继电保护论文模板(10篇)

时间:2023-03-20 16:26:06

导言:作为写作爱好者,不可错过为您精心挑选的10篇继电保护论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

继电保护论文

篇1

1前言

电力作为当今社会的主要能源,对国民经济的发展和人民生活水平的提高起着极其重要的作用。现代电力系统是一个由电能产生、输送、分配和用电环节组成的大系统。电力系统的飞速发展对电力系统的继电保护不断提出新的要求,近年来,电子技术及计算机通信技术的飞速发展为继电保护技术的发展注入了新的活力。如何正确应用继电保护技术来遏制电气故障,提高电力系统的运行效率及运行质量已成为迫切需要解决的技术问题。

2继电保护发展的现状

上世纪60年代到80年代是晶体管继电保护技术蓬勃发展和广泛应用的时期。70年代中期起,基于集成运算放大器的集成电路保护投入研究,到80年代末集成电路保护技术已形成完整系列,并逐渐取代晶体管保护技术,集成电路保护技术的研制、生产、应用的主导地位持续到90年代初。与此同时,我国从70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用,相继研制了不同原理、不同型式的微机保护装置。1984年原东北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,关于发电机失磁保护、发电机保护和发电机-变压器组保护、微机线路保护装置、微机相电压补偿方式高频保护、正序故障分量方向高频保护等也相继通过鉴定,至此,不同原理、不同机型的微机线路保护装置为电力系统提供了新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,此时,我国继电保护技术进入了微机保护的时代。

目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。

3电力系统中继电保护的配置与应用

3.1继电保护装置的任务

继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时、准确地发出信号或警报,通知值班人员尽快做出处理。

3.2继电保护装置的基本要求

选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。

灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。

速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。

可靠性。保护装置如不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定计算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。

3.3保护装置的应用

继电保护装置广泛应用于工厂企业高压供电系统、变电站等,用于高压供电系统线路保护、主变保护、电容器保护等。高压供电系统分母线继电保护装置的应用,对于不并列运行的分段母线装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除。另外,还应装设过电流保护,对于负荷等级较低的配电所则可不装设保护。变电站继电保护装置的应用包括:①线路保护:一般采用二段式或三段式电流保护,其中一段为电流速断保护,二段为限时电流速断保护,三段为过电流保护。②母联保护:需同时装设限时电流速断保护和过电流保护。③主变保护:主变保护包括主保护和后备保护,主保护一般为重瓦斯保护、差动保护,后备保护为复合电压过流保护、过负荷保护。④电容器保护:对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。随着继电保护技术的飞速发展,微机保护的装置逐渐投入使用,由于生产厂家的不同、开发时间的先后,微机保护呈现丰富多彩、各显神通的局面,但基本原理及要达到的目的基本一致。4继电保护装置的维护

值班人员定时对继电保护装置巡视和检查,并做好各仪表的运行记录。在继电保护运行过程中,发现异常现象时,应加强监视并向主管部门报告。

建立岗位责任制,做到每个盘柜有值班人员负责。做到人人有岗、每岗有人。值班人员对保护装置的操作,一般只允许接通或断开压板,切换开关及卸装熔丝等工作,工作过程中应严格遵守电业安全工作规定。

做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注意与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。对微机保护的电流、电压采样值每周记录一次,每月对微机保护的打印机进行定期检查并打印。

定期对继电保护装置检修及设备查评:①检查二次设备各元件标志、名称是否齐全;②检查转换开关、各种按钮、动作是否灵活无卡涉,动作灵活。接点接触有无足够压力和烧伤;③检查控制室光字牌、红绿指示灯泡是否完好;④检查各盘柜上表计、继电器及接线端子螺钉有无松动;⑤检查电压互感器、电流互感器二次引线端子是否完好;⑥配线是否整齐,固定卡子有无脱落;⑦检查断路器的操作机构动作是否正常。

根据每年对继电保护装置的定期查评,按情节将设备分为三类:经过运行检验,技术状况良好无缺陷,能保证安全、经济运行的设备为一类设备;设备基本完好、个别零件虽有一般缺陷,但尚能安全运行,不危及人身、设备安全为二类设备。有重大缺陷的设备,危及安全运行,出力降低,"三漏"情况严重的设备为三类。如发现继电保护有缺陷必须及时处理,严禁其存在隐患运行。对有缺陷经处理好的继电保护装置建立设备缺陷台帐,有利于今后对其检修工作。

5电力系统继电保护发展趋势

继电保护技术向计算机化、网络化、智能化、保护、控制、测量和数据通信一体化方向发展。随着计算机硬件的飞速发展,电力系统对微机保护的要求也在不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其他保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等,使微机保护装置具备一台PC的功能。为保证系统的安全运行,各个保护单元与重合装置必须协调工作,因此,必须实现微机保护装置的网络化,这在当前的技术条件下是完全可行的。在实现继电保护的计算机化和网络化的条件下,保护装置实际上是一台高性能,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆投资大,且使得二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。

结论。随着电力系统的告诉发展和计算机通信技术的进步,继电保护技术的发展向计算机化、网络化、一体化、智能化方向发展,这对继电保护工作者提出了新的挑战。只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,提高供电可靠性。

参考文献

篇2

1继电保护发展现状

电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。

建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术[1],建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。

自50年代末,晶体管继电保护已在开始研究。60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上[2],结束了500kV线路保护完全依靠从国外进口的时代。

在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用[3],天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条220kV和500kV线路上运行。

我国从70年代末即已开始了计算机继电保护的研究[4],高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用[5],揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于1989、1994年通过鉴定,投入运行。南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于1993、1996年通过鉴定。至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护的时代。

2继电保护的未来发展

继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。

2.1计算机化

随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CPU结构的微机保护问世,不到5年时间就发展到多CPU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。华中理工大学研制的微机保护也是从8位CPU,发展到以工控机核心部分为基础的32位微机保护。

南京电力自动化研究院一开始就研制了16位CPU为基础的微机线路保护,已得到大面积推广,目前也在研究32位保护硬件系统。东南大学研制的微机主设备保护的硬件也经过了多次改进和提高。天津大学一开始即研制以16位多CPU为基础的微机线路保护,1988年即开始研究以32位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与珠海晋电自动化设备公司合作研制成一种功能齐全的32位大模块,一个模块就是一个小型计算机。采用32位微机芯片并非只着眼于精度,因为精度受A/D转换器分辨率的限制,超过16位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU的寄存器、数据总线、地址总线都是32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CPU内。

电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台PC机的功能。在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有:(1)具有486PC机的全部功能,能满足对当前和未来微机保护的各种功能要求。(2)尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。(3)采用STD总线或PC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。

继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。\

2.2网络化

计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。

对于一般的非系统保护,实现保护装置的计算机联网也有很大的好处。继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。

对于某些保护装置实现计算机联网,也能提高保护的可靠性。天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理[6],初步研制成功了这种装置。其原理是将传统的集中式母线保护分散成若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。在母线区外故障时,各保护单元都计算为外部故障均不动作。这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,这对于象三峡电站具有超高压母线的系统枢纽非常重要。

由上述可知,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。

2.3保护、控制、测量、数据通信一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。

目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用OTA和OTV的情况下,保护装置应放在距OTA和OTV最近的地方,亦即应放在被保护设备附近。OTA和OTV的光信号输入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。1992年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。

2.4智能化

近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始[7]。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。天津大学从1996年起进行神经网络式继电保护的研究,已取得初步成果[8]。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

3结束语

建国以来,我国电力系统继电保护技术经历了4个时代。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

作者单位:天津市电力学会(天津300072)

参考文献

1王梅义.高压电网继电保护运行技术.北京:电力工业出版社,1981

2HeJiali,ZhangYuanhui,YangNianci.NewTypePowerLineCarrierRelayingSystemwithDirectionalComparisonforEHVTransmissionLines.IEEETransactionsPAS-103,1984(2)

3沈国荣.工频变化量方向继电器原理的研究.电力系统自动化,1983(1)

4葛耀中.数字计算机在继电保护中的应用.继电器,1978(3)

