节能论文模板(10篇)

时间:2023-03-20 16:28:01

导言:作为写作爱好者,不可错过为您精心挑选的10篇节能论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

节能论文

篇1

2建材节能与建筑节能问题的关联性

2.1建材节能的相关问题

在建材节能领域中,主要存在的问题有以下两个方面:其一,建筑的生产相关环节存在不达标现象,由于当前市场上的节能建材价格相对较高,导致一部分施工人员在施工过程中对建筑材料偷工减料、以次充好,忽略建筑材料之间搭配的合理性,而相关的管理者也并没有及时系统的进行监督与审查,造成很多建筑中的建筑材料不能达到节能的标准[2]。而与其他相同用途的建筑材料相比,节能建材的性价比相对较低,碍于经济因素,当前在建筑市场中大规模推行节能建材仍然存在一定难度。另外,对节能理念的认识不足也是当前建材节能领域存在的主要问题之一,很多人还没有意识到使用节能建材的好处与重要性。其二,建筑的施工环节不到位,当前很多建筑施工工人不能对节能建材合理科学的进行设计与施工,也在一定程度上限制了节能建材优势的充分发挥。

2.2建筑节能的相关问题

在建筑节能领域,建筑耗能是最核心的问题,当前很多建筑的能源消耗量过大,且存在能源利用率较低的现象。以北方地区为例,冬季建筑都要进行采暖,而当前绝大多数建筑的采暖系统都是以消耗煤资源为主,每年都会耗费很多不可再生资源,也对大气等自然环境产生严重污染,在很大程度上制约着我国经济的进一步发展。而且,在很多城市建筑中,供热所用的空调有很多都会出现供热效率不高、相关维护装置没有足够气密性以及保温性等现象。另外,我国当前还有相当一部分建筑人员没有足够的建筑节能意识,早在上个世纪八十年代,西方许多发达国家在进行经济发展的同时,便已经在建筑节能的技术方面非常有建树了,而我国却没有在这方面考虑太多[3]。

2.3两者的关联性

从上述情况看,在当前建材节能领域与建筑节能领域中,都存在着能源上的浪费现象,建筑建造的基本便是建筑材料,如果建筑材料在能源上浪费严重,也会在很大程度上影响建筑的节能性。另外,在建材节能与建筑节能领域,还都存在着意识不足现象,这在一定程度上反映了我国当前在节能建筑观念的普及方面仍然没有做到位。

3建材节能与建筑节能施工措施的关联性

3.1建材节能的施工措施

在建筑建造过程中合理应用可再生能源,如在建筑的设计过程中,将太阳能合理利用便能够实现太阳能的光伏发电。另外,还可以对建筑材料产生的废弃物充分利用,不仅能够节省一部分建筑成本,还能够减少建筑垃圾对环境的污染,如将已经废弃的橡胶打碎成颗粒,融入到建筑部混凝土中,不仅能够提升混凝土的抗裂性,还能够节省建筑成本、减少环境污染。

3.2建筑节能的施工措施

建筑节能主要表现在使建筑供热系统的供热效率得到有效提升,以及减少建筑围栏保护结构的散热两方面[4]。在建筑过程中,可以对建筑的墙体与门窗的保温性能加以改善,还需要对建筑的题型系数加以控制,与此同时,还可以对建筑的布局进行科学合理的调整,以提升建筑的节能效果。

3.3两者的关联性

建材节能是建筑节能中非常重要的组成部分,如果没有做好建材节能,那么建筑节能也就无从谈起,如果可以将具备节能效果的建筑材料运用到建筑节能的相关设计当中,不仅仅可以使能源的消耗有所降低,还能够充分发挥祝建筑自身的保温隔热功能,使建筑更加符合节能环保的新型理念。

篇2

2制定完善的燃气节能管理制度

完善各项规章制度,应当结合当前燃气节能技术的基本情况,提升工作措施的执行力度。此外还应当建立起高效以及完善的管理政策,对于企业的控制和各项方案的实施管理,应当起到关键性的作用。在政策和措施的制定过程当中应当很好的明确各个部门的工作职责以及工作的义务方向,在节能性技术措施的制定过程之中,应当通过量化分析的方式,进行方案的整理和改良,同时还应当建立起长效的工作机制,不断的增强和提升工作的执行力度和控制的力度,为更好的实现企业的建设发展奠定坚实基础,针对方案以及制度报告的编写,应当结合当前的实际情况加以分析,同时增强对法律制度的分析和研究,在符合工作基本环节的基础上,旨在以此为基础更好的实现对燃气节能技术的改革和创新,保证燃气节能技术的稳步实施。

