对用户的功率进行排序。在无线衰落信道中,用户信号功率是变化的,此时需要重新排序。因此,必须在信号功率排序的速度和能够接收的运算复杂度之间进行权衡。
4)串行干扰删除需要估计用户信号的延时、幅度和相位。
5)串行干扰删除结构简单,运算复杂度与用户数呈线性关系。
多用户检测中的干扰删除算法充分利用了多个用户的信息,并且工程实现相对简单。存在的问题是:对干扰的估计要求相当准确,否则干扰删除的效果会大大削弱甚至使系统恶化。
参考文献:
【1】 牛凯等 编著. 移动通信原理.电子工业出版社,2006.
【2】 彭岳星. 宽带CDMA移动通信中的联合检测技术.东南大学博士论文,2004.
1.引言
在CDMA系统中,由于多个用户的随机接入,使用的扩频码集一般不完全正交,非零互相关系数会引起各用户间的多址干扰(MAI),在异步传输信道以及多径传播环境中多址干扰将更为严重。随着同时接入系统用户数的增加,多址干扰的功率也在增加,致使误码性能下降,系统容量受限。
多址干扰的抑制,可以通过选择相关性能好的扩频码,结合功率控制、纠错编码等进行。但功率控制的方法并没有从接收信号中真正去除多址干扰,只能暂时缓解这种矛盾;另一方面,由于信号在移动通信信道中呈现瑞利衰落,功率控制系统无法补偿由快衰落引起的信号功率变化,特别是当移动台速度很快时,功率控制技术会失效。而多用户检测是将造成多址干扰的所有用户信号信息均看作有用信号信息,对单个期望信号解调,来降低多址干扰和远近效应的影响,也降低了系统对功率控制控制精度的要求,可以有效地利用上行链路频谱资源,进而提高了通信系统的容量。论文格式。
但是,多用户检测也存在一些局限性,需要使用训练序列。而训练序列的不断发送会造成频谱资源的大量浪费,因而人们转去研究不需要训练序列的盲自适应检测。盲自适应多用户检测可以不需要训练序列,在仅知道期望用户地址PN码及其定时信息条件下自适应跟踪信道中用户地址PN码的变化,更有效地抵消小区内和小区间的多址干扰,很方便地应用在上行和下行链路。论文格式。
目前已有多种盲多用户检测方案被提出。在类型上,这些算法大致可分为基于子空间的,基于统计的,基于恒模的,以及直接型的,此外还有基于高阶累积量的算法、基于最大似然比的算法、基于卡尔曼滤波的算法以及基于神经网络的算法等等。由于结构相对简单,且可以自适应实现,本文关注了盲自适应多用户检测算法。
以下将简单介绍几种常用的盲自适应多户检测算法。
2.系统模型
为了方便,我们只考虑一个具有K个用户的同步CD MA系统,信道为A WGN信道,令比特持续时间为Tb,码片持续时间为Tc ,N =Tb/Tc为扩频增益,K为用户数。接收信号经过采样后可以表示成矩阵形式:
(1)
其中rT=[r1 … rN]是一个比特时间内接收到的信号向量,S=[s1 …sk] 为用户的归一化扩频码矩阵,sk是具有单位能量的第k个用户的扩频码,A=diag(A1,…,AK)为接收信号的幅度矩阵,bT =[b1 …bk]为用户的信息向量,bk取值为{-1,1},n 是E{ zzT}= 2I的高斯白噪声。假设用户1为期望用户,那么线性接收器的输出为
(2)
其中CT =[C1... CN]是延迟线的权系数。
3.几种盲自适应检测算法
3.1最小输出能量检测算法(MOE)
最小输出能量检测算法(MOE)的基本原理是在保持期望用户能量不变的情况下,使总的输出能量最小。所以,可以将求解加权向量的问题转化为如下最优化问题:
(3)
式(3)中 R=E(rrT),其最优解为:
(4)
MOE的解与MMSE的解w= R-1s1相比,只相差一个常数,对性能无影响。但是直接计算最优解需要计算矩阵逆运算,计算量大,为O(N3),一般都是通过自适应的方法求得w。采用标准随机梯度算法,具体迭代为:
(5)
其优点是计算量小,为O(N),缺点是收敛速度慢,不能保证收敛,而且在扩频码不匹配的情况下性能较差。
3.2恒模算法(CMA)
CMA算法是一种被应用于信道均衡的算法,消除信道引起的ISI。CMA的代价函数可以描述为:
(6)
在Godard算法中e定义为:
(7)
这里可以取一个正数。
我们采用标准随机梯度算法,根据以上各式可以直接得出:
(8)
其中y( n-1)是滤波器n-1时刻的输出,y(n-1) =wT(n-1)r。
恒模算法利用发送信号的权幅度统计特性调整系数,使输出信号的幅度保持恒定。恒模算法的缺点是可能收敛到干扰信号上,而不是期望检测的信号。
3.3基于MMSE准则的盲自适应多用户检测算法
基于MMSE准则的多用户检测器,应满足使系统输出的均方误差(MSE)最小:
(9)
满足该式的最优解为w0=R-1·p1,其中p1= E{b1·r}。采用最优权矢量最陡梯度法可以表示为:
(10)
假设接收信号满足以下条件:①用户发送的信息符号满足E { bi}=0, E{ bi2}=1;②不同用户之间的信号不相关,即E { bibj }=0, ij;③用户信号与噪声不相关即E { b;n}=0。实际系统中上述假设条件都较容易满足,此时有
(11)
此时可以将(10)简化为
(12)
其中,y( n-1)是滤波器n-1时刻的输出,y(n-1) =rT(n-1)w(n-1),自相关矩阵
R=r(n)rT(n)。
该算法与LMS算法类似,因而具有LMS算法收敛速度慢的缺点。基于该算法的多用户接收机的复杂度与传统单用户接收机相同,但其抗远近效应的能力则明显增强,其性能要优于MOE盲多用户检测器。
4.仿真实验
4.1对基于CMA的多用户检测算法的性能进行了仿真。
假设用户数为6,其中用户1为期望用户,且信噪比SNR=20dB用户1的信号功率为1,即A12=1,其他用户的信号其中前4个干扰用户的功率相等,且Ai2/A12=10dB, i=2, 3, 4 5;第5个干扰用户的干扰功率为A62/ A12=20dB,权矢量初始化为w( 0) =s1,图1中给出了不同常数值e下的算法的性能比较结果。论文格式。
由图(1)可知,e值不同,则CMA算法的性能也不一样,e=1时算法的性能优于e=0.1时的情况。
图1不同值时CMA算法的性能比较
4.2对本文提到的盲算法进行仿真比较
我们采用31位长的Gold码作为扩频序列,干扰用户数为4,信号功率分别为SNR=10dB, Ai2/A12=30dB,i=2, 3, 4 5,计算可得SIR=9.98dB,实验中我们用时间平均代替数学期望。
图2盲算法收敛性能比较
首先设e= A12,,步长=1e-5,图(2)给出了CMA算法、MOE算法、基于MMSE准则的盲自适应多用户检测算法的收敛过程。我们可以看到三种算法都收敛,其中CMA算法收敛速度最快,稳态性最好;基于MMSE准则的盲自适应多用户检测算法收敛速度跟稳态性能都次之;MOE算法的收敛速度最慢,稳态性能最差。
5.结论
CDMA系统具有容量大、低功率、软切换、抗干扰强等一系列优点。但是,在CDMA系统也存在多址干扰,远近效应等一系列问题,而多用户检测是CDMA系统中关键的抗干扰技术,能进一步提高系统容量,改善系统性能。盲检测由于不需要干扰用户的信息而得到广泛的关注。
本文重点研究了CMA算法、MOE算法、基于MMSE准则的盲自适应多用户检测算法,并且通过MATLAB仿真证明了CMA算法更为有效。
参考文献:
[1] XiaodongWang and H.Vincent Poor,'Blind Multiuser Detection: A Subspace Approach',IEEE Transactions onInformation Theory,Vol.44,No.2,March 1998.