5杨奇逊.微型机继电保护基础.北京:水利电力出版社,1988

篇3

①继电保护自动化技术在母线保护中的应用。母线继电保护主要包括两种,即相位对比保护以及差动保护。相位对比保护指的是通过相位的对比方式,提高系统保护母线的可靠性和有效性;差动保护是将特点以及变化都一致的电流互感器设置在母线元件上,当系统母线侧边端子和二次绕组进行连接之后,再将继电保护装置安装在系统母线差动位置。在大电流接地过程中,通过三相连接的方式实现;小电流接地过程中,在相间短路中设置系统母线保护,然后通过两相连接的方式实现。②继电保护自动化技术在发动机保护中的应用。发电机是电力系统的重要组成部分,保证发动机的安全、稳定运行至关重要。继电保护自动化技术在发电机保护中应用主要包括两个方面:一方面,重点保护,如果发电机定子绕组匝间发生短路故障,将会导致发电机的故障部位温度上升,破坏绝缘层,威胁发电机的安全运行,通过在定子绕组内安装匝间保护装置,能够有效的防止定子匝间短路故障的发生;如果发电机的单相接地产生的电流超过规定值,通过安装接地保护装置能够对发电机进行继电保护;通过将发电机中性点、电流、相位进行相互结合,能够形成纵联差动保护,实现对发电机的保护;另一方面,备用保护,过电压保护能够有效的防止发电机自负荷较低的状况下发生绝缘被击穿的现象;过电保护能够有效的实现对外部短路故障的保护,防止发生短路破坏发电机;当发电机定子绕组发生低负荷问题时,继电保护装置能够自动切断电源,并发出相应的报警信号,实现对发电机的保护。③继电保护自动化技术在变压器保护中的应用。变压器是电力系统的重要组成部分之一,对电力系统的运行安全性和稳定性具有非常重要的作用。继电保护自动化技术在变压器保护中的应用主要包括以下几个方面:其一,短路保护,变压器短路保护包括阻抗继电保护和过电流继电保护,阻抗继电保护主要是通过利用变压器阻抗元件产生的保护作用,阻抗元件运行一段时间之后,会自动切断电源,以此实现对变压器的保护;过电流继电保护主要是在变压器电源两边电源和时间元件中安装过电流继电保护装置,电流元件运行一段时间之后,会自动切断电源,进而实现对变压器的保护。其二,瓦斯保护,当变压器的油箱出现问题时,在故障电弧的作用下绝缘材料和油都会发生分解,产生有害气体,通过采用瓦斯保护,当油箱出现上述故障时,能够自动的启动保护动作,将变压器电源切断,同时发出警报信号通知维护人员赶到故障地点进行处理。其三,接地保护,对于不接地变压器保护,应该采取零序电压保护措施;对于直接接地变压器保护,应该采取零序电流保护。④继电保护自动化技术在线路接地保护中的应用。电力系统的线路错综复杂,接地方式也相对较多,因此电力系统的接地方式包括大电流型接地与小电流型接地,当出现大电流接地时,应该立刻切断电源,防止接地故障对电力系统造成的破坏;当发生小电流型接地时,继电保护装置会发出报警信号,电力系统在一定时间内依然可以运行。针对不同的接地故障,应该根据故障状况采取相应的保护措施,具体状况如下所示:其一,零序功率,当电力系统发生接地故障时,零序功率的方向发生变化,零序电流波动相对较小,以此实现对电力接地故障的预测以及保护;其二,零序电流,当电力系统线路发生接地故障时,零序电流会迅速上升,继电保护动作非常敏感,能够及时的采取切断电源的保护措施,对电力系统进行保护;其三,零序电压,电力系统在正常运行时,并不会产生零序电压,如果电力系统发生接地故障,会导致零序电压的产生,继电保护装置能够及时的发出相应的报警信号,同时电网维护人员通过观察电压表数值能够判断系统是否发生接地故障,主要是因为当电力系统发生接地故障时,电压数值会降低。

1.2实例分析

文章以某电网为例,该电网于2010年应用了继电保护自动化技术,2011年4月23日,110kV变压器主变低压侧继电保护动作,1号主变101开关跳闸,2号主变119、131开关过流保护动作跳闸,重合闸动作,合成功,电网维护人员赶到事故现场,设备并无异常,维护人员通过查看跳闸过的线路,两条线路故障都能够合闸成功,但是却导致越级跳闸。通过对故障进行分析,发现为线路故障,开关拒动,处理方法表现为:把故障开关隔离,恢复供电,然后通知检修人员认真检查,查实状况后采取措施进行检修。

2继电保护自动化技术的未来发展趋势

继电保护自动化技术的未来发展趋势主要包括以下几个方面:其一,智能化,近年来,人工智能技术在电力系统继电保护自动化中得到非常广泛的应用,例如模糊逻辑算法、遗传算法、神经网络等,通过将这些人工智能技术应用在继电保护自动化系统中,能够保证继电保护自动化系统正确判别故障,并具有智能化解决复杂问题的能力,进而实现继电保护的智能化;其二,网络化,计算机网络技术在国家经济建设以及能源发展中发挥了至关重要的作用,通过将网络化技术应用在电力继电保护系统中,利用计算机网络能够将主要设备的继电保护装置连接在一起,创建继电保护装置网络,能够显著的提高继电保护的可靠性,因此电力系统继电保护技术的网络化是未来发展的一种必然趋势;其三,计算机化,随着计算机技术的快速发展,自动化芯片控制的电路保护硬件已经从16位单CPU结构发展为32位CPU微机保护结构,显著的提高了继电保护的性能以及响应速度,继电保护自动化系统的计算机化已经成为不可逆转的发展趋势。

篇4

1.电力系统电压等级与变电站种类

电力系统电压等级有220/380V(0.4kV),3kV、6kV、10kV、20kV、35kV、66kV、110kV、220kV、330kV、500kV。随着电机制造工艺的提高,10kV电动机已批量生产,所以3kV、6kV已较少使用,20kV、66kV也很少使用。供电系统以10kV、35kV为主。输配电系统以110kV以上为主。发电厂发电机有6kV与10kV两种,现在以10kV为主,用户均为220/380V(0.4kV)低压系统。

根据《城市电力网规定设计规则》规定:输电网为500kV、330kV、220kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6kV,低压配电网为0.4kV(220V/380V)。

发电厂发出6kV或10kV电,除发电厂自己用(厂用电)之外,也可以用10kV电压送给发电厂附近用户,10kV供电范围为10Km、35kV为20~50Km、66kV为30~100Km、110kV为50~150Km、220kV为100~300Km、330kV为200~600Km、500kV为150~850Km。

2.变配电站种类

电力系统各种电压等级均通过电力变压器来转换,电压升高为升压变压器(变电站为升压站),电压降低为降压变压器(变电站为降压站)。一种电压变为另一种电压的选用两个线圈(绕组)的双圈变压器,一种电压变为两种电压的选用三个线圈(绕组)的三圈变压器。

变电站除升压与降压之分外,还以规模大小分为枢纽站,区域站与终端站。枢纽站电压等级一般为三个(三圈变压器),550kV/220kV/110kV。区域站一般也有三个电压等级(三圈变压器),220kV/110kV/35kV或110kV/35kV/10kV。终端站一般直接接到用户,大多数为两个电压等级(两圈变压器)110kV/10kV或35kV/10kV。用户本身的变电站一般只有两个电压等级(双圈变压器)110kV/10kV、35kV/0.4kV、10kV/0.4kV,其中以10kV/0.4kV为最多。

3.变电站一次回路接线方案

1)一次接线种类

变电站一次回路接线是指输电线路进入变电站之后,所有电力设备(变压器及进出线开关等)的相互连接方式。其接线方案有:线路变压器组,桥形接线,单母线,单母线分段,双母线,双母线分段,环网供电等。

2)线路变压器组

变电站只有一路进线与一台变压器,而且再无发展的情况下采用线路变压器组接线。

3)桥形接线

有两路进线、两台变压器,而且再没有发展的情况下,采用桥形接线。针对变压器,联络断路器在两个进线断路器之内为内桥接线,联络断路器在两个进线断路器之外为外桥接线。

4)单母线

变电站进出线较多时,采用单母线,有两路进线时,一般一路供电、一路备用(不同时供电),二者可设备用电源互自投,多路出线均由一段母线引出。

5)单母线分段

有两路以上进线,多路出线时,选用单母线分段,两路进线分别接到两段母线上,两段母线用母联开关连接起来。出线分别接到两段母线上。

单母线分段运行方式比较多。一般为一路主供,一路备用(不合闸),母联合上,当主供断电时,备用合上,主供、备用与母联互锁。备用电源容量较小时,备用电源合上后,要断开一些出线。这是比较常用的一种运行方式。

对于特别重要的负荷,两路进线均为主供,母联开关断开,当一路进线断电时,母联合上,来电后断开母联再合上进线开关。

单母线分段也有利于变电站内部检修,检修时可以停掉一段母线,如果是单母线不分段,检修时就要全站停电,利用旁路母线可以不停电,旁路母线只用于电力系统变电站。

6)双母线

双母线主要用于发电厂及大型变电站,每路线路都由一个断路器经过两个隔离开关分别接到两条母线上,这样在母线检修时,就可以利用隔离开关将线路倒在一条件母线上。双母线也有分段与不分段两种,双母线分段再加旁路断路器,接线方式复杂,但检修就非常方便了,停电范围可减少。

4.变配电站二次回路

1)二次回路种类

变配电站二次回路包括:测量、保护、控制与信号回路部分。测量回路包括:计量测量与保护测量。控制回路包括:就地手动合分闸、防跳联锁、试验、互投联锁、保护跳闸以及合分闸执行部分。信号回路包括开关运行状态信号、事故跳闸信号与事故预告信号。

2)测量回路

测量回路分为电流回路与电压回路。电流回路各种设备串联于电流互感器二次侧(5A),电流互感器是将原边负荷电流统一变为5A测量电流。计量与保护分别用各自的互感器(计量用互感器精度要求高),计量测量串接于电流表以及电度表,功率表与功率因数表电流端子。保护测量串接于保护继电器的电流端子。微机保护一般将计量及保护集中于一体,分别有计量电流端子与保护电流端子。

电压测量回路,220/380V低压系统直接接220V或380V,3KV以上高压系统全部经过电压互感器将各种等级的高电压变为统一的100V电压,电压表以及电度表、功率表与功率因数表的电压线圈经其端子并接在100V电压母线上。微机保护单元计量电压与保护电压统一为一种电压端子。

3)控制回路

(1)合分闸回路

合分闸通过合分闸转换开关进行操作,常规保护为提示操作人员及事故跳闸报警需要,转换开关选用预合-合闸-合后及预分-分闸-分后的多档转换开关。以使利用不对应接线进行合分闸提示与事故跳闸报警,国家已有标准图设计。采用微机保护以后,要进行远分合闸操作后,还要到就地进行转换开关对位操作,这就失去了远分操作的意义,所以应取消不对应接线,选用中间自复位的只有合闸与分闸的三档转换开关。

