光纤传感技术论文模板(10篇)

时间:2023-03-17 18:14:18

导言:作为写作爱好者,不可错过为您精心挑选的10篇光纤传感技术论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

光纤传感技术论文

篇1

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)09-0065-04

一、引言

光纤传感技术是一门基础理论与工程应用紧密结合、理论与实践能力并重的系统学科,既要求学员有扎实的光学、电学基础,又要求学员能够摆脱课本的束缚、根据实际工程应用灵活运用已学到的知识。为适应这一形势,2006年以来,我们针对技术类本科生、军事指挥类本科生、硕士研究生和博士研究生的不同特点和未来适应部队工作的不同要求,建立了光纤传感技术系列课程。

作为一门应用学科,“学以致用”是光纤传感技术系列课程的特色之一。为此,课程建设非常注重学员对课程知识的实践应用能力培养,在教学实践中,结合课程特点和授课对象的学习特点,大力推进教学方法与手段的研究改革,在多层次一体化课程体系建设、教学方法与手段改革、创新人才培养、教师队伍建设等方面取得了较大成绩,下面分别进行介绍。

二、光纤传感技术多层次一体化课程建设

我校早在上世纪90年代就开设了《光纤传感技术》课程,并作为光纤传感专业研究生的必修专业基础课,为培养光纤传感技术人才起到了不可替代的作用。然而随着光纤传感技术在现代化信息战争中的应用越来越广泛,部队对光纤传感专业的人才数量和质量要求越来越高。我校原有的只针对研究生展开的《光纤传感技术》课程已经远远不能适应培养部队所需人才的紧迫要求。从2004年开始我院开始酝酿对光纤传感技术课程进行深入改革,将授课对象拓展到全校本科生和本院研究生,并从2006年开始实行。经过6年多的系统建设,最终建立起了完备的多层次光纤传感系列课程。

由于本科生和研究生、本专业和非本专业学员、技术类和军事指挥类学员的知识基础和应用方向差异太大,如何科学划分课程层次、清晰明确课程内容、准确定位课程目标是光纤传感系列课程建设的重点和难点。

在广泛调研军队需求、不同类别学员的知识积累和兴趣及国内外学校同专业的课程设置基础上,我们建立起了分别面向本科生和研究生、技术类和军事指挥类、本院专业和全校学员的光纤传感系列课程。新增了技术类《光纤传感技术》、军事指挥类《光纤传感技术》,面向全校本科生专题研讨课《基于虚拟仪器的光纤传感技术》三门课程,原有针对研究生的《光纤传感技术》则改为《光纤传感系统》[1,2]。

(一)建立起针对本院技术类本科生的《光纤传感技术》课程内容体系,以“扎实广泛的技术基础为核心,典型的系统应用为亮点”

考虑到授课学员在学习本课程之前已经在《光纤通信》、《光电检测技术》等课程中对光纤和光纤器件等有初步了解,在本课程中首先介绍光纤传感技术的概念和内涵,然后针对光纤传感系统的特点,介绍光纤、光纤器件、光纤传感原理和光纤传感信号解调原理。这四部分内容涵盖了强度型、偏振型、波长型、相位型和分布式光纤传感的系统构成、传感原理和关键技术,为光纤传感基础知识,具有信息量大、知识点多、覆盖范围广泛的特点;最后以2-3种典型的光纤传感系统为例,向学员示范在系统中如何对基础知识进行灵活应用,启发学员根据学到的基础知识来分析理解新型光纤传感系统。

(二)研究生的《光纤传感系统》课程以“系统应用技术为核心,系统设计为亮点”

与原有的研究生《光纤传感技术》相比,新的课程内容和标准进行了大幅度的改革,突出“系统应用”,大幅度削减了光纤传感基础知识,而是以四大类典型光纤传感系统为授课重点。课程中的四大类典型光纤传感系统选取了目前应用最为广泛或技术难度较高的光纤水听器系统、光纤陀螺系统、分布式光纤传感系统和光纤光栅传感系统,针对每一类对其应用背景、系统组成、系统指标和关键技术进行详细分析,构建课本知识到实际工程应用的技术桥梁。在讲解完每一类典型光纤传感系统后,特别设计了光纤传感系统设计环节,要求学员以分组的形式,根据特定应用背景设计出光纤传感系统,阐明系统特色和关键技术。

课程调整所面临的最大难题在于:学习本课程的研究生既包括本校本专业的学员,也包括来自于外院和外校的本科非光信息专业的学员。对于前者,通过本科生阶段的《光纤传感技术》学习已经具备了良好的基础,在新课程学习中应尽量避免内容重复;对于后者,直接学习典型光纤传感系统中的关键技术存在一定难度,需要对光纤传感基础知识进行介绍。为此,在研究生的《光纤传感系统》课程中,首先设定了3个课时对光纤传感基础知识进行回顾和总结,并点明各部分基础知识所涉及的参考书。同时由于使用了与本科生《光纤传感技术》课程同一系列的教材,为解决学员基础参差不齐的难题提供了有效的解决办法,而面向全校的《基于虚拟仪器的光纤传感技术》则为毕业于本校其他专业的研究生学员提供了学习本课程的基础。

(三)军事指挥类本科生的《光纤传感技术》课程以“完善学员知识结构为重点,突出军事应用特色为亮点”,为学员提供装备相关知识基础

课程针对军事指挥类本科学员培训的主要目标,将军事指挥类本科生《光纤传感技术》课程的主要任务确定为拓展军事指挥类学员的知识面,完善知识结构,了解最新军用传感器技术,一方面可以充分发挥我军现有装备的作战效能,另一方面可以掌握外军作战手段,有效克敌制胜。课程简化了基础知识部分内容,扩充了典型光纤传感部分,特别是注重光纤水听器、光纤陀螺和分布式光纤传感器在军事中的应用,并拓展光纤水听器在声纳系统应用中的相关知识,让学员在进行工作岗位后可以更快的掌握相关装备的使用和维护。

(四)面向研究生的《虚拟光纤传感技术》以“引导学员自主学习为核心,激发学员独立思考为亮点”

课程以光纤传感技术中相干检测技术为背景,以虚拟仪器技术为手段,通过一个具体实例为研讨对象,让学员一边学习新知识,一边动手做实验,一边学会自主学习。课程首先在学员高中已经具备的光学知识基础上讲解干涉型光纤传感的基本内容,然后引导学员自习LabVIEW虚拟仪器语言,通过研讨学习心得让学员掌握LabVIEW基本知识,最后要求学员利用所学知识和工具完成光纤传感中一个典型信号处理问题。整个课程以学员自己动手动脑为主,精选了一门易学好用的虚拟仪器语言LabVIEW,使学员可以在四到五次课的时间内学会,并结合光纤传感技术系列课程的建设成果,让学员可以在课程上针对典型的干涉型光纤传感系统进行信号处理实验,一方面提升了学员的学习的积极性,另一方面加强了学员的自信心,并为学员以后的创新实践奠定了基础。

三、教学方法与手段改革

在教学过程中,在教学方法和教学手段上也进行了一系列的改革,使用了大量的新技术、新手段、和新的教学方式。主要体现在以下几个方面:

(一)充分运用科研成果和虚拟仪器技术的特点,增加了大量的课堂演示实验环节

在光纤传感技术系列课程中引入堂演示实验,对于加深学员对知识的理解效果最为明显。在课程建设中,充分利用所在实验室在光纤传感技术研究上的优势,在每门课程讲授中都加入了1~2个课堂演示实验。

与专门的实验课不同,课堂演示实验的侧重点在实验效果上,通常都是完整的光纤系统,包括光源、光传输链路、光接收模块、显示模块等等,并注重演示效果。以往的光纤系统虽然功能性明显,但结构复杂。近年来,课题组所在的实验室在光纤传感系统的工程可靠性研究上投入了大量精力,一些便携式高可靠性的光纤传感集成模块在科研项目中得到广泛应用;这些科研成果的突破使得在课堂上演示一些复杂的光纤传感系统实验成为可能[5]。另一方面,由于虚拟仪器技术在光纤传感技术中的广泛应用,复杂的信号解调可以通过电脑直观的显示在课堂多媒体系统中,“所见即所得”的方式使得课堂演示实验的效果非常直观和可信。以研究生的《光纤传感系统》课程为例,我们选取了光纤光栅应变系统作为课堂演示实验内容。在硬件上,这套系统的光收发模块为集成化的便携式光纤光栅解调仪,采用法兰盘对接可串接起多个光纤传感阵列;而复杂的信号解调系统则全部通过虚拟仪器技术在电脑上软件实现,解调结果直接显示在电脑程序界面中。通过这套系统,我们完整地演示了光纤传感器设计、光纤传输链路构成、复用光纤传感网络、和光纤传感信号解调等多项知识内容,学员普遍反映通过这一演示实验对光纤传感系统有了清晰深刻的了解。

(二)借鉴国外大学相关专业的教学模式,在考核中引入小型综合设计环节,充分考察学员的综合素质

课题组的两位教员具有国外留学的经历,在课程建设中充分参考国外大学在光纤传感技术课程的教学方法,在作业环节引入小型光纤传感综合设计内容,并将其作为课程考核评价标准的一部分,实现对学员综合素质的培养和考核评价。

光纤传感综合设计参考了香港理工大学和英国南安普顿大学的教学经验,以对知识的综合运用为主要考察目标。本科生光纤传感技术采用适当的综合设计题目难度,重视对知识融会贯通和综合应用能力的考察,一般在授课过程中只进行1次;研究生除了要求基础知识综合应用能力,更注重对实际工程应用系统的完整性和前沿问题的拓展性考察[6],一般则开设2~3次。综合设计作业由学员分组完成,小组内成员根据资料调研、方案设计、报告撰写等工作内容的不同进行明确分工,并推选一位组员参加课堂专门设置答辩环节。

(三)针对授课内容的层次划分和授课对象的学习特点,科学合理设置研讨专题

研讨式教学我校近年来大力推广的教学方式之一。由于光纤传感技术具有经典与前沿相结合、理论与工程应用相结合的特点,在系列课程建设中,课题组在原有研究生《光纤传感技术》的研讨式专题内容基础上,进行了深入的思考和大胆的拓展,将课程中的研讨专题划分为三大类:经典理论知识的研讨、前沿研究的研讨和学位论文研究方法的研讨。