[2] Gilhousen K SOn the capacity of a cellular CDMA system [J].IEEE
Transom VehicularTechnology,1991,40(2):303-312.
[3] Duel-Hallen A,Holtzman J,ZvonarZ. Multiuser detection for CDMA
system[J].IEEETrans on Personal Communications 1995, 2(2):46-58.
[4] HonigM, VerduS Blind adaptive multiuser detection [J].IEEE Trans
on InflammationTheory,1995,41(4):944-960.
[5] W .Lee,R .L .Pickholtz,Constant modulus algorithm forblind multiuser detection,IEEE 4th international symposium on Spread Spectrum Techniques and
ApplicationsProceedings,1996. Pp262-266.
[6]M .L .Honig,Orthogonally Anchored BlindInterference Suppression using the Sato Cost Criterion,Proceedings.,1995 IEEE InternationalSymposium on Information Theory .Pp31 4.
[7] 黎海涛,徐继麟.多用户检测算法及其在IMT-2000中的应用.
无线通信技术.2001年第2期.pp. 1-6.
[8] 王庆扬,张青,韦岗.CDMA移动通信系统中的多用户检测技术.
移动通信.2000年第2期.pp. 41-45.
[9] 张贤达著.现代信号处理,清华大学出版社,2003. pp 245-256
1. 设计说明
1.1 微蜂窝位置介绍
在微蜂窝系统中,分为五个主要子系统:基带数字子系统BDS、时频子系统TFS、射频子系统RFS、电源子系统和防雷子系统。
BSS在网络拓扑中的位置是在移动交换中心MSC和移动台MS之间,每个BBS是由一个BSC与多个BTS组成。BSC和MSC间对应的接口为A接口,BTS和MS间对应的接口为Um接口,BTS和BSC间对应的接口为Abis接口。
1.2 微蜂窝的组网方式
微蜂窝按用途可以分为室内和室外两种,室外微蜂窝主要应用于对容量要求不高的地区或一些盲区;室内微蜂窝一般用在一些大型楼宇,既能较好解决容量问题,也能为保证室内覆盖。
1.3 天线的模式
微蜂窝系统应用于室外覆盖的时候一般是采用120度扇化天线分集方式或全向天线方式,因为CDMA系统通常采用全频复用,存在同信道干扰,扇化小区使用方向性天线可以有效减小同信道干扰从而增加系统容量。
2. 设计依据
网络规划和设计都需要进行预测与分析,作为设计的基础,首先要对系统容量分析和系统覆盖分析。微蜂窝设备组件与基站设备组件基本相同,可以说微蜂窝系统是一个小型的基站子系统,在容量上比基站小,其他的大部分重要的功能与基站相一致。所以基站系统中的许多理论对于微蜂窝也同样适用。
2.1 容量分析
CDMA系统中所有用户都使用相同的载波,在经过编码后,每个信号相对其他信号而言都可以看成是噪声(干扰)。所以,每个信号都包含在其他用户所产生的宽带背景噪声中。只有通过控制每个信号的功率,保持呼叫完整性以及抑制干扰电平之间的平衡,才能保证信号以最小的信干比到达目的接收机。CDMA系统的容量受制于发送功率的大小以及系统自身的干扰,因此CDMA系统被称为自扰系统。在通信孤岛中,前向链路的容量受微蜂窝发射功率的限制,所以前向链路功率理论上可以是微蜂窝设备的最大功率;反向链路容量主要是受到接收功率和别的移动台的干扰的限制,当一个移动台的功率较小,不足以克服来自别的移动台的干扰时,系统的容量达到极限。
2.2 系统的覆盖要求
2.2.1 业务容量
对于CDMA系统的覆盖,容量是与干扰相互关联的,业务信号必须达到足够功率,才能在接收机端达到所需的信干比,所以,CDMA系统覆盖范围的大小取决于必须克服的干扰电平的大小。覆盖面积的范围同样也依赖于接收机和干扰源之间的距离。
2.2.2 导频覆盖
导频覆盖参数是指接收导频的最大接收Ec/Io,空载时该值需大于-10dB,导频覆盖可以通过调整天线方向,倾角,高度等方法进行优化。
在做优化时,可以用适用于1km以内的模型作微蜂窝仿真的依据,而且需要精度为5米的电子地图,在实际的环境中,许多因素都会对覆盖产生影响,这个影响会比环境对基站的影响大很多,所以在作微蜂窝覆盖预测时,必须有详细的街道及建筑物等数据,不能采用统计近似值,特别是做微蜂窝室内分布系统,必须要有室内结构图和了解每个区域的功能。
3. 干扰分析
从目前和对长远的分析看来,将有大部分的CDMA和GSM基站或微蜂窝共站,特别是对于室内环境。就有可能发生CDMA基站对GSM基站形成射频干扰的问题。这种系统间的干扰主要包括:GSM接收机过载、CDMA带内杂散和CDMA自身交调产物。
实践表明,无论是接收机过载还是三阶交调产物,都不是干扰的主要问题。我们需要重点考虑的主要是杂散发射。所以,需要增加发射端和接收端的隔离。
4. 隔离度测量
工程中,隔离的实现是影响室内微蜂窝系统顺利开通的最重要因素,但是,经验估算往往会造成很大的误差,导致系统不能按照规划参数开通。只有直接测量才是最准确的方法,虽然麻烦,但却最有效。在规划对室内分布增益要求比较高的情况下,应当尽可能实际测量一下隔离度。
5. 网规流程
5.1 规划资料收集与分析
网络设计前的调查分析工作的重要性不容忽视,必须进行尽可能详细的调查分析工作,否则无法保证设计的网络达到运营商的要求,或当地通信环境及用户发展的需求。设计人员必须充分了解运营商需求,了解当地通信发展情况,掌握地形、地貌和经济发展等因素。
在微蜂窝的设计规划中,地形地物对设计起着非常重要的影响。在市区中微蜂窝站点的选址宜选低于该覆盖区建筑物平均高度而且四周建筑物屏蔽较好的楼房。对于重点覆盖区要特别了解;室内安装微蜂窝室内分布系统需要对室内环境进行勘察,了解室内环境的建筑结构和每部分的功能。然后通过无线覆盖规划和分析,定出微蜂窝放置的位置,可以选有几个符合要求的位置。
5.2 微蜂窝数据收集
1、微蜂窝经纬度、高度、基站或微蜂窝的距离、天线朝向、高度信息、PN偏置。
2、微蜂窝服务区的频谱扫描:确定使用的频带。
3、在规划前必须对该服务区内进行测试。
5.3 覆盖仿真
结合上面所收集与分析规划的数据,就可以进行仿真工作了。仿真主要输出:前向业务覆盖图、反向业务覆盖图、切换状态图、导频污染图。
通过仿真,可以在规划的初期就使整个网络规划具有科学性和对下一步的工作有指导作用。达到均衡话务量,提高容量,减少掉化率,提高覆盖率的目的。在仿真中及时发现初步规划存在的问题,通过调整天线的高度,增益,方向,放置,俯仰角;调整微蜂窝系统的功率控制参数和切换参数来进行优化,然后再进行仿真,直到达到最佳的效果。(作者单位:南京信息职业技术学院通信学院)
参考文献
WCDMA和CDMA2000各有优势和缺点。WCDMA技术较成熟,能同广泛使用的GSM系统兼容;相比第二代通信系统能提供更加灵活的服务;而且WCDMA能灵活处理不同速率的业务。其缺点是只能共用现有GSM系统的核心网部分,无线侧设备可以共用的很少。