(2)防跳回路

当合闸回路出现故障时进行分闸,或短路事故未排除,又进行合闸(误操作),这时就会出现断路器反复合分闸,不仅容易引起或扩大事故,还会引起设备损坏或人身事故,所以高压开关控制回路应设计防跳。防跳一般选用电流启动,电压保持的双线圈继电器。电流线圈串接于分闸回路作为启动线圈。电压线圈接于合闸回路,作为保持线圈,当分闸时,电流线圈经分闸回路起动。如果合闸回路有故障,或处于手动合闸位置,电压线圈起启动并通过其常开接点自保持,其常闭接点马上断开合闸回路,保证断路器在分闸过程中不能马上再合闸。防跳继电器的电流回路还可以通过其常开接点将电流线圈自保持,这样可以减轻保护继电器的出口接点断开负荷,也减少了保护继电器的保持时间要求。

有些微机保护装置自己已具有防跳功能,这样就可以不再设计防跳回路。断路器操作机构选用弹簧储能时,如果选用储能后可以进行一次合闸与分闸的弹簧储能操作机构(也有用于重合闸的储能后可以进行二次合闸与分闸的弹簧储能操作机构),因为储能一般都要求10秒左右,当储能开关经常处于断开位置时,储一次能,合完之后,将储能开关再处于断开位置,可以跳一次闸;跳闸之后,要手动储能之后才能进行合闸,此时,也可以不再设计防跳回路。

(3)试验与互投联锁与控制

对于手车开关柜,手车推出后要进行断路器合分闸试验,应设计合分闸试验按钮。进线与母联断路,一般应根据要求进行互投联锁或控制。

(4)保护跳闸

保护跳闸出口经过连接片接于跳闸回路,连接片用于保护调试,或运行过程中解除某些保护功能。

(5)合分闸回路

合分闸回路为经合分闸母线为操作机构提供电源,以及其控制回路,一般都应单独画出。

4)信号回路

(1)开关运行状态信号由合闸与分闸指示两个装于开关柜上的信号灯组成:经过操作转换开关不对应接线后接到正电源上。采用微机保护后,转换开关取消了不对应接线,所以信号灯正极可以直接接到正电源上。

(2)事故信号有事故跳闸与事故预告两种信号,事故跳闸报警也要通过转化开关不对应后,接到事故跳闸信号母线上,再引到中央信号系统。事故预告信号通过信号继电器接点引到中央信号系统。采用微机保护后,将断路器操作机构辅助接点与信号继电器的接点分别接到微机保护单元的开关量输入端子,需要有中央信号系统时,如果微机保护单元可以提供事故跳闸与事故预告输出接点,可将其引到中央信号系统。否则,应利用信号继电器的另一对接点引到中央信号系统。

(3)中央信号系统为安装于值班室内的集中报警系统,由事故跳闸与事故预告两套声光报警组成,光报警用光字牌,不用信号灯,光字牌分集中与分散两种。采用变电站综合自动化系统后,可以不再设计中央信号系统,或将其简化,只设计集中报警作为计算机报警的后备报警。

5.变配电站继电保护

1)变配电站继电保护的作用

变配电站继电保护能够在变配电站运行过程中发生故障(三相短路、两相短路、单相接地等)和出现不正常现象时(过负荷、过电压、低电压、低周波、瓦斯、超温、控制与测量回路断线等),迅速有选择性发出跳闸命令将故障切除或发出报警,从而减少故障造成的停电范围和电气设备的损坏程度,保证电力系统稳定运行。

2)变配电站继电保护的基本工作原理

变配电站继电保护是根据变配电站运行过程中发生故障时出现的电流增加、电压升高或降低、频率降低、出现瓦斯、温度升高等现象超过继电保护的整定值(给定值)或超限值后,在整定时间内,有选择的发出跳闸命令或报警信号。

根据电流值来进行选择性跳闸的为反时限,电流值越大,跳闸越快。根据时间来进行选择性跳闸的称为定时限保护,定时限在故障电流超过整定值后,经过时间定值给定的时间后才出现跳闸命令。瓦斯与温度等为非电量保护。

可靠系数为一个经验数据,计算继电器保护动作值时,要将计算结果再乘以可靠系数,以保证继电保护动作的准确与可靠,其范围为1.3~1.5。

发生故障时的最小值与保护的动作值之比为继电保护的灵敏系数,一般为1.2~2,应根据设计规范要进行选择。

3)变配电站继电保护按保护性质分类

(1)电流速断保护:故障电流超过保护整定值无时限(整定时间为零),立即发出跳闸命令。

(2)电流延时速断保护:故障电流超过速断保护整定值时,带一定延时后发出跳闸命令。

(3)过电流保护:故障电流超过过流保护整定值,故障出现时间超过保护整定时间后发出跳闸命令。

(4)过电压保护:故障电压超过保护整定值时,发出跳闸命令或过电压信号。

(5)低电压保护:故障电压低于保护整定值时,发出跳闸命令或低电压信号。

(6)低周波减载:当电网频率低于整定值时,有选择性跳开规定好的不重要负荷。

(7)单相接地保护:当一相发生接地后对于接地系统,发出跳闸命令,对于中性点不接地系统,发出接地报警信号。

(8)差动保护:当流过变压器、中性点线路或电动机绕组,线路两端电流之差变化超过整定值时,发出跳闸命令称为纵差动保护,两条并列运行的线路或两个绕组之间电流差变化超过整定值时,发出跳闸命令称横差动保护。

(9)距离保护:根据故障点到保护安装处的距离(阻抗)发出跳闸命令称为距离保护。

(10)方向保护:根据故障电流的方向,有选择性的发出跳闸命令称为方向保护。

(11)高频保护:利用弱电高频信号传递故障信号来进行选择性跳闸的保护称为高频保护。

(12)过负荷:运行电流超过过负荷整定值(一般按最大负荷或设备额定功率来整定)时,发出过负荷信号。

(13)瓦斯保护:对于油浸变压器,当变压器内部发生匝间短路出现电气火花,变压器油被击穿出现瓦斯气体冲击安装在油枕通道管中的瓦斯继电器,故障严重,瓦斯气体多,冲击力大,重瓦斯动作于跳闸,故障不严重,瓦斯气体少,冲击力小,轻瓦斯动作于信号。

(14)温度保护:变压器、电动机或发电机过负荷或内部短路故障,出现设备本体温度升高,超过整定值发出跳闸命令或超温报警信号。

(15)主保护:满足电力系统稳定和设备安全要求,出现故障后能以最快速度有选择性的切除被保护设备或线路的保护。

(16)后备保护:主保护或断路器拒动时,用来切除除故障的保护。主保护拒动,本电力系统或线路的另一套保护发出跳闸命令的为近后备保护。当主保护或断路器拒动由相邻(上一级)电力设备或线路的保护来切除故障的后备保护为远后备保护。

(17)辅助保护:为补充主保护和后备保护的性能,或当主保护和后备保护检修退出时而增加的简单保护。

(18)互感器二次线路断线报警:电流互感器或电压互感器二次侧断线会引起保护误动作,所以在其发生断线后应发出断线信号。

(19)跳闸回路断线:断路器跳闸回路断线后,继电保护发出跳闸命令断路器也不能跳开,所以跳闸回路断线时应发出报警信号。

(20)自动重合闸:对于一些瞬时性故障(雷击、架空线闪路等)故障迅速切除后,不会发生永久性故障,此时再进行合闸,可以继续保证供电。继电保护发出跳闸命令断路器跳开后马上再发出合闸命令,称为重合闸。

重合闸一次后不允许再重合的称为一次重合闸,允许再重合一次的称为二次重合闸(一般很少使用)。有了重合闸功能之后,在发生故障后,继电保护先不考虑保护整定时间,马上进行跳闸,跳闸后,再进行重合闸,重合后故障不能切除,然后再根据继电保护整定时间进行跳闸,此种重合闸为前加速重合闸。

发生事故后继电保护先根据保护整定时间进行保护跳闸,然后进行重合闸,重合闸不成功无延时迅速发出跳闸命令,此种重合闸称为后加速重合闸。

(21)备用电源互投:两路或多路电源进线供电时,当一路断电,其供电负荷可由其它电源供电,也就是要进行电源切换,人工进行切换的称为手动互投。自动进行切换的称为自动互投。互投有利用母联断路器进行互投的(用于多路电源进行同时运行)和进线电源互投(一路电源为主供,其它路电源为热备用)等多种形式。对于不允供电电源并列运行的还应加互投闭锁。

(22)同期并列与解列:对于多电源供电的变电站或发电厂要联网或上网时必须满足同期并列条件后才能并网或上网,并网或上网有手动与自动两种。

4)变电站继电保护按被保护对象分类

(1)发电机保护

发电机保护有定子绕组相间短路,定子绕组接地,定子绕组匝间短路,发电机外部短路,对称过负荷,定子绕组过电压,励磁回路一点及两点接地,失磁故障等。出口方式为停机,解列,缩小故障影响范围和发出信号。

(2)电力变压器保护

电力变压器保护有绕组及其引出线相间短路,中性点直接接地侧单相短路,绕组匝间短路,外部短路引起的过电流,中性点直接接地电力网中外部接地短路引起的过电流及中性点过电压、过负荷,油面降低,变压器温度升高,油箱压力升高或冷却系统故障。

(3)线路保护

线路保护根据电压等级不同,电网中性点接地方式不同,输电线路以及电缆或架空线长度不同,分别有:相间短路、单相接地短路、单相接地、过负荷等。

(4)母线保护

发电厂和重要变电所的母线应装设专用母线保护。

(5)电力电容器保护

电力电容器有电容器内部故障及其引出线短路,电容器组和断路器之间连接线短路,电容器组中某一故障电容切除后引起的过电压、电容器组过电压,所连接的母线失压。

(6)高压电动机保护

高压电动机有定子绕组相间短路、定子绕组单相接地、定子绕组过负荷、定子绕组低电压、同步电动机失步、同步电动机失磁、同步电动机出现非同步冲击电流。

6.微机保护装置

1)微机保护的优点

(1)可靠性高:一种微机保护单元可以完成多种保护与监测功能。代替了多种保护继电器和测量仪表,简化了开关柜与控制屏的接线,从而减少了相关设备的故障环节,提高了可靠性。微机保护单元采用高集成度的芯片,软件有自动检测与自动纠错功能,也有提高了保护的可靠性。

