同步技术论文模板(10篇)

时间:2023-03-17 18:14:36

导言:作为写作爱好者,不可错过为您精心挑选的10篇同步技术论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

同步技术论文

篇1

网络同步和时钟产生是高速传输系统设计的重要方面。为了通过降低发射和接收错误来提高网络效率,必须使系统的各个阶段都要使用的时钟的质量保持特定的等级。网络标准定义同步网络的体系结构及其在标准接口上的预期性能,以保证传输质量和传输设备的无缝集成。有大量的同步问题,系统设计人员在建立系统体系结构时必须十分清楚。本文论述了时钟恶化的各种来源,如抖动和漂移。本文还讨论了传输系统中时钟恶化的原因和影响,并分析了标准要求,提出了各种实现技巧。

基本概念:抖动和漂移

抖动的一般定义可以是“一个事件对其理想出现的短暂偏离”。在数字传输系统中,抖动被定义为数字信号的重要时刻在时间上偏离其理想位置的短暂变动。重要时刻可以是一个周期为T1的位流的最佳采样时刻。虽然希望各个位在T的整数倍位置出现,但实际上会有所不同。这种脉冲位置调制被认为是一种抖动。这也被称为数字信号的相位噪声。在下图中,实际信号边沿在理想信号边沿附近作周期性移动,演示了周期性抖动的概念。

图1.抖动示意

抖动,不同于相位噪声,它以单位间隔(UI)为单位来表示。一个单位间隔相当于一个信号周期(T),等于360度。假设事件为E,第n次出现表示为tE[n]。则瞬时抖动可以表示为:

一组包括N个抖动测量的峰到峰抖动值使用最小和最大瞬时抖动测量计算如下:

漂移是低频抖动。两者之间的典型划分点为10Hz。抖动和漂移所导致的影响会显现在传输系统的不同但特定的区域。

抖动类型

根据产生原因,抖动可分成两种主要类型:随机抖动和确定性抖动。随机抖动,正如其名,是不可预测的,由随机的噪声影响如热噪声等引起。随机抖动通常发生在数字信号的边沿转换期间,造成随机的区间交叉。毫无疑问,随机抖动具有高斯概率密度函数(PDF),由其均值(μ)和均方根值(rms)(σ)决定。由于高斯函数的尾在均值的两侧无限延伸,瞬时抖动和峰到峰抖动可以是无限值。因此随机抖动通常采用其均方根值来表示和测量。

图2.以高斯概率密度函数表示的随机抖动

对抖动余量来讲,峰到峰抖动比均方根抖动更为有用,因此需要把随机抖动的均方根值转换成峰到峰值。为将均方根抖动转换成峰到峰抖动,定义了随机抖动高斯函数的任意极限(arbitrarylimit)。误码率(BER)是这种转换中的一个有用参数,其假设高斯函数中的瞬时抖动一旦落在其强制极限之外即出现误码。通过下面两个公式,就可以得到均方根抖动到峰到峰抖动的换算。3

由公式可得到下表,表中峰到峰抖动对应不同的BER值。

确定性抖动是有界的,因此可以预测,且具有确定的幅度极限。考虑集成电路(IC)系统,有大量的工艺、器件和系统级因素将会影响确定性抖动。占空比失真(DCD)和脉冲宽度失真(PWD)会造成数字信号的失真,使过零区间偏离理想位置,向上或向下移动。这些失真通常是由信号的上升沿和下降沿之间时序不同而造成。如果非平衡系统中存在地电位漂移、差分输入之间存在电压偏移、信号的上升和下降时间出现变化等,也可能造成这种失真。

图3,总抖动的双模表示

数据相关抖动(DDJ)和符号间干扰(ISI)致使信号具有不同的过零区间电平,导致每种唯一的位型出现不同的信号转换。这也称为模式相关抖动(PDJ)。信号路径的低频截止点和高频带宽将影响DDJ。当信号路径的带宽可与信号的带宽进行比较时,位就会延伸到相邻位时间内,造成符号间干扰(ISI)。低频截止点会使低频器件的信号出现失真,而系统的高频带宽限制将使高频器件性能下降。7

正弦抖动以正弦模式调制信号边沿。这可能是由于供给整个系统的电源或者甚至系统中的其他振荡造成。接地反弹和其他电源变动也可能造成正弦抖动。正弦抖动广泛用于抖动环境的测试和仿真。不相关抖动可能由电源噪声或串扰和其他电磁干扰造成。

考虑抖动对数字信号的影响时,需要将整个确定性抖动和随机抖动考虑在内。确定性抖动和随机抖动的总计结果将产生另外一种概率分布4:双模响应,其中部表示确定性抖动,尾部为高斯响应,表示随机抖动分量。

抖动测量—TIE、MITE和TEDV

时间间隔误差(TIE)是通过对实际时钟间隔的测量和对理想参考时钟同一间隔的测量得到的。在给定时间t,以一个称为观测间隔的时间间隔产生时间T(t)的时钟,其相对于时钟Tref(t)的TIE可通过下面公式表示。(x(t)称为误差函数。)

TIE表示信号中的高频相位噪声,提供了实际时钟的每个周期偏离理想情况的直接信息。TIE用于计算大量统计派生函数如MTIE、TDEV等。

最大时间间隔误差(MTIE)定义为,在一个观测时间(t=nt0)内,一个给定时钟信号相对于一个理想时钟信号的最大峰到峰延迟变化,其中该长度的所有观测时间均在测量周期(T)之内。使用下面公式进行估计:

MTIE是针对时间的缓变或漂移而定义的。当需要分析时钟的长期特性时,就需要对MTIE进行测量。MTIE值是对一个时钟信号的长期稳定性的一种衡量。

图4.TIE的图形表示

TDEV是另外一个统计参数,作为集成时间的函数对一个信号的预期时间变化的测量。DEV也能提供有关信号相位(时间)噪声频谱分量的信息。TIE图中每个点的标准偏差是对一个观测间隔计算的,该观测间隔滑过整个测量时间。该值在整个上述测量时间内进行平均以得到该特定间隔的TDEV值。增大观测间隔,重复测量过程。TDEV是对短期稳定性的一种衡量,在评估时钟振荡器性能时有用。TDEV属于时间单位。

高速传输系统中抖动和漂移的原因

最常用的一种时钟体系结构是,在备板上运行一个低频时钟,在每个传输卡上产生同步的高频时钟。低频时钟在集成电路内或通过分立PLL实现进行倍频以产生高频时钟。通过典型的PLL倍频,倍频后时钟上的相位噪声增大为原来时钟相位噪声的20*log(N)次方,其中N为倍频系数。此外,PLL参考时钟输入上的抖动将延长锁定时间,且当输入抖动过大时高速PLL甚至无法实现锁定。在备板上采用一种更高速的差分时钟将比采用低速单端时钟具有更好的抖动性能。

由于VCO对输入电压变化较为敏感,因此电源噪声是增大时钟抖动的一个主要因素。输出时钟抖动幅度与电源噪声幅度、VCO增益成正比,与噪声频率成反比。因导线电阻形成的电阻下降和因导线电感形成的电感噪声而造成的电源或接地反弹,会对上述输出时钟抖动产生相似的影响。在系统板上对电源进行充分过滤,靠近集成电路电源引脚提供去耦电容,可以确保PLL获得更高的抖动性能。

在系统板内,时钟和数据相互独立,发射和接收端在启动、保持和延迟时间方面的变化对高速率非常关键。因数据和时钟路径中存在不同有源元件而使数据和时钟路径之间出现传播延迟差异,时钟路径之间的接线延迟差异,数据位之间的接线延迟差异,数据和时钟路径之间不同的负载情况,分组长度差异等等,均可能造成上述变化。在规划系统抖动余量时,必须将不同信号路径的变化考虑在内。

当在一段距离上进行传输时,在发射机和接收机中的很多点上存在抖动累积。在发射机物理层实现中,DAC非线性或激光非线性等非线性特性会加重信号失真。在传输介质和接收机中,除了外部乱真源(大多在铜导线中)之外,因不同频率和调制效应而导致的光纤失真、因接收机实现(主要与带宽有关)和时钟提取电路实现而导致的信号相关相位偏离,会加重信号流的抖动。

图5.来自TIE图的MTIE偏差

具体到SDH(同步数字系列)传输,有大量的系统级事件会导致抖动。在将PDH(准同步数字系列)支路映射为SDH帧并通过SDHNE(网络组件)进行传输的典型传输系统中,在PDH支路于SDH的终端多路分配器解映射之前,将在每个中间节点处出现VC(虚拟容器)的重新同步。有间隙的时钟用于将各个支路映射到STM-N帧和从STM-N帧解映射,发出与开销、固定填充和调整位相应的脉冲,因而造成映射抖动。采用调整机会位补偿PDF支路中频率偏移的方法会造成等待时间抖动。还有指针调整机制,用于对来自初始NE的输入VC与本地产生的输出STM-N帧之间的相位波动进行补偿。根据频率偏离,VC在STM-N帧中前后移动。这将使VC提取点看到位流中的突然变化,导致称为指针抖动的类型抖动。所有上述系统级抖动都将加重总的确定性抖动。

尽管所有上述因素都会加重从源到目的地之间信号传播的抖动,标准要求仍然规定在传输点需具有比理论值更低的抖动数值。这样,考虑到时钟倍频、电源变化、电-光-电转换、发射和接收影响以及其他致使实际信号恶化的失真信号的影响,在源处驱动信号的时钟将具有一个相对很低的抖动数值。

抖动对收发器的影响

理想情况下,数字信号是在两个相邻电平转换点的中点进行采样的。抖动之所以会造成误码,是由于相对于理想中点,它改变了信号的边沿转换点。误码可能由于信号流边沿变化太晚(在时间上比理想中点晚0.5UI(单位间隔相当于信号的一个周期))或太早(在时间上比理想中点早0.5UI)所致。当时钟采样边沿在信号流的任何一侧错过0.5UI时,将出现50%的误码概率,假设平均转换密度为0.5。7如果分别知道确定性抖动和随机抖动,可通过上述两个数字和将峰到峰抖动值与均方根抖动值联系在一起的表,来估计误码率。校准抖动,定义为数字信号的最佳采样时刻与从其提取出来的采样时钟之间的短期变化,可以造成上述误码。对于商业应用,源时钟和源发射接口抖动规范将远远低于1UI。