CDMA2000的优势是可以和窄带CDMA的基站设备很好地兼容,能够从窄带CDMA系统平滑升级,只需增加新的信道单元,升级成本较低,核心网和大部分的无线设备都可用。容量也比IS-95A增加了两倍,手机待机时间也增加了两倍。缺点是CDMA2000系统无法和GSM系统兼容。
1.WCDMA与CDMA2000的物理层技术比较
WCDMA和CDMA2000物理层技术细节上有相似也有差异,由于考虑出发点不同,造成了不同的技术特点。WCDMA技术规范充分考虑了与第二代GSM移动通信系统的互操作性和对GSM核心网的兼容性;CDMA2000的开发策略是对以IS-95标准为蓝本的窄带CDMA的平滑升级。
(1)这两个标准的物理层技术相似点可以归纳为以下几点:
①内环均采用快速功率控制。CDMA系统是干扰受限系统,因此为了提高系统容量,应尽可能的降低系统的干扰。功率控制技术可以减少一系列的干扰,这意味着同一小区内可容纳更多的用户数,即小区的容量增加。因此CDMA系统中引入功率控制技术是非常必要的。
②系统都支持开环发射分集,信道编码采用卷积码和Turbo码。
③系统均采用软切换技术。所谓软切换是指移动台需要切换时,先与新的基站连通再与原基站切断联系,而不是先切断与原基站的联系再与新的基站连通。软切换只能在同一频率的信道间进行,因此模拟系统、TDMA系统不具有这种功能。软切换可以有效地提高切换的可靠性,大大减少切换造成的掉话。
④WCDMA工作频段:1900~2025MHz频段分配给FDD上行链路使用,2110~2170MHz频段分配给FDD下行链路使用,2110~2170MHz频段分配给TDD双工方式使用。其中WCDMA和CDMA2000利用1900~2025MHz频段(上行),2110~2170MHz(下行)。
(2)两个标准的物理层技术差异可以归纳为以下几点:
①扩频码片速率和射频带宽。WCDMA根据ITU关于5MHz信道基本带宽的划分规则,将基本码片速率定为3.84Mcps。WCDMA使用带宽和码片速率是CDMA2000-1X的3倍以上,能提供更大的多路径分集、更高的中继增益和更小的信号开销。CDMA2000分两个方案,即CDMA2000-1X和CDMA2000-3X两个阶段。CDMA2000系统可支持话音、分组数据等业务,并且可实现QoS的协商。室内最高数据速率达2Mbit/s,步行环境384kb/s,车载环境144kb/s。CDMA2000在前向和反向CDMA信道在单载波上采用码片速率1.2288Mcps的直接序列扩频,射频带宽为1.25MHz。
②支持不同的核心网标准。WCDMA要求实现与GSM网络的兼容,所以它把GSMMAP协议作为上层核心网络议;CDMA2000要求兼容窄带CDMA,因此它把ANSI-41作为自己的核心网络协议。
③WCDMA进行功率控制的速度是CDMA2000的2倍,能保证更好的信号质量,并支持多用户。
④为了使支持基于GSM的GPRS业务而部署的所有业务也支持WCDMA业务,为了完善新的数据话音网络,CDMA2000-1x需要添加额外的网元或进行功能升级。
2.WCDMA与CDMA2000网络接口的比较
3G标准的基本目标是能在车载、步行和静止各种不同环境下为多个用户分别提供最高为144kbit/s、384kbit/s和2048kbit/s的无线接入数据速率。为多个用户提供可变的无线接入数率是3G标准的核心要求。CDMA2000可分别用于900MHZ和2GHZ两个频段CDMA2000的码片速率与IS-95相同,两系统可以兼容。WCDMA的码片速率为3.84Mcps,显然WCDMA系统中低速率用户或语音用户的移动台成本会大幅上升,在CDMA2000系统中则不会如此。
WCDMA的接口标准规范、制定严谨、组织严密,而CDMA2000的接口标准严谨性有待加强。IS-95厂家设备难以互通,给运营商设备选型带来了较大问题;3G许诺的高速无线数据服务必须可以和话音一样实现无缝的漫游,这是至关重要的。多媒体信息要漫游、视频通话也要漫游,没有这些基本要素,3G就不能称其为3G。漫游涉及到的不仅仅是技术问题,更重要的是商业利益。在这方面WCDMA显然更胜一筹,它支持全球漫游,全球移动用户均有唯一标识,而CDMA2000尚不能很好做到这一点。
3.WCDMA和CDMA2000网络演进的比较
(1)WCDMA的网络演进技术
现有的GSM系统利用单一时隙可提供9.6kbit/s的数据服务。如果复用多个时隙就能升级为HSCSD(高速电路交换数据)方式;此后出现了GPRS(通用分组无线业务),首次在核心网中引入了分组交换的方式,可提供144kbit/s的数据速率。接着继续升级采用8PSK调制,这样传输速率可以上升至384kbit/s这就是EDGE;WCDMA的数据传输速率将高达2M/s。
(2)CDMA2000网络演进技术
主要的CDMA2000运营商将来自现在的窄带CDMA运营商。窄带CDMA向CDMA2000过渡的方式为IS-95AIS95BIS-95CIMT2000。IS-95A的数据传输速率为14.4kbit/s,为了提供更高的速率,1999年部分厂商开始采用IS-95B标准,理论上支持115.2kbit/s的速率。IS-95C进一步使容量加倍,最后升级为CDMA2000。
窄带CDMA系统向CDMA2000系统的演进分为空中接口、网络接口及核心网络演进等方面。
①目前窄带CDMA系统的空中接口是基于IS295A,其支持的数据速率为14.4kbit/s,由IS295A升级到IS295B,可支持64kbit/s。
②窄带CDMA网络接口的演进主要指窄带CDMA系统A接口的升级和演进。对于窄带CDMA系统,以前其A接口不是规范接口(即不是开放接口),窄带CDMA和GSM的A接口的规范相比较,GSM是先有A接口标准,然后厂家依据标准开发;窄带CDMA是厂家各自开发,然后广泛宣传,最后凭借自身影响修改标准。
③窄带CDMA的核心网在美国经过多年发展后,从IS241A到IS241B到IS241C,我国CDMA试验网和红皮书以IS241C为基础,IS241D规范在1999年底,目前IS241E规范还未正式。
二、WCDMA和CDMA2000在我国的前景
对3G标准的选择不仅要看其技术原理及成熟程度,还要结合本国国情、市场运作状况等因素进行考虑。按目前的进展来看,两种标准最后不能融合成一种,但可以共存。
在我国,GSMMAP网络已形成巨大的规模,欧洲标准的WCDMA在网络上充分考虑到与第二代的GSM的兼容性,在技术上也考虑了与GSM的双模切换兼容,向WCDMA体制的第三代系统演进,从一开始就解决了全网覆盖的问题。而且CDMA2000采用GPS系统,对GPS依赖较大;在小区站点同步方面,CDMA2000基站通过GPS实现同步,将造成室内和城市小区部署的困难,而WCDMA设计可以使用异步基站,运营者独立性强;对于电信设备制造行业,我国在GSM蜂窝移动通信方面发展成熟,而窄带CDMA系统尚未形成规模和产业。
WCDMA采用全新的CDMA多址技术,并且使用新的频段及话音编码技术等。因此GSM网络虽然可采用一些临时的替代方案提供中等速率的数据服务,却不能提供一种相对平滑的路径以过渡到WCDMA。而CDMA2000的设计是以IS-95系统的丰富经验为依据的,因此窄带CDMA向CDMA2000的演进无论从无线还是网络部分都更为平滑。在基站方面只需更新信道板,并将系统软件升级,即可将IS-95基站升级为CDMA2000基站。
由此可见,WCDMA和CDMA2000还将长时间在我国共存,鹿死谁手?尚未分晓。
参考文献:
[1]TeroOjanpera,RamjeePrasad.朱旭红译.宽带CDMA:第三代移动通信技术.北京:人民邮电出版社.