(2)精度高,速度快,功能多。测量部分数字化大大提高其精度。CPU速度提高可以使各种事件以ms来计时,软件功能的提高可以通过各种复杂的算法完成多种保护功能。

(3)灵活性大,通过软件可以很方便的改变保护与控制特性,利用逻辑判断实现各种互锁,一种类型硬件利用不同软件,可构成不同类型的保护。

(4)维护调试方便,硬件种类少,线路统一,外部接线简单,大大减少了维护工作量,保护调试与整定利用输入按键或上方计算机下传来进行,调试简单方便。

(5)经济性好,性能价格比高,由于微机保护的多功能性,使变配电站测量、控制与保护部分的综合造价降低。高可靠性与高速度,可以减少停电时间,节省人力,提高了经济效益。

2)微机保护装置的特点

微机保护装置除了具有上述微机保护的优点之外,与同类产品比较具有以下特点:

(1)品种齐全:微机保护装置,品种特别齐全,可以满足各种类型变配电站的各种设备的各种保护要求,这就给变配电站设计及计算机联网提供了很大方便。

(2)硬件采用最新的芯片提高了技术上的先进性,CPU采用80C196KB,测量为14位A/D转换,模拟量输入回路多达24路,采到的数据用DSP信号处理芯片进行处理,利用高速傅氏变换,得到基波到8次的谐波,特殊的软件自动校正,确保了测量的高精度。利用双口RAM与CPU变换数据,就构成一个多CPU系统,通信采用CAN总线。具有通信速率高(可达100MHZ,一般运行在80或60MHZ)抗干扰能力强等特点。通过键盘与液晶显示单元可以方便的进行现场观察与各种保护方式与保护参数的设定。

(3)硬件设计在供电电源,模拟量输入,开关量输入与输出,通信接口等采用了特殊的隔离与抗干扰措施,抗干扰能力强,除集中组屏外,可以直接安装于开关柜上。

(4)软件功能丰富,除完成各种测量与保护功能外,通过与上位处理计算机配合,可以完成故障录波(1秒高速故障记录与9秒故障动态记录),谐波分析与小电流接地选线等功能。

(5)可选用RS232和CAN通信方式,支持多种远动传输规约,方便与各种计算机管理系统联网。

(6)采用宽温带背景240×128大屏幕LCD液晶显示器,操作方便、显示美观。

(7)集成度高、体积小、重量轻,便于集中组屏安装和分散安装于开关柜上。

3)微机保护装置的使用范围

(1)中小型发电厂及其升压变电站。

(2)110kV/35kV/10kV区域变电站。

(3)城市10kV电网10kV开闭所

(4)用户110kV/10kV或35kV/10kV总降压站。

(5)用户10kV变配电站

4)微机保护装置的种类

(1)微机保护装置共有四大类。

(2)线路保护装置

微机线路保护装置微机电容保护装置微机方向线路保护装置

微机零序距离线路保护装置微机横差电流方向线路保护装置

(3)主设备保护装置

微机双绕组变压器差动保护装置微机三绕组变压器差动保护装置

微机变压器后备保护装置微机发电机差动保护装置微机发电机后备保护装置

微机发电机后备保护装置微机电动机差动保护装置微机电动机保护装置

微机厂(站)用变保护装置

(4)测控装置

微机遥测遥控装置微机遥信遥控装置微机遥调装置微机自动准同期装置

微机备自投装置微机PT切换装置微机脉冲电度测量装置

微机多功能变送测量装置微机解列装置

(5)管理装置单元

通信单元管理单元双机管理单元

5)微机保护装置功能

微机保护装置的通用技术要求和指标(工作环境、电源、技术参数、装置结构)以及主要功能(保护性能指标、主要保护功能、保护原理、定值与参数设定,以及外部接线端子与二次图)详见相关产品说明书。

7.220/380V低压配电系统微机监控系统

1)220/380V低压配电系统特点

(1)应用范围广,现在工业与民用用电除矿井、医疗、危险品库等外,均为220/380V,所以应用范围非常广泛。

(2)低压配电系统一般均为TN—S,或TN—C—S系统。TN—C系统为三个相线(A、B、C)与一个中性线(N),N线在变压器中性点接地或在建筑物进户处重复接地。输电线为四根线,电缆为四芯,没有保护地线(PE),少一根线。设备外壳,金属导电部分保护接地接在中性线(N)上,称为接零系统,接零系统安全性较差,对电子设备干扰大,设计规范已规定不再采用。

TN—S系统为三个相线,一个中性线(N)与一个保护地线(PE)。N线与PE线在变压器中性点集中接地或在建筑物进户线处重复接地。输电线为五根,电缆为五芯。中性线(N)与保护地线(PE)在接地点处连接在一起后,再不能有任何连接,因此中性线(N)也必须用绝缘线。中性线(N)引出后如果不用绝缘对地绝缘,或引出后又与保护地线有连接,虽然用了五根线,也为TN—C系统,这一点应特别引起注意。TN—S或TN—C—S系统安全性好,对电子设备干扰小,可以共用接地线(CPE),,采用等电位连接后安全性更好,干扰更小。所以设计规范规定除特殊场所外,均采用TN—S或TN—C—S系统。

(3)220/380V低压配电系统的保护现在仍采用低压断路器或熔断器。所以220/380V只有监控没有保护。监控包括电流、电压、电度、频率、功率、功率因数、温度等测量(遥测),开关运行状态,事故跳闸,报警与事故预告(过负荷、超温等)报警(遥信)与电动开关远方合分闸操作(遥控)等三个内容(简称三遥),而没有保护。

(4)220/380V低压配电系统一次回路一般均为单母线或单母线分段,两台以上变压器均为单母线分段,有几台变压器就分几段,这是因为用户变电站变压器一般不采用并列运行,这是为了减小短路电流,降低短路容量,否则,低压断路器的断开容量就要加大。

(5)220/380V低压配电系统进线、母联、大负荷出线与低压联络线因容量较大,一般一路(1个断路器)占用一个低压柜。根据供电负荷电流大小不同,一个低压开关柜内有两路出线(安装两个断路器),四路出线(安装四个断路器),以及五、六、八与十路出线,不象高压配电系统一个断路器占用一个开关柜。因此低压监控单元就要有用于一路、两路或多路之分,设计时要根据每个低压开关的出线回路数与低压监控单元的规格来进行设计。

(6)低压断路器除手动操作外,还可以选用电动操作。大容量低压断路器一般均有手动与电动操作,设计时应选用带遥控的低压监控单元,小容量低压断路器,设计时,大多数都选用只有手动操作的断路器,这样低压监控单元的遥控出口就可以不接线,或选用不带遥控的低压监控单元。

2)220/380V低压配电系统微机监控系统的设计

(1)220/380V低压配电系统微机监控系统首先根据一次系统及用户要求进行遥测、遥信及遥控设计。

(2)测量回路设计

A测量部分的二次接线与高压一样,电流回路串联于电压互感器二次回路,电压回路并联于电压测量回路。由于220/380V低压配电系统没有电压互感器,电压测量可以直接接到220/380V母线上,和电度表电压回路一样一般可以不加熔断器保护,但柜内接线应尽量短,有条件时最好加熔断器保护,以便于检修。

B电度测量可选用自带电源有脉冲输出的脉冲电度表,对于有计算功率与电度功能的低压监控单元,只作为内部计费时,可以不再选用脉冲电度表。

C选用有显示功能的低压监控单元,可以不再设计电流、电压表,选用不带显示功能的低压监控单元时还应设计电流或电压表,不应两种都设计。

(3)信号回路设计

设计时,低压断路器要增加一对常开接点接到低压监控单元开关状态输入端子上。有事故跳闸报警输出接点的,再将其接到低压监控单元事故预告端子上。

(4)遥控回路设计

低压监控系统的遥控设计比较简单,电动操作的低压断路器都有一对合分闸按钮,只要将低压监控单元合分闸输出端子分别并在合分闸按钮上即可,必要时,可设计一个就地与遥控操作转换开关,防止就地检修开关时,遥控操作引起事故。

(5)供电电源与通信电缆设计

低压监控单元电源为交流220V供电,耗电量一般只有几瓦,设计时将其电源由端子上引到一个220V/5A两极低压断路器上,再引到开关柜端子上,然后统一用KVV—3×1.0电缆集中引到低压柜一路小容量出线上。需要时可加一个UPS电源。

通信电缆一般距离不超过200米可选用KVV—3×1.0普通屏蔽控制电缆,超过200米时应选用屏蔽双绞线(最好选带护套型)或计算机用通信电缆。

8.变配电站综合自动化系统

1)系统组成

高压采用微机保护,低压采用监控单元,再用通信电缆将其与计算机联网之后就可以组成一个现代化变配电站管理系统——变配电站综合自动化系统。

2)变配电站综合自动化系统设计内容

A高压微机保护单元(组屏或安装在开关柜上)选型及二次图设计。

B低压微机监控单元(安装在开关柜上)选型及二次图设计。

C管理计算机(放在值班室,无人值班时可放在动力调度室)选型。

D模拟盘(放在值班室或调度室)设计。

E上位机(与工厂计算机或电力部门调度联网)联网方案设计。

F通信电缆设计(包括管理计算机与上位机)。

3)管理计算机

管理计算机可根据系统要求进行配置。

4)模拟盘

用户要求有模拟盘时,可以设计模拟盘,小系统可以用挂墙式,大系统用落地式,模拟盘尺寸根据供电系统一次图及值班室面积来决定。模拟盘采用专用控制单元,将其通信电缆引到管理计算机处。模拟盘还需要一路交流220V电源,容量只有几十瓦,设计时应与管理计算机电源一起考虑。