经典理论知识的研讨要求学员在授课之前对相关内容进行预习,并在课堂上对全体学员讲解自己对该问题的理解。如在进行“光纤干涉仪传感系统”的授课时,要求学员预习时弄明白两个问题:什么是随机相位衰落?什么是偏振诱导信号衰落?进行研讨时不要求学员对这两个问题进行深入剖析,但要求学员用精炼的语言阐明问题的物理含义。学员普遍认为这种研讨专题不是特别复杂,通过预习教材即可,但大部分学员会准备PPT课件,且自愿上讲台讲述的学员一般在以往的学习过程中接触过与该专题相关的研究工作,因此在其课件上还会加入自己以往的工作、自己对该问题的扩展认知及自己尚未弄明白的问题等。这种教学效果是在深入了解学员的知识积累基础上,通过巧妙设置研讨专题取得的。

前沿研究的研讨要求学员进行大量的资料查阅,特别是光纤传感前沿研究课题的查阅。对于某一个问题,由于课堂讲授的时间受限或者教材中没有系统的描述,对该问题的课堂讲授可能不够全面,在这种情况下,教师会提供相关信息,要求学员查阅该文献并进行精读,然后在课堂上进行研讨。这种研讨专题分为两种:一种是教师提供明确的检索信息,由学员查阅到该文献后精度文献,分析文献的精华及不足;另一种则是教师提供所要解决的问题,由学员对该问题进行解读,提炼关键检索信息,进行检索后,对检索文献进行初步分析,总结该问题的研究现状。学员反映这种研讨专题的难度稍大于第一种,但一般稍花时间都能解决。

学位论文研究方法的研讨目的在于:无论是本科生还是研究生,在学习完相应的光纤传感技术课程后马上就要投入到学位论文工作中。通过对这类问题的研讨,学员逐渐掌握了在未来从事学位论文研究中必须具备的研究方法,这类的研讨主要培养学员的仿真计算能力和光纤传感系统的设计能力。例如在讲授完光纤光栅的基本理论之后,学员反映耦合模理论的公式很繁琐,难以一眼看出其中的物理特性,为此,我们安排了相关理论的仿真计算研讨,要求学员根据课堂讲授的公式进行理论仿真,计算光纤光栅反射光谱,并绘制带宽、反射率等关键参数随着光栅参数的变化曲线。学员在课堂研讨时要讲述自己的关键参数设置和仿真结果。通过这种研讨方式,学员对光纤光栅的反射谱特性建立了深入的了解,效果远远好于课堂直接讲授相关结论。

根据光纤传感课程层次划分,不同的光纤传感技术课程对三种研讨专题的应用程度也不相同,本科生的光纤传感技术课程以经典理论知识的研讨为主,并设置1~2次前沿研究的研讨;研究生的光纤传感技术课程则以前沿研究的研讨专题和学位论文研究方法的研讨专题为主,对特别重要的概念设置少量经典理论知识的研讨专题。

四、以光纤传感技术课程为支撑的创新型人才培养

光纤传感技术的应用范围极广,一套实用的光纤传感系统可以很庞大很复杂,也可以很小巧灵活。针对这一特点,课题组教师在学院本科生和研究生的各项教学活动中,积极开展与光纤传感技术相关的各项活动。

针对本科生的光纤传感技术系列课程,在授课结束后,在光电设计大赛、毕业设计等教学活动中开设了大量关于光纤传感技术应用的课题,引起学员浓厚的兴趣和广泛的参与热情。一方面,参与光纤传感技术相关的本科毕业设计学员数量大幅度提高。以技术类本科毕业设计为例,2013、2014年参与光纤传感技术相关课题的学生均达到光信息专业学员总数的50%以上。另一方面,学员完成课题的质量也得到大幅度提升,近年来有8名本科生获得学校创新资助,从侧面反映出光纤传感技术课程教学效果的日渐提高。这些竞赛成果也作为评价授课效果的标准之一,并将学员在课外延拓活动中的效果和意见及时反馈到教学过程中[3,4]。

针对研究生的光纤传感技术系列课程,一方面鼓励学员在课程学习的基础上努力拓展研究深度,在光纤传感研究领域不断创新。在课题组所在实验室所培养的研究生中,有3名研究生获得学校创新资助,1名研究生获得湖南省创新资助,其课题都是光纤传感领域的研究重点和难点。此外还有5项研究生参与申请的光纤传感技术相关专利;另一方面,鼓励学员积极参与到与光纤传感技术相关的科研项目中,在实际工程环境中对课程知识进行融会贯通。目前在光纤信息专业的毕业研究生中,参加过光纤传感相关的湖上或海上试验的学员达到95%以上,为其真正走向工作岗位后充分适应部队对光纤传感技术人才的需要积累了宝贵的经验。

五、高素质教师队伍建设

作为教育的重要媒介,教师是活动中的主要因素。教员整体素质的高低,直接影响着教学质量的高低。因此,建立一支教学水平高、结构合理的高素质师资队伍显得尤为重要。

(一)从教学和科研两个方面锤炼教师队伍,使教师的教学水平和科研能力相互促进共同提高

科学研究是教师工作的重要组成部分,是提高教学水平的重要手段,也是提高自身素质的重要途径。对于光纤传感技术系列课程而言,学即能致用是其重要特点之一,教学和科研的相互促进作用尤为明显。课题组全部教员均参加了多个重大科研项目。通过重大科研项目的历练,教员的学术水平得到很大的提高,一方面教员接触了学术前沿,开拓了学术视野,经历了科研实践,在课堂教学中自然会将科研最新成果、专业发展动向带进课堂,另一方面,教员在参与重大科研项目时对光纤传感的技术内容有了更加深刻的认知,对于在课堂上清楚明白的讲好各个知识点至关重要。同时,通过教学活动中对课程内容的反复推敲及与学员之间展开的研讨交流,可以加深教员对技术环节的领悟,甚至激发教员的灵感。通过在科研和教学两个方面同时锤炼,促进教师知识更新和自身进步,提高教师的创新能力和教学质量,将真正做到科研教学一体化。

(二)鼓励教员进行对外交流,充分借鉴国内外同类专业课程的教学经验

课题组有两名教员具有国(境)外留学经历,其他教员也多次参加国内外的学术活动和教学活动交流,在课程建设过程中充分利用了这一优势。在教员已经带回的国外大学教学经验的基础上,鼓励教员在回到学校后仍然定期与留学单位交流,及时获取留学单位最新的课程设置和教学安排信息,并通过交流,不断补充自身的不足,更新课程内容,丰富教学手段,提高自身教学水平。在对外学术活动交流中,有意识的了解其他院校同类专业课程的教学情况,对于感兴趣的单位积极主动与对方联系进行实际考察。活跃的对外交流活动极大地激发了教师的教学热情,并不断提高其教学水平。

(三)加强青年教师的教学技能培训

目前,课题组教员是一支相对年轻化的队伍,很多才刚刚博士毕业,青年教师充满热情,思想活跃,比较了解学员的思想,与学员进行交流方面具有优势。但是,他们大多没有经过系统的教学技能训练,普遍缺乏教学经验。为了使青年教师尽快掌握教学技能,提高业务能力与水平,课题组指定认真负责、教学经验丰富的老教师担当青年教师的导师,对青年教师实行“一对一”的“传、帮、带”指导,指导青年教师备课、编写教案;采取措施督促教员投入足够的精力。教员上岗前,必须经过教研室、系所、学院三级试讲,每次授课必须重新编写教案、编写课件、编制教学日历;在教学过程中,教学指导委员会、督导组、院系领导经常性听查课,督促教学水平的提高。

通过从科研和教学两方面锤炼教学队伍,课题组教员自身水平得到了大大提高,多次在全军和全校获得教学优秀奖,其中获军队院校育才奖1人次,优秀研究生导师奖3次,校本科“研究型”教学比赛三等奖1人次,校研究生教学优秀三等奖1人次,教员在国内教学期刊上发表高水平教学论文10篇,课题组已经成为了一支能独立承担授课任务的高水平教师队伍。

参考文献:

[1]孟洲,胡永明,姚琼,宋章启.《光纤传感技术》研究生课程改革探讨[J].中北大学学报(社会科学版),2007,23(2):98-100.

[2]孟洲,姚琼,曹春燕,梁迅,张学亮.光纤信息技术本硕博系列课程体系研究与实践探索[J].高等教育研究学报,2012,35(1):50-53.

[3]周建华,邱琪,周晓军,光纤通信实验教学改革探讨[J].电子科技大学学报社科版,2003,5(2):89-91.

篇2

[1]梁瑞冰,孙琪真,沃江海,刘德明.微纳尺度光纤布拉格光栅折射率传感的理论研究[J].物理学报.2011(10)

[2]钱银博.基于SOA的长距离无源光网络理论与实验研究[D].华中科技大学2010

[3]赵攀,隋成华,叶必卿.微纳光纤构建M-Z干涉光路进行液体折射率变化测量[J].浙江工业大学学报.2009(03)

[4]李宇航,童利民.微纳光纤马赫-泽德干涉仪[J].激光与光电子学进展.2009(02)

[5]刘盛春.基于拍频解调技术的光纤激光传感技术研究[D].南京大学2011

[6]高学强,杨日杰.潜艇辐射噪声声源级经验公式修正[J].声学与电子工程.2007(03)

[7]胡家艳,江山.光纤光栅传感器的应力补偿及温度增敏封装[J].光电子·激光.2006(03)

[8]牛嗣亮.光纤法布里-珀罗水听器技术研究[D].国防科学技术大学2011

[9]曹锋.新一代周界防入侵软件系统研究及其应用[D].华中科技大学2010

[10]唐天国,朱以文,蔡德所,刘浩吾,蔡元奇.光纤岩层滑动传感监测原理及试验研究[J].岩石力学与工程学报.2006(02)

[11]詹亚歌,蔡海文,耿建新,瞿荣辉,向世清,王向朝.铝槽封装光纤光栅传感器的增敏特性研究[J].光子学报.2004(08)

[12]孙运强.激光内通道传输的气体热效应研究[D].国防科学技术大学2011

[13]刘浩吾,吴永红,丁睿,文利.光纤应变传感检测的非线性有限元分析和试验[J].光电子·激光.2003(05)

[14]邓磊.OFDM技术在无源光网络及光无线系统中的应用与研究[D].华中科技大学2012

[15]胡家雄,伏同先.21世纪常规潜艇声隐身技术发展动态[J].舰船科学技术.2001(04)