[2]杨大成.CDMA2000-1X移动通信系统.北京:机械工业出版社,2003.
一、引言
上世纪70年代末,诞生了被称为第一代蜂窝移动通信系统的双工FDMA模拟调频系统,但由于模拟系统固有的先天缺陷,在90年代初被以TDMA为基础的第二代数字蜂窝移动通信系统所取代,相对FDMA系统有诸多优点,如频谱利用率高,系统容量大、保密性好等。与此同时产生了以CDMA为基础的数字蜂窝通信系统,相比TDMA系统具有低发射功率、信道容量大、软容量、软切换、采用多种分集技术等优点。
随着网络的广泛普及,图像、话音和数据相结合的多媒体和高速率数据业务的业务量大大增加,人们对通信业务多样化的要求也与日俱增,而一代二代系统远远不能满足用户的这些需求,所以诞生了第三代移动通信技术,它能够处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。国际上承认的3G标准有三个:CDMA2000、WCDMA以及TD-SCDMA,这里主要从各个方面做WCDMA和CDMA2000的对比研究。
二、WCDMA和CDMA2000的综合比较
由于WCDMA和CDMA2000这两种技术都是将CDMA技术用于蜂窝系统,许多的思想都是源于CDMA系统,因此WCDMA和CDMA2000有许多相试之处:从双工方式上看,WCDMA和CDMA2000属于FDD模式。WCDMA和CDMA2000都满足IMT-2000提出的技术要求,支持高速多媒体业务、分组数据和IP接入等。但它们在技术实现、规范标准化、网络演进等方面都存在较大差异。
WCDMA和CDMA2000各有优势和缺点。WCDMA技术较成熟,能同广泛使用的GSM系统兼容;相比第二代通信系统能提供更加灵活的服务;而且WCDMA能灵活处理不同速率的业务。其缺点是只能共用现有GSM系统的核心网部分,无线侧设备可以共用的很少。
CDMA2000的优势是可以和窄带CDMA的基站设备很好地兼容,能够从窄带CDMA系统平滑升级,只需增加新的信道单元,升级成本较低,核心网和大部分的无线设备都可用。容量也比IS-95A增加了两倍,手机待机时间也增加了两倍。缺点是CDMA2000系统无法和GSM系统兼容。
1.WCDMA与CDMA2000的物理层技术比较
WCDMA和CDMA2000物理层技术细节上有相似也有差异,由于考虑出发点不同,造成了不同的技术特点。WCDMA技术规范充分考虑了与第二代GSM移动通信系统的互操作性和对GSM核心网的兼容性;CDMA2000的开发策略是对以IS-95标准为蓝本的窄带CDMA的平滑升级。
(1)这两个标准的物理层技术相似点可以归纳为以下几点:
①内环均采用快速功率控制。CDMA系统是干扰受限系统,因此为了提高系统容量,应尽可能的降低系统的干扰。功率控制技术可以减少一系列的干扰,这意味着同一小区内可容纳更多的用户数,即小区的容量增加。因此CDMA系统中引入功率控制技术是非常必要的。
②系统都支持开环发射分集,信道编码采用卷积码和Turbo码。
③系统均采用软切换技术。所谓软切换是指移动台需要切换时,先与新的基站连通再与原基站切断联系,而不是先切断与原基站的联系再与新的基站连通。软切换只能在同一频率的信道间进行,因此模拟系统、TDMA系统不具有这种功能。软切换可以有效地提高切换的可靠性,大大减少切换造成的掉话。
④WCDMA工作频段:1900~2025MHz频段分配给FDD上行链路使用,2110~2170MHz频段分配给FDD下行链路使用,2110~2170MHz频段分配给TDD双工方式使用。其中WCDMA和CDMA2000利用1900~2025MHz频段(上行),2110~2170MHz(下行)。
(2)两个标准的物理层技术差异可以归纳为以下几点:
①扩频码片速率和射频带宽。WCDMA根据ITU关于5MHz信道基本带宽的划分规则,将基本码片速率定为3.84Mcps。WCDMA使用带宽和码片速率是CDMA2000-1X的3倍以上,能提供更大的多路径分集、更高的中继增益和更小的信号开销。CDMA2000分两个方案,即CDMA2000-1X和CDMA2000-3X两个阶段。CDMA2000系统可支持话音、分组数据等业务,并且可实现QoS的协商。室内最高数据速率达2Mbit/s,步行环境384kb/s,车载环境144kb/s。CDMA2000在前向和反向CDMA信道在单载波上采用码片速率1.2288Mcps的直接序列扩频,射频带宽为1.25MHz。
②支持不同的核心网标准。WCDMA要求实现与GSM网络的兼容,所以它把GSMMAP协议作为上层核心网络议;CDMA2000要求兼容窄带CDMA,因此它把ANSI-41作为自己的核心网络协议。
③WCDMA进行功率控制的速度是CDMA2000的2倍,能保证更好的信号质量,并支持多用户。
④为了使支持基于GSM的GPRS业务而部署的所有业务也支持WCDMA业务,为了完善新的数据话音网络,CDMA2000-1x需要添加额外的网元或进行功能升级。
2.WCDMA与CDMA2000网络接口的比较
3G标准的基本目标是能在车载、步行和静止各种不同环境下为多个用户分别提供最高为144kbit/s、384kbit/s和2048kbit/s的无线接入数据速率。为多个用户提供可变的无线接入数率是3G标准的核心要求。CDMA2000可分别用于900MHZ和2GHZ两个频段CDMA2000的码片速率与IS-95相同,两系统可以兼容。WCDMA的码片速率为3.84Mcps,显然WCDMA系统中低速率用户或语音用户的移动台成本会大幅上升,在CDMA2000系统中则不会如此。
WCDMA的接口标准规范、制定严谨、组织严密,而CDMA2000的接口标准严谨性有待加强。IS-95厂家设备难以互通,给运营商设备选型带来了较大问题;3G许诺的高速无线数据服务必须可以和话音一样实现无缝的漫游,这是至关重要的。多媒体信息要漫游、视频通话也要漫游,没有这些基本要素,3G就不能称其为3G。漫游涉及到的不仅仅是技术问题,更重要的是商业利益。在这方面WCDMA显然更胜一筹,它支持全球漫游,全球移动用户均有唯一标识,而CDMA2000尚不能很好做到这一点。
3.WCDMA和CDMA2000网络演进的比较
(1)WCDMA的网络演进技术
现有的GSM系统利用单一时隙可提供9.6kbit/s的数据服务。如果复用多个时隙就能升级为HSCSD(高速电路交换数据)方式;此后出现了GPRS(通用分组无线业务),首次在核心网中引入了分组交换的方式,可提供144kbit/s的数据速率。接着继续升级采用8PSK调制,这样传输速率可以上升至384kbit/s这就是EDGE;WCDMA的数据传输速率将高达2M/s。
(2)CDMA2000网络演进技术
主要的CDMA2000运营商将来自现在的窄带CDMA运营商。窄带CDMA向CDMA2000过渡的方式为IS-95AIS95BIS-95CIMT2000。IS-95A的数据传输速率为14.4kbit/s,为了提供更高的速率,1999年部分厂商开始采用IS-95B标准,理论上支持115.2kbit/s的速率。IS-95C进一步使容量加倍,最后升级为CDMA2000。