篇5

1110KV变电所10KV开关柜合

1.1基本情况

我局110KV变电所原有主变一台,容量为2万千伏安。35KV三回出线,10KV八回出线。其中10KV配电系统采用的开关型号为SN10-10II型少油断路器,配CD10型直流电磁操动机构。10KV线路配置了电流速断保护和过电流保护,10KV10#开关对城关大部分地区的负荷供电。

1.2现象

10KV10#开关,自89年投运后,运行情况较好。随着城关地区的负荷迅速上升,配变的容量不断增大。至九四年初,该开关出现拒合现象,即该开关在合闸时,发出连续的跳合声响,而后开关有时能合上,有时不能合上。运行人员开出“开关跳跃”的缺陷通知单,局领导要求生技部门组织人员进行消缺。

1.3原因分析

该该台开关出现的现象,对其定性分析如下:根据缺陷通知单的内容“开关跳跃”,对10KV10#开关的控制和保护回路进行了测试和检查,排除了“开关跳跃”的可能。若开关存在跳跃,首选线路存在永久性相间短路故障,再则控制开关的接点焊死或控制开关在合闸位置卡死,不能复位。这两个条件都满足的情况下“开关跳跃”才会出现。我们通过分析,这两个条件都不具备,帮排除“开关跳跃”的可能性。再次对该开关进行试验和检查,没有发现异常,继电保护人员再次对开关的控制和保护回路进行检查,也没有发现问题。但该开关在恢复运行时,拒合现象仍然存在。

通过仔细分析现场情况,发现该故障可能与保护装置动作有关。因为在开关拒合时,发现过流信号掉牌,但运行人员认为掉牌是因为开关柜(GG-1A)振动较大引起的(以前发现过类似现象)。为此,继保人员重新检查控制和保护回路,终于发现了10#开关的过流保护没有时限。过电流保护时间继电器的延时闭合常开接点没有接入回路,而把瞬动常开接点接入了回路。正、误电路如下图1、2所示。

把时间继电器接点改接后,开关恢复运行,一切正常,拒合现象消失。

开关虽然恢复了运行,但造成开关拒合的原因是什么呢?我们分析认为应该是开关合闸时的冲击电流。在该台开关刚投入运行时,虽然过电流保护回路接线错误,但由于该线路较短、负荷较小,合闸时的冲击电流启动不了过电流保护装置。但当城关地区的负荷不断增加,配变容量不断增大,开关合闸时的冲击电流也随之增大,当该电流增至能启动过流保护装置时,开关在合闸时保护动作,将开关跳开,出现开关拒合。但随着运行方式的改变,使合闸冲击电流减小,开关又能合上闸。当我们把回路改接后,定值虽然不能完全躲过合闸时的冲击电流,但从时限上,保护装置完全可以躲过该冲击电流。

1.4吸取的教训

10KV10#开关的拒合现象,几经努力,终于得到解决,同时也从中得到深刻的教训。

1.4.1运行人员素质需进一步提高,加强对问题的分析判断能力,要做到汇报准确。

1.4.2安装验收把关要严。

1.4.3继保人员在对装置作整组试验时方法不当,数次试验都没有发现异常,工作不到位。

2城关110KV变电所主变差动保护误动

2.1基本情况

城关110KV变电所是岳西县的枢纽变电所。一期工程上20000KVA主变一台,电压等级为110KV/35KV/10KV,35KV侧为单母线接线方式。10KV侧为单母线分段带旁路接线方式。为满足负荷增长的需要,于99年第四季度上二期工程,增加一台主变,其容易为10000KVA。主变保护采用南京自动化设备总厂生产的CST231型微机保护,35KV侧单独供一条线路运行。

2.2事故现象及原因分析

二期工程竣工后,于2000年5月29日投入主变试运行。合上主变110KV侧开关,主变空载运行二十四小时无任何异常现象,再投入35KV侧开关带线路运行时,主变差动保护运作。微机打印的事故报告显示,B相差动保护出口,动作值0.81,大于整定值0.8。

根据运行记录,主变差动保护动作时,其保护范围内未出现任何异常,经初步分析为CT极性接错。经检查证实极性接反,改正后再次投入主变110KV侧,35KV侧开关试运行(10KV侧不投)。当35KV侧所带负荷增加到约620KW时,差动保护发出差流越限告警信号。该信号是延时5秒发出,表明回路存在较大不平衡电流,其值已大于0.2A的告警整定值,怎么会出现如此大的不平衡电流?在差动保护范围内进行仔细测量和检查,均未发现任何问题。因此,对不平衡电流进行计算,如图3所示:

篇6

一、概述

随着微机继电保护装置的广泛应用和变电站综合自动化水平的不断提高,各种智能设备采集的模拟量、开关量、一次设备状态量大大增加,运行人员可以从中获取更多的一、二次设备的实时信息。但是,由于目前的微机型二次设备考虑较多的是对以往设备功能的替代,导致这些设备基本上是独立运行,致使它们采集的大量信息白白流失,未能得到充分利用。

电网是一个不可分割的整体,对整个电网的一、二次设备信息进行综合利用,对保证电网安全稳定运行具有重大的意义。近几年,计算机和网络技术的飞速发展,使综合利用整个电网的一、二次设备信息成为可能。电网继电保护综合自动化系统就是综合利用整个电网智能设备所采集的信息,自动对信息进行计算分析,并调整继电保护的工作状态,以确保电网运行安全可靠的自动化系统,它可以实现以下主要功能。

1.实现继电保护装置对系统运行状态的自适应。

2.实现对各种复杂故障的准确故障定位。

3.完成事故分析及事故恢复的继电保护辅助决策。

4.实现继电保护装置的状态检修。

5.对线路纵联保护退出引起的系统稳定问题进行分析,并提供解决方案。

6.对系统中运行的继电保护装置进行可靠性分析。

7.自动完成线路参数修正。

二、系统构成

站在电网的角度,我们来分析电网继电保护综合自动化系统获取信息的途径。电网的结构和参数,可以从调度中心获得;一次设备的运行状态及输送潮流,可以通过EMS系统实时获得;保护装置的投退信息,由于必须通过调度下令,由现场执行,因此可以从调度管理系统获得,并从变电站监控系统得到执行情况的验证;保护装置故障及异常,可以从微机保护装置获得;电网故障信息,可以从微机保护及微机故障录波器获得。

通过以上分析,可以看出,实现电网继电保护综合自动化系统的信息资源是充分的。为了更好的利用信息资源,应建立客户/服务器体系的系统结构,按此结构将系统分解成几个部分,由客户机和服务器协作来实现上述七种主要功能。这样就可以实现最佳的资源分配及利用,减少网络的通信负担,提高系统运行的总体性能。

客户机设在变电站,主要实现以下功能:

1.管理与保护及故障录波器的接口,实现对不同厂家的保护及故障录波器的数据采集及转换功能。在正常情况下巡检保护的运行状态,接收保护的异常报告。在电网发生故障后接收保护和故障录波器的事故报告。

2.管理与监控系统主站的接口,查询现场值班人员投退保护的操作。

3.管理与远动主站的接口,将装置异常、保护投退及其它关键信息通过远动主站实时上送调度端。

4.执行数据处理、筛选、分析功能。实现对保护采集数据正确性的初步分析,筛选出关键信息。

5.管理及修改保护定值。

6.向服务器发出应用请求,并接收服务器反馈信息。

7.主动或按服务器要求传送事故报告,执行服务器对指定保护和故障录波器的查询。

服务器设在调度端,可由一台或多台高性能计算机组成,主要实现以下功能:

1.向客户机发送指令,接收并回答客户机的请求。

2.接收客户机传送的事故报告。

3.控制对EMS系统共享数据库的存取。获得一次设备状态、输送潮流及客户机通过远动主站上送调度端的信息。

4.通过调度运行管理信息系统获得调度员对保护的投退命令、设备检修计划等信息。

5.与继电保护管理信息系统交换保护配置、定值、服役时间、各种保护装置的正动率及异常率等信息,实现继电保护装置的可靠性分析。

6.执行故障计算程序、继电保护定值综合分析程序、事故分析程序、保护运行状态监测程序、稳定分析程序等应用软件。

在实现了变电站综合自动化的厂站,客户机可在保护工程师站的基础上进行功能扩充,并成为变电站综合自动化系统的组成部分。在没有保护工程师站的厂站,可通过保护改造工程,建立变电站保护信息处理系统,使之成为客户机。

由以上功能划分可以看出,客户机与服务器之间的数据交换量并不大,仅在电网发生故障后,由于与故障设备有关联的厂站的客户机需要向服务器传送详细的故障报告,才会出现较大的信息量。因此,客户机和服务器之间的联络,在目前条件下,完全可以采用调制解调器进行异步通信。将来如有条件,建议尽量采用广域网交换数据。

三、功能分析

1.实现继电保护装置对系统运行状态的自适应。

电网继电保护的整定计算十分复杂,由于传统的继电保护以预先整定、实时动作为特征,保护定值必须适应所有可能出现的运行方式的变化。假如一个变电站有15个元件,仅考虑本站检修2个元件的组合方式就已经达到100多个,而周围系统机组停运、500KV自耦变的检修及系统开环对短路电流和分支系数的影响甚至可能比本站元件检修还要大,它们均需做为组合方式加以考虑,这就使组合方式之多达到难以想像的数量。