发射接口抖动规范通常与接收端的输入抖动容限相匹配。对于抖动测量回路滤波器截止频率,尤其如此。例如,在SDH系统中,有两种抖动测量带宽,分别规定:一个用于宽带测量滤波器(f1到f4),一个用于高频带测量滤波器(f3到f4)。数值f1指可在线路系统的PLL中使用的输出时钟信号的最窄时钟截止频率。低于此带宽的频率的抖动将通过系统,而较高频率的抖动则被部分吸收。数值f3表示输入时钟捕获电路的带宽。高于此频率的抖动将导致校准抖动。校准抖动造成光功率损失,需要额外光功率以防各种恶化。因此限制发射机端高频带频谱的抖动十分重要。

漂移对收发器的影响

市场上销售的大多数电信接收机都使用了一个缓冲器,以适应线路信号中存在的随机波动。下面框图6详细表示出这一概念。恢复时钟将数据送入富有弹性的缓冲器,而系统时钟则将数据送出到设备的核心部位。

在准同步传输系统中,发射机和接收机工作在相互独立而又极为接近的频率上,fL和Fs分别表示发射机和接收机的频率。当两者之间存在相位或频率差异时,弹性存储会将其消除,否则缓冲器将出现欠载或溢出(取决于差异的幅度和弹性缓冲器的大小),造成一次可控的帧滑动(基本速率传输)或一次位调整(高阶异步多路复用器)。

在准同步应用中,根据可接受的缓冲滑动对频率变化和缓冲器深度进行了标准化。最初的网络主要用于语音传输,在一定的频率门限之下不会造成语音质量下降。ITU-T规范规定该变化为+/-50ppm。但是随着网络开始传送压缩语音、传真格式的数据、视频以及其他种类的媒体应用,对于差错和重传以及刚刚兴起的同步网络,滑动使效率严重下降。

在同步传输系统中,系统时钟通常同步到用于接收更高时钟等级信号的接口的恢复时钟上。恢复时钟和系统时钟之间相位和频率的瞬时和累积差异将被弹性缓冲器吸收,否则将导致弹性存储器溢出/欠载(取决于缓冲器大小和变化的幅度),造成指针调整而延迟或提前帧传输、帧滑动或系统中某处出现位调整。

在同步系统中,所有网络组件工作在同一平均频率,可以通过指针机制消除帧恶化。这些指针机制将提前或延迟有效载荷在传输帧中的位置,从而调整接收和系统时钟中存在的频率和相位变化。SDH收发器中的缓冲器比PDH收发器中的要小,而且对于SDH系统中可能导致的指针移动等不规则性有限制。因此,与PDH系统相比,同步系统的要求更为严格。由于网络发展的历史和不同网络之间的互操作连接,在某些阶段或其他阶段,这些同步网络会通过准同步网络来连接。因此PDH网络的时钟体系结构也要考虑在内。

MTIE提供了时钟相对于已知理想参考时钟的峰值时间变化。在同步传输和交换设备的弹性缓冲器的设计中将用到MTIE值。在弹性存储中,缓冲器填充水平与输入数字信号和本地系统时钟之间的TIE成正比。确保时钟符合有关MTIE的时钟规范,将保证不会超过一定的缓冲器门限。因此,在缓冲器设计中,其大小取决于MTIE的规定极限。

图6,典型传输系统的接收机接口

系统时钟输出相位扰动对收发器的影响

一个时钟的输出相位变化可以通过分析其MTIE信息获得。漂移产生(在自由振荡模式和同步模式中)主要指系统中所用时钟振荡器的长期稳定性,在自由振荡模式中系统的稳定性仅受振荡器的稳定性影响。除了漂移产生之外,输出时钟相位还受到大量系统不规则特性的影响。

特别是对一个系统同步器而言,将参考源从一个不良或恶化参考时钟转换到一个正常参考时钟可能会导致输出相位扰动。传输用高速PLL中使用的传统VCO(压控振荡器)在改变参考时钟时采用了切换电容器组的方法。这种切换转换会对输出时钟造成暂时的相位偏移。采用超低抖动时钟倍频器电路可以解决这个问题。

高性能网络时钟在系统的所有参考时钟都失去时采用一种称为“保持”的机制。这是通过记忆存储技术产生系统最后一个已知良好参考时钟来实现的。进入和退出保持模式可能会对输出造成相位扰动。当处于保持模式中时,由于准确频率的再生不够精确,因此会继续产生输出相位误差。集成电路技术的进步已使保持精度达到了0.01ppb。输入参考时钟恶化和对系统的维护测试(不会导致参考时钟切换)过少,也会造成输出相位扰动。

系统输出扰动是有限的,取决于系统在较低层次可以接受的输入容限。例如,符合G.813选项1的时钟,其相位扰动中所允许的相位斜率和最大相位误差被限制为1μS,最大相位斜率为7.5ppm,两个120ns相位误差段,其余部分的相位斜率为0.05ppm。这些数字对应于G.825标准规定的输入抖动容限,该标准描述了在SDH网络内对抖动和漂移的控制。

篇2

USB(UniversalSerialBus)总线是INTEL、NEC、MICROSOFT、IBM等公司联合提出的一种新的串行总线接口规范。为了适应高速传输的需要,2000年4月,这些公司在原1.1协议的基础上制订了USB2.0传输协议,已超过了目前IEEE1394接口400Mbps的传输速度,达到了480Mbps。USB总线使用简单,支持即插即用PnP(PlugAndPlay),一台主机可串连127个USB设备。设备与主机之间通过轻便、柔性好的USB线缆连接,最长可达5m,使设备具有移动性,可自由挂接在具有USB接口的运行在Windows98/NT平台的PC机上。USB总线已被越来越多的标准外设和用户自定义外设所使用,如鼠标、键盘、扫描仪、音箱等。

笔者结合设备检测中数据采集的实际需要,设计了该高速同步数据采集系统。该系统最多可四路同步采样,单通道采样速度可达620ksps,四通道同时采样速度可达180ksps。USB接口控制芯片采用Cypress公司FX2系列中的CY7C68013,通过对其可编程接口控制逻辑的合理设计和芯片内部FIFO的有效运用,实现了数据的高速连续采样和传输。

1基本原理

该采集系统总体框架分三部分:主机(能支持USB2.0协议的PC机)、内部包含CPU及高速缓存的USB接口控制芯片(CY7C68013)和高速同步采样芯片(MAX115),如图1所示。其数据传输分两部分:控制信号传输和采集数据传输。控制信号方向为由主机到外设,由外设CPU控制,数据量较小;采集到的数据由外设到主机,数据量较大。为了保证较高的传输速度,不经过CPU。系统基本操作过程为:主机给外设一个采样控制信号,FX2根据该信号向A/D转换器送出相应控制信号,即采样模式控制字;之后由A/D转换器自主控制转换,并将各通道采样数据存入其片内缓存。一旦转换完成,由A/D的完成位向FX2的可编程控制接口发读采样结果信号;然后由可编程接口的控制逻辑依次将各通道采样结果从A/D的缓存读入FX2的内部FIFO。当FIFO容量达到指定程度后,自动将数据打包传送给USB总线。期间所有操作不需要CPU的干预。采样过程中接口控制逻辑依次取走批量数据,在打包传送时A/D仍持续转换,内部FIFO也持续写入转换结果。只要内部FIFO写指针和读指针位置相差达到指定的值就立即取走数据。从而保证了同步连续高速采集的可靠性。

2硬件部分

2.1芯片介绍

CY7C68013属于Cypress公司的FX2系列产品,它提供了对USB2.0的完整解决方案。该芯片包括带8KB片内RAM的高速CPU、16位并行地址总线+8位数据总线、I2C总线、4KBFIFO存储器以及通用可编程接口(GPIF)、串行接口引擎(SIE)和USB2.0收发器。在代码的编写上,与8051系列单片机兼容,且速度是标准8051的3~5倍。

CY7C68013与外设有两种接口方式:可编程接口GPIF和SlaveFIFOs。

可编程接口GPIF是主机方式,可以由软件设置读写控制波形,灵活性很大,几乎可以对任何8/16bit接口的控制器、存储器和总线进行数据的主动读写,使用非常灵活。SlaveFIFOs方式是从机方式,外部控制器可象对普通FIFO一样对FX2的多层缓冲FIFO进行读写。FX2的SlaveFIFOs工作方式可设为同步或异步;工作时钟为内部产生或外部输入可选;其它控制信号也可灵活地设置为高有效或低有效。笔者在设计中采用主机方式。

MAX115是美信公司的高速多通道同步采样芯片。含有两组4路同步通道,共8个输入端。采样精度为12位,采样模式由采样控制字决定,可灵活地在两组中的1~4个通道间选择。采样时,各通道转换结果先存入其内部相对应的4个12bit存储单元,各通道都转换完后再一起取走。

2.2电路原理及设计

考虑CY7C68013与MAX115接口时,采样模式不同,控制波形有所差别,笔者选择主机方式即可编程控制接口(GPIF)。

GPIF是FX2端点FIFO的内部控制器。在这种方式下,接口内核可产生6个控制输出端(CTL0~CTL5)和9根线的地址(GADR[8:0])输出,同时可以接收6个外部输入(RDY0~RDY5)和2个内部输入。FX2有4个波形描述符控制各个状态。这些波形描述符可以动态地配置给任何一个端点FIFO。例如,一个波形描述符可以配置为写FIFO,而另一个配置为读FIFO。FX2的固件程序可以把这些描述符配置给四个FIFO中的任意一个,配置后,GPIF将依据波形描述符产生相应的控制逻辑和握手信号给外界接口,满足向FIFO读写数据的需要。GPIF的数据总线既可以是单字节宽(8位FD[7:0])也可以是双字节宽(16位FD[15:0])。每个波形描述符包含了S0~S6七个有效状态和一个空闲状态。在每个有效状态对应的时间段里,经过预先设置,GPIF可以做以下几件事情:(1)驱动(使为高或低)或悬浮6个输出控制端;(2)采样或驱动FIFO的数据总线;(3)增加GPIF地址总线的值;(4)增加指向当前FIFO指针的值;(5)启动GPFIWF(波形描述符)中断。除此之外,在每个状态,GPIF可以对以下几个信号中任意两个进行采样,它们是:(1)RDYX输入端;(2)FIFO状态标志位;(3)内部RDY标志位;(4)传输计数中止标志位。把其中两个信号相与、相或或者相异或,根据结果跳转到其它任意一个状态或延迟1~256个IFCLK时钟周期。当然也可以根据输入端的信号进行跳转或延迟。GPIF波形描述符通常用Cepress公司的GPIF工具(GPIFTOOL)进行配置。它是一个可运行于Windows平台的应用程序,与FX2的开发包一起。