窄带CDMA系统向CDMA2000系统的演进分为空中接口、网络接口及核心网络演进等方面。
①目前窄带CDMA系统的空中接口是基于IS295A,其支持的数据速率为14.4kbit/s,由IS295A升级到IS295B,可支持64kbit/s。
②窄带CDMA网络接口的演进主要指窄带CDMA系统A接口的升级和演进。对于窄带CDMA系统,以前其A接口不是规范接口(即不是开放接口),窄带CDMA和GSM的A接口的规范相比较,GSM是先有A接口标准,然后厂家依据标准开发;窄带CDMA是厂家各自开发,然后广泛宣传,最后凭借自身影响修改标准。
③窄带CDMA的核心网在美国经过多年发展后,从IS241A到IS241B到IS241C,我国CDMA试验网和红皮书以IS241C为基础,IS241D规范在1999年底,目前IS241E规范还未正式。
三、WCDMA和CDMA2000在我国的前景
对3G标准的选择不仅要看其技术原理及成熟程度,还要结合本国国情、市场运作状况等因素进行考虑。按目前的进展来看,两种标准最后不能融合成一种,但可以共存。
在我国,GSMMAP网络已形成巨大的规模,欧洲标准的WCDMA在网络上充分考虑到与第二代的GSM的兼容性,在技术上也考虑了与GSM的双模切换兼容,向WCDMA体制的第三代系统演进,从一开始就解决了全网覆盖的问题。而且CDMA2000采用GPS系统,对GPS依赖较大;在小区站点同步方面,CDMA2000基站通过GPS实现同步,将造成室内和城市小区部署的困难,而WCDMA设计可以使用异步基站,运营者独立性强;对于电信设备制造行业,我国在GSM蜂窝移动通信方面发展成熟,而窄带CDMA系统尚未形成规模和产业。
WCDMA采用全新的CDMA多址技术,并且使用新的频段及话音编码技术等。因此GSM网络虽然可采用一些临时的替代方案提供中等速率的数据服务,却不能提供一种相对平滑的路径以过渡到WCDMA。而CDMA2000的设计是以IS-95系统的丰富经验为依据的,因此窄带CDMA向CDMA2000的演进无论从无线还是网络部分都更为平滑。在基站方面只需更新信道板,并将系统软件升级,即可将IS-95基站升级为CDMA2000基站。
由此可见,WCDMA和CDMA2000还将长时间在我国共存,鹿死谁手?尚未分晓。
参考文献:
RTK(Real Time Kinematics)是一种基于载波相位观测值的实时动态定位技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度。论文格式,CORS。自20世纪90年代初,RTK技术一经问世,就以其高精度、高效率的优点,极大地拓展了GPS的使用空间,被广泛应用于控制测量、地形地籍测量、工程测量等领域。论文格式,CORS。
在RTK作业模式下,基准站通过无线电数据链将其观测值和测站坐标信息一起传送给流动站。流动站不仅接收来自基准站的载波相位信息,还要接收来自于GPS卫星的载波相位信息,并组成相位差分观测值进行实时定位。目前生产中常用的RTK作业模式由电台模式、GPRS模式和CORS模式,下面就这三种常用作业模式的原理和优缺点加以浅析。
1、常规(电台)模式1.1、系统组成及原理常规RTK系统主要由一个参考站(基准站)、若干个流动站及数据通讯系统(电台)组成。在常规RTK作业模式下,一个临时建立的基准站对所有可见的GPS卫星进行连续观测,并通过数据通讯系统将其观测值和测站坐标信息直接传送给流动站,流动站采集GPS观测数据的同时,通过数据通讯系统接收来自基准站的信息,并组成差分观测值进行实时处理,得到厘米级定位结果。
1.2、工作流程1)、基准站获得用户输入的测站坐标信息,采集GPS观测数据,并将二者通过数据链直接向流动站发送。
2)、流动站采集GPS观测数据,同时接收基准站发送的信息。
3)、流动站组成差分观测值进行实时处理,得到厘米级定位结果。
1.3、作业方式常规RTK作业时利用2台以上GPS接收机同时接收卫星信号,其中一台安置在视野开阔、已知坐标且点位精度较高的控制点上作为基准站,另外的GPS接收机用来测定未知点的坐标(流动站)。基准站将GPS观测值和设站点的坐标信息通过数据通讯链传送给流动站,流动站根据所接收的信息和本身所采集的观测数据进行实时数据处理得到未知点的坐标。
1.4、作业优缺点相比传统测量技术,常规RTK技术存在以下优点:
1)、观测时间短,有效地提高了工作效率,缩短野外作业时间,大大减少了劳动强度。论文格式,CORS。
2)、定位精度高。只要满足RTK的基本工作条件,在一定的作业半径范围内(一般为8km),RTK的平面精度和高程精度都能达到厘米级,这是普通测量方法很难达到的精度。
3)、全天候作业。RTK测量不要求基准站、移动站间光学通视,只要求满足“电磁波”通视,因此和传统测量相比,RTK测量受通视条件、能见度、气候、季节等因素的影响和限制小,在传统测量看来难于开展作业的地区,只要能满足RTK的基本工作条件,它也能进行快速高精度定位,有利于按时、高效地完成外业测量工作。
4)、RTK测量自动化、集成化程度高,数据处理能力强。RTK可进行多种内、外业测量工作。移动站利用自带软件,无需人工干预便可自动实现多种测绘功能,减少了辅助测量工作和人为误差,保证了作业精度。但常规RTK技术本身也存在一定的局限性,使得其在应用中受到限制,主要表现为:
1)、用户需要架设本地的参考站;
2)、误差随距离增长,可靠性和可行性随距离加大而降低;
3)、误差增长使流动站和参考站距离受到限制。
4)、常规RTK数据通讯通常采用无线电技术(常规电台),流动站和参考站距离受到基准站电台天线高低及障碍物影响限制较大。
2、GPRS模式2.1、工作原理及方式GPRS模式的系统组成、原理及工作方式和常规RTK类似,只是数据通讯方式的不同,这种作业方式使用GSM、GPRS/CDMA模块或带串口线的手机(具备蓝牙功能的GPS主机可直接使用蓝牙手机),参考站信号以GSM或GPRS/CDMA的方式通过移动通讯的发射基站实时播发,流动站以相应方式接收差分数据。
作业时通过GPS生产厂商或服务商提供用户的服务器IP地址及端口号登陆,基站启动后数据会自动通过服务器转发,移动站与其绑定即可获得基站数据。论文格式,CORS。
2.2、作业优缺点相比常规电台通讯,由于减少了常规电台及相关设备,故仪器配置简单,携带方便,减轻了野外作业的劳动强度,且作业距离有较大改观,特别是在城区,建筑物严重影响常规电台作业距离,而GSM或GPRS/CDMA是借助于移动通讯的发射基站,能保证有手机信号的地方均能接收到来自基站的差分信息,测量范围更加广泛。此外,基准站位置的选择更加不受限制,无需架设在高点。但采用GSM或GPRS/CDMA通讯的稳定性较差,容易受一些外部电磁信号干扰,作业范围取决于移动通讯的网络覆盖度。一般来说,因地理区域不同稳定性差异很大,经济发达地区信号稳定较好,行政区域交界处移动通讯网际切换频繁而导致稳定性较差。对于需持续采集点位、稳定性要求较高的作业如水下地形测量定位,受影响较大。采用GSM或GPRS/CDMA通讯还会产生费用,尤其是以GSM通讯,按照移动通话的标准收费,跨区域作业时还存在漫游费。