[16]ZuyuanHe,QingwenLiu,TomochikaTokunaga.Ultrahighresolutionfiber-opticquasi-staticstrainsensorsforgeophysicalresearch[J].PhotonicSensors.2013(4)

[17]YiJiang,WenhuiDing.Recentdevelopmentsinfiberopticspectralwhite-lightinterferometry[J].PhotonicSensors.2011(1)

[18]AnSun,YuliyaSemenova,GeraldFarrell.Anovelhighlysensitiveopticalfibermicrophonebasedonsinglemode-multimode-singlemodestructure[J].Microw.Opt.Technol.Lett..2010(2)

参考文献

[1]孙运强.激光内通道传输的气体热效应研究[D].国防科学技术大学2011

[2]赵兴涛.掺镱、亚波长空芯及新型高非线性光子晶体光纤的研究[D].北京交通大学2015

[3]杨春勇.GMPLS智能光网络中波长路由器的研究[D].华中科技大学2005

[4]许荣荣.光纤环形腔光谱技术与传感应用的研究[D].华中科技大学2012

[5]张磊.基于光子晶体光纤非线性效应的超宽带可调谐光源[D].清华大学2014

[6]王超.基于高频等离子体法制备掺镱微结构光纤及其特性的研究[D].燕山大学2014

[7]林桢.新型大模场直径弯曲不敏感单模及少模光纤的研究[D].北京交通大学2014

[8]苏伟.新型光子准晶光纤及石英基光纤的微观机制研究[D].北京交通大学2015

[9]许艳.基秒光频梳的绝对距离测量技术研究[D].华中科技大学2012

[10]钱新伟.PCVD单模光纤高速拉丝工艺与光纤性能研究[D].华中科技大学2009

[11]刘国华.高功率光纤激光器的理论研究[D].华中科技大学2007

[12]常宇光.光纤射频传输(ROF)接入系统及无线局域网应用研究[D].华中科技大学2009

[13]张雅婷.基于光子晶体光纤的表面等离子体传感技术研究[D].华中科技大学2013

[14]张小龙.同轴电缆接入网信道建模与故障诊断方法研究[D].华中科技大学2013

[15]张传浩.电信级以太无源光网络接入理论与实验研究[D].华中科技大学2009

[16]吴广生.无源光网络与电网络复合接入技术研究[D].华中科技大学2009

[17]江国舟.10Gbps以太无源光网络关键技术与应用研究[D].华中科技大学2009

[18]张利.以太无源光网络安全性与增强技术研究[D].华中科技大学2009

[19]冯亭.MOPA光纤激光系统放大级增益光纤特性与高质量种子源关键技术研究[D].北京交通大学2015

[20].EPON和WLAN融合网络架构下的上行链路调度算法研究[D].华中科技大学2009

[21]孙琪真.分布式光纤传感与信息处理技术的研究及应用[D].华中科技大学2008

[22]孙运强.Ⅰ钳式镍配合物的合成及性质反应研究Ⅱ有机氟化物的合成新方法研究[D].山东大学2014

参考文献

[1]刘钰旻.纳米功能材料在能量转换与储存器件中的应用[D].武汉大学2013

[2]曾谦.声表面波技术在微流控芯片中的集成及应用研究[D].武汉大学2011

[3]彭露,朱红伟,杨旻,国世上.微沟道内两相流速比对液滴形成的影响[J].传感技术学报.2010(09)

[4]郭志霄.微液滴和海藻酸凝胶颗粒在微流控芯片中的应用研究[D].武汉大学2011

[5]全祖赐.环境友好型多功能氧化物薄膜的微结构、光学、电学和磁学性能研究[D].武汉大学2010

[6]彭涛.功能电极材料在染料敏化太阳能电池中的应用[D].武汉大学2014

[7]黄妞.光阳极修饰和二氧化钛形貌调制在染料敏化太阳能电池中的应用[D].武汉大学2013

[8]国世上.电子辐照铁电共聚物P(VDF-TrFE)及超声传感器的研究[D].武汉大学2004

[9]韩宏伟.染料敏化二氧化钛纳米晶薄膜太阳电池研究[D].武汉大学2005

[10]何荣祥.纳米功能材料器件及其在流体和细胞检测中的应用研究[D].武汉大学2013

[11]周聪华.染料敏化太阳能电池中电极材料和寄生电阻的研究[D].武汉大学2009

[12]胡浩.碳材料对电极在染料敏化太阳能电池中的应用[D].武汉大学2011

[13]李伟平.铁电共聚物P(VDF-TrFE)的性能和换能器的模拟研究[D].武汉大学2004

篇3

1.引言

近年来,港口大型设备事故时有发生,靠传统检测很难及时、全面发现故障发生的预兆及发展趋势。而起重机械事故通常具有不确定性和不可预见性,其造成的结果却是极其严重的。目前,我国大部分港口普遍缺乏一套行之有效地实时监测和评估港口大型设备的技术和方法。若不能及时、准确地获取港口大型设备真实的状态信息,则会给设备运行留下安全隐患。随着经济的飞速发展、货运量的大幅增加,确保港口机械设备的技术性能状态经常处于良好状态,实现实时监测,避免突发性故障的发生是亟待解决的问题。

2.港口大型设备检测存在的问题

通过调研分析,当前港口大型设备在安全管理上主要有以下几个问题。

(1)部分港口缺乏先进的检测手段、方法及设备,对港口大型设备的维护主要以日常检测为主,不能实时、准确地反映设备的实际状况。

(2)各港口的检测人员检测技术水平不一,对关键的失效模式并不能进行准确地判别,检测和诊断则缺乏较强的针对性。

(3)港口现场作业繁忙、环境恶劣,不停机检测和检测数据的传输存在很大的困难。且设备运行状况相关数据大量流失,对设备的健康状况诊断数据匮乏。

(4)港口大型设备缺乏有效的在线实时监测设备、系统及安全评估系统。

以上问题已成为港口大型设备安全、可靠运行的潜在隐患。因此,迫切需要一种能及时发现危险源的实时监测技术来解决这些难题,及早发现缺陷并判断缺陷是否具有危险性,以使能及时维修处理,避免起重机事故的产生。

3.港口大型设备安全监测技术研究

目前,针对港口大型设备检测的常规办法主要有目测、射线检测、磁粉探伤检测和超声波检测等方法。以上检测方法具有很大的局限性。首先,结构表面去漆,不仅耗时长,且对于不规则的构件表面检测比较困难,对人的操作技术水平要求较高,但效率较低。第二,射线检测对人的身体有害,检测时必须有很严格的保护措施。第三,起重设备检测属于高空作业,存在一定的难度,且检测的范围有一定的局限。第四,目测等方法很容易引入主观误差。基于以上原因,一般性检测手段对于港口重大设备的缺陷诊断,误判、漏判很难避免,且不能实时准确反映在役设备的真实状况,对于设备运行将留下安全隐患。

随着科技和工业的发展,国外较早地开展了起重设备的在线监测与诊断研究,将成果应用到实际,并取得显著的经济效益。近年来,国内对于港口起重设备在线监测技术的研究也向多方面进行了拓展。

3. 1港口大型设备安全监测技术

3.1.1基于电阻应变技术的无线应力在线监测系统

电阻应变技术是通过电阻丝应变与电阻变化的对应关系来获得被测件在贴有应变计处的结构应变值,从而实现对结构的检测。该方法技术成熟,成本较低,不会对待测构件造成损伤。当前国内学者开展了无线应力在线监测系统的研究。无线应力在线监测系统是借助遥测技术获取结构受力部位的应力信息,并实时传输到监测设备,以达到实时了解起重机结构受力状态的一种起重机实时监测系统。此技术中应力的采集多采用电阻应变技术。电阻应变片其耐蚀性、耐湿性、耐久性差,环境适应性差,难以实现在线监测系统对起重机长期监测的目的。此外,该在线监测系统在干扰因素过多,传输距离较大的情况下,无法保证数据能够安全无误传输。

3.1.2声发射技术

声发射技术,它是以瞬态应力波的形式迅速释放其内部积累的应变能的过程,可准确捕捉活动裂纹的位置。声发射技术用仪器探测、记录、分析声发射信号,并利用声发射信号对声发射源的状态做出正确判断。声发射技术具有动态、实时、整体和连续等特点,对结构的形状、尺寸不敏感,可以对大型结构进行大面积的检测。它能够在线检测、监测活性缺陷。对于受力情况复杂的起重机金属结构,它比超声波、磁粉检测效果更好、更真实,同时也可以减少检验中不必要的停机。声发射技术可以弥补常规无损检测方法的不足,实现结构状态的整体监测,为有效地安全监测提供准确的依据。

声发射技术不能提供被测件的静态缺陷。在实际中,由于大型起重机械工作环境比较恶劣,噪声非常大,而声发射信号却非常微弱,声发射信号则很容易被噪声湮没,实际测得的声发射信号将含有较多电气、机械噪声,在实际的工程应用中声发射监测效果并不太理想。

3.1.3光纤光栅传感技术

光纤传感技术是一种以光波为载体,光纤为媒质,感知和测量被测量信号的新型传感技术。光纤光栅传感技术的优点是抗干扰性强,不受电磁、噪声影响;灵敏度、可靠性高;能串接复用,可实现分布式监测;耐久性好,动态响应快,信息传输远,信号长距离传输不需要专门的调节,可满足长期健康监测的要求。但传感器、检测仪等设备成本相对较高,且光纤传感器对温度同样敏感,在实际应用中需要采取相应的温度补偿措施。光纤光栅传感技术目前多用于桥梁结构安全监测。

3.1.4数字图形图像处理技术

数字图形图像处理技术是通过将采集到的图像信息转化为数字信息,并利用计算机进行除噪、增强、复原、分割、提取等处理的方法与技术。基于数字图像处理技术的监测方法是一种新型的非接触式监测方法。基于数字图形图像处理技术的监测系统与光纤传感技术等监测技术相比,成本较低。它是一种实时的、高精度的、远距离的、能进行结构静动态位移监测的监测方法。该方法不伤及被测物,不干扰被测物自然状态,且可瞬时获取被测物体大量物理信息和几何信息。基于数字图像处理技术的监测方法对于拍摄环境要求较高。基于数字图像处理技术的监测方法现多用于桥梁、坡道等相对简单的结构。起重设备工作环境复杂,利用照相机技术在无线网络传输速度低的情况下不易满足起重设备监测的需求。利用数字摄影测量技术进行自动实时监测将是今后钢结构安全监测的发展趋势。

3.2港口大型设备监测管理

对监测得到的数据进行详细的分析,若分析得到异常数据,应对用户及时发出警告并寻找产生异常的原因,通过检修维护,排除异常,以达到消除事故隐患的目的,实现安全监控与起重机正常作业同时进行。使用监测系统还可以积累大量史数据,当起重机出现故障,可以为维修人员查找故障提供依据,在故障发生之前做出预报,减少事故发生的概率和损失,提高起重机的安全性和可靠性。

4.结束语

本文充分比较了各种港口大型设备安全监测技术的应用特点及技术特性,为港口企业和相关科研单位提供参考。开展港口大型设备安全监测技术研究,开发起重设备安全在线监测系统,对于港口相关部门及时掌握港口在役设备的运行状况,防止起重事故的发生具有重要的意义。

参考文献:

[1]杨巧萍,刘延雷.声发射检测起重机的现状与可行性试验[J].机械管理开发.2011,1:66-67.