在这种方式下,所有的读写及控制逻辑通过CY7C68013的GPIF以软件编程的方式实现,且控制逻辑的变换方便灵活(只需要改变接口的一个配置寄存器的值)。电路连接如图2所示。

本数据采集系统只用到了两个输出控制CTL0、CTL1和一个外部输入RDY0,它们分别接MAX115的CONVST#、WR#和INT#。数据总线用双字节,其中FD0~FD11接MAX115的数据输入端D0~D11,FD12和FD13接控制字输入端的A2和A3,FD0和FD1复用做控制字输入端的A0和A1。MAX115的采样基准时钟由FX2的输出时钟经三分频得到,为16MHz。对应四种数据传输方式(八种不同的采样模式),GPIF的控制及握手信号波形有所不同。四通道同步采样的时序图如图3所示。

在第一个判决点,若采样数据已准备就绪,MAX115传给GPIF一个负脉冲信号RDY0;根据此信号,波形按顺序转入2、3、4、5状态,使指向内部FIFO的指针在每个时钟上升沿加1,依次读取四个数据,取完数据后利用CTL0的上升沿启动下一次采样。若在状态1时没有出现负脉冲,则直接跳转到状态6,之后重复执行此波形描述符。

三通道同步采样时,读取数据的状态只需要持续三次。其它采样模式控制波形的设计依此类推。

2.3固件程序设计

固件程序是指运行在设备CPU中的程序。只有在该程序运行时,外设才能称之为具有给定功能的外部设备。固件程序负责初始化各硬件单元,重新配置设备及A/D采样控制。固件代码的存储位置有三种:第一种是存在主机中,设备加电后由驱动程序把固件下载到片内RAM后执行,即“重新枚举”;第二种方法是把固件代码固化到一片EEPROM中,外设加电后由FX2通过I2C总线下载到片内RAM后自动执行;最后一种方法是把程序固化到一片ROM中,使之充当外部程序存储器,连在FX2三总线上。笔者选用第一种方式,这种方式便于系统的调试和升级。固件程序框图如图4所示。

3用户程序和驱动程序

3.1驱动程序的编写

该系统需要两个驱动程序,即通用驱动和下载固件的驱动。通用驱动完成与外设和用户程序的通信及控制;而下载固件的驱动则只负责在外设连接USB总线后把特定的固件程序下载到FX2的RAM中,使FX2的CPU重启,模拟断开与USB总线的连接,完成对外设的重新设置。主机根据新的设置安装通用驱动程序,重新枚举外设为一个新的USB设备。

通用驱动程序一般不需要重新编写,用Cypress公司已经编好的驱动ezusb.sys;而下载固件的驱动则必须定做,其详细操作过程见参考文献[2]。

3.2用户程序的编写

用户程序是系统与用户的接口,它通过通用驱动程序完成对外设的控制和通信。在编写用户程序时,首先要建立与外设的连接,然后才能实施数据的传输。启动采样后,为了保证不丢失数据,用户程序应该建立一个新的工作线程专门获取外设传来的数据。程序中主要用到两个API函数:CreateFile()和DeviceIoControl()。CreateFile()取得设备句柄后,DeviceIoControl()根据该句柄完成数据传输。程序代码简要如下:

hDevice=CreateFile(″\\\\.\\EZUSB-0″)

GENERIC_READ|GENERIC_WRITE,

FILE_SHARE_WRITE,

NULL,

OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL,

NULL);

If(hDevice==INVALID_HANDLE_VALUE)

{

Application->MessageBoxA(“无法创建设备,请确认设备是否连上!”,NULL,IDOK);

}

else

{

DeviceIoControl(

hDevice,

IOCTL_EZUSB_BULK_WRITE,

&blkctl,

sizeof(BULK_TRANSFER_CONTROL),

&inBuffer,//定义的数据缓冲区

sizeof(inBuffer),

&nBytes,

NULL);

……

篇3

(2)支持分布式P2P方式实现全双工呼叫与多媒体通信。终端节点间通过分布式通信完成原由中心节点提供的呼叫寻址功能,且仍可通过P2P网络进行SIP信令全双工并行呼叫,以及包括数据、语音、图像在内的多媒体通信。

(3)支持分布式通信大网下的多个小网划分与通信。终端节点在分布式P2P网络内仍具有完备的SIP通信交互与控制能力,并支持分布式P2P通信大网中多个小网的定义与通信控制,实现既能全网呼叫也可限制在小网中呼叫。

(4)提供井下局部通信与应急通信手段。通过各终端节点间自协商与处理,网络中的呼叫寻址与信令流程可以完全不依赖于某个中心或特定节点进行交互,且终端节点数量不受限制,以便为井下局部通信、应急救灾通信联络提供新技术手段。

2矿井分布式通信设计

2.1矿井分布式通信技术选型

目前分布式通信技术有集中式、全分布式、混合式和结构化4种网络模型:

(1)集中式P2P网络需要1个中心目录服务器负责记录共享信息以及回答对这些信息的查询,只要关闭目录服务器,交换就停止,生命力十分脆弱。

(2)全分布式P2P网络中不存在中央服务器,所有的服务及其相关信息完全散布于各P2P节点中,其最显著的特点就是完全去中心化,采用了随机图的组织方式来形成一个松散的网络。

(3)混合式P2P网络由多个簇构成,每个簇由1个超级节点所代表,不同簇之间通过分布式P2P网络将超级节点连接起来,但超级节点本身的脆弱性可能导致其簇内的节点处于孤立状态。

(4)结构化P2P网络具有自组织和负载均衡等特点,通过采用DHT(DistributedHashTable,分布式哈希表)算法,网络中各节点并不需要维护整个网络的信息,只在节点中存储其邻近的后继节点信息,输入的信息将通过分布式哈希函数唯一地映射到某个节点上,然后通过一些特定的路由算法和该节点建立连接。目前基于DHT的结构化P2P网络有Chord,Pastry,CAN,Kademlia等模型。煤矿井下通信网络是一个区域较大的局域网络,可利用组播或广播模式进行发现和寻址,从而充分发挥全分布式P2P网络模型的优势而规避其在广域网环境下网络直径不可控的劣势。SIP信令协议具有控制灵活、可扩展性强、支持分布式等特点,能将蜂窝系统和互联网应用领域融合在一起,被定义为第三代移动通信系统用以提供IP多媒体服务的信令协议,是下一代网络的核心协议之一。SIP协议的开放性及针对煤矿行业专网应用的可扩展性已得到实际验证[10]。本文基于SIP信令协议和全分布式P2P技术来设计适合煤矿井下应用的分布式P2P通信业务功能。采用IP通信主流信令SIP协议与多媒体传输格式,可实现与现有矿用CDMA、WLAN、以太网及DSL、PDH等有线/无线传输方式的调度通信系统的无缝集成。终端节点的SIP通信协议针对终端节点间的全分布式P2P网络模型做必要扩展与支持,使得出现突发事件导致集中式IP通信系统中心节点单点失效或IP通信网络仅局部有效时,终端节点间可不依赖任何超级节点或特定节点实现井下全分布式P2P通信。

2.2矿井分布式通信流程设计

井下SIP终端节点发起呼叫时,在中心节点有效情况下,其呼叫信令流程应保持与原集中式调度通信信令流程一致;在集中式调度通信失效情况下,能自动应用全分布式P2P网络模型发现并寻址被叫节点,寻址到被叫节点后,利用SIP信令流程向被叫节点发起端到端的多媒体呼叫与通信。终端节点间分布式呼叫和通信信令流程如图1所示。各终端节点仍按SIPREGISTER信令流程周期性向通信服务中心节点S注册,当用户号码为Alice的终端节点A拨号呼叫用户号码为Bob的终端节点B时,无论终端节点A是否向中心节点S注册成功,终端节点A首先向中心节点S发起INVITE信令消息,若限定时间T1内未收到中心节点S的任何回应,终端节点A发起一个P2P请求(Request_P2P),询问Bob的节点地址信息。若终端节点B可达,并且终端节点A在限定时间T2内收到终端节点B的P2P响应(Response_P2P)消息,则终端节点A将以响应消息中告知的节点地址信息重新发起呼叫Bob的INVITE信令消息,后续呼叫流程即为标准的SIP协议端到端语音或音视频多媒体通信过程。

3实现与验证

3.1技术实现

笔者团队开发的有线多媒体终端、无线多媒体终端以及无线语音终端、信息化矿灯已实现了基于SIP协议与标准语音编码的呼叫通信功能。其中有线多媒体终端与无线多媒体终端基于ARMCortex-A8平台,无线语音终端与信息化矿灯基于ARM9平台。对该2种平台的通信业务软件进行二次开发,基本实现了分布式通信功能。

3.2测试验证

针对矿井分布式通信技术的可行性及功能进行测试,调度通信服务器为SIP中心节点。环网接入器与通信基站、Mesh基站组成有线、无线IP分组传输交换网络,支持IP单播、组播与广播报文的高速传输与管理。有线多媒体终端、无线多媒体终端、信息化矿灯与无线语音终端为实现了分布式P2P通信技术的SIP终端节点。分类测试结果如下:

(1)中心节点服务在线、传输网络连接正常情况下,终端节点间的呼叫与通信都经过中心节点进行信令与媒体的,呼叫建立延时在1s内,终端节点间通信正常,中心节点的各种调度功能正常。