为使预先整定的保护定值适应所有可能出现的运行方式的变化,必然出现以下问题:

A.缩短了保护范围,延长了保护动作延时。

B.被迫退出某些受运行方式变化影响较大的保护。如四段式的零序电流保护仅能无配合的使用其最后两段。

C.可能还存在由于运行方式考虑不周而出现失去配合。

D.被迫限制一次系统运行方式。

电网继电保护综合自动化系统可以彻底改变这种局面。只要在调度端的服务器安装故障计算及继电保护定值综合分析程序,依靠从EMS系统获得的系统一次设备的运行状态,就可以迅速准确的判断出当前继电保护装置整定值的可靠性,如出现部分后备保护定值不配合时,根据从调度管理系统获得的线路纵联保护及母差保护的投入情况,确定是否需要调整定值。如需要调整,可通过调度端服务器向变电站的客户机下达指令,由客户机动态修改保护定值,从而实现继电保护装置对系统运行状态的自适应。以上所有计算分析工作,均依靠调度端服务器实时自动完成,这样,继电保护整定值就无需预先考虑那些出现机率很小的组合方式,从而解决困扰继电保护整定计算工作的不同运行方式下可靠性与选择性存在矛盾的问题。

目前,系统中运行的保护装置可分为三类:第一类为非微机型保护;第二类为具备多个定值区并可切换的微机保护,一般不具备远方改定值的功能;第三类为新型微机保护,具备远方改定值的功能。对非微机型保护,在调度端可以将其设置为不能自动调整定值的保护,依靠周围保护装置的定值调整,实现与此类保护的配合。对第二类保护,可以事先设置多套整定值,调度端只是通过变电站客户机,控制其在当前运行方式下采用那套整定值来实现定值的自适应。

为提高可靠性,保护定值的自适应可与调度系统的检修申请相结合。当电网继电保护综合自动化系统从调度管理系统获得计划检修工作申请后,即通过计算分析,事先安排定值的调整,并做相应的事故预想(如在检修基础上再发生故障时保护的配合关系计算),从而大大提高系统继电保护装置的效能和安全水平。

2.实现对各种复杂故障的准确故障定位。

目前的保护和故障录波器的故障测距算法,一般分为故障分析法和行波法两类。其中行波法由于存在行波信号的提取和故障产生行波的不确定性等问题而难以在电力生产中得到较好的运用。而故障分析法如果想要准确进行故障定位,必须得到故障前线路两端综合阻抗、相邻线运行方式、与相邻线的互感等信息,很显然,仅利用保护或故障录波器自己采集的数据,很难实现准确的故障定位。另外,对于比较复杂的故障,比如跨线异名相故障,单端分析手段已经无法正确判断故障性质和故障距离,因此,往往出现误报。

我们知道,得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确,因此,通过电网继电保护综合自动化系统,可以彻底解决这个问题。调度端数据库中,已经储备了所有一次设备参数、线路平行距离、互感情况等信息,通过共享EMS系统的数据,可以获得故障前系统一次设备的运行状态。故障发生后,线路两端变电站的客户机可以从保护和故障录波器搜集故障报告,上送到服务器。调度端服务器将以上信息综合利用,通过比较简单的故障计算,就可确定故障性质并实现准确的故障定位。

3.完成事故分析及事故恢复的继电保护辅助决策。

系统发生事故后,往往有可能伴随着其它保护的误动作。传统的事故分析由人完成,受经验和水平的影响,易出现偏差。由于电网继电保护综合自动化系统搜集了故障前后系统一次设备的运行状态和变电站保护和故录的故障报告,可以综合线路两端保护动作信息及同一端的其它保护动作信息进行模糊分析,并依靠保护和故录的采样数据精确计算,从而能够迅速准确的做出判断,实现事故恢复的继电保护辅助决策。

当系统发生较大的事故时,由于在较短时间内跳闸线路较多,一般已经超过了继电保护能够适应的运行方式,此时保护可能已经处于无配合的状态。此时进行事故恢复,不仅需要考虑一次运行方式的合理,还需要考虑保护是否能够可靠并有选择的切除故障。借助电网继电保护综合自动化系统,可以分析当前运行方式下保护的灵敏度及配合关系,并通过远程改定值,完成继电保护装置对系统事故运行状态的自适应。

4.实现继电保护装置的状态检修。

根据以往的统计分析数据,设计存在缺陷、二次回路维护不良、厂家制造质量不良往往是继电保护装置误动作的主要原因。由于微机型继电保护装置具有自检及存储故障报告的能力,因此,可以通过电网继电保护综合自动化系统实现继电保护装置的状态检修。具体做法如下:

A.依靠微机保护的自检功能,可以发现保护装置内部的硬件异常。变电站的客户机搜集到保护的异常报告后,立即向相应的调度端发出告警,从而使设备故障能够得到及时处理,缩短保护装置退出时间。

B.保护的开入量一般有开关辅助节点、通讯设备收信、合闸加速、启动重合闸、其他保护动作等几种,这些开入量对保护的可靠运行起关键作用。变电站的客户机可以监视保护装置的开关量变位报告。当发现保护的开入量发生变位时,可以通过查询变电站一次系统状态以及其他保护和录波器的动作信息确定变位的正确性。这样,就可以及早发现问题,预防一部分由设计缺陷或二次回路维护不良引起的误动作。

C.为防止由于PT、CT两点接地、保护装置交流输入回路异常、采样回路异常等引起保护误动作,可以由变电站的客户机将保护启动以后的报告进行分析,首先可以判断取自同一CT的两套保护采样值是否一致,其次,可以判断本站不同PT对同一故障的采样值是否一致。另外,还可以将从保护故障报告中筛选出的故障电流基波稳态值及相位等信息上传到调度端,与线路对侧的数据进行比较,以发现PT两点接地等问题。

通过以上措施,可以加强状态检修,相应延长定期检修周期,使保护装置工作在最佳状态。同时,还可以提高维护管理水平,减轻继电保护工作人员的劳动强度,减少因为人员工作疏漏引起的误动作。

5.对线路纵联保护退出引起的系统稳定问题进行分析,并提供解决方案。

随着电网的发展,系统稳定问题日益突出。故障能否快速切除成为系统保持稳定的首要条件,这就对线路纵联保护的投入提出较高要求。但是,在目前情况下,由于通道或其它因素的影响,导致线路双套纵联保护退出时,只能断开线路以保证系统稳定和后备保护的配合。这种由于二次设备退出而影响一次设备运行的状况是我们所不愿意看到的。

借助电网继电保护综合自动化系统,我们可以完成以下工作。

A.根据系统当前运行状态校验保护的配合关系。

B.根据线路两侧定值确定不同点故障保护的切除时间。

C.根据系统当前的运行方式、输送潮流、系统及机组的参数,结合故障切除时间,判断线路不同点故障时系统能否保持稳定。

D.判断能否通过控制输送潮流保持系统稳定。

E.反推系统保持稳定需要的故障切除时间。

F.通过远程改定值,保证系统稳定及周围系统后备保护的配合。

这样,我们就可以大大减轻纵联保护的退出给系统一次设备的运行带来的影响,并提供纵联保护的退出的整体解决方案。

6.对系统中运行的继电保护装置进行可靠性分析。

通过与继电保护管理信息系统交换保护配置、服役时间、各种保护装置的正动率及异常率等信息,电网继电保护综合自动化系统可以实现对继电保护装置的可靠性分析。特别是当某种保护或保护信号传输装置出现问题,并暂时无法解决时,通过将此类装置的可靠性评价降低,减轻系统对此类保护的依赖,通过远程调整定值等手段,实现周围系统保护的配合,防止因此类保护的拒动而扩大事故。

7.自动完成线路参数修正。

由于征地的限制,新建线路往往与原有线路共用线路走廊,线路之间电磁感应日益增大,造成新线路参数测试的不准确以及原有线路参数的变化。现在,依靠电网继电保护综合自动化系统,可以将每次故障周围系统保护的采样数据进行收集,利用线路两端的故障电流、故障电压,校核并修正线路参数,实现线路参数的自动在线测量,从而提高继电保护基础参数的可靠性,保证系统安全。

四、实现本系统的难点分析

1.管理问题

从技术上说,实现电网继电保护综合自动化系统的条件已经成熟,无论是变电站客户机对保护信息的搜集、信息的网络传输还是调度端服务器对EMS系统共享数据的读取、故障及稳定分析计算,都可以得到解决。主要的实施难度在于此系统需要综合继电保护、调度、方式、远动、通信以及变电站综合自动化等各个专业的技术,并且涉及到控制运行设备,其它专业一般不愿牵扯其中,因此只有解决好管理问题,才可能顺利实施。例如,目前变电站客户机对信息的搜集,完全可以也应该纳入到变电站综合自动化系统,但是,由于管理界面的划分,有些运行单位希望保护专业独立组网搜集信息,这样就造成资源的分割和浪费,不利于今后对系统的扩展。为了保证电力系统的安全运行,希望在将来的保护设计导则中,对此类问题统一予以规范。

2.安全性问题

由于电网继电保护综合自动化系统的功能强大,并且可以控制运行设备,与电网的安全稳定运行息息相关,因此在设计之初,就必须对系统的安全性问题给予足够重视。可以说,安全性解决的好坏,将是本系统能否运用的关键。初步设想,调度端服务器必须采用双机热备用方式保证硬件安全;通过远方修改保护定值时,客户机必须通过加密的数字签名核实调度端传送定值的可信度,并通过校验码及数据回送保证定值的可靠性。并且,当客户机向保护传送定值时,必须不能影响保护的正常性能。在这方面,还需要做大量的工作。