[2]齐到满.基于无线网络的冶金起重机结构应力远程监测技术研究[D].硕士学位论文.武汉:武汉理工大学.2011.05.

[3]吴占稳,沈功田,王少梅等.声发射技术在起重机无损检测中的现状[J].起重运输机械.2007(10):1-4.

[4]陈晓军.基于FBG传感技术的起重机健康监测系统设计[D].硕士学位论文.太原:中北大学,2013.05.

篇4

随着社会发展,安防已经变得越来越重要,及时发现入侵对我国安防建设有种重要的意义,别的安防系统监测距离短且容易受到电磁的扰动,而本文中叙述的安防系统不仅监测距离长而且不容易受到电磁的干扰,对安防领域具有重要意义。光纤传感入侵定位监测系统可以通过监测光纤应变或震动等确定事件发生的位置,已有传感定位系统多采用Sagnac干涉环结构或者马赫-增得干涉结构实现定位,但无法同时满足高精度和长距离探测。这样的话就必须采用BOTDR原理,利用自制的光纤纵模分布反馈激光器,结合边缘滤波调解技术,建立一套分布式光纤传感入侵定位系统监测,实现了对入侵事件的实施快速定位监测,空间分辨率也相应高了起来。

一、布里渊散射传感原理

布里渊散射原理是基于光纤中光波与声波在传播过程的相互作用,这两者的相互作用会使光产生频移,该频移的产生相当于入射波被一个声光栅散射产生了反射光子,我们利用这个频移,通过测得其频移方向和大小,来实现传感物理量的转换。光纤所处温度、所受应变皆可通过布里渊频移间接计算得出。在实际工程使用中,由于入侵事件都是不确定的,所以需要一套具有实时监控能力且无盲点的监测系统才能完全监测到入侵、避免出现遗漏,而光纤作为传感原件是沿线路连续分布的,这就避免了线路中产生盲点。通过对光纤中布里渊散射频移量大小的监控,可以分析得出被入侵点的准确位置,以及被入侵程度,这就是目前布里渊散射在光纤传感入侵定位监测系统中最有效的应用方式,达到了兼备高精度、无盲点、长距离、实时性等诸多优异性能。

二、实验与分析

由于本项研究处于早期阶段,所以此次试验都是采用自制的激光器、自制传感光缆以及其他自制光信号解调器。并参考了各类中外文献,以及前辈所写的论文,保证本次试验和分析能够得出更为准确的结论,更好的为国家安防事业做出贡献。我们将激光输出进行一定的比例分束,然后小比例的一束作为本振光,另外一个大比例的经偏振控制器调整偏振态,通过电光调制器进行脉冲的调制,经过掺铒光纤放大器1放大之后,波分复用器滤过自发辐射噪声通过扰偏器和环形器,输入到单模传感光纤里面去。散射回的信号此时变得非常非常弱,必须得通过掺铒放大器2来放大,然后再经过一个环形器,通过自己制造的窄带可调谐光纤光栅滤波器之后的布里渊反射光和本振光相干,通过高速光电探测器的监测,然后得到了实验的最终结果---后向布里渊散射信号。

在实验中,波分复用器滤波的通道为1550nm,带宽30nm,隔离度大于20dB,损耗小于0.15dB,和本振光相比,相对有一定的偏移量,能满足实验的要求并且监测到相干信号。放大之后的布里渊信号只有um量级,采用高速光电探测器前置放大滤波电路对信号再次放大滤波,然后通过边缘滤波,将布里渊信号的平移变化转换成强度变化,并通过累加平均处理,平均2的12次方次后,得到最K监测结果。其中前置放大滤波电路实现对微弱电信号的放大并抑制信号频带以外的噪声,其滤波中心频率为11GHz,3dB快带为1Hz,插入损耗小于0.1dB。实验系统采用50ns脉宽的光脉冲,重复频率为10KHz,传感光纤长度为10km。因此,完成2的12次方次累计平均处理所需时间小于1s,即系统的监测周期小于1s,可满足快速监测入侵事件的要求。

经过实验分析表明。实验系统在室温25度环境下且光纤不受外力时,布里渊信号的中心频率在10.9GHz左右。因此当应变和温度引起的频移总和超过初始中心频率100MHz时,信号将越过带通滤波器的单边上升沿的边界,导致信号幅值减小,从而引起错误判断,限制了系统的监测范围。采用更大带宽的带通滤波器并合理的选择其中心频率,可以扩大系统监测的动态范围。

至于如何消除缓变温度的影响,适应野外环境下的应用,以及进一步提高系统的应变分辨率,将在后续的工作中研究。

结论:在BOTDER原理中用单纵模光纤光栅到带通滤波器理论结合实际的实验中表明,系统可以在1s对10km范围的传感器进行测量,并达到5m的空间分辨率和200uε的应变分辨率。这项实验表明本系统在监测入侵领域的能力,即便现在所处阶段并不成熟,也能对国家安防领域起到很重要的积极意义,而且经分析判断和实验结论,基于布里渊散射的分布式光纤传感入侵定位监测系统在长距离入侵定位方面有着良好的前景。

篇5

光纤传感器是通过检测光信号来测量环境中参量变化(生物量、物理量或化学量),这些参量变化会引起光的传输特性变化。光纤传感器有很多种类,按照传感机理它可以分为强度型、干涉型和光纤布拉格光栅型这三种。这其中光纤布拉格光栅不仅具有强度型和干涉型的优点,并且具有波长分离能力强、灵敏度高、传感精度好、抗干扰能力强等优势。光纤光栅传感器有着很大的发展前途,它可以在需要精确定位或者是绝对数字测量时,可以构成多光栅空间分布单一光纤传感网络系统。

本文研究的基于光纤光栅的数据采集,光纤光栅传感器即采用的是光纤布拉格光栅,光纤光栅的原理如图1所示。

光纤布拉格光栅的中心波长随着外界环境参量的变化而随之变化,它广泛应用于压力、温度、应变等参数的测量。

一、基于光纤光栅数据采集系统的组成

(一)光纤光栅传感系统

该系统通过光纤光栅传感器采集数据,这是该数据采集系统的前提条件。不同功能的光纤光栅传感器能够将不同的物理参量如温度、压力、应变和加速度等调制为相对应的光栅波长。光纤光栅传感器输出光波以后直接通过光缆便可以进行远距离传送。

(二)光纤光栅网络分析系统

该系统作用是将光纤光栅传感器采集的光信号经光缆的远程传输后,将光信号转化为数字量并以物理参量的方式在计算机终端记录、显示或存入数据库中。

该系统主要由光开关、光纤光栅解调仪及光纤跳线组成。光纤光栅解调仪的作用是将光纤光栅中心波长解调为数字信号。光开关的主要作用是将多路光信号一起或是分别进入光纤光栅解调仪,这样就克服了光纤光栅通道数不能满足工程应用的缺点。

(三)光纤通讯传输网络

该系统由光缆和光纤适配器等组成。光缆是光信号传输的通道,光纤适配器连接光缆且损耗很低,这样就可以避免工程现场的光纤熔接。单桥监控室采用光缆以低损耗方式接连光缆,将远距离采集的光信号引入中心监控室的数据处理及分析系统上。

(四)数据处理及分析系统

该系统是对采集后的数据进行预处理且分析,为后续系统的基础。该系统是由软件系统组成,在现场工控机上运行,为专家评估系统奠定坚实的基础平台,是后续工作提供可靠的依据。

二、数据采集系统的设计

在光纤数据采集系统中,首先运用了多线程技术,以保证数据采集、实时显示界面和数据存储同时进行;其次,运用数据安全队列来保护线程之间数据安全传递的同时,还要使采集到得数据可以在最快的时间内得到显示,最后在VS平台下实现数据采集系统程序,由于VS库函数和空间丰富,编程环境界面友好,使得软件不仅界面漂亮,而且开发难度大大的降低。数据采集的流程图3-5所示。

在基于光纤光栅数据采集系统中,为了使数据采集、储存和实时显示同时进行,必须采用多线程技术。此外,还可以采用数据安全队列使采集到的数据能够在最快时间实现显示并能够保护线程之间数据的安全传递。由于VS平台下库函数和空间丰富、界面友好,采用VS平台实现数据采集系统程序可以使开发难度大大降低且软件界面漂亮。数据采集的流程图如图2所示。

三、数据采集系统的程序实现

随着社会的发展,大型桥梁的安全问题越来越受到人们的重视,为了保证桥梁运行的安全性、可靠性及耐久性等,研究表明,得到科学管理的桥梁有着更好的安全性以及耐用性,桥梁健康监测系统已经是桥梁建设中不可少的一部分,数据采集系统则是整个监测系统的基石。对于桥梁健康监测来说,传感器具有数量大、种类多,信号采集的储存实时性高等要求,这样对于数据采集和处理系统有较高要求。本文以武汉某大型斜拉桥为例,研究基于光纤光栅的数据采集系统的软件设计及具体实现。

根据要求,传感器数据采集系统能够提供监测数据。以某斜拉桥为例的健康监测系统中,系统采用光纤光栅应力传感器、光纤光栅温度传感器、光纤光栅位移传感器、压电式低频加速度传感器等等监测斜拉桥应力、温度等参数。本文主要针对的是光纤光栅型传感器,将采集到的光信号通过光缆传输后经过解调仪解调,最后通过网口对解调仪采集到数字信号存入数据库中,为后续监测系统做准备。