篇3

据中国移动综合部的孙佰介绍,中国移动2006年保有基站约25万个,至2007年,基站数目就已达30.7万个。基站数量的激增,加大了对能源的消耗,根据中国移动内部提供的耗能分析图表显示,目前基站耗能占据73%,这其中基站主设备耗电占据51%,基站空调耗电占据46%,其他配套设备耗电3%。

可见,若想从根本上降低基站耗电,节约运营成本,只有从机房主设备和空调入手。目前,通过空调乙二醇双冷等技术已经可以充分降低空调耗能,所以,基站主设备节能成为最大的突破口,也是运营商关注的重点。

节能不能只关注基站功耗

事实上,通过对移动运营商生产需求分析,设备制造商很早就意识到基站节能对于运营商运维成本降低的重要性,目前已经出现了很多成熟产品。

由于实力和经验相当,目前各大设备商使用的节能技术和节能方案差别不大,主要集中提升基站功放能效,采用节能软件降低基站运行能耗,各类绿色洁净能源的采用(如风能、太阳能、生物能源等)、改进基站站点设计等。

目前,这三家设备制造商的最新主打基站产品都在采用较为先进的多载波功放技术(MCPA),可以大幅度降低每载频的能耗。根据资料显示,通过采用双密度载频,S4/4/4配置的GSM基站能耗从1800W迅速降到1000W左右,能耗节省高达40%以上。据华为中国区无线Mar-keting部CTO周建国表示,目前华为已经实现在单模块内最多支持6个载频,正在四川、青海等地进行测试和商用验证。爱立信也正在开发这样的基站,据介绍,对比2载频,这种新技术将节能40%以上。

目前运营商在进行节能测试时,过多地将目光集中在单一设备功耗上,而没有从基站整体考虑能耗。“这种方式是不合理的,有些时候尽管产品功放效率较高,但如果基站的整体设计不好,很可能要达到同样的通信质量和覆盖范围,设备能耗一样很高。”爱立信无线解决方案专家章正珊表示。但好在目前,中国移动设计院已经意识到基站节能不能只关注功放,还要关注整体基站设计。

由于分布式基站4载频配置下平均能耗仅550W,基带与射频单元之间采用光纤传输,无馈线损耗,覆盖效果与传统宏基站相当,自然散热技术则省去了温控能耗,且占地面积小,安装快捷,能够广泛应用于室内覆盖、城区选址困难区域、热点覆盖等场景。由于分布式基站具有如此多的优势,中国移动已经明确表示,会进一步扩大分布式基站的应用场景,目前爱立信、华为正在内蒙古、广东、贵州、四川等地进行测试和验证。

软件节能优于硬件

降低设备的载频能够有效降低功耗,于是出现很多运维人员通过长时期观测载频使用情况,人为在“闲时”开关载频来达到节能的现象,虽然效果显著,但这样既浪费人力,同时也大大降低了基站的应急能力。

目前各大厂商提供的节能软件改变了这种情况,让老旧基站焕发出新的节能活力。通过负载平衡能耗,在闲时将设备设定为节能状态,当话务量突增时,可以自动转化为正常状态。章正珊表示,爱立信的“PowerSaving”软件解决方案可以根据话务量的变化自动对实际需要的载频数量进行控制,从而达到降低基站能耗的目的,该功能可以应用于爱立信1994年后出产的所有基站产品上。而华为的绿色节能软件已经能够达到时隙开关,主要应用在华为GSM3012、3006G等主打产品上。诺基亚的NetActServiceQualityManager也有相同的功效。

对于移动运营商来说,相对于硬件的投入,软件的投入可以有效解决现有基站的节能问题,同时具有成本低,便于维护等特点,可以说是运营商最佳节能投入。另外,新能源的应用对于基站的稳定性提出了更高的要求,风能和太阳能等不稳定电力源,要求基站设备能够有更强壮的生命力。具周建国介绍,目前中国移动“绿色行动计划”已经选择了爱立信和华为在内蒙古等省市,针对太阳能的基站展开测试,检验基站设备的稳定性。

网络规划与设备功耗同等重要

在整体网络规划上,专家提出了“需求-设计-研发-制造-供应链-部署-回收-需求”等闭环周期节能系统,如华为的“E2E绿色设计方案”、爱立信的LCA绿色计划等计划也都是全生命周期评估的典范。