(2)中心节点服务断线或传输网络局部有效情况下,网络可达的终端节点间可建立呼叫并正常通信,多媒体终端之间可以音视频通信。终端节点间的呼叫建立延时2~3s,原因是目前主叫节点始终先尝试向中心节点呼叫,呼叫失败后再发起分布式寻址及呼叫。

(3)中心节点服务断线,配置终端节点以组播方式分布式寻址,配置不同组播组的终端节点之间即使网络可达也不能建立呼叫,配置相同组播组且网络可达的终端节点之间可以建立呼叫并通信。

(4)中心节点服务断线,配置终端节点以广播方式分布式寻址,网络可达的终端节点之间可以建立呼叫并通信。

篇4

由于综合布线系统和网络技术息息相关,在设计综合布线系统的同时必须考虑到使用的网络技术,也就是布线设计要和网络技术相结合,尽量做到两者技术性能上的统一,避免硬件资源冗余和浪费,才能充分发挥综合布线系统的优点。目前网络上经常使用的主要技术有以下三种:

1:FDDI/CDDI(光纤/铜线分布式数据接口)

2:ATM(异步传输模式)

3:FASTETHERNET(快速以太网)

下面分析一下这三种技术:

1:FDDI/CDDI(光纤/铜线分布式数据接口)

这是一种成熟的、非载波侦听的、100M带宽共享的网络技术。采用了令牌传递服务策略,网络设备之间有主环和副环相联,在网络线路或网络设备出现故障时,有很强的自重构能力。同时其站管理(SMT)功能十分强大,适合于作主干网络。但其技术难度高、价格昂贵、扩展性较差,呈环行布线,与ATM不太兼容。

2:ATM(异步传输模式)

这是一种基于光纤传输系统、应用了统计复用技术、采用了短信元交换技术的先进异步模式。它直接支持数据、视频、音频等多媒体传输。速率相当快(达成155M,622M),由于采用了异步模式,共效率相当高,比较适合于作主干网格。但它仍然是一项有争议的技术,许多标准尚待完善,不同厂家产品之间的互操作及通用性有待于进一步改善。

3:FASTETHERNET(快速以太网)

现在的高速以太网技术一般包括两种:100MVG-ANYLAN和100M-T。这里主要谈是后者--快速交换式以太网。100MAG-ANYLAN虽然提供了多媒体功能,但它的兼容性差、价格高、复杂度高,这里不作考虑。100BASE-T是10BASE-T的改良变种,它在原来的基础上采用将网格分割为若干网段,分割冲突域,并采有了缓冲交换,使网格上传输速率和传输效率大大提高。

快速以太网具有实用(兼容了原以太网,软件、硬件丰富),先进(速度快--100MBPS),升级方便(向ATM或更快的网格转换方便),扩展性好(通过互连设备,交换机,路由器容易扩展),开放性好(软硬件协议开放),价格便宜(相比于ATM、FDDI),支持的厂家多(得到Intel、Sun、3com、Bay、Accton等大公司的支持)等特点。对于多媒体网格应用,快速以太网也能很好的满足要求。

虽然以太网的网格设备之间的有效距离较短(100米),适合于部门级的小局域网,但可采用心光纤电转换器和光纤来延长传输距离。

快速以太网具有极好的扩充性,使用交换式集线器和普通集线器,用户数的扩展对网格没有影响(正在使用时可以扩展),方便将来子网接入。

基于以上分析,结合综合布线系统和网格技术的要点,这里向读者提供三种综合布线方案。

一:采用全双绞线结构布线方案(快速以太网技术)

这种方案是整个布线系统(垂直子系统、水平子系统、工作区子系统、设备间子系统、配线间子系统)全部采用五类双绞线,网络技术是采用快速以太网技术(见设计示图一)。

优点是:布线造价便宜、网格设备便宜、管理方便,快速以太网技术相当成熟,它的交换是在第二层进行,无需人工干预。

缺点是:如果楼层较高,这就有可能导致某些住处点的接线长度超过100米,众所周知,根据布线原则,双绞线一般不允许超过100米,这样会造成信号衰减以至畸变。

其次由于所有的接线都从中心机房通过垂直子系统向其他楼层辐射,对竖井要求较高。

再其次是全双绞线结构难于升级为ATM技术或千兆位以太网技术,ATM技术和千兆位以太网技术需要使用单模/多模光纤来连接构成主干。

方案一支持的硬件设备见下表:

设备名称规格

SwitchHUB24*10M

2*100M

12*10M

2*100M

HUB16*10M

二、采用以光纤构成垂直主干、双绞线为边缘的布线方案(ATM技术)

这种方案的垂直子系统采用光纤结构,其他子系统采用五类双绞线布线,网络技术是ATM技术(见设计视图二)。

优点是:首先布线造价较便宜(与方案一相比,只略高一点)。

其次垂直子系统大大简化,只需从中心机房向其他楼层辐射光纤,每个楼层分配一条光纤(最好加备份线),在每楼层中再采用五类双绞线布线,布线的时间复杂度和空间复杂度大大下降,而且100米长度限制的问题不复存在,因为光纤不受短距离限制(单模15公里,多模1.5-2公里)。

再其次是一步到位,直接使用先进的ATM交换技术,会使网络响应速度大大提高。

缺点:主要是网络设备和主机设备相当昂贵。由于采用了ATM先进的交换技术,必须配置相应的ATM交换机、ATM仿真桥、ATM适配器,这些设备是极为昂贵的。而且ATM交换机需要专人管理,基于现在的技术,ATM的交换功能尚不能达到完全自动,而要根据人们的设置参数进行工作,管理上受一定的限制。

方案二支持的硬件设备见下表:

设备名称规格

CB70008*100MSC

SS100012*10M

2*100M

HUB16*10M

综合方案一和方案二的优缺点,这里提出第三方案。

三:采用以光纤构成垂直主干、双绞线为边缘的布线方案(快速以太网技术)

即采用方案一的网络技术和方案二的布线方式。在垂直子系统采用光纤,其他子系统用五类双绞线构成。网络技术使用快速交换式以太网(见设计图示三)。

优点:布线造价便宜;网络设备造价合理;主机设备也无需特殊配置;易于升级。而且以太网交换技术无须人工干预。实行全自动交换,管理方便。而且当需要升级到ATM或千兆位以太网技术时,只需要更换网络设备,无须更换布线设备,真正达到"一次布线,终身受用"的目标。但是系统需要升级时,还须更换部分网络设备。

方案三支持的硬件设备见下表:

设备名称规格

CB35002*6*100FX

2*6*10/100TX

SwitchHUB12*10M

篇5

模式变迁

根据测试方法,测试结构被划分为两种类型:线形分布式结构远程分布式结构在线形分布式结构体系中,所有的测试工具和测试仪器——服务器、数据库管理器、数据统计进程控制硬件和软件等——都顺次连接在一个局域网上。远程分布式结构则假设仪器和控制机之间的地理距离在同一端,有关它们的进程控制则在另一端进行。这种方式包括远程监测和远程控制。

计算机通讯技术的发展使建立这种测试体系成为可能。目前,局域网技术已经得到广泛应用,远程仪器I/O标准也接收了TCP/IP协议,数据库服务器已经可以升级为远程数据服务器。这些都使各种类型的通讯成为可能。不管在一座楼内还是地球的两端,测试工程师们现在都可以利用它们来协调生产进程。已经有一些标准协议和产品如超文本传输协议(http)等提供了基本构架。很多开发环境也允许开发无缝的分布式应用程序。然而,虽然像MicrosoftVisualBasic这类开发环境提供了网络应用程序的开发功能,但它们缺乏测试方面所需的一些特殊要求.惠普公司开发的可视化工程环境(简称HPVEE)和美国国家仪器公司开发的LabView等一些图形化的编程环境可用来解决这个问题。利用这些工具,测试工程师在构筑测试解决方案时只需知道域名或IP地址。再通过Netware或其它的互联网浏览器连接远程端点,简化用于两地通讯所需的软件设计工作量。

图形化编程

传统的程序设计语言需要知道关键字并遵循复杂的语法规则才能产生出成百上千行代码——这些代码很容易出现语法问题以及逻辑错误。相比之下,图形编程工具有效地利用了当今图形用户接口的点击特性。编写程序只包含以下的一些简单步骤:用鼠标选择仪器函数作为对象描述测试步骤和对象之间的关系建立初始条件运行结束后,环境会自动以图形方式显示测量结果。而用传统的编程方法实现一些特定的工作如创建图形显示方式、支持鼠标和键盘控制、选择输入输出显示特性、增加程序的保密性等,可能需要几天的时间。

这种更加直观的方法可以降低80%以上的编程时间,更重要的是测试工程师认为图形技术更加方便有趣,从而鼓励他们在更多的场合应用这些工具。另外,此软件还支持众多厂家生产的仪器驱动器,包括遵循VXI即插即用标准的所有仪器模块。它还用直接I/O方式控制如下类型的仪器:GPIBRS-232VXI基于局域网GPIO利用HPVEE、PC和工作站还可直接控制VXI的背板总线。

对用户的透明度

远程分布式结构体系之所以得到广泛认可的原因应归功于它大大降低了用户和他访问的信息以及信息本身之间存在的臣离所引起的问题。简单地说,不管测试仪器在同一个房间.在其它建筑物内,在另一个州或在地球的另一端.软件的操作方式都是一样的。

假设分布在全球各地的地面监测站需要控制位于一个卫星上的仪器。操作者必须知道卫星运动的方式以及需要实时监测的功能。因此,每个操作者必须知道监测链上前一位操作者所做的工作。

惠普公司通过利用VXI技术设计了一种灵活的解决方案,它使操作者之间、操作者和卫星之间密切配合,代替了以往那种操作权转移方式。这种技术还可以应用在一些危险环境中进行的测量过程,比如炼钢厂或其它充满高温或腐蚀性空气的环境,不适合工作人员在同一所房间内监测和控制仪器。另外一个应用是从一个大的测试单元检查测试参数.比如一架天线或飞机的翅膀.这些都需要在不同地点设置多个VXI机箱来执行所需的测试,而网络技术则允许在一个中心控制点来处理所有仪器。还有一个就是仪器共享问题。假设一个工作组中有若干个科学家.他们都需要用到位于指定地点的一个价格昂贵的仪器集。VXI技术和互联网技术的结合使得他们可以在各自的实验室使用这些仪器。