光纤光栅解调仪具有以太网接口,根据实际需要进行网络编程,实现网络程序有很多种方式,Windows Socket是其中比较简单的方法。本系统监测对象比较多并且要求系统实时性高,多线程技术可以满足系统要求,它支持系统一个进程中执行多个线程,多个操作可以在不同线程中同时进行。光信号经解调仪传输后是字节流,可以使用memmove函数对字节流进行分解处理。

(一)光纤光栅传感器的配置

数据采集方案的确定和传输方式的选择一般是根据传感器空间分布情况确定的。斜拉桥的跨度比较大,一般为几百米到几千米,桥上敷设的传感器的数量种类也特别多,这个时候为了减少信号在传输中受到干扰、衰减失真等情况,首先要对传感器进行配置,再选择合适的数据采集方案和传输方式。

数据采集之前要确定传感器的总数、解调仪的数量、所需通道数、采样频率和存储频率等各方面信息。传感器的总数决定了数据传输设备的数量和数据的传输方式。传感器的采样频率是由数据处理系统对数据的要求以及数据本身的动态特性决定的。在进行传感器配置的时,采取四层结构,采用树形控件,应用如图3所示。第一层是光纤光栅系统,第二层是光纤光栅解调仪,第三层是通道,第四层是传感器。在数据采集系统首次运行时要进行初始配置,这样才能提高系统的运行速率。传感器配置有两种方式,一种是在界面进行配置,第二种是修改配置文件的内容。开始配置时首先将配置信息显示在界面上,对界面进行配置,然后将数据写入数据库。

界面的配置步骤为:光纤系统总配置、光纤光栅解调仪配置、通道配置、传感器配置。将每一个配置的传感器编号,通过传感器编号可以查询具体信息。比如:传感器的名称、类别、位置、初始应变、报警上限、报警下限、标定系数、标定斜率、是否要温度补偿、基准波长、标定波长、所属的解调仪和通道数等信息。

(二)网口采集

武汉某斜拉桥健康监测系统需采集的信号数量大、实时性高、处理较复杂。数据采集系统负责将光纤光栅解调仪的信号通过网口以后,进行数据的采集、分析、转化为相应数据储存,为后续的数据分析处理以及安全评估提供可靠地实时数据。本系统是采用开放式Windows系统平台,软件开发环境为Visual Studio 2005,把任务分成几个独立的线程,使用多线程方式,这样就能够保证数据采集的实时性,用户其他操作也能及时响应,这样提高了利用率和程序的运行效率。

光纤光栅解调仪主要作用是把光纤光栅中心波长解调出来,解调的机理有很多,本系统采用的解调原理是基于F―P滤波器的原理,基于网口的数据采集技术较成熟,解调仪的通信协议为UDP协议,传输速率要求能够完全满足系统要求。

对于UDP无连接的数据报服务,客户机给服务机发送一个含有地址的数据报,客户机和服务器并没有建立连接。服务器是通过调用Recvfrom()等待客户端数据。基于UDP的socket编程思路为:首先创建套接字(socket),然后将套接字绑定到一个本地端口和地址上,等待接收的数据,最后关闭socket。

根据实际情况开发服务端软件基于UDP的,UDP能够提供端口机制便于UDP用户使用。UDP长度中包括UDP本身长度、源端口、目的端口、用户数据和UDP校验等。实际开发,端口号为5000,首先使用“ping”命令判断测试网络是否连通,原理为发送UDP数据包给对方主机,对方主机回复是否收到数据报,如果回复及时,则网络已经连接,软件流程如下图4所示。

四、小结

光纤光栅传感器使用越来越普遍,本文介绍基于光纤光栅传感器的数据采集监测系统的组成,对数据采集系统进行软件设计和介绍基于网络的数据采集的关键技术,最后对数据采集系统进行实例应用。

参考文献:

篇6

中图分类号: TN 911.74文献标志码: Adoi: 10.3969/j.issn.10055630.2014.01.009

引言

随着科技的发展,安全防范的重要性越显突出。一些重要的保密部门、军事要地、银行、机场等对大范围、长距离、高可靠性的安防技术的需求越来越显著。目前,已有大量的光纤传感技术应用于安防系统,其特点是抗干扰性强、可靠性高,隐蔽性好、可防探测,易于安装和维护[12]。

在实际应用中,常常会遇到需要对多个对象进行监测,而一个被监测对象需要对应一套光纤传感结构,这不仅大大提高了整个监测系统的成本,而且系统的复杂程度也逐级上升,给维护也带来了很大的困难[3]。为了解决上述问题,通常采用复用的方法,来达到简化系统,降低成本,易于维护的目的。

1背景技术

在光纤传感所采用的复用技术中,相位载波复用是较常采用的技术,即通过相位载波复用,使不同的感应单元复用共同的光源、光纤光路以及光电探测器等。这种复用方法,如文献[45]所描述,通过对不同的感应单元施以不同频率的相位载波进行调制,每个载波频率对应于一个感应单元,各感应单元产生的干涉信号被共同的光电探测器检测。为了实现复用与解复用的目的,上述的相位载波复用技术一般具有以下特征:

(1)为了使复用的信号不发生混叠,相邻载波频率之间的频率差必须大于外界扰动引起的信号基波频率上限的两倍;

(2)对于光电探测器后的信号,通过信号处理技术,采用载波基波或谐波作为参考信号,对载波基波或谐波边带信号进行处理,以达到将干涉信号解调出来的目的。

在该技术中,由于对相邻频率的间隔要求,同时为了使不同载波的基波、谐波频率不发生混叠,使得调制频率的选择受到较多限制,由此会影响到实际复用的数量;同时,为了使复用的数量足够大,对调制器件的工作点要求可能会很分散,并要求调制器件具有高的工作频率,这不利于实际应用。在信号的解调中,如引入信号处理技术,会增加信号处理部分的技术难度和技术复杂性,并大大提高后端的开发成本和设备成本。

在光纤传感系统的许多实际应用场合,两个事件完全同时发生的概率很小,即两个感应单元同时感应到信号的可能性很小。针对这种情况,本文提出一种新型的基于相位载波复用技术的光纤传感复用方法。在光纤干涉系统中,对感应外界扰动的不同感应光纤单元产生的干涉信号,用不同频率的载波进行调制,相邻载波频率之间的频率差无需大于外界扰动引起的信号基波频率上限的两倍,各光纤感应单元形成的信号被共同的光电探测器检测后,利用信号基波来分析扰动信号的物理量,并利用载波基波或谐波的边带判断感应扰动信号的光纤。

由于每次扰动事件只发生在一个感应单元,即只有一个感应单元感应到扰动信号,设该单元为第i个感应单元,从式(4)可以看出,调制频率fmj(j≠i)的基波和谐波将不会出现边带,而调制频率fmi的基波和谐波则出现边带,根据这一特点即可判断感应扰动的感应单元。由于仅需观察是否出现边带,仅需相邻的调制频率有一定的间隔,不影响边带判断即可,不需要传统的相位载波复用方案那样要求具有两倍于基波最大频率的要求。图1为i单元发生扰动时的频谱示示意,在该图中,载波频率fmi出现了明显的边带,说明感应信号来自于感应单元i。对于出现边带的载波频率的确定,利用一些便捷的分析手段,例如边带的能量、谱线的对称性等,即可实现;信号基波则可用来恢复干涉信号。

由于仅用信号基波来恢复干涉信号信息,无需像传统相位载波复用那样用载波基波或谐波作为参考信号来解调干涉信号,相应的信号处理手段简单,由于这个特点,也可以很方便地应用于施加载波的调制端远离解调端的情况下(例如图3的结构中),而无需将调制信号引回解调端或在解调端恢复出解调所用的参考信号。

3数据分析

本文采用的是图2的结构。所使用的第一耦合器1为3×3均分耦合器,第二耦合器2为2×2耦合器,有2个复用的感应单元:4(1)、4(2),使用的是光缆中的一芯,相应的光缆长度分别为21 km、14 km。光源为中国电子科技集团公司第44所生产的SO3B型超辐射发光管(SLD)型稳定光源。光纤延迟器3使用的是美国 “康宁”生产的G652型单模光纤,光电检测装置8中使用的光电探测器为中国电子科技集团公司第44所生产的型号为GT322C500的InGaAs光电探测器。使用的相位调制器是将光纤绕在压电陶瓷上制作而成。经测试,信号基波的最高频率小于80 kHz,施加在相位调制器7(1)、7(2)上的频率分别为100 kHz、110 kHz。低通滤波器9的带宽为80 kHz,从光电检测装置8输出的信号经低通滤波器输出的信号,经信号采集卡采样后,进行扰动位置以及扰动性质的判断。同时,对光电检测装置8输出的信号进行采样,对载波基波的边带,即频率100 kHz、110 kHz的边带进行分析,即可判断扰动来自那根感应光纤。系统中所使用的采集卡为NI公司产品。

当敲击加有100 kHz载波频率的传感光纤时,所得到的的信号依次如下,图4(a)为加载波后信号波形。图4(b)为其频谱图,可以看到,100 kHz左右的边带有信号,而110 kHz左右边带比较干净,所以可以判定敲击信号是加在100 kHz所在的传感光纤上的。图4(c)为经过80 kHz低通滤波器后得到的振动信号。

当敲击加有110 kHz载波频率的传感光纤时,所得到的信号依次如下,图5(a)为加载波后信号波形。图5(b)为其频谱图,可以看到,110 kHz左右的边带有信号,而100 kHz左右边带比较干净,所以可以判定敲击信号是加在110 kHz所在的传感光纤上的。图5(c)为经过80 kHz低通滤波器后得到的振动信号。

由以上数据分析可以看出,可以用载波基波或谐波的边带来判断信号发生的感应单元,可以通过低通滤波器解调出相应的线路上的信号。

4结论

本论文使用载波基波或谐波的边带来判断信号发生的感应单元,这种判断方法简单易行,系统结构简化。本方法的另一优点是相邻载波的频率差无需大于信号基波的频率上限的两倍,这方便了载波频率的选取以及相位调制器件的选择,也使得复用单元的数量更大。

参考文献:

[1]JUAREZ J C,MAIER E W,CHOI K N,et al.Distributed fiber optic intrusion sensor system[J].Lightwave Technology,2005,23(6):20812087.