3.规约问题

篇7

继电保护对于维护电力系统信息数据的安全性具有非常重要的作用,同时还可以有效的减少或是避免外界因素对装置所带来的干扰,确保了装置的安全,而且通过继电保护装置,可以在电力系统运行过程中实现有效的防范监测,确保了电力系统运行的稳定性和可靠性。

1.2投资较少,安装便捷

继电保护装置由于自身重量较小,装置小巧,易于安装,所以在电力行业施工过程中,有效的减少了所占据的空间,为施工的顺利进行创造了良好的条件。同时在安装过程中也有效的提高了操作的效率,减少了成本的投入,只需按照电气图纸安装人员即可完成继电装置的安装工作。

1.3检测故障及防范

电力系统上安装继电保护装置后,一旦系统中有设备或是元器件发生故障,则继电保护装置则会及时发出预警,提醒值班人员进行处理。同时在发生故障的第一时间内,继电保护装置还会向断路器发出跳闸等指令,对故障线路进行及时切断,有效的保障了正常线路的运行,减少了故障所给设备及元器件所还来的损失,继电保护装置在电力系统运行过程中具有较高的故障防范能力,具有不可替代性。

2继电保护故障处理的原则

2.1处理继电保护故障时要保持正确、冷静的态度。

电力系统的发电机等设备在运行过程中,继电保护装置的连接片要根据运行方式的变化而进行相应的投、退处理。在进行这两项处理时要求工作人员同时进行,而且要经过细致的辨别清楚后,才能够操作。而且对于跳闸回路的连接片来说,只有相应的开关在运行的过程中才能够投入。

2.2能够根据信号状态准确判断故障发生点。

在继电保护现场中出现的光子牌信号、事件记录以及故障录波器所采集到的图形、继电保护装置的灯光信号或者其他信号等都是对继电保护的故障进行处理的基础依据。所以,在对继电保护的故障进行处理之前,要对这些信号进行分析,判断出信号处的故障和真伪。

2.3对人为故障要给以紧急处理。

在继电保护装置对故障进行处理时,人为故障的处理具有较大的难度,也是一个非常关键的问题。在继电保护装置处理故障过程中,根据其所提供的故障信息无法找到导致故障发生的原因时,或者当断路器动作后没有发生预警信号时,这时无法判断出导致故障的原因是人为因素还是设备、装置自身的故障,所以给处理带来了较大的难度。再加之继电保护现场中,部分运行人员由于专业技能水平不高,工作缺乏责任心,对故障不重视,不能及时对存在的故障进行处理,操作过程中也极易发生误碰等情况,从而导致人为故障增加。这就需要对现场人为故障进行如实反映,这样对于能够为工作人员进行故障处理提供必要的依据。而且对于现场这类人为故障的原因及处理方式也要进行如实的记录,确保类似故障不再发生。

3差动保护二次回路检修方法

3.1负荷检修

一旦负荷过大时,则会导致电流互感器处于超负荷运行状态下,这样会导致电流互感器的使用寿命降低,所以需要利用差动保护来对负荷进行严格控制,根据实际的需要,来适当的对电流互感器的励磁电流进行降低,通过对电缆的电阻及选择弱电控制用电流互感器等来降低二次负荷,同时还要对互感器的实际运行状态进行定期检查。

3.2质量检修

目前电流互感器的种类较多,市场上的产品较为多样化,这样就需要在实际购买过程中需要选择与系统保护方式相适应的电流互感器。在差动保护过程中,当继电保护装置的测电流过大时,则需要选择带小气隙的电流互感器,由于该种类的电流互感器的铁芯剩磁小,有利于差动保护装置性能的提升,而且其励磁电流也较小,能够有效的实现对失衡电流的有效控制。

3.3电流检修

在差动保护实施过程中,电流互感器作为差动保护效果的重要元件,所以需要对互感器的使用型号进行科学的选择,通常D级电流互感器最为适合进行差动保护。当电流经过差动保护装置的稳态短路电流时,一旦电流达到最大值,则需要有效的控制好差动保护回路的二次负荷,使其误差在规定的范围内。

篇8

目前,继电保护装置的配置有很多,但大部分继电保护装置是用于保护功能,在数据共享和分析处理方面应用比较少,导致当电网系统发生故障后,没有有效的技术手段进行保护动作情况、故障数据信息上报控制中心,需要变电运行的工作人员口头上报数据信息,然后进行故障分析处理。为改善这种现状,可以建立继电保护及故障信息管理成系统,实现在不影响继电保护装置、故障处理装置等设备正常运行的情况,形成条理化的报文,将电网运行状况及故障数据信息传递给调度终端。继电保护装置和故障信息的实时联网,汇总出来的数据信息对电网的深入研究有十分重要的作用。继电保护及故障信息管理系统能帮助电力运行管理部门掌握继电保护装置的运行状况和电力系统故障的演变情况,同时还能对故障的保护动作进行综合分析,这极大地提高了故障分析能力和事故处理能力,为快速恢复电力系统的稳定运行提供了保障。在电力调度终端,还能利用该系统对保护装置进行管理,对故障信息进行综合分析、处理,实现继电保护装置的自动化、网络化运行管理,继电保护及故障信息管理系统为分析故障原因、查找故障点、继电保护装置动作行为分析等提供了重要的依据,为电网系统的稳定运行提供了保障。

2继电保护及故障信息管理系统的结构及功能

继电保护及故障信息管理系统是由主站和多个子站系统组成的,其中子站系统主要负责对继电保护装置、安全自动装置、故障处理装置等进行监视、汇总,并将这些装置的运行状态、故障信息、动作保护等信息收集传输到主站系统中;主站系统主要负责将子站系统收集的数据信息分配到相应的功能模块进行处理,并将这些信息提交到相应的高级应用模块中。继电保护及故障信息管理系统主要具有以下功能:对电网保护设备、录波设备等进行监测、控制;对运行异常的设备进行监测;自动分析电网系统的故障,并准确、快速地找出故障区域和故障点;对继电保护动作进行分析;实现继电保护管理的网络化、自动化、规范化、标准化。

3继电保护及故障信息管理系统的设计原则

根据继电保护及故障信息管理系统的特点,在进行系统设计时,要遵循以下原则:标准化、规范化设计原则,在设计系统过程中要采用国际标准,从而与其他系统进行良好的接口,确保系统的开放性;分层分布式设计,系统的设计要以子站系统为中心,利用通信网络将本地监控、主站系统、子站系统连接起来,为有利于新功能的扩展,软件系统要采用模块化结构。

4继电保护及故障信息管理系统子站的建立

4.1子站系统的设计目标

子站系统的设计目标主要包括以下五点:

4.1.1故障数据缓冲处理:在子站系统内部配置具有集成数据库的应用的处理系统,使得子站系统具有故障数据缓冲处理能力,从而提高继电保护及故障信息管理系统的可靠性。

4.1.2故障信息预处理:子站系统能对相关故障信息进行过滤故障信息等预处理,这样不仅能降低主站系统处理数据信息的压力,还能提高系统处理信息的效率。

4.1.3汇总、转发数据信息:子站系统能将继电保护装置、故障处理装置等二次设备和主站系统连接起来,能在节省通信资源的条件下,将各种数据信息汇总并转发到主站系统。

4.1.4远程维护功能:在条件允许的情况下,子站系统能进行远程维护,为无人看守的变电站子系统运行管理带来极大的方便。

4.1.5自检及就地功能:子站系统能利用自检功能产生自检报告,同时将自检报告转发到主站系统中;用户可以通过子站后台、计算机、站内监控后台等方式和子站系统的维护接口连接,对子站系统进行实时维护。

4.2子站系统软件

系统设计继电保护及故障信息管理系统的子站系统软件主要由端口处理线程、主处理进程、数据库管理系统三部分构成。当子站系统启动后,主处理进程能根据系统的配置,自动启动端口处理线程,系统的通信端口会和端口处理线程对应起来,端口处理进程会根据自身的配置对相应的通信端口进行确认,并配置规约处理程序。主处理进程是子站软件系统复位启动时,最重要的入口程序之一,主要功能是根据系统配置自动启动,对端口处理进程进行管理,实现端口处理进程、事件处理器、数据库管理系统之间的异步通信,完成信息中转。端口处理线程汇总的数据信息会转发到数据库系统中进行统一管理,从而实现故障信息的处理和共享,保证继电保护及故障信息管理系统能高效、可靠地进行信息处理,子站数据库系统配置有大容量的故障信息处理功能和数据存档功能。

5继电保护及故障信息管理系统主站系统的建立

继电保护及故障信息管理系统的主站系统主要由数据管理子系统、主站数据库、统计和故障分析子系统三部分组成,下面分别对这三部分进行分析:

5.1数据管理子系统

数据管理子系统包括对主站运行进行监视及对图像、网络等进行管理,数据管理子系统主要由图形处理系统和图形运行系统两个子模块组成,图形处理系统能通过界面的绘图工具生成电气主接线图、电力系统区位分布图;图形运行系统能查看各主站接线图显示的故障点,并结合故障信息数据控制图形系统的运行,数据管理子系统主要用于微机继电保护动作情况,对故障过程进行重演及统计历史故障信息。

5.2主站数据库

主站数据库主要是对继电保护的数据模型、版本应用模块等进行统一管理,同时提供维护、生成、修改功能。主站数据库由静态数据库、动态数据库、历史数据库等几个数据库构成,其中静态数据库储存的信息大多为固定的数据,动态数据库多储存动态变化的数据信息,历史数据库主要为了保护动态数据库的运作效率,为主站系统的维护提供方便。