有着丰富工程经验的章正珊认为,基站节能的重点不应放在基站技术的升级上,而是应该放在网络规划中。“一个好的网络规划,在不影响用户通话质量和减少覆盖的基础上,可以最大限度地减少基站数量。这对于运营商来说,不但可以减少初期成本投入,同时也可以减少后期维护成本。”

据专家经验估计,让一个经验丰富的网络设计专家从最初即参与整体网络规划,可以将无线站点的数量减少30%~50%。

按目前网络基站设备2.5KW(GSM、CDMA基站平均能耗)来计算,每减少一个基站,每年可以减少耗能21900度电。

但是目前运营商还没有完全认识到网络规划在节能减排工作中的重要性,曾有中国联通地方运维人员对记者抱怨:“节能减排不能光靠在后期运维上下功夫,运维能够减少的能耗很少。节能减排要从新建基站网络规划抓起。由于没有良好的规划,造成现在后期维护上能源消耗过多的现象还很多。”

在中国移动“绿色行动计划”重点工作矩阵图中,可以看出他们并没有将网络规划作为降低能耗的主要领域。业内专家解释说,由于这种方式的可实施难度大,投入规划成本大等问题,还是需要市场的考验。

向无空调基站挑战

据统计,温度从24度上调到28度时,基站节能效果将提高3%~8%。但是在目前的基站内,都有最高温度上限的设置,不能轻易调高基站温度。

中国移动绿色行动计划负责人秦光泽对记者表示,现在的基站设备已经能够适应普通的高温运行,之所以设定基站顶限温度——25℃,主要是考虑不影响基站内蓄电池的寿命,蓄电池在高温下不能正常运行,如遇断电等情况,会对网络安全运行带来威胁。

篇4

本文以供水工程的三、四级泵房用料为例简述。供水工程第一、二级泵房及第一配电室建筑材料可由人工挑扛,第五级泵房及第二配电室靠近山顶,蒙山车行道已修至主峰,可用汽车运往适当地方,再由人工挑扛至工地,惟有三、四级泵房处在悬崖之下,无法行人,经勘察论证确定采用缆索运至一定的地方后,由人工分别扛到三、四级泵房。缆索上端点位置在悬崖之上的“龙角”处,下端点位置选在三、四级泵房间的一座小山峰上。用经纬仪测量出上下两端点间平距为282m、高差129m。拟采用单根钢丝绳,穿过两端点的固定滑轮,将绳头编接在一起形成环形,运送物料时,从上端点绑扎物料,使物料依靠自重下滑到下端点,在下端点控制物料下行速度。

1.承重钢丝绳的选择

承重索需穿绕滑轮,宜用较柔软易弯曲的细丝交互捻钢线绳。承重索承受的荷载为所吊的荷重及承重索自重力,当荷载位于缆索跨度中央时,承重绳的挠度及工作张力达到最大值,工作张力由下式计算:

T=QL/4f+WL2/8f

式中T——承重绳的工作张力(N);Q——所吊荷重(N),W——承重绳每米自重力(N/m);L——缆索跨度,是指上、下两支点的水平距离,本例L=282m;f——承重绳的最大挠度(m)。

根据计算,选用13的6×(37~140)交互捻钢丝绳。

2.其他构件的选择

滑车:缆索两端各用一个带吊钩的开口定滑车,以便于穿绳。为了减少钢丝绳的弯曲应力,滑车直径D与钢丝绳直径d的关系取D/d≥16,可求滑车直径为208mm,选用D210mm起重量5t的定滑车,滑车槽直径大于2倍钢丝绳直径。

倒链:用来收紧起重缆索。选用2个起重量5t的倒链,型号为WA5或SH5。

卡子:均选用型号为Y4-12的骑马式卡子用做地锚绳连接以及钩挂物料。

3.设备的制作安装

支墩:本例缆索坡度为129∶282=1∶2.2,坡度较陡。为使其端点稳定,在两端较高处做浆砌石支墩,顶部呈倾斜面,坡度与绳索基本相同。在墩内埋设两根L5×5的角铁,高出墩顶约400mm,角铁相间为滑车厚度+10mm的间隙,滑车放在其间,以便滑车不偏斜。