3、CORS(网络RTK)模式3.1、CORS系统组成及原理为了解决常规RTK技术存在的缺陷,实现大区域范围内厘米级、精度均匀的实时动态定位,网络RTK技术应运而生。网络RTK也称多基准站RTK,是近年来在常规RTK、计算机技术、通讯网络技术的基础上发展起来的一种实时动态定位新技术。论文格式,CORS。它由基准站网、数据处理中心、数据通讯链路和用户部分组成。论文格式,CORS。
3.2、作业方式采用CORS模式的作业方式非常简单,只需一台有GPRS模块(或具有WAP上网功能的蓝牙手机)的流动站主机、一个控制手簿、一根对中杆,登陆当地的CORS系统就可以作业了。为此要做以下准备:
1)、从当地CORS系统管理部门获取IP地址、端口号、源列表、用户名和密码等信息;
2)、办理一张手机卡,并开通GPRS net 流量,可以采用包月的方式,一般两小时的GPRS 流量为一兆,可以根据每月的作业时间计算总流量,包月套餐。
3.3、CORS系统优缺点CORS系统彻底改变了传统RTK测量作业方式,其主要优势体现在:
1)、改进了初始化时间、扩大了有效工作的范围;
2)、采用连续基站,用户随时可以观测,使用方便,提高了工作效率;
3)、采用了多个参考站的联合数据,可以有效地消除系统误差和周跳,大大提高了可靠性;
4)、用户不需架设参考站,真正实现单机作业,提高了仪器使用效率;
5)、使用固定可靠的数据链通讯方式,减少了噪声干扰;
6)、提供远程INTERNET服务,实现了数据的共享;
7)、扩大了GPS在动态领域的应用范围,更有利于车辆、飞机和船舶的精密导航。
CORS模式除了具有GPRS模式的缺点外,还有以下不利之处:
1)、由于目前各种方法都不是十分成熟,技术上还没有统一的国际标准或行业标准;
2)、系统的首期投入较大,需要较多的启动资金,而且日常维护费用大。
移动通信网络是一个动态的多维系统,尤其是CDMA1X&EVDO网络,它会随着用户数量、运行环境变化、技术的更新等而不断发生变化。这些变化都会影响到网络指标的变化和网络性能,因此必须持之以恒地对网络进行监测和优化。同时,为了充分利用现有的网络设备资源,最大限度地提高网络的平均服务质量、提高效益,也需要不断地进行网络优化工作。因此,网络优化工作是非常重要的。
1 CDMA 1X&EVDO技术
1.1 CDMA技术优势
CDMA系统采用码分多址的技术,利用扩频通信的原理,在系统中使用多种先进的信号处理技术,使CDMA系统具有许多优点。
(1)大容量
根据理论计算及现场试验表明,CDMA系统的信道容量是模拟系统的10--20倍,是TDMA系统的4倍。CDMA系统的高容量很大一部分因素是因为它的频率复用系数远远超过其它制式的蜂窝系统,同时CDMA使用了话音激活和扇区化,快速功率控制等技术。
(2)软容量
在FDMA、TDMA系统中,当小区服务的用户数达到最大信道数,已满载的系统再无法增添一个信号,此时若有新的呼叫,该用户只能听到忙音。而在CDMA系统中,用户数目和服务质量之间可以相互折中,灵活确定。例如系统运营者可以在话务量高峰期将某些参数进行调整,例如可以将目标误帧率稍稍提高,从而增加可用信道数。同时,在相邻小区的负荷较轻时,本小区受到的干扰较小,容量就可以适当增加。
(3)软切换
所谓软切换是指移动台需要切换时,先与新的基站连通再与原基站切断联系,而不是先切断与原基站的联系再与新的基站连通。软切换只能在同一频率的信道间进行,因此,模拟系统、TDMA系统不具有这种功能。软切换可以有效地提高切换的可靠性,大大减少切换造成的掉话,因为据统计,模拟系统、TDMA系统无线信道上的掉话90%发生在切换中。
1.2 CDMA EVDO网络架构
无线接入网(Radio Access Network,RAN)主要包含接入网(Access Network,AN)、分组控制功能(Packet Ccontrol Function,PCF)和接入网鉴权/认证/计费服务器(AN-Authentication, Authorization and ccounting,AN-AAA)等功能实体。AN 完成基站收发及其控制器的功能。其中,PCF 完成A8 和A10 连接的建立以及分组数据业务节点(Packet Data Service Node,PDSN)的选择功能。AN-AAA 存储接入鉴权的算法和参数,执行接入鉴权功能。
2 CDMA 1X&EVDO优化研究
2.1 无线网络优化目的
CDMA系统是一个自干扰系统,某个用户相对于其他用户来说就是干扰,每个小区也会对其它小区构成干扰,尤其是同载频的邻区。同时,小区具有呼吸功能,网络负载越高,干扰越大,覆盖范围越小;反之网络负载越小,干扰越小,覆盖范围越广,网络的覆盖范围与容量都是随时变化的,每个扇区的容量是一种软容量。因此基于CDMA技术的网规网优相比基于GSM技术的网规网优要复杂的多,不是增加几个基站就可以提高系统性能。因此,功率控制在CDMA网络中显得尤为重要,也是CDMA的核心,通过功控,有效地解决“远近效应”。因此从另外一个概念来讲,CDMA系统本身就是一个功率控制的系统,链路性能和系统容量取决于干扰功率的控制程度。但是由于各种因素相互制约,往往牵一发而动全身。比如软切换,它虽然能够降低用户切换过程中的掉话率,但是当某个用户在进行软切换时,同时可以与激活集中的多个基站建立业务信道,这样也就占用了多个基站的资源,即浪费了网络容量。
无线网络优化分为两个阶段,一是工程优化,即建网时的优化,主要是网络建设初期以及扩容后的初期的优化,它注重全网的整体性能;二是运维优化,是在网络运行的过程中的优化,即日常优化,通过整合OMC、现场测试、投诉等各方面的信息,综合分析定位影响网络质量的各种问题和原因,着重于局部地区的故障排除和单站性能的提高。
2.2 系统相关参数设定
(1)系统参数
系统参数是指用来分析的系统的参数,例如码片速率、寻呼速率、载频邻区和邻接小区、ROT(反向符合控制门限)、DRCSupervision Timer(DRC监视定时器)、DRCChannelGain(DRC信道增益)等。
邻区列表参数:20个
(2)移动台参数
移动台参数是指基于主要手机生产厂家设置的一些参数,如噪声系数、前向链路Eb/No等。移动台参数有:
最大发射功率:23dBrn(0.2 Watt)
移动台设备噪音指标:8dB
人体损耗:3dB
Eb/No:7dB
3 CDMA EVDO优化策略设计
3.1 基础优化
网络基础优化主要是评估现网存在的网络基础性问题,主要包括无线网络覆盖、信号空口质量、邻区配置、RSSI异常、设备状态健康检查、全网配置参数核查,定位原因并提出解决方案,实施方案并验证。EVDO网络存在用户接入失败、掉线、速率慢、扇区吞吐效率低等性能差的问题,在做好站点优化基础工作上从端到端进行深入分析,制定解决方案,实施方案并验证性能提升效果。同时协助处理因工程遗留问题引起或VIP用户投诉的EVDO性能差问题。