[2]潘岳,王健.双马赫曾德尔型干涉仪定位技术研究[J].光学仪器,2012,34(3):5459.

[3]DAKIN J P.Distributed optical fiber sensors[J].Proc SPIE,1992,1797:76108.

篇7

中图分类号:TN818 文献标识码:A 文章编号:1009-914X(2015)15-0122-02

0 引言

厂区安全,逐渐变成人们关注的焦点。为了保证一个厂区的周边安全,往往需要安排大量的安防人员进行定时定期的巡检,此种方法不但复杂而且消耗大量的人力物力,无法实时监测厂区安全状态和及时发现厂区的入侵破坏行为。而随着科技的发展,人们开始将光纤传感技术应用于厂区周界的安全防护上,由此一些公司开始研发周界安防产品,与其它周界防护方法来说该系统有着无法比拟的优势。

振动光缆周界防护系统是新一代信息化安全预警系统,采用光缆作为传感器件,无论是通过对光纤的直接接触,还是通过承载物间接接触,都将引起光缆的扰动。当光缆产生振动后,系统从光缆中采集扰动数据,进行分析处理,处理后交给后端服务程序进行智能识别(智能识别可以判断出不同的外部干扰类型,报警程序可根据智能识别结果实现系统预警或实时告警功能,从而达到对设防区域进行入侵监测的目的。该系统以光纤作为传感单元,可实现高灵敏、长距离,大范围的周界防护,非常适合于厂区周边的入侵防范应用。

本文采用M-Z干涉技术,结合实际应用条件,实现了一种振动光缆周界防护系统。系统结合厂区周界防护环境和综合信息平台,实现对厂区的实时监控,实现厂区安全的监测预警,避免恶意入侵行为的发生。

1 系统原理

系统采用在监测区域铺设光缆作为振动光缆的探测设备,对监测区域环境的振动信息进行连续的分布式的监测,并根据振动信息的异常点处激光信息正反向传输达到振动设备主机的时间差值,进行振动异常点定位。

振动光缆周界防护系统是基于M-Z干涉技术为基础进行设计。由激光器发出连续激光,经过耦合器1分为两束,分别进行顺时针方向传输和逆时针方向传输。顺时针方向直接进入到耦合器2和耦合器4搭建的M-Z干涉仪中感受外界振动信息,经耦合器3输出被探测器2探测到;逆时针方向经过耦合器3,进入到耦合器4和耦合器2搭建的M-Z干涉仪中感受外界振动信息,耦合器2直接输出被探测器1探测到。

M-Z干涉仪分为信号臂和参考臂,信号臂主要用于感受外界振动信息,参考臂提供相位参考值作为相位变换对比。由干涉原理可知同频率同振动方向的两束光波发生干涉时,该点干涉的光强为:

式中,、分别为发生干涉的两束光的初始光强,为两束光之间的初始相位差。光通过耦合器进入干涉仪两臂传输后再发生干涉。此时发生干涉的两束光的相位差可以看作是由于两条光纤臂本身光程不对称等原因造成的初始相位差,压力作用造成的相位差,以及应变导致光纤长度变化产生的相位差三者的迭加。即:

由于通过光电探测器可以探测到光强,而初始相位差是一个定值,因此光强的变化只与后面两项所表示的相位差和的变化有关,所以在测得光强的变化后可以得出两束光的相位差的变化。通过对相位差的分析,就能得到作用在干涉臂上的振动压力的情况。

系统的定位算法,是通过检测两路携带相同振动信息的干涉信号分别被两个探测器探测的时延差而进行定位的,其计算公式如下:

其中X为振动信号到达监测主机的光缆长度;L为3芯传感光缆的长度;ν为光在光纤中传输的速度;Δt为两个探测器探测到信号的时延差。

时延的计算可通过正反两个光路的光信号的互相关函数求取。假设两端信号为:

其中,分别为两个探测器检测到的信号,为管道的振动信号,为噪声,为比例系数,为两个信号之间的时延。

通常是互不相关的平稳随即过程,则两探测器信号的互相关函数为:

互相关函数中,时,会出现峰值。确定获得最大值所对应的值,可确定两个测试信号之间的时间差。

2 系统架构和功能

振动光缆周界防护系统根据设备安装和使用环境分为中央控制室和工业园区两部分。整个系统架构如图2所示。

中央控制室主要包含主机、报警器、中心数据库和监控显示端;工业园区主要包括传感光缆和光模块。

系统主要通过传感光缆感受到外部振动信息,并将信息传送给主机进行分析判断,主机针对探测信息进行相位信息变化判断。当有非法入侵产生时,相位信息会产生特殊变化,结合智能识别算法进行相位信息变化判断,排除环境干扰信号影响因素,确定出非法入侵的特性并确定出准确位置。

系统探测到非法入侵的报警信息,通过局域网传输给综合信息平台进行报警界面显示和报警器、摄像头等设备联动;同时也将报警信息存储到中心数据库,用于报警信息查询、分析和处理。

振动光缆周界防护系统根据组网可包含如下软件平台,分别为监控平台、控制平台和数据处理平台,三个平台相互连接形成三级管理体系。

信号处理平台主要实现对探测区域的振动信号进行实时检测,并实现光信号到微弱电流信号、微弱电流信号到电压信号的转换,完成信号的提取,并对转换后的信号进行预处理;对采集的不同振动信号滤除环境干扰信号,进行特征向量提取,根据信号持续的时间长度、振动强度、光学相位变化趋势和信号的频谱等特征进行分类学习;对非法入侵事件根据时延差进行定位计算。

控制平台起到连接信号处理平台和监控平台的桥梁,将信号处理平台的报警信息数据上传给监控平台;同时能够对数据处理参数和区域进行调整,保证报警信息真实有效。

监控平台根据现场情况自主定制图形化操作界面,便于用户操作和报警查看,以生动的图像形式向用户展现报警信息;支持报警历史记录管理、记录、查询,提供短信、邮件报警通知,提供胁迫密码报警功能;可提供联动视频、声光报警器等外部报警器等功能。

3 应用研究

在某工业园进行应用,工业园总长度约为7050米,为保证人为入侵能够准确被测量到,采用振幅为1米的正弦波光缆铺设方式,该方式铺设,光缆使用长度约为工业园总长度的2倍,同时为了维修方便,在部分位置留有预留光缆,铺设光缆总长度为20000米。采用光缆为4芯直埋光缆,留有1芯作为备用芯。

振动光缆铺设一共分为4层,自底层往上依次为底层土工布、格栅(光缆固定于格栅上)、上层土工布、草坪。其铺设示意图如图3所示。

图3 铺设示意图

底层土工布为可渗水土工布,位于最底层,深度约为5厘米,土工布上摆放格栅,选用尼龙扎带将光缆绑扎在格栅上,每30厘米作为一共绑扎点,正弦铺设宽度约为1米,放置好格栅和光缆后,铺设上层可渗水土工布,并覆盖上约为3厘米土壤,最后将绿化草坪铺设于上部,进行隐蔽布置。

在该种铺设条件下,进行不同体重的人为走动、翻墙跳跃等不同方式的模拟入侵,系统能够及时探测到,并联动声光报警器进行报警提示,同时监控端构图界面对应位置颜色发生变化,且显示报警信息;经过几百次模拟入侵,系统能够准确报警定位,定位平均误差小于15米;系统误报率极低,完全可以满足需求,可有效实现周界安全的防护和监控。

4 结论

振动光缆周界防护系统可以有效的监测厂区周围的各种入侵行为,并且可以联动视频对现场的情况进行拍照取证。警务人员接到报警后立即出警,避免的复杂的巡检工作,节省了人力物力。

目前该系统已经应用于安全防护项目中,根据现场使用情况来看,该系统具有较高的灵敏度和定位精度,系统通过与人防的紧密结合,实现了人防联动,防护厂区安全等方面发挥了举足轻重的作用,有效地保护了厂区的安全,保证了生产工作的顺利进行,为厂区的发展做出了贡献。

参考文献

[1] 张治国;张民;叶培大 基于线型腔拉曼光纤激光器的长距离光纤布拉格光栅传感[期刊论文]-中国激光2006(08)

[2] Jianzhong Gao;Zhuangde Jiang;Yulong Zhao Full distributed fiber optical sensor for intrusion detection in application to buried pipelines[外文期刊] 2005(11)

篇8

科技创新作为高校创新的重要内容,既是高校提高人才培养质量的关键,也是高校加快发展的主要动力和源泉,更是提高教师队伍整体素质和水平的重要手段。加强高校科技创新工作,对于提高高校创新能力和综合实力,促进高校持续、稳定、协调、科学发展具有重要意义。

西安石油大学在国家“十五”科技工作方针指导下,结合学校实际,以特色求生存,以创新求发展,深入实施科技精品工程,以制度创新为总抓手,通过优化管理体制机制,营造科研良好环境,发挥重大项目作用,加大科技奖励力度,规范科技评价体系,扩大学术交流范围等举措,充分调动全校教师投身科技创新的积极性、主动性和自觉性,使学校科技创新工作实现持续健康发展。

1 优化管理体制机制,构筑科技创新基地

创新基地包括各级重点实验室、工程技术研究中心和人文社会科学重点研究基地。创新基地建设是提高科技创新能力的重要手段,是进行科研工作的基础和保证,是汇聚科技人才的根本途径。对创新基地建设而言,完善的科技管理体制和运行机制是根本保证。为此,学校坚持与时俱进,不断创新科技管理制度,建立有利于发挥创新基地学术环境优势,有利于学科交叉、队伍整合和资源共享,有利于调动科技人员积极性,有利于优秀拔尖人才脱颖而出的科技管理体制和运行激励机制。经过广泛调研和科学论证,相继制定了“重点实验室管理办法”、“工程技术研究中心管理办法”、“人文社会科学重点研究基地管理办法”等制度。同时学校也自筹资金7000多万元用于基地建设,使得制度的导向和引领作用更加凸显。学校紧跟国家创新体系建设、西部大开发、陕西建设西部强省的步伐,抢抓机遇,充分发挥石油石化主干学科优势、人才优势、成果优势,突出特色研究方向,通过资源整合、加强条件建设、技术装备改造、增建实验室等举措,使创新基地得到快速发展。目前学校已拥有2个联合建设的国家工程实验室,1个省部共建教育部重点实验室,8个省部级重点实验室,7个省级工程技术和研究中心,1个省部级人文社会科学重点研究基地。