我们可以想象这样一个过程:生产者将生产线上所有的测试点连接到指定服务器上,这台服务器上有一个Oracle数据库和所有结点需要的测试程序。这样,生产线上的操作者在扫描粘贴在传送带设备单元上的条形码并传送给服务器后,由它来选择合适的测试方案并通知相应的测试设备,并决定所要测量的部件和参数。操作者只需将设备单元安装到固定的机架上,按下按钮即可,测试结果会自动返回给服务器。

远程诊断

测试工程师可以利用互联网技术来排除远在12000英里以外的设备故障,从而提高设备的利用率,并降低维修费用。例如,我们在服务器上设置了设备诊断、校准和自检专家库,为位于吉隆坡的测试点分配一个IP地址,这样,远在美国圣大菲的测试工程师就可以通过测试点提供的信息来运行设备的诊断和校准程序,当然,所有这些都需要通过专用软件才能进行。

在不远的将来,服务器将支持在一个测试点上运行多种传输协议。通过膝上型电脑,测试人员可以浏览各个测试点信息,并在相应测试设备上运行诊断系统。“热链接”(超级链接)技术允许访问驻留在第三方系统上的校正系统,测试点可直接下载而不需测试人员身临其境。展仪器功能

假设我们拥有一个Web页,一个拥有自己的http服务器和html页的仪器,将仪器的IP地址通过“热链接”技术同Web页连接起来。用鼠标点击热点“校准”就可以访问到校准Web页,它包含仪器的标准规范和校准程序。如果需要寻求仪器生产厂家的支持,第三方的超级链接可直接连接到提供此项服务的主页上。它可以自动将我们使用的软件或硬件升级到最新版本。

如果仪器在其内部有一个http服务器和Web页,那么就很容易得到厂家的技术支持,用户的操作也相应被简化。仪器的Web页应包含其基本的使用说明文档,同时为了帮助那些身体残疾的客户,这种在线帮助系统甚至还可以使用视频或音频校准功能。当然,它还应支持硬拷贝和打印功能。在这种结构中,仪器就不需要连接到GPIB总线或VXI机架上,而只需象协调其动作的PC一样,连接到局域网上即可。

创建一个解决方案

回过头我们再看一下上面提到的有关卫星的那个例子。惠普公司最初的解决方案是利用叠架式仪器。它采用一个支持VXI组织TCP/INST协议的局域网/GPIB总线转换器,即HPE2050来实现以上测试过程,这种系统通过HPE2050连接到局城网上,然后用GPIB母线和仪器连成一体。再把分布在世界各地的、驻留有测试仪器控制程序的测试点工作站组建一个测试广域网,实现远程分布式测试。

基于VXI的解决方案是把HPE2050转换器连接到0槽控制器上,或把内嵌式控制器配置为一个支持TCP/INST协议的服务器,这样控制器通过端口就可以和局域网连接起来。TCP/INST协议是HP实验室的研究员在标准RPC机制的基础上开发出来的一种局域网传输协议。随后,VXI组织将其接纳并作为分布式VISA的基础。采用此协议的HPVISA可通过HPE2050访问仪器或运行在服务器上并具有VXI、串口、GPIO接口的控制器,而所有这些只需知道HPE2050或控制器所属的域名或IP地址。

需要解决的问题

虽然组建分布式测试体系的可能性已经存在,特别是一些计算机技术的出现为其注入了新的活力,然而它还达不到我们理想中的完美程度。这主要是因为互联网上数据的传输率低且不受控制,其结果是从远地通过不同路径在电话线上传输的数据包不会按照正确的顺序到达指定地点。这个瓶颈通常来自一些特殊的局域网,尤其是小公司组建的局域网。另外,在数据包横跨美国大陆时,一些不可靠的传输协议会导致70%左右的内容丢失,其结果使数据的传输变得更加缓慢。另外,工业标准变动过快也是一个不容忽视的问题。

这些因素都影响到了分布式测试程序的正常运行。因为在一个分布式解决方案中包含计算机间的通讯进程,所以应用程序内存驻留数据在网上传输和在另一个计算机进程的内存中等待所需要的时间都会影响到测试结果。传输率不仅和机器本身的速度有关,也和局域网上所运行的协议有关。例如,理论上,以太网的传输速率可达到10Mbps,但如果考虑到以上这些因素,实际上它只能达到1Mbps甚至更低,远远低于一些数据采集方案的要求。

在一些数传速率要求不高的场合,可以考虑采用无钱解决方案,使远程地点不再需要传统的电话线才能通讯,从而降低费用。它只需要以下这些设备,如一台PC、所需的仪器系统、移动电话调制解调器和太阳能电池板就可以组建一个完整的、自包容的且价格低廉的监测站,使分布式测量得到广泛应用。

智能化体系

目前的分布式系统——包括远程主机和远程进程仍然采用一种主从式结构,它极大地限制了软件对另一端的控制能力。对于测试过程和测试参数的监测,必须在智能化前端机进行的系统,这种结构由于互联网的低数传速率和不可控制等因素的存在,使其无法得到应用。

篇6

本人抽样调查了某校部分学生今年的高考成绩如下表:从上表可知数学成绩人平分男生优于女生,但总体成绩基本上是平衡的。由此可见,男、女生在平均智商方面显然无显著差异,但在智能品质和类型上则存在着一定的差异。那么该怎样正确对待性别差异而使女生学好数学?

二、男、女生在智力因素上的差异

在感知觉方面,女性的感受性较高,触觉、嗅觉较敏感,听觉能力较强。男性则视觉能力较强。由于具有较强的视觉空间能力,男生的空间表象能力优于女生。在记忆力方面,女生一般偏重于机械记忆和形象记忆。男生则倾向于理解记忆和抽象记忆。在注意力方面,女生的注意力多定向于人。男生的注意力多定向于物,并且喜欢探究物体内部构造的奥秘。在思维品质上,女生由于有较强的形象记忆和机械记忆。而偏向于形象思维类型,主要依靠表象间的类比和联想,富于想象力,但思维的灵活性不够,理解力较差。男生偏向于抽象思维类型,主要依靠概念进行判断和推理,有较强演绎、归纳能力,思维的灵活性较好,理解力较强。在思维方式上,女生倾向于模仿,处理问题时注意部分和细节,但对全局与各部分之间的关系把握较差。男生独立思考较多,分析综合能力较优,处理问题时较为重视全局与各部分之间的联系,但对细节注意不够。

由于在智能品质和类型上男、女生之间存在着上述差异,而数学学习则需要较强的抽象思维能力,空间想象能力及思维的灵活性和理解力,这些智力品质正是女生较薄弱的方面,这是造成男、女生数学成绩分化的重要原因。

三、男、女生在非智力因素上的差异

在兴趣方面,在兴趣的倾向性上男生明显爱好科学,喜欢各种科学书报,积极参加课外科技活动。女生则多半对小说、电影、音乐、舞蹈感兴趣。在性格特征方面,女生在守纪律、勤奋、认真、细致、踏实等性格特征方面优于男生;而在坚持性、顽强性、自制力、情绪稳定性、自信心、独立性等性格方面不如男生,而后面的几项性格特征恰恰是在解决难度较大的数学问题时极其重要的。所以随着年级的升高,学习难度加大,男、女生数学学习成绩的差距在扩大。

四、因材施教,提高女生的数学学习效果

性别差别是客观存在的。女生在数学学习中往往处于落后的地位。如何根据女生的心理特点,发挥女生的优势,提高女生的数学学习成绩,本人从教学实践中体会到应从以下几方面入手:

1、帮助女生提高自信心,发挥非智力因素的作用

在教学中要有意识地介绍杰出女性的事迹,为学生树立榜样,让学生坚信女性在各方面的才华都不亚于男性。同时要帮助她们学会正确的归因。学会正确地分析和评价自己,树立自信心。另一方面采用正确的学习方法,重视理解,分析推理。另外在平时的教学中帮助培养她们的独立性、自主性及坚强的意志、毅力等在创造性活动中起主导作用的非智力因素的品质。

2、加强对女生抽象思维能力的培养

由于女生抽象思维能力发展水平相对较低,在理解数学概念时易发生困难。教学中要注意充分发挥形象思维的优势,使抽象的概念形象化,促使从形象思维到抽象思维的提升。从而让理解更加深刻。如函数的奇偶性,就可以先从直观形象的函数图像入手,通过“如何用数学语言描述这种对称性?”让学生在概念的归纳过程中加强对女生抽象思维能力的培养。

3、创造积极轻松、平等的课堂气氛,鼓励积极思考、质疑问难。

现代心理学认为,学生只有在民主平等的教育气氛中,才能迸发出想象力、创造力的火花。可见,创造良好的课堂心理气氛有赖于教师对待学生的公正和平等。教师要尊重、关心每个学生,让每个学生都能获得同样的地位和机会。尤其要注意多给那些自卑感强有后进女生崭露头角的机会,以增强她们学习的自信心。如果每个学生经常感到教师对她的关心、尊重,便会迸出蕴藏在自身巨大的学习力量,便会在和谐的气氛中学习知识、发展能力,形成健全的人格。

篇7

1 FPGA的简介

当前使用硬件的描述语言完成电路设计,都可以通过简单的汇总和合理的布局,然后快速烧录到FPGA器件上进行基本的测试,这也是当代数字系统设计进行检验的主流技术。这些可编程器件可以用来实现基本逻辑门的电路,也可以实现一些更复杂的组合功能例如数学的方程式、解码器等等。大多数的FPGA器件里,包含着一些记忆性元件,如触发器,或者一些其它的更为完整、性能更为优越的记忆块。

设计师可以根据自己的需要按照可编辑的链接将FPGA器件内部的逻辑模块连接在一起,仿佛一整个电路的实验板被装在一个电子芯片内,这些出厂后的FPGA器件的连接方式以及逻辑块的使用都可以根据设计者不同的设计而进行改变,从而能完成不同的逻辑功能。