3.2 无线环境优化
无线环境包含前向链路和反向链路,优化重点为前向覆盖、覆盖区域应用层下载速率。反向链路是建立在前向链路的基础之上,反向上传到那个基站、上传速率等都与基站距离(干扰和传输除外)有关。所以无线的优化重点为前向链路和覆盖的优化。现网中主要反映现网的问题有导频污染、弱覆盖、越区覆盖、路段C/I差等,根据实际的情况制定相应的网络优化方案。
4 结语
CDMA EVDO网络优化工作是一种持续性的工作,要不断地对正在运行的网络进行优化。在网络运行初期,由于用户数较少,需要通过路测进行优化,这种过程一般需要重复多次。随着用户数的增多,可以通过网络维护中心记录的数据对网络进行优化。
参考文献:
随着网络的发展,城市的室内覆盖已不存在问题,覆盖的重点也逐渐向山区、高速公路等高难度覆盖区域转移。直放站以其灵活简易的特点成为解决简单问题的重要方式。本文通过对无线网络覆盖问题的分析,讨论了直放站在移动通信中的重要作用及应用。
1直放站的定义
直放站(又叫中继器)属于同频放大设备,是指在无线通信传输过程中起到信号增强的一种无线电发射中转设备。无论是GSM直放站、CDMA直放站还是3G直放站,其原理是基本相同的。直放站的基本功能就是一个射频信号功率增强器。
2直放站的分类
2.1从传输信号分有GSM直放站、CDMA直放站和3G直放站
2.1.1GSM移动通信直放站是为消除GSM900MHz/1800MHz频段移动通信网的小范围信号盲区或弱信号区而设计生产的通信设备。被广泛应用于地下商场、停车场、地铁、隧道、高层建筑的办公室等基站信号所无法到达的信号盲区,同时对于消除城市因受高楼大厦影响而产生的室外局部信号阴影区或边远郊区个别村镇的弱信号区也具有相当好的覆盖效果。
2.1.2CDMA直放站可以扩大CDMA基站的覆盖范围,大大节省CDMA网络建设的投资(一个CDMA直放站的投资约为一个CDMA基站的十分之一)。特别是在高层楼宇、地下(如地铁)、以及盲区等特殊环境下,CDMA直放站将充分发挥它的优势。由于各种地理环境和用户的要求不同,所需的CDMA直放站的类型也不同。
2.1.3CDMA直放站是为了消除移动通信网覆盖盲区或弱信号,延伸基站信号覆盖的一种中继设备,它能解决消除城市因受高楼大厦影响而产生的室外局部信号阴影区,地下停车场、地下隧道、商场、电梯等基地无法到达信号的盲区,提高了覆盖范围增强了信号覆盖延伸。
2.1.4与传统的2G无线通信系统相比,由于3G无线通信系统主要使用的频段在2000MHz附近,根据电波传播衰减规律,显然3G的无线信号比2G的无线信号衰减得更快。这样,在同等功率情况下的3G基站和直放站的覆盖范围都比2G的要小。所以在达到与2G网络同等的覆盖水平时,需要更多的直放站来完成网络覆盖。由此我们可以预期,在即将到来的3G无线网络建设中,直放站也必然仍将扮演着重要的角色。
2.2从传输带宽来分有宽带直放站和选频(选信道)直放站
2.2.1GSM移动通信宽带直放站的主要特点:
高的系统增益且增益连续可调;采用先进的数字滤波技术,带外抑制特别好;全双工工作,很高的上/下行隔离度;两端口标准设计,安装极为方便;内置电源且设计有电源保护系统和免维护备用电源接口;采用ALC技术,输出电平连续可调,稳定可靠;可选智能监控,故障自动报警及远程维护;高线性功放,性能稳定等。
2.2.2GSM移动通信频带选择直放站的主要特点:
高的系统增益且增益连续可调;全双工工作,很高的上/下行隔离度;中心频率和带宽任意可调,满足不同客户要求,带外抑制好,不同营运商之间的信号不会产生相互干扰;内置电源且设计有电源保护系统和免维护备用电源接口;两端口标准设计,安装极为方便;采用PLL控制技术的选频模块,性能稳定可靠,噪声系数低等。
2.3从传输方式来分有无线直放站、光纤直放站和移频传输直放站
2.3.1无线传输直放站
下行从基站接收信号,经放大后向用户方向覆盖;上行从用户接收信号,经放大后发送给基站。为了限带,加有带通滤波器
2.3.2光纤传输直放站
将收到的信号,经光电变换变成光信号,传输后又经电光变换恢复电信号再发出。
2.3.3移频传输直放站
将收到的频率上变频为微波,传输后再下变频为原先收到的频率,放大后发送出去。
3直放站的应用
直放站可以扩大服务范围,消除覆盖盲区,如高山,建筑物,树林等阻挡物而形成的信号盲区;在郊区能够增强场强,扩大郊区站的覆盖;沿高速公路架设,增强覆盖效率;还可以解决室内覆盖,如大型建筑物内信号衰减信号盲区、地下商城、遂道等衰减信号盲区;另外,将空闲基站的信号引到繁忙基站的覆盖区内,实现疏忙等。
3.1公路、郊区重点农村的覆盖
随着社会的发展,高速公路逐渐增多,公路的覆盖成为一个很大难题,为了有效节约资源,直放站在这里得到了广泛应用。,某条高速公路如果全部利用宏基站覆盖,共计需要15个宏基站,采用宏基站带直放站方式,只需要8个宏基站,在很大程度上节约了成本。
3.2“L”型覆盖
某一风景区位于山谷中,距离基站不到4公里,但由于被山脉阻挡,根本无网络信号。在山脉的尽头安装一直放站,由于直放站接收信号的方向和发射信号的方向成一定的角度,相当于基站的电波在直放站处转了一个弯。依靠山体的阻挡,直放站的施主天线和服务天线分别放在山体的两侧,隔离度很大,直放站的性能可以充分发挥,很好地解决了该风景区用户的通信问题,还使该基站的通信距离向山谷里延伸了6公里。
3.3开阔地域的覆盖
人口分布较少的开阔地域是使用直放站进行覆盖的典型场合。当直放站采用全向天线时,只要有一定的铁塔高度,在直放站工作正常的情况下,3公里内可以明显地感觉到直放站的增益作用。但距离超过5公里以后,直放站的增益作用就迅速消失,用手机进行基站接收信号电平测试,无论直放站是否工作,接收电平都没有明显变化。这是因为在平原开阔地区,房屋建筑和地形地貌造成的传输衰耗相对较小,而随空间距离的增加,电波按32.45+20logf(MHz)+20logD(公里)的规律衰减;即距离每增加一倍,电波衰减6dB。
4直放站的优点及不足
4.1直放站的优点
4.1.1同等覆盖面积时,使用直放站投资较低。在平原地区室外一个全向基站可以有10km覆盖半径;一个全向直放站可以有4km覆盖半径;就覆盖面积而言,六个直放站约相当于一个基站。六个直放站的设备价约为一个基站的80%。但考虑到机房租用和装修、交直流电源、空调、传输系统和电路租金等费用,六个直放站的费用只相当于于一个基站的50%,甚至更低。
4.1.2覆盖更为灵活。一个基站基本上是圆形覆盖,多个直放站可以组织成多种覆盖形式。如“一”字型排开,可以覆盖十几至几十公里的路段。也可以组织成“L”型、“N”型和“M”型覆盖,特别适合于山区组网。
4.1.3在组网初期,由于用户较少,投资效益较差,可以用一部分直放站代替基站。用户发展起来后现更换为基站,替换下来的直放站再进一步放置在更边缘的地区,这样一步步地滚动发展。
4.1.4由于不需要土建和传输电路的施工,建网迅速。