地锚:因拉力较小,可分别在石支墩之后缆索两头延长线的完整岩石上打孔插钢钎或利用大树等作为地锚。当用钢钎做地锚时,其插入岩石内深度不小于1.2m,并在孔内灌入水泥砂浆,使钢钎与岩石牢固接合。外露钢钎与地锚绳交成约120°角为宜,地锚绳要紧贴岩石拴在钢钎上。

卸料台:为了使料袋下滑至卸料处暂停及脱钩,在承重绳下方离开下端点支墩适当地方(本例为6m)做卸料平台,台顶距承重绳500mm左右;垂直承重绳方向1000mm,平行承重绳方向600mm。

绳索安装:安装前检查钢丝绳、滑车及绳卡子等型号、质量是否符合设计要求,确认无误后再行安装。首先用钢尺量出定滑车至地锚的长度,用地锚绳将地锚与定滑车连接起来。注意使绳头连接处靠近滑车,以便观察绳头变化情况。然后把承重绳放入滑轮槽内(把穿越滑轮的上下股绳预先做上标记,以防扭结),利用两倒链交替对承重钢绳进行紧绳,紧到使跨中挠度为45%~50%最大工作挠度,采用编接法对其接头进行连接,编结长度不小于80d(d为钢丝直径),而后吊2~3袋水泥,实测其挠度并与相应的计算工作挠度比较,或大,或小,则反过来调整紧绳挠度,如此反复调整2~3次,即可满足要求。缆索安装完毕,将钢丝绳涂上黄油,并以实际最大吊重2倍的荷载作载重试验20分钟,无异常情况便可交付使用。

二、物料运送操作

1.对人员要求。参加人员须是身体健康、无高血压病症的青壮年,需戴安全帽,系安全带,穿防滑鞋。

2.人员组成。装料处1人,负责将水泥装好袋(500kg/袋)的黄沙用骑马卡子卡在承重绳上。卸料处2人,其中1人控制钢索运行,另1人负责卸料。

3.物料运送工序。开始由控索者先将硬木棍别于离下滑车前0.5~0.8m处的钢丝绳间,适当用力使棍绳产生摩擦。上料者把料钩卡子固定在承重绳上,随即把料袋挂在钩上,之后料袋靠自重力下行带动钢丝绳下移。此过程依靠控索者控制下行速度,当下行到预定距离对控索者制动使缆索变慢直到停住,上料者立即把第二袋物料固定在承重绳上,依次进行下去,直至第10袋物料挂在绳上。当第一袋刚好到达卸料处,卸料者卸料的同时,上料者把第11袋物料又固定到了承重绳上,这样下去便可不断地把物料输送到卸料处。

篇5

面对景观设计这个名词,水体、绿色植被、建筑、小品铺装等巧妙融合在一起的景色就会隐射在我的脑海中,想象着自己设计的别墅摇曳在大自然这片硕大的绿叶上,徜徉在清澈的空气中,蔚蓝的天空中,或者漫无边际的深邃海洋中,一阵阵原生态的微风拂过,一股凉爽沁人心脾的感觉油然而生。我不禁深吸一口气,沉浸其中。节能是我设计该建筑的重点,而景观就是我的左膀右臂。随着时代与科技的不断进步,立体绿化这个辛欣的词语已经逐渐渗透进我们的生活中并且正在深刻的影响着我们的生活。我们都知道绿色植物是天然的光合作用过的植物,为我们吸进二氧化碳排出有益的氧气,对我们居住的局部气候起着十分重要的作用,因为它能够有效地节约了我们建筑的能效损耗。对建筑而言,若从节能的角度考虑最重要的就是太阳照射带来的建筑室内外温度差过大的问题,而恰恰景观绿化在这方面起到了至关重要的作用。

我们应当对立体绿化的构建树立起高度的重视,并不断采取适当的措施,使我们生活的环境更加节能,更加健康。综上所述,面对我所设计的这幢节能建筑,我会将立体绿化景观完全的运用进来。首先最重要的就是墙面的绿化,墙面就像是别墅的外衣,如果外衣不透气或者温度很高,相信内部也会闷热不堪。而墙面绿化就是一种很现代的绿化模式通常被称为垂直绿化,这种垂直绿化我们最常见的就是爬山虎了,他不仅美观了空洞的建筑外表面,最重要的是做到了环保的效果,改善了居住环境的生态效果。面对别墅的东西南北四个方向,我通过根据不同朝向、风向等微气候环境可适当的选择不同的植物来种植。该别墅的南面和东面的阳光照射比较充足,我可以选择喜欢阳光温暖湿润的植物例如爬山虎或者凌霄等,这样可以在冬季吸收较多的太阳光照增加建筑外表面的温度。而北面和西面的阳光照射比较弱,我选择忌阳光照射好阴处生长的常春藤或者扶芳藤,这样可以在夏季反射较多太阳光的照射从而减轻建筑物外表面的温度。所以说墙面的绿化固然重要,但同时也需要考虑不同朝向墙面的材料,需要因地制宜的进行选择,这样才能达到节能的效果。据相关数据显示,建筑物外墙有绿色植物的包裹其表面昼夜的平均温度会由35.1度降到30.7度,此处相差了4.4度。而墙体内部的温度会由30度降到29度,此处相处1度。