当你在进行的电子设计使用到FPGA器件时,你不得不需要努力地解决好电源管理、器件配置、IP集成、完整信号输出等硬件系统的设计问题。在进行硬件设计时,你需要注意以下几个问题:

1.1合理分配I/O信号

无论是哪种情况,在进行I/O信号分配时,都必须牢记以下共同的步骤:

1)用表格列出所有需要分配的I/O信号,并按照他们的重要性依次进行排列,比如电压、端接方法、I/O标准、相关时钟等;

2)检查校验模块之间的兼容性;

3)利用以上的表格和兼容准则,先把受限制最大的信号分配到引脚上,最后分配那些受限最小的信号。因为受限制大的信号往往只能分配到特定的引脚上;

4)将剩余的信号分配到较为合适的地方。

1.2注意静态功耗的降低

虽然静态电流所带来的功耗和动态功耗相比可以忽略不计,但对一些供电设备却十分重要。引发静态电流因素众多,比如没有完全接通或关断的I/O 端口、三态电的驱动器的下拉或上拉电阻,除此之外,保持编程信息也会需要一定静态功率。

2 FPGA应用技术的设计原则

从上文中对FPGA内部的硬件结构分析可看出,FPGA器件的时序逻辑非常丰富,不同于其他的可编程器件。因而对于FPGA来说,应该有一整套能够有效利用其内部丰富的时序逻辑功能的技术,而不同于其他一般的可编程器件的设计技术。由于其独特的优越性,FPGA被越来越多的设计人员所使用,其设计技术被许多的设计者所掌握。在FPGA的实际应用中,使用最合理的设计方法,能很大程度的改善FPGA在应用中出现的漏洞和问题,进而全面提高设计性能。

2.1使用层次化的设计技术

使用层次化的设计的系统一般分成若干顶层模块,而每一个顶层的模块下又有若干个小模块,并以此类推。层次化的设计模块,可以是描述原理图的结构图,也可以是经过逻辑语言所描述、表现的实体。

使用层次化的设计对于系统的模块划分非常的重要,模块划分的不合理,将会导致整个系统的设计不合理,从而使系统的性能下降,这样层次化的系统甚至要比没有经过层次化设计的系统效果更差。

使用层次化设计的主要优点有以下两个方面:增强设计可读性,增加设计重复使用的可能性。

2.2使用同步系统设计技术

所有时序电路具有同一个性质――如果要使所设计的电路正常工作,必须严格的执行事先定义好的逻辑顺序。如果不按照此顺序执行,将会把错误数据写进存储单元,从而导致错误的操作。同步系统的设计方法,也就是使用全分布周期性的同步信号使系统中所有的存储单元进行同时更新,这是执行这一时序有效进行的普遍的设计方法。电路的设计功能是通过产生时钟信号并按照时序严格执行来实现的。

对于静态的同步设计,必须满足下面的两个条件:

1.每一个边缘敏感的部件其时钟的输入应该是一次输入时钟的某一个函数;并仍和一次时钟输入的时钟信号。

2.所有的存储单元都应该是具有边缘敏感特性,在该系统中不存在电平敏感的存储单元。

我们对于FPGA器件的同步设计的理解就是全部状态的改变都是由主时钟所触发,同一个系统不同的功能模块可以是部分异步的,但是模块与模块之间必须是同步的。正如CPU的设计一样,所有的电路都和系统的主时钟是同步的。相比于异步设计,同步设计具有很多的优点,但进行同步设计时仍然需要考虑很多方面的因素。例如,在选取时钟时,需要考虑以下几点:首先,由于大部分的器件都是由时钟的上跳沿触发,这要求时钟信号的延差要很小;其次,时钟信号的频率通常很高;第三,时钟信号一般是负载较重的信号,因此合理地进行负载分配是很重要的。除此之外,在进行FPGA器件的应用时,还要考虑模块的复位电路、时序同步电路等实际问题。

参考文献

[1] 周莉莉,周淑阁,井娥林. FPGA课程教学方法的探讨与研究[期刊论文]. 实验室科学,2013(3).

[2] 夏陛龙,陈津平,胡春光. 基于FPGA的实时数据采集系统设计[期刊论文]. 计算机工程,2013(11).

[3] 郑争兵. 双时钟FIFO在多通道高速传输系统中的应用[期刊论文]. 核电子学与探测技术,2013(5).

[4] 李列文,桂卫华. 面向FPGA的低泄漏功耗SRAM单元设计方法研究[期刊论文]. 高技术通讯,2012(12).

[5] 郑文荣,孙朝江,刘少伟. 复杂系统的多FPGA可重构设计与实现[期刊论文]. 电子测量技术,2012(9).

[6] 胡圣领. 基于FPGA的多项式运算器设计[期刊论文]. 现代电子技术,2012(1).

[7] 孙立波,雷加. 基于SRAM型FPGA测试技术的研究[期刊论文]. 国外电子测量技术,2011(5).

篇8

(2)对学生的知识面,掌握知识的深度,运用理论结合实际去处理问题的能力,实验能力,外语水平,计算机运用水平,书面及口头表达能力进行考核.

2.要求

(1)要求一定要有结合实际的某项具体项目的设计或对某具体课题进行有独立见解的论证,并要求技术含量较高.

(2)设计或论文应该在教学计划所规定的时限内完成.

(3)书面材料:框架及字数应符合规定

3.成绩评定

(1)一般采用优秀,良好,及格和不及格四级计分的方法.

(2)评阅人和答辩委员会成员对学生的毕业设计或毕业论文的成绩给予评定.

4.评分标准

优秀:按期圆满完成任务书中规定的项目;能熟练地综合运用所学理论和专业知识;有结合实际的某项具体项目的设计或对某具体课题进行有独立见解的论证,并有较高技术含量.

立论正确,计算,分析,实验正确,严谨,结论合理,独立工作能力较强,科学作风严谨;毕业设计(论文)有一些独到之处,水平较高.

文字材料条理清楚,通顺,论述充分,符合技术用语要求,符号统一,编号齐全,书写工整.图纸完备,整洁,正确.

答辩时,思路清晰,论点正确,回答问题基本概念清楚,对主要问题回答正确,深入.

(2)良好:按期圆满完成任务书中规定的项目;能较好地运用所学理论和专业知识;有一定的结合实际的某项具体项目的设计或对某具体课题进行有独立见解的论证,并有一定的技术含量.立论正确,计算,分析,实验正确,结论合理;有一定的独立工作能为,科学作风好;设计〈论文〉有一定的水平.

文字材料条理清楚,通顺,论述正确,符合技术用语要求,书写工整.设计图纸完备,整洁,正确.

答辩时,思路清晰,论点基本正确,能正确地回答主要问题.

(3)及格:在指导教师的具体帮助下,能按期完成任务,独立工作能力较差且有一些小的疏忽和遗漏;能结合实际的某项具体项目的设计或对某具体课题进行有独立见解的论证,但技术含量不高.在运用理论和专业知识中,没有大的原则性错误;论点,论据基本成立,计算,分析,实验基本正确.毕业设计(论文)基本符合要求.

文字材料通顺,但叙述不够恰当和清晰;词句,符号方面的问题较少i图纸质量不高,工作不够认真,个别错误明显.

答辩时,主要问题能答出,或经启发后能答出,回答问题较肤浅.

(5)不及格:任务书规定的项目未按期完成;或基本概念和基本技能未掌握.没有本人结合实际的具体设计内容或独立见解的论证,只是一些文件,资料内容的摘抄.毕业设计(论文)未达到最低要求.

文字材料不通顺,书写潦草,质量很差.图纸不全,或有原则性错误.

答辩时,对毕业设计(论文)的主要内容阐述不清,基本概念糊涂,对主要问题回答有错误,或回答不出.

对毕业设计(论文)质量要求

----论文内容符合任务书要求

1.对管理类论文要求:

·对毕业论文的要求是一定要有结合实际的本人独立论证的内容.

·要求论点明确,立论正确,论证准确,结论确切

·论证内容要求有调查研究,有统计数据,对统计数据要有分析,归纳,总结,

·根据总结得出结论.

·最后有例证说明

管理类论文毕业论文行文的逻辑要领

增强毕业论文行文的逻辑力量,达到概念明确,论证充分,条理分明,思路畅通,是写好毕业论文的关键.提高毕业论文行文的逻辑性,需把握以下几点:

(1)要思路畅通

写毕业论文时,思维必须具有清晰性,连贯性,周密性,条理性和规律性,才能构建起严谨,和谐的逻辑结构.

(2)要层次清晰,有条有理写毕业论文,先说什么,后说什么,一层一层如何衔接,这一点和论文行文的逻辑性很有关系.

(3)要论证充分,以理服人,写毕业论文,最常用的方法是归纳论证,即用对事实的科学分析和叙述来证明观点,或用基本的史实,科学的调查,精确的数字来证明观点.

(4)毕业论文行文要注意思维和论述首尾一贯,明白确切.

(5)文字书写规范,语言准确,简洁.

2.对工程设计性论文要求:

·有设计地域的自然状况说明和介绍

·有原有通信网概况介绍及运行参数的说明

·有设计需求,业务预测

·有具体的设计方案

·有相应性能及参数设计和计算

·有完整的设计图纸

例如:A市本地SDH传输网设计方案

一,A市概况简介

二,A市电信局SDH传输网络现状(或PDH传输网络现状)

1,A市本地网网络结构,交换局数量及位置,传输设备类型及容量

2,存在的问题及扩大SDH网的必要性(或建设SDH网的必要性)----需求及业务预测

三,A市电信局SDH传输网络结构设计方案

1,网络拓扑结构设计

2,设备简介

3,局间中继电路的计算与分配

4,局间中继距离的计算

四,SDH网络保护方式

1,SDH网络保护的基本原理

2,A市电信局SDH网网络保护方式的选择及具体设计

五,SDH网同步

1,同步网概念与结构

2,定时信号的传送方式

3,A市电信局SDH网络同步方式具体设计

六,方案论证,评估

3.计算机类型题目论文要求:

管理信息系统

·需求分析(含设计目标)

·总体方案设计(总体功能框图,软件平台的选择,运行模式等)

·数据库设计(需求分析,概念库设计,逻辑库设计,物理库设计,E-R图,数据流图,数据字典,数据库表结构及关系),

·模块软件设计(各模块的设计流程),

·系统运行与调试.