4.2直放站的不足
不能增加系统容量。
4.2.1引入直放站后,会给基站增加约3dB以上的噪音,使原基站工作环境恶化,覆盖半径减少。所以一个基站的一个扇区最好带两个以下的直放站工作。
4.2.2直放站只能频分不能码分,一个直放站往往将多个基站或多个扇区的信号加以放大。引入过多的直放站后,导致基站短码相位混乱导频污染严重,优化工作困难,同时加大了不必要的软切换。
1.引言在蜂窝移动通信网中,切换是保证移动用户在移动状态下实现不间断通信越区切换;切换也是为了在移动台与网络之间保持一个可以接受的通信质量,防止通信中断,这是适应移动衰落信道特性的必不可少的措施。特别是由网络发起的切换,其目的是为了平衡服务区内各小区的业务量,降低高用户小区的呼损率的有力措施。切换可以优化无线资源(频率、时隙、码)的使用;还可以及时减小移动台的功率消耗和对全局的干扰电平的限制。
2.越区切换的定义当移动台从一个小区(指基站或者基站的覆盖范围)移动到另一个小区时,为了保持移动用户的不中断通信需要进行的信道切换称为越区切换,
3.越区切换的分类从技术上分:当一次切换被触发后,一个新的信道将被建立,通信将转接到新的链路,同时,原来的信道被释放。切换处理过程可以根据新链路的建立途径(旧链路的释放是发生在新链路的建立之前、之中或之后)来分类。硬切换:新的连接建立前,先中断旧的连接;软切换:指既维持旧的连接,又同时建立新的连接。
硬切换:硬切换的特点是移动台在硬切换情况下,同一时刻只越区切换占用一个无线信道,它必须在一个指定时间内,先中断与原基站的联系,调谐到新的频率上,再与新基站取得联系,在切换过程中可能会发生通信短时中断。硬切换主要是不同频率的基站和扇区之间的切换。
软切换:软切换的特点是在软切换过程中,两条链路及相对应的两个数据流在一个相对较长的时间内同时被激活,一直到进入新基站并测量到新基站的传输质量满足指标要求后,才断开与原基站的连接。软切换是同一频率下不同基站之间的切换。
从小区的性质上分:同一交换中心基站之间的越区切换;同一BSC之间的切换;不同BSC之间的切换;不同交换中心之间基站的越区切换;微小区与宏小区之间的切换;同基站内不同扇区的切换;不同运营商之间的切换。
4.三种体制下的越区切换WCDMA与CDMA2000均采用软切换,TD-SCDMA采用接力切换。
WCDMA中的软切换
它是采用移动台发起的异步软切换方式进行的导频切换,基站需要确定在什么时间、什么位置为移动台启动软切换算法。论文大全。WCDMA的移动台可在同一频率下检测到其他基站与本基站的信号,确定它们之间的时间差。检测到的时间信息经由本基站到达新的候选基站,候选基站调整它新的专用信道的发射时间,即在发送信息的时间上进行调整,使不同基站在这个信息比特期间与下行码道同步。无线链路增加和释放过程:(1)小区2的导频信号强度逐渐增强,当小区2的导频强度Ec/Io达到(最好导频Ec/Io-(报告门限-增加滞后门限))并维持T时间,而此时候选集没有满,小区2此时被加入到候选集里。该项动作也称为无线链路增加。(2)小区3的导频信号强度逐渐增加并开始超过最早的小区1的导频信号强度,在小区3的导频(最好候选导频)强度Ec/Io达到(最弱导频Ec/Io+替换滞后门限)并维持T时间,而此时候选集的数目已满(假设此时系统设置的候选集最大数目是两个),小区3(候选集中最强的信号)此时替代小区2(候选集里最弱的信号)被加入到候选集里,小区1同时被移出候选集。该项动作也被称为无线链路增加和释放。论文大全。(3)此时候选集中小区3的导频信号强度逐渐减弱,当小区3的导频强度Ec/Io弱到(最好导频Ec/Io-(报告门限+删除滞后门限))并维持T时间,小区3(候选集里最弱的信号)此时被移出候选集。该项动作也称无线链路的释放。
CDMA2000中的软切换
它也是导频切换,移动台不断地搜索着激活类、候选类、邻近类、剩余类各个导频的强度,并且根据导频强度维护各个类,当移动台靠近切换区时,移动台开始以下操作过程:(1)导频p2强度超过了T_ADD,但尚未到达动态门限,移动台将这个导频移到候选集;(2)导频p2强度超过了[(SOFT_SLOP/8)×10×log10(PS1)+ADD_INTERCEPT/2],移动台发送导频强度测量消息;(3)移动台收到扩展切换指示消息DROP_INTERCEPT/2,将p2移入激活集,开始宏分集,而后发送切换完成消息;(4)导频p1的强度下降低于动态门限[(SOFT_SLOPE/8)×10×log10(PS2)+DROP_INTERCEPT/2]移动台开始启动发送切换定时器;(5)切换下降定时器超时,移动台发送导频强度测量消息给基站;(6)移动台收到切换指示消息,将p1移入候选类。而后发送切换完成消息;(7)导频p1的强度下降低于T_DROP。移动台开始启动发送切换定时器;(8)切换下降定时器超时,移动台将p1从候选类移到邻近集。
TD-SCDMA中的接力切换
接力切换是一种基于智能天线的切换方案。它利用精确的定位技术,在对移动台的距离和方位进行定位的基础上,根据移动台方位和距离作为辅助信息,来判断移动台是否移动到了可进行切换的相邻基站临近区域。实现接力切换的必要条件是:网络要准备获得移动台的位置信息,包括移动台的信号到达方向(DOA)以及移动台与基站的距离。在TD-SCDMA系统中,由于采用了智能天线和上行同步技术,系统较容易获得移动台的DOA,从而获得移动台的位置信息。具体过程是:利用智能天线和基带数字信号处理技术,可以使天线根据每个移动台的DOA为其进行自适应的波形赋形。对每个移动台来讲,仿佛始终都有一个高增益的天线在自动跟踪它,基站根据智能天线的计算结果就能确定移动台的DOA,从而获得移动台的方向信息;利用上行同步技术,系统可以获得移动台信号传输的时间偏移,进而计算得到移动台与基站之间的距离;经过前两步之后,系统就可准确获得移动台的位置信息。
通过比较WCDMA、CDMA2000、TD-SCDMA中的切换技术,可以得到下面的结论:
在测量过程中,软切换和硬切换都是在不知道移动台准确位置的情况下进行切换、测量的,因此需要对所有的邻小区进行测量,然后根据给定的切换算法和准则进行切换判断和目标小区的选择。论文大全。
而接力切换是在知道移动台精确位置的情况下进行切换测量,所以它没有必要对所有邻小区进行测量,只需对与移动台移动方向一致的、靠近移动台一侧少数几个小区进行测量,然后根据给定的切换算法和准则进行切换判断和目标小区的选择,就可以实现高质量的越区切换。
5.越区切换的应用越区切换作为通信系统的关键技术,它可广泛应用于各种场合。例如,近年来地空数据通信的使用改变了对空作战指挥模式,而实现指控系统对空中平台远距离、大区域、不间断地引导指挥,关键在于实现空中平台的越区切换;GSM―R铁路专用移动通信系统,为铁路提速和客运专线提供网络化、智能化、综合化的行车调度指挥系统,越区切换技术是GSM―R移动性管理中的关键技术;双卡双模手机中的应用等。
参考文献
[1]《GSM―R越区切换分析与优化》,北京交通大学,电子信息工程学院丽聪、来尉