2 营造良好科研环境,推进创新人才培养

高校由于“扩招”导致教师缺编严重,使得青年教师过早地担负起教学科研的重任。据调查,全校40岁以下的青年教师占整个教师队伍的三分之二左右。青年教师以后要成为学校教学和科研的主力,但是他们普遍缺乏系统的科研训练,能力和经验也都不足,也缺乏科研启动资金。为此,学校专门制定了《科技创新基金管理办法》,引导和资助青年教师开展科学研究工作。同时对获得博士学位的教师,学校也给与科研启动金,资助他们开展科学研究、参加学术交流。近几年学校共投入200多万元,资助了200多位青年教师,占青年教师总数的三成以上。青年教师的科学研究能力得到了锻炼和提高,他们中的许多人已快速成长为学校教学科研的骨干。

3 发挥重大项目作用,凝聚科技创新团队

科技创新团队的建设是高校教学、科研和学科建设的重要保障。要建设一流高校,必须要有一批素质优良、结构合理、专兼结合、相对稳定的创新团队。国家中长期科学和技术发展纲要指出:“争取政府资源是高校自身发展的需要,也是高校科技创新实力的集中展现。高校围绕国家目标开展创新活动,可以不断提高自身创新能力和学术地位,促进高质量人才的培养,促进科技创新团队的形成。”目前,许多高校都存在科研团队整体素质不高、队伍不稳定的现象。针对国家级科研目标开展科技攻关,进行学科交叉,可以稳定科技队伍,凝聚科技创新团队,改变这种现状。

为了激励教师积极争取和承担国家、省部级科研项目,同时保障高层次科研项目的顺利实施,制定了《纵向科研项目经费资助办法》。学校组织各学科技术骨干组成科研团队,积极申请国家自科基金、社科基金、国家科技支撑计划、国家“863”计划及各省市设立的重大科技项目,以重大科技项目为载体凝聚科技力量,培育科技精品。几年来,学校投入配套资金400多万元,极大地促进了科学研究工作的发展。对加强科技团队建设,稳定学术队伍,坚持自身特色,形成新的科研方向起到了重要作用。近五年,学校主持和参加国家“863”计划项目9项,参加国家“973”计划项目5项,主持和参加国家科技支撑计划项目9项,主持和参加国家自然科学基金项目17项。主持国家社会科学基金项目3项。其中,我校承担的国家“863”计划“旋转导向可控偏心器工程化技术研究”项目,经费达1500万元,是建校以来第一个经费突破千万元的科研项目。学校科研经费大幅度增长,由2003年的3100多万元增加到2008年的1亿多元,年均增幅达30%以上。通过重大项目形成了多个稳定的科研方向,凝聚了多支科研团队。比较典型的是“光纤光栅传感技术研究”创新团队,取得了多项创新成果,获得了2008年“全国五一劳动奖状”。

4 加大科技奖励力度,催生科技创新成果

学校革新科技奖励办法,拓展授奖范围,加大奖励力度,制定了《科技奖励办法》。对高水平的理论和技术成果进行奖励,对省部级以上的科技项目、获省部级以上奖励的科技成果、获授权的专利技术、高水平的论文、经费数额较大的横向科研项目进行奖励。奖励以工资或现金形式兑现,几年来共发放奖金300多万元。此项制度在教师中反响很大,极大地鼓舞了大家的创新热情,也调动了更多的教师,特别是中青年教师的科研积极性,使得学校科技工作呈现出了“长江后浪推前浪,一浪更比一浪强”的可喜局面,有力地促进了学科建设和科技创新工作的跨越式发展。

近几年学校主持完成的“气田污水综合处理与防腐阻垢技术”、“油气管线分布式光纤光栅智能传感系统研究”等4项成果荣获陕西省科学技术奖一等奖,“高温高压分布式光纤光栅传感技术”成果荣获2007年度国家技术发明二等奖,此外学校还获得了130多项各级科技奖励。近五年6000余篇、被SCI、EI、ISTP收录近500篇,出版学术专著100多部。

5 规范科技评价体系,激励教师创新热情

高校近年来存在单纯以论文数量考核教师的现象,导致大量低水平重复的论文出现。学校为此制定了《权威期刊、核心期刊认定办法》,从自然科学到人文社会科学,从国内核心期刊到国外核心期刊,从不同角度规范和引导教师通过科技创新和长期积累,发表高质量、高水平的学术论文,促进学校科技创新工作再上新台阶。

学校的科技评价体系是引导教师进行科技创新的指挥棒。在强化科技业绩考核的同时,一定要处理好数量指标与质量指标的关系。学校制定了《教师科技工作业绩与成果量化计算办法》,与学校的其他科技管理制度一起,形成了科技评价体系。此办法的实施使得学校科技成果认定更加公平合理。科技工作业绩评价更加科学规范,形成了积极有效的激励机制,教师的科技创新热情进一步高涨。仅2008年一年就申请发明专利20多项,超过了学校前十年申请量的总和。

6 扩大学术交流范围,增强学校学术影响

篇9

能预报还是不能预报?

1997年,美国加利福尼亚大学洛杉矶分校的4名学者联名在《科学》杂志发表了《地震无法被预测》的论文。论文作者指出,在经历了近30年的精心研究地震预报后,他们发现,地震是无法预报的,从事这方面的研究工作也是毫无希望的。

如果说,这篇论文的观点还只是学术界内部探讨的话题和争论,到了2008年,美国地质勘探局(USGS)对此问题的一项正式表态,就把地震不能预报的结论扩展到了社会和公众层面。

美国地质勘探局称,无论是美国地质调查局还是美国加州理工学院或者任何其他科学机构,都没有预报过一次大地震。在可预见的未来他们不知道如何预报地震,并且也不打算知道。不过,借助科学数据,科学家可以计算出未来将发生地震的可能性。比如,科学家预测在未来30年内,旧金山湾区发生一次重大地震的概率为67%,而南加利福尼亚的概率是60%。所以,美国地质勘探局致力于通过提高基础设施的安全等级来长期减弱地震的危害性,而不是把精力放在研究短期预报上。

正因为如此,美国没有设立专门的地震局,政府负责地震预报预测研究工作的部门主要是美国地质勘探局。除了地震之外,他们还对龙卷风、热飓风、火山爆发等自然灾害进行研究。

尽管地震尚不可预报是美国主流科学界的观点,也得到世界大多数国家,包括中国一些科学家的认同,不过,并不意味着所有科学家都认同这种观点。中国老一辈地质科学家,如李四光认为地震可以预报(据说1971年李四光临终前遗憾地说,再给他半年,可能解决地震预报问题)。

事实上,中国曾经成功预报过一次大地震,即1975年2月4日发生在海城的7.3级强烈地震。这次地震是在地震部门预报两个半小时后发生的。由于预报准确,人们撤离及时,海城地震极大减少了死亡人数。我国未实现预报的7级以上大地震,如邢台地震、通海地震、唐山地震的人员伤亡率分别为14%、13%、18.4%。按这三次地震的人员伤亡率平均值估算,海城地震人员伤亡将达15万,死亡可达5万以上。但由于成功了短临预报,海城总共伤亡18308人,死亡328人。

从这个事实出发,有人认为地震是可以预报的。

客观上有很多难以克服的障碍

中国海城地震预报是得到国际上承认的唯一一次成功的短临预报。但是,就在人们以为海城地震预报模式可以推广之时,1976年的唐山大地震却没有预报成功,这是因为地震的成因、发生机理和触发条件等非常复杂多变。所以,《美国地震协会公告》曾评价说,“海城地震的预测,是结合了经验主义分析、直觉判断和好运气,这是预测地震的一次尝试。”

地震的难以预报体现在许多方面,主要有几点。首先是,地球内部的情况难以知晓。地震多数发生在地下15公里以下的地壳里,这次的芦山地震也是发生在离地表16公里处。目前人类对于地壳的研究只能通过钻机钻至地下12公里,远远做不到直接观察到地震孕育发生的全过程,只能在地表凭借有限的仪器设备捕捉地壳内部结构和状态变化的间接信息。其次,人类对地质观察的知识和数据积累并不全面和系统,人类掌握的地震记录和数据并不多。第三,人类对地球构造运动的理论还不成熟,认识才刚刚开始。即便有一些经验和知识,也是此一时的知识和经验,不能用于彼时,如海城的经验无法用于唐山地震,也不可能完全应用于今天的汶川和芦山地震。地质研究人员认为,从地质学的角度考虑,作为一种地质现象,地震发生前一定会有许多前兆,对地震前兆掌握得不够多、不够准,是目前我们无法预报地震的核心问题。

现在不能预报,将来能预报吗?

中国有一些研究人员认为,对于地震来讲,现在不可知是正确的。未来不可知,那就是错误的。未来有多远,则要看研究人员的探索。

自1966年邢台地震以来,中国已在70多次中强以上地震前记录到1000多条地震前兆异常,可归为10大类,即地震学、地壳形变、重力地磁、地电、水文地球化学、地下流体(水、汽、气、油)动态、应力应变、气象异常以及宏观前兆现象。

而近几年,专业人员提出了一些新的监测地震的技术和方法,如光纤传感技术、电磁波、次声波、地应力、大地微动等。

比如,光纤传感器可埋入温度高达250℃以上的地层深处,可用于检测地震波、地质板块内部应力、温度、位移和倾斜、地下流体压力、地下磁场等地下物理量的动态变化。一旦在地震带附近建立起永久的可以监测地震的光纤传感器网络,就可以及时地监测地下的异常情况,对可能发生的地震发出预报或预警。

以往大量的地震都发现,震前电磁前兆是客观存在的。当然,电磁波前兆变化复杂,不同地震前地磁波异常有差异性,使人们目前对电磁前兆现象的物理解释仍无统一定论,但通过长期的实际观测,研究人员在资料分析、信息识别和提取方面也取得了一些认识,认为电磁前兆对预测地震,特别是短临预测有一定的意义。

地震预报未来是否能有突破,谁也没有答案。但是正如法布尔所说:不管我们的照明灯烛把光线投射多远,照明圈外依然死死围挡着黑暗。就让我们从一个点到另一个点移动我们的提灯吧。随着一小片一小片的面目被认识清楚,人们最终也许能将整个画面的某个局部拼制出来。