·附主要程序清单(与学生设计相关的部分,目的是检测是否是学生自己作的).

校园网,企业网等局域网设计

·功能需求

·对通信量的分析

·网络系统拓扑设计

·设备选型,配置

·软件配置

·子网及VLAN的划分

·IP地址规划

·接入Internet

·网络安全

例如:××人事劳资管理信息系统的开发与设计

1,开发人事劳资管理信息系统的设想

(1)人事劳资管理信息系统简介

(2)人事劳资管理信息系统的用户需求

2,人事劳资管理信息系统的分析设计

(1)系统功能模块设计

(2)数据库设计

—数据库概念结构设计

—数据库逻辑结构设计

(3)系统开发环境简介

3,人事劳资管理信息系统的具体实现

(1)数据库结构的实现

(2)应用程序对象的创建

(3)应用程序的主窗口

(4)菜单结构

(5)数据窗口对象的创建

(6)登录程序设计

(7)输入程序设计

(8)查询程序设计

(9)报表程序设计

4,总结

设计报告格式与书写要求

·设计报告应按统一格式装订成册,其顺序为:封面,任务书,指导教师评语,内容摘要(200~400字),目录,报告正文,图纸,测试数据及计算机程序清单.

·报告构思,书写要求是:逻辑性强,条理清楚;语言通顺简练,文字打印清楚;插图清晰准确;文字字数要求1万字以上例如:(1)A市本地SDH传输网设计方案

一,A市概况简介

二,A市电信局SDH传输网络现状(或PDH传输网络现状)

1,A市本地网网络结构,交换局数量及位置,传输设备类型及容量

2,存在的问题及扩大SDH网的必要性(或建设SDH网的必要性)----需求及业务预测

三,A市电信局SDH传输网络结构设计方案

1,网络拓扑结构设计

2,设备简介

3,局间中继电路的计算与分配

4,局间中继距离的计算

四,SDH网络保护方式

1,SDH网络保护的基本原理

2,A市电信局SDH网网络保护方式的选择及具体设计

五,SDH网同步

1,同步网概念与结构

2,定时信号的传送方式

3,A市电信局SDH网络同步方式具体设计

六,方案论证,评估

(2)A地区GSM数字蜂窝移动通信系统网络优化设计方案

一,A地区GSM数字蜂窝移动通信现状

1,A地区概况;人口,地形,发展情况

2,系统现状;现有基站,话务状况

3,现行网络运行中存在的问题及分析

①接通率数据采集与分析

②掉话率数据采集与分析

③拥塞率数据采集与分析

4,话务预测分析计算

二,A地区GSM数字蜂窝移动通信系统网络优化设计方案

1,优化网络拓扑图设计

2,硬件配置及参数的优化

3,基站勘测设计及安装

4,交换局容量及基站数量

5,传输线路的设计

三,网络性能及分析对比

1,优化前网络运行情况

2,数据采集与分析

3,拨打测试

四,网络优化方案评价

(3)A市无线市话系统无线侧网络规划设计

一,无线市话网络概述

1,A市通信网络发展情况

2,IPAS网络特点

二,A市本地电活网络现状

1,现有传输网络结构

2,传统无线网络规划

三,无线网络规划设计方案

1,A市自然概况介绍

2,总体话务预测计算

3,IPAS网络结构设计及说明

4,覆盖区域划分,基站数量预测计算

(l〉每个覆盖区话务预测计算

(2)基站容量频道设计

5,基站选址,计算覆盖区域内信号覆盖情况

6,寻呼区的划分

(1〉各个网关寻呼区的划分

(2〉各个基站控制器寻呼区的划分

7,网关及CSC的规划

(1)网关到CSC侧2M链路设计

(2)CSC到CS线路设计

四,基站同步规划

(4)A市GSM无线网络优化

一,GSM网络概述

二,A市GSM网络情况介绍

2.1网络结构

2.2网元配置

2.3现网突出问题表现

三,GSM网络优化工作分类及流程

3.1GSM网络优化工作分类

3.2交换网络优化流程

3.3无线网络优化流程

3.3.1无线网络优化流程

3.3.2无线网络优化流程的实际应用

四,网络优化的相关技术指标

4.1接通率

4.2掉话率

4.3话务量

4.4长途来话接通率

4.5拥塞率

4.6其它

五,无线网络优化设计及调整

5.1网络运行质量数据收集

篇9

永磁同步电动机的定子绕组与一般交流电动机的定子绕组相同, 转子采用永久磁铁, 因此转子磁链(磁通)是恒定的, 电动机方程(电压方程、磁链方程和转矩方程)相对于异步电动机来说都较为简单, 在控制过程中, 磁链的观测模型也不需要进行计算。永磁同步电动机按定子绕组感应电势波形的情况来分类时, 一般可分为:正弦波永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)和梯形波永磁同步电机(Brushless DC Motor, BLDC)。介于前者在现实中应用更为广泛, 本论文主要应用的也是正弦波永磁同步电机。永磁同步电动机具有很多优点, 这些优点也在实际应用中得到了很好的发挥, 例如:根据它谐波少、转矩精度高的特点, 常用于伺服系统和高性能的调试系统;永磁同步电机有转轴上无滑环和电刷的特点, 这也解决了其它电机因电刷而带来的使用寿命问题。与此同时, 永磁同步电动机还具有体积小、功率密度高、转子转动惯量低、运行效率高、调速范围宽等诸多优点。值得注意的是, PMSM是一种强耦合、非线性时变的多变量系统, 这也为其控制工作带来了一定难度, 而加强对其基本构造和工作原理的理解能有助于克服这一问题。

空间矢量控制技术优点众多, 近几年发展非常迅速, 尤其在永磁同步电机中的使用, 更是再次凸显了它的好处。本论文通过对空间矢量控制技术和永磁同步电机的学习及分析, 在熟练掌握相关数学模型的建立和Matlab/Simulink的使用后, 将建立两种不同坐标系变换的数学模型和基于SVPWM控制技术的永磁同步电动机系统模型, 并在Matlab/Simulink环境中进行仿真。最终与理论分析相比较, 验证仿真结果的正确性。

1 控制系统结构模型

根据对永磁同步电机SVPWM控制系统的理解及前期研究, 可得到永磁同步电机空间矢量脉宽调制控制系统设计框图如图1所示。

图1 永磁同步电机SVPWM控制系统设计框图

本控制系统采用的是双闭环控制, 即速度环和电流环, 由图1可看到, 其主要构成为:

三个PI控制器(PIController)、两相旋转(dq)和两相静止坐标系(?琢?茁)坐标变换的变换器(dq/?琢?茁Coordinate Converter)、三相静止(abc)和两相旋转坐标系变换的变换器(abc/dq Coordinate Converter)、逆变器(Inverter)、空间电压矢量调制器(Space Vector Pulse Width Modulation,SVPWM)。

系统运行过程:给电机输入一模拟三相定子电流ia、ib、ic,当传感器检测到这一电流时, 该三相电流通过abc/dq坐标变换器被变换为实际定子的直轴电id和交轴电iq。

参考定子交轴电流i*q通过比对实际转速和参考转速, 再经PI控制器处理后获得。将参考定子直轴电流i*d设为0, 把上述id、i*d、iq、i*q四个变量比较过后交由PI控制器处理, 从而分别产生定子直轴、交轴电压Vd和Vq。将得到的电压量通过dq/?琢?茁坐标转换器处理后输入空间电压矢量调制器, 从而产生一系列触发脉冲, 以控制逆变器, 驱动其产生三相电压, 最终驱动永磁同步电机。

2 控制系统仿真分析

永磁同步电机空间矢量脉宽调制控制系统仿真模型如图2所示, 模型仿真环境为Matlab/Simlink。

图2 基于SVPWM的PMSM控制系统仿真建模框图

如图所示, 系统主要仿真模块为:

坐标转换模块、速度控制器模块、电流控制器模块、矢量控制模块、空间电压矢量控制模块、电压逆变器模块、永磁同步电机模块。

系统部分参数为:总仿真时间为0.3S;系统零时段负载起动转矩TL=5N・m。

(1)速度环闭环时, 系统定子三相相电流、转速、转矩、矢量切换时间、矢量所处扇区响应情况。

图3 转速闭环时SVPWM控制系统转矩响应放大图

图4 转速闭环时电机三相定子电流、转速、转矩、矢量切换时间

和矢量所处扇区响应图

由图4仿真波形, 可以得到结论如下:

a. 系统在0s~0.05s之间转速响应以斜率20000上升,延迟时间Td=0.025s、上升时间Tr=0.046s、调节时间Ts=0.05s, 无超调量, 系统动态响应快。系统起动时, 带动负载速度快, 转速在0.05s内稳定在设定值n=1000r/min。

b. 系统在稳态运行时,0.05s后都进入稳态阶段, 系统稳态输出误差已趋近零, 反应出该模拟系统控制精度较高, 稳态特性良好, 波形与理论分析结果相符, 静态性能稳定。

c.系统起动时,定子起动转矩6.7N・m,系统稳定运行后,定子转矩稳定在设定值5N・m。转矩脉动控制在0.2N・m内,系统运行稳定。

(2)速度环开环时,在系统空载情况下给定幅值为±5A的方波参考交轴电流i*q信号时,系统交轴电流、转速和转矩响应。

由图5仿真波形, 可得出结论如下:

在参考交轴电流±5A切换时, 转矩响应时间为0.00035s, 转矩动态响应快速。波形符合理论分析, 具有较好的动态特性。

3 结束语

本论文通过对矢量坐标变换、逆变器、空间电压矢量脉宽调制等技术的原理分析及建模仿真, 主要设计了一个基于空间电压矢量脉宽调制技术的永磁同步电机控制系统, 并在Matlab/Simulink对其进行仿真模拟。系统设计步骤为:系统构架、模块设计、系统设计和系统仿真结果分析。在这次完成论文的过程中, 我对所学的电力电子技术、自动控制原理、电机与拖动以及控制系统的MATLAB仿真与设计等知识有了更深层次的理解, 并在学习过程中积累了许多宝贵经验。从仿真结果的数据和波形来看, 系统的设计完全符合前期设计要求, 验证了理论的正确性。

参考文献

[1]李静,程小华.永磁同步电机的发展趋势[J].防爆电机.2009, 44(05):17-19.