5.3统计和故障分析

子系统统计和故障分析子系统主要包括故障录波报文、故障测距报文等两个模块,故障录波报文是以COMTRADE格式生成的,故障录波信息数据分析是在故障录波器生成的故障信息报文上进行,能对整个电力系统的故障信息进行分析,在故障状态下,能实现故障信息实时分析、故障信息网页生成、数据统计等功能,同时还能对主站系统进行日常继电保护管理、定值校验、保护整定计算、故障数据分析、故障距离测定等应用。

篇9

管理过程要求我们未雨绸缪,第一次就要把事情办好,是非常适合综合自动化改造的管理方法。

2综合自动化改造问题分析

(1)较广的涉及面

电力系统构成复杂,主要包括一次主设备和二次保护、控制、调节、信号等辅助设备组成,综合自动化改造工作涉及到变电所每个间隔的一次设备和相应的二次设备。

(2)较大的工作影响范围

如果综合自动化改造工作稍有差错,就不仅仅对电力系统的运行造成严重的影响,而且国民经济和人民生活带来不可估量的损失。其中,继电保护“三误”(误碰、误接线、误整定)操作呈现出多样、易发生的特点,是保护的头号敌人

(3)改造难度大

综合改造过程中要求停电时间短,技术难度高,复杂性强,细微事情多,稍有想不到的地方都可能对电网安全运行带来威胁。

3综合自动化改造施工中的危险因素

(1)对“三措方案”、作业指导书学习体会不够,造成工作上被动。

(2)未掌握图纸、技术规范、规程制度,未完全了解现场实际情况,对停电设备间隔不知道,造成延误工期甚至出现威胁电网安全事故。

(3)拆除旧电缆时拆错线造成保护误动。

(4)机械伤人、保护误碰等在拆、搬屏柜过程中出现时应该引起注意。

(5)交流短路、直流短路接地等往往在接线过程中误接线引起,这样也应该格外注意。

(6)误投压板、调试不慎引起设备损坏,相关保护误动等需要特别注意。

4综自改造施工中过程管理思考

由于综自改造的特点分析,从整体上考虑应该强化过程管理是非常必要的,否则,轻则延误工期,重则酿成事故。做好图纸资料,材料工器具等的准备工作在改造前就显得尤为必要和关键,另外,符合现场的施工“三措”方案也应该及时制定。而在施工过程中需要注意的工作有,做好每日工作日志,交代清楚工作内容,同时对于危险点及预控措施应该提前准备,确保使用安全措施票。完备的实施细则应该在重点阶段、重点环节体现出来,另外这些措施应该体现出针对性和区别性,使得各个环节相互辅佐,从整体上保证施工安全。

4.1从施工方案反映施工总体情况

综自改造施工方案应包括施工组织措施、安全措施、技术措施,同时还包括施工工程进度安排,改造前、后的屏柜布置,施工作业指导书等内容。施工“三措”方案要尽可能详细,对现场的人员组织、危险点、预控措施、全过程技术把关等内容要全面准确。施工前对每个参加施工人员及现场运行人员进行交底,使每个人都对整个施工过程所有内容能完全掌握。

4.2从施工日志体现全过程

综自改造施工是一项面广点散的工作,如果采取工作负责人全面负责的办法,工作负责人的压力非常大,工作班成员的积极性也低,责任意识也会淡薄,从而影响施工的安全与进度。为此我们在变电站改造施工中,充分利用施工日计划和施工日志的办法解决了这一难题,并大大提高了工作效率。施工日前一天晚上就将次日的施工计划编制好,将各项工作详细分解到人,并且交代了各工作点的危险点及预控措施,做到责任到人,当日工作前逐一交待,使得工作多而不乱;施工日志则记录每日的工作完成情况、工作中存在的问题及解决措施。

4.3继电保护安全措施票-小措施大作用

尽管从某一方面来说作为进入现场工作的一张通行证的工作票具有一定作用,但是在较为复杂情况下,这样做就远远不够了。在复杂的合自动化改造施工和220kV以上保护调试工作中,当进行拆除与运行设备相关的连线过程中,往往需要处理在二次回路中接临时安全措施线,这就意味着大量繁琐而必须的步骤不能缺少。为了更好解决这个问题,同时在保证安全至上的前提下,即对工作负责的同时又对自己安全负责,就提出了继电保护安全措施票措施,具体来说,继电保护安全措施票包括编号、签发人、工作负责人、工作内容、设备状态、安全措施。每一项安全措施都要列出执行时间和恢复时间,不需要恢复的项目要在恢复栏中写明原因。在改造中通过继电保护安全措施票实施从根本上杜绝了“三误”的发生,同时也可以真正做到层层把关,责任到人,并做到有据可查,提高了保护人员工作责任心和工作态度,大大保证了施工的安全。

4.4过程管理细则化-将关键工作精细化

篇10

1.2继电保护对于光纤通道延迟的要求对于电力系统的继电保护来说,相关的标准对于继电保护动作发生的具体时间有一定的要求。继电保护的“四性”给出了各种保护方案中传递信息的最大允许时间,其中纵联保护对故障发生时的位置判断只与电气信号的值有关,时间长短与光纤通道的延迟无关。但在对故障发生地点的判断上是基于本侧的电气信息进行分析的,当得出故障发生在本侧时还要分析故障的方向。其次,纵联保护是根据相关的信息来分析故障发生在对侧的方向,只有保障两条分析都在同一方向时,才能确定故障发生的区域。由此可见,电力系统的继电保护时间就纵联保护来说是有叠加现象的。而就纵差保护来说,光纤延迟对继电保护的相应时间也分为两个因素。一方面,在继电保护系统对电气信息进行分析和计算的过程中,当发现电流并不等于两侧电流的总和时,实际上接收到的是对边电流与同一时刻本侧电流的和。另一方面,在本侧发生保护动作前,不仅需要本侧的差动数据满足,更需要对侧的数据保障,以避免突然断线引起的错误动作,从而影响电力系统运行。

1.3专用光纤通信方式对于电力系统来说,利用光纤通信需要为继电保护装置敷设专用的光纤通道,并且在此通道中只允许传输继电保护信息。因光的收、发接口工作距离限制和敷设的光缆成本的限制,用于继电保护装置的通信距离通常在100km以内。专用通道由光缆中断箱直接接入继电保护设备的光收发口,省去了复杂的中间环节,不需要其他的专业设备,就能实现简单、可靠的信息传输,管理起来也比较方便,因此被逐渐运用到了电力系统继电保护系统中。

2光纤通信通道异常对机电保护的影响

2.1线路交互错位影响在实际的电力系统运行过程中,如果出现光纤线路非致命性的故障时,线路自身拥有功能能够进行自动检查与修复,这也就是常说的可自愈网络。通过线路交互错位的方式,当系统的主线路出现了故障需要进行及时检修时,系统将会自动把负荷调整到备用的线路上,再通过备用的线路将数据传输到调度中心,等到主线路的故障得到修复并调整至原来的状态后即可恢复。

2.2M线路时限参数选择影响在电力系统运行的过程中,输送线路或者相应中断的异常运行很可能给SDH输送网络造成影响。通常,这种影响主要表现在线路交互错位、线路错误率变高两个层面,而如果不及时针对存在的异常进行处理,很有可能导致整个线路无法正常运行。由上述可知,SDH输送网络相较于传统的相比拥有无法超越的优势,但在实际的运用过程中,不能完全按照该种网络系统中的PDH分支线路输出信号来调整时限。因分支线路中一旦出现VC信号极易导致输出信号过大波动而难以精准对故障进行定位,其实,进行时限调整的目的就是为了将即时网络时间信息与数据信息统一传送至分支线路中。具体可参考图1所示。就我国目前的形式来看,继电保护装置就是为了实现线路进出信息的一致性,一般通过在PHD分支线路上附上实现控制设备来实现。对于这种情况,线路出口与入口上起到保护作用的PCM需要保持一致的高度,否则将会影响到保护装置的正常使用。为了保证线路保护时限的一致性,通过更改时间记录、校正记录信息以及更正系统时间等方式来进行操作,保证线路两端的响应一直。更改事件记录的方式需要通过限流信息时差和线路两端时间记录时差的对比,并根据对比的结果进行分析,以修正辅助装置的操作时间。

2.3误码产生的影响相较于电力线路或者微波通道来说,光纤通信通道不仅传输的质量高、误码率低,且频带宽、传输信息的容量较大、抗电磁干扰能力强。事实上,光纤通信通道技术也会因长时间持续工作或者其他原因影响下,有一定的误码情况。包括各种噪声源的印象、色散引起的码间干扰、定位抖动产生的误码以及复用器、较差连接设备等设备都有可能引起误码。而具体来说,通道对于保护判据产生的影响有三个方面。第一,误码会导致报文内容或CRC校验值的某一个值发生错误,最终导致报文不能通过校验。第二,误码可能使得报文头或尾部的某一个值发生错误,对报文的完整性进行破坏,导致通信控制芯片出现“报文出错”现象。此外,一般来说报文的比特位数应是8的整数倍,如果出现通道滑码,可能导致比特位数的增加或者丢失,从而导致通信控制芯片出现“非完整报文”的现象。在电力系统的纵差保护中,一旦检测出非完整报文等问题,则必须重新对通道时延进行检测,以保证两侧装置采集的数据实现同步。一方面对于单个的随机误码而言,因其可能影响报文的完整性,从而使得线路的纵差保护没有发生变化,也需要重新启动新的同步过程。另一方面,线路的纵联距离与方向保护则需要交换数据,这种数据只需要允许信号而不会有通道时延一致上的要求,且不必要同步两侧装置的采样时刻。误码可能对当前的通信报文正确性产生了一定的影响,但也不会影响后续通信报文的使用。