延伸阅读

地震不能预报但能预警

虽然目前地震预报被视为是不可能的,但是地震预警则是可能的。地震预报与预警的区别在于,前者是地震未发生前进行的预测,后者是在地震发生后的预警。

现在,中国、墨西哥和日本等一些国家都能对地震进行预警。地震发生时,一般是破坏力较小但速度较快的地震纵波先活动,接着就是破坏力大但速度慢的地震横波活动。纵波的传播速度大约6公里/秒,但震动相对较小;横波传播速度大约4公里/秒,但破坏力大,是大地震时的主要杀手。利用震中附近监测仪器捕捉到地震纵波后,快速估算地震参数并预测地震对周边地区的影响,抢在破坏性横波到达震中周边地区之前,通过通讯和媒体预测地震强度和到达时间的预警信息,人们可以得到几秒到十几秒的宝贵逃生时间,可减轻人员伤亡和灾害损失。

篇10

中图分类号:C913文献标识码: A

交通工程学科是研究交通发生、发展、分布运行与停驻规律,探讨交通调查、规划、设计、监控、营运、管理、安全的理论方法以及有关设施、装备、法律和法规,协调道路交通中人、车、路与环境之间的相互关系,使道路交通更加安全、高效、快捷、舒适、方便、经济的一门工程技术学科。

交通学科中的道路运输系统是有人、车、路、环境等几个要素组成的一个系统的、动态的、复杂的系统。

一、交通工程学科面临的问题

城市交通的拥堵问题是目前以及今后相当长的一段时间内交通工程学科必须应对的问题。探讨城市的交通拥堵问题,至少需要涉及的学科有系统工程、城市规划、土地利用规划、经济学、行为心理学、社会学、公共政策学、管理学等。跨学科的研究方法有移植、渗透与融合等,关键是如何将其应用于城市交通问题。

随着计算机技术、信息传感技术的飞速发展,智能交通系统应运而生。智能交通系统于90年代至21世纪初被引入交通工程领域,重点研究交通系统的智能化,并逐渐成为解决交通工程关键问题的主要方法。

二、智能交通系统的定义和组成

智能交通系统(Intelligent Transportation System, ITS)定义为:在比较完善的基础设施之上,将先进的信息技术、通信技术、控制技术、传感技术和系统综合技术有效的集成,并应用于地面运输系统,从而建立起大范围内发挥作用的、实时、准确、高效的地面运输系统。

智能交通系统按照组成部分来划分,主要包括如下几方面:

(1)交通检测技术:通过感应圈、红外、微波、闭路电视摄像、卫星定位技术,对交通车辆、道路进行检测,收集交通数据和图像信息;

(2)交通控制技术:包括先进的交通信号系统,匝道信号控制、信号灯控制等技术;

(3)通讯技术:包括高密度波分复用技术,光纤传输及接入技术,无线传输技术等;

(4)数据处理:车流数据、收费数据、监控信息数据等数据的处理;

(5)信息提供:提供出行信息,如交通状况、最佳行车路线等;

三、智能交通系统体系的主要功能

(1)信息采集:综合交通信息平台提供与各应用系统之间的通信联接和数据接口,从各应用系统中提取各类相关信息,用于后续的信息处理和信息服务。所提取的信息通常不是各应用系统的原始信息,而是经过各系统处理后的二次信息。这样一方面能减少平台信息处理的工作量,另外也能节省信息存储空间。

目前在交通工程领域采集数据主要利用传感技术,具体如下:

利用红外线,超声波,微波雷达,感应圈等传感器,对通过道路某一点的车辆,其数量、大小、重量、速度等进行统计分析。

利用浮动车系统,可以通过安装有GPS(全球定位系统)的公交车或计程车了解到该车辆通过某路段的时间速度,从而在一定程度上间接地推测出当前路面的交通状况。但是由于所获取的交通数据,其采样精度及密度均受制于有限的GPS设备,且无法获得浮动车以外其他车辆、行人等的交通数据,该技术对于微观交通行为的分析、管理优化,存在一定的局限性。

利用可见光摄像机,红外线摄像机等视频传感器,不仅能够对路段上车辆的通行状况,比如通过数量、大小、速度、颜色、车牌号等进行定量地统计,同时能够对某些特定行为,比如闯红灯、倒车、转弯, 交通事故等在一定程度上进行自动检测。特别是利用视频数据可以对这些特定行为的前因后果进行分析。

激光扫描仪是一种新兴的传感器。与视频等技术相比,激光测距扫描仪及其应用技术还大多处于研发阶段。

(2)信息处理:采用分类、统计、关联、序列分析等方法,将从各应用系统提取的信息进行处理和标准化,生成满足应用系统需要的特定格式的信息。

(3)信息存储:对各类交通信息按照一定的规则和组织方式进行保存,便于数据的查询、更新和维护。信息存储的形式可采用传统的关系型数据库方式,也可以采用数据仓库方式。另外,由于交通信息大多与地理属性有关,因此,利用GIS技术对部分数据进行组织、存储和显示,可以提高数据管理的效率。

(4)信息服务:综合交通信息平台的最终目的是为各应用系统提供其所需要的信息。由于不同的用户和应用系统可以获取或访问的信息各不相同,因此,需要建立完善的数据分层管理和权限管理,对无权获取特定信息的用户进行信息屏蔽,使不同用户既能获得各自所需要的数据,同时确保各应用系统数据交换和共享过程的安全性。

四、智能交通系统的主要构成

1.智能化交通管理系统

智能化交通信号控制系统和智能化交通监控系统,集成起来就构成了先进的交通管理系统的主要部分。

智能化的信号控制系统可以通过设在路上的传感器,检测路段和路口的交通状态,根据路口各个方向以及周围相邻路口的交通状态,改变路口各方向红绿灯信号的持续时间,使得路口的使用效率得以提高。智能化交通监控系统就是为此开发。它包括安装在主要交通干线上的摄像机和传感器(如电磁感应检测器、微波检测器、红外检测器、激光检测器等)、通信和传输系统、交通监控中心(包括数据存储、信息处理与显示、指挥控制等子系统)、信息系统和执行系统等。其功能主要包括:(1)对道路上的交通信息以及与交通相关信息的采集应该是尽量完整和实时的;(2)交通参与者(包括驾驶员、乘客、行人等)、交通管理者、交通工具、道路管理设施之间的信息交换可以做到实时和高效;(3)控制中心对执行系统的控制是强制和高效的(4)交通监控中心计算机系统(包括城市、高速公路的监控中心、运输管理中心等)配备有功能强大的软件和数据库,具备自学习、自适应的能力。

2.电子不停车收费技术

电子不停车收费系统(简称ETC)是智能交通系统中最先投入应用的系统之一,主要应用技术是自动车辆识别技术(英文简称AVI)。使用该种收费方式的用户必须在事前购买专用的电子标签并安装在前挡风玻璃上,当车辆驶入收费区域时,该系统安装在门架上或路侧的微波天线查询车载电子标签中存储的识别信息,如电子标签ID号码、车型、车主等信息,以辨别车辆是否可以通过不停车收费车道。在采用封闭式收费制式的高速公路上,在进入高速公路时,车道天线要向电子标签写入入口车站信息,在离开高速公路时,再读出入口信息以便系统计算通行费。

自动车型分类系统利用装在车道内和车道周围的各种传感器装置来测定通过车辆的类型,并与车载电子标签存储的车型数据进行核对,防止故意换卡违章使用,保障电脑系统按照正确的车型实现收费。

3.基于GPS和GIS的车辆定位与导航技术

GPS(Global positioning System)技术,即全球卫星定位系统技术,是利用分布在高空的多颗人造卫星对地面上的目标进行测定并进行定位和导航,它用于对船舶和飞机及其它飞行物的导航、对地面目标的精确定时和定位、地面和空中的交通管制以及空间和地面的灾害监测等。

GPS可以用于车辆导航,实现的主要功能有:车辆跟踪、航线设计、按计划航线进行导航、查询功能等。车辆导航系统主要由GPS接收机、微处理器、显示器、车辆导航软件和地理信息系统组成。GPS用于车辆运营管理,实现的主要功能有,查询功能、多屏幕,多车辆跟踪功能、指挥与车辆跟踪相结合、报警与意外处理等。

GIS(Geography Transportation System)技术,即地理信息系统,综合了数据库、计算机图形学、地理学、几何学等技术,以地理空间数据为基础,采用地理模型和分析方法,适时提供多种空间和动态的地理信息,从而为存放和管理定位导航信息提供信息服务。GIS用于车辆导航与监控,实现的功能包括,电子地图显示功能、标注当前车位、地物信息分类索引、最佳路径选择、行车路线导航等。

GIS用于道路实网数据和属性数据以分路段的方式和地理坐标联系起来,可以对路面质量、路况和路面维护进行管理,另外也可以对桥梁、隧道及其他各种道路管理设施如信号装置、可变情报板等进行测量和管理,从而保证各项设施正常运转,交通管理和控制措施得以顺利实施。

在基于GPS+GIS的车辆定位与导航技术及应用方面,比较有市场前景的有两个方面。一是终端设备提供;二是增值运营服务。这两者相辅相成,终端设备市场的规模形成,离不开增值运营网络的建成与内容服务的增加,而增值运营服务的提供,最终又需要通过终端设备传递给用户。

目前,在国内增值运营服务这个市场正在逐渐为产业界所关注,但是,从发展的角度来说,目前缺少的是内容提供,而内容提供的瓶颈在于数据收集的手段有限。

五、结论

智能交通系统是随着人类科学技术的进步而不断发展的。同时实践也证明,智能交通系统是缓解现代交通问题的有效手段。随着人类社会进入信息时代,智能交通系统将是现代化交通运输体系的发展方向。

可以预见,智能交通系统的服务功能将更加完善,信息服务将呈现出多元化、个性化和细化发展;技术水平也将越来越高,系统处理、处置水平智能化程度将更高;系统的运营方式也将日趋多样化,系统运营将更加高效经济。

总之,随着智能交通系统的整合速度逐渐加快,多出行方式相关的ITS整合速度也将加快;智能化交通设施将得到逐步的发展;交通信息提供将更倾向于智能化发展水平。

参考文献:

[1]赵晓春. 现代科学跨学科研究的模式探析[J ].中国科技论坛,2008(11).

[2]鲁兴启,王琴. 跨学科研究方法的形成机制研究[J ].系统辩证学学报,2004(4).