[2]谭蒂娃.永磁同步电机的发展[J].伺服控制.2010, 22(11):20-22.

[3]唐介.电机与拖动[M].高等教育出版社.2007:32-34.

[4]张佳.变频器的相关研究[J].电气电子教学报.2009, (05):11-15.

篇10

ESG标准定义了一整套数据模型,用以描述在DVB-H广播网络中,透过CDP所能够传送的各种应用服务以及传输的细节。终端上的ESG处理程序负责辅助用户浏览收到ESG数据和选取在DVB-H广播网络上所传送的服务。

CDP标准定义了在DVB-H广播网络和移动通信网络上,以IP数据包传送音视频媒体流以及数据文件所需的通信协议集,包括FLUTE(FiledeLiv2eryoverUnidirectionalTransport,单向文件传输协议)、RTP(Real-timeTransportProtocol,实时传输协议)和HTTP(HyperTextTransferProtocol,超文本传输协议)。SPP标准则是实现收费服务的基础,定义了保护前述的音视频媒体流广播服务及数据文件广播服务所需的CA(ConditionalAccess,条件接取)与DRM(DigitalRightManagement,数字版权管理)技术。而正在制订中的NotificationFramework标准则被用来作为交互应用服务的基础框架,应用服务的数据内容都能以通知消息的形式传输,并通过通知应用服务(NotificationService)的方式提供给终端应用程序使用。在这个通知业务框架中,通知消息被用来作为向终端或者用户提供即将到达的或不可预知的服务事件或者信息。一条通知消息可能触发一系列随之而本论文由整理提供来的交互应用操作[3]。

在DVB-IPDC的框架下,现有网络中IP层之上的各种多媒体应用服务,都可以弹性地跨平台应用。从服务的角度来看,以提供数字媒体内容为主的流媒体服务,无疑是目前的主流业务。通知应用服务则可以作为媒体服务的附属增值业务或者独立的应用服务业务,提供增强型的多媒体交互应用。

而ESG服务则提供了访问由上述两种基本服务组合的各种不同应用服务的用户界面和访问指南,是与用户交互的接口。DVB-IPDC标准体系结构下文将主要探讨一个基于该框架的,实现上述服务应用处理的移动多媒体终端原型系统的设计与具体实现方案。

2系统设计与实现

2.1本论文由整理提供总体架构服务端采用实验室开发的DVB-IPDC多媒体综合服务系统提供各种应用服务,本终端的设计目标是在DVB-本论文由整理提供IPDC的框架内,能够接收服务端用各种协议会话传输过来的数据信息,实现流媒体服务应用、ESG服务应用、通知服务应用的处理及用户配置与注册等管理功能。整个系统以Java作为基础平台进行开发,根据功能需求,采用分层设计的方案,如图2所示。1)传输层:向上层应用提供指定会话协议的通信功能。

其中RTP模块主要负责接收音视频流媒体以及具有时间同步、服务相关性要求的通知应用服务数据。FLUTE模块用来接收绝大部分通过DVB-H网络传输的通知应用服务数据。HTTP模块则提供了一个双向通道,使终端可以完成服务注册或者向服务端请求个性的通知应用服务信息,提供了点对点的交互功能。2)功能层:在传输层提供通信服务的基础上,该层负责相关应用服务的数据处理以及终端系统的管理。会话管理模块负责其他功能模块调用下层协议通信模块创建服务接收会话。媒体处理模块负责提供音视频流媒体的解码以及同步处理。ESG处理模块主要负责ESG分片的维护、聚合以及解析,实现DVB-IPDC标准定义的ESG数据模型处理。

通知消息管理模块负责终端接收到的通知消息的解析、过滤、生命周期管理以及服务应用投递。订阅管理模块负责终端的服务申请与注册功能。

配置管理模块负责处理用户对终端的系统参数设置管理。存储管理模块负责终端的用户参数、ESG应用服务数据以及通知应用服务的相关信息本论文由整理提供数据的存储。应用管理模块则向各种应用服务提供了一个公共的应用框架,用户通过获取或者订阅启动使用的应用服务都集成于该框架之内,通过公用的接口调用其他模块的功能,使得终端能够动态加载各种应用服务,而具体的应用服务的功能逻辑实现与平台无关。3)应用层:媒体播放器负责播放经解码和同步处理后的音视频媒体流。

ESG浏览器能够显示终端得到的ESG数据信息并支持与用户交互。用户配置使得用户能够设置终端的用户应用参数。通知应用界面容器是用来装载各种通知应用的用户界面接口,提供终端用户与通知应用服务的交互。终端架构2.2ESG数据的处理与显示。

ESG用XMLSchema来定义其数据结构[4]。分片(Fragment)是ESG内容的最小组成单位。根据分片携带信息数据的属性的不同,可以分为3大类共7种类型的分片:①服务信息相关分片:Service、Sched2uleEvent、Content,提供有关服务类型、时间安排、服务内容等应用服务的业务信息;②订阅购买信息相关分片:ServiceBundle、Purchase、PurchaseChannel,提供有关购买组合、价格等相关信息;③获得信息分片:Ac2quisition,提供应用服务的访问途径和参数,对于用户不可见,但却是终端访问业务应用的入口。通过分片机制,终端可以独立地接收和更新不同分片,而不管其发送顺序,并且可以在接收部分的分片后就根据各分片之间的关系进行聚合(Aggregate),通过ESG浏览器展现内容给用户,不需要等待全部分片到达。

目前以XMLDOM树形式来组织本论文由整理提供管理ESG分片信息。符合ESG数据模型定义的分片到达终端后,通过遍历该DOM树,可以作为新节点加入或者更新相应位置的节点信息,同时检查是否有失效的分片信息,进行删减维护。ESG显示处理采用MVC模式[5],后台DOM树数据对象发生的变化,可以实时地反映到ESG浏览器。

2)流媒体服务与特定通知应用服务的关联与信息同步问题。基于DVB-IPDC框架的多媒体服务相对于传统多媒体服务的最大优势就在于支持用户实时交互。流媒体服务不再是单纯的数字媒体收视,而是可以与通知应用服务进行绑定,提供交互应用,并且通知消息与流媒体服务的媒体内容可以进行紧密的时间同步[6]。

前者通过在应用服务ESG数据的Service分片描述中指出了服务关联。而对于通知消息与媒体内容的时间同步,可基于RTP/RTCP传输协议进行。RTP/RTCP协议中的同步采用时间戳方法,不同媒体之间依靠RTCP报文中包含的参考时钟信息和相关的RTP时间戳信息来进行同步[7,8]。

终端系统在RTP协议会话上接收到音视频媒体流和通知消息数据流后,依据同步的各方共享的远端参考时钟,建立一个虚拟的时间轴来决定媒体的下一帧表现时间和通知消息的应用时间。需要指出的是,通知消息并不像媒体数据那样具有持续时间(Duration)的概念[9],目前采取的处理方法是,用每条消息的首包中的RTP时间戳来对齐参考时间轴,在完整地接收到一条通知消息后,用得到的应用时间值设置一个计时器绑定该通知消息,然后提交给通知消息管理本论文由整理提供模块,由计时器来触发后续的应用处理动作。

3)通知消息管理。在终端的通知应用中,虽然通知消息的处理是由承载的数据内容和通知应用程序决定,但终端系统处于动态变化的移动环境下,行为并不具有可预测性,尤其是在通知消息丢失后,可能会导致终端异常。为此DVB组织提出了一种管理通知消息在特定状态下的潜在应用动作的生命周期参考模型[3]本论文由整理提供

根据消息本身的时间特性和数据内容的接收情况,通知消息可能处于3种稳定状态和1种过渡状态中的某一状态中,状态之间的变迁具有确定的处理动作。具体如图3所示:通知消息的默认初始状态为Absent,这同时也是通知消息从系统中删除后的最终状态。该状态下无计时器与通知消息关联,从该状态向其他状态变迁意味着加载该通知消息。Loaded状态表示该通知消息已经下载完毕,但是没有后续的被启动媒体播放器,通知应用程序启动自己的应用界面)。

然后该应用服务程序通过会话管理模块调用底层协议通信模块,根据应用服务的访问信息创建对应的服务会话接收应用服务数据。如果是流媒体服务,则将媒体数据信息交由媒体处理模块处理后在媒体播放器展现;如果是特定的通知应用,则经通知本论文由整理提供消息处理后分发给该通知应用程序使用。如果该通知应用存在交互动作,用户能够通过HTTP模块同服务端进行交互操作(如图6所示)。图6ESG交互与应用服务启动3结束语随着DVB-IPDC的推广,基于该框架的移动多媒体业务应用必将得到广泛发展。笔者在DVB-IPDC技术框架的基础上,提出了一个移动多媒体终端的设计与实现方案,并对实现过程中的关键问题和相关技术方法作了一定探讨,目前已经初步完成了一个基于上述方案的原型系统。下一步的工作是在该原型系统的基础上,进一步优化业务流程处理,进行平台移植测试。

参考文献:

[1]高鹏,李薰春,谢锦辉.移动多媒体广播技术发展综述[J].广播与电视技术,2006(3):63-65.

[2]KornfeldM,MayG1DVB-HandIPDatacast:BroadcasttoHandheldDevices[J].IEEETransactionsonBroadcasting,2007,53(1):161-170.

[3]DVBCBMS.IPDatacastoverDVB-H:NotificationFrame2work[S].ETSITS102832,2008.

[4]杨晨,王慧,唐晓晟,等.移动多媒体广播中电子业务指南的生成与解析[J].电视技术,2007(31):37-39.

[5]任中方,张华,闫明松,等.MVC模式研究的综述[J].计算机应用研究,2004(10):1-5.

[6]蔡倩,谷建华,倪红波,等.基于数字电视中间件的媒体播放器研究与实现[J].计算机应用,2007(3):737-739.

[7]崔莉,王敏,吉逸.流媒体同步机制研究[J].计算机应用研究,2005(1):73-75.