绿色植物外墙的室内温度比无绿色外墙的室内温度要低3—5度。这表明墙面绿化在环保、节能方面所起的作用是及其显著的,绿植墙体不占用地面空间的同时还突出绿色环保,保温隔热且降噪除尘,这些已取代了高技派建筑通过高科技的方式来降低温度得节能效果,更通俗地说取代了空调等设备夜间工作所消耗的能量,而且做到了低成本,高能效的双重目标。其次屋顶绿化也对建筑节能做出了巨大的贡献,对于我的别墅来说它也是一项很好地节能措施。屋顶上面的绿色植物可以通过光合作用和蒸腾作用有效地在夏季为我的建筑降低由阳光照射所引起的过高的温度,减少室内的热量从而降低室内温度。在冬季,由于绿色植物的土壤层有较好的保温效果,可以调节室内的温度降低建筑的热能耗。这就是通过绿色植物的景观设计来达到节能的效果,这对城市环境的改善有着不可估量的影响。上述是墙面绿化和屋顶绿化对节能建筑的研究,然而面对墙体绿化和屋顶绿化的综合体立体绿化,也同样对其做了详细的研究与测量,在夏季,裸建筑的外表温度在32℃—49.5℃度之间变化,但是立体化的建筑外表温度在28.8—33度之间变化。

通过这些数据强有力的证明了立体绿化的景观设计温度方面及能量消耗的综合效果方面都非常有优势。随着时代的进步与科技的发展,我们对自己的生活要求越来越高,节能的意识也不断注入我们的思想中。本篇通过列举高技派的建筑节能与低技派的建筑节能的知识了解,从而铺垫出立体化景观设计对我们日常住宅的节能效果的重要性,它遮阳、降温保湿、隔噪音、净化空气、美化环境,最重要的是造价低符合我们百姓的需求,通过景观设计来打造我们节能、健康、舒适的环境的确物美价廉,值得期待与更好的发展!

作者:苏会人 杜娇阳

篇6

2原因分析

(1)产量提高后,篦床面积小,总风量偏少;(2)高温区的风量少,导致急冷效果差;(3)篦板间的缝隙以及篦板与盲板的间隙过大,造成严重漏料和气流短路;(4)风室间隔墙板密封失效,窜风严重。

3技术改造

针对冷却机存在的问题,厂方决定对篦冷机进行技术改造,提高热回收效率,改善冷却效果,消除设备故障隐患。降低熟料温度主要从三个方面着手解决,一是适当增加风量,优化风的分配;二是从结构上改变冷却方式;三是增加篦床面积提高篦冷机的能力。高温区温差大,热交换效果好,此处增加风量能提高急冷效果,增强热回收,但要注意冷风不能掺入过多,否则会造成二、三次风温降低,甚至影响窑系统煅烧。改变冷却方式是指在高温区将风室供风变为充气梁供风,从而达到强制冷却的效果。但充气梁不宜增加过多,否则会导致电耗升高,同时还要注意充气梁与风室间风压的匹配。增加篦床面积对提高设备性能是最为直接有效的。本着投资小、效果好的原则,结合冷却机实际运行情况,最终确定的技改方案如下:(1)将一段篦床从2.7m加宽至3.3m,面积增加5.6m2;将第室的矮墙减薄,面积增加1.8m2,使其总面积增加7.4m2。更换相关的篦板梁和篦板,现场修改上、下壳体和顶板,更换新的风管系统。(2)下料口固定篦床改为TCH型高效急冷模块,该模块采用多单元供风模式。每个单元配置独立风管和调节阀门,根据各区域料层厚度和熟料颗粒的不同调节风机阀门开度,使熟料在下料口得到最佳的骤冷效果。(3)高温区固定梁改为充气梁,同时更换相应的篦板,并配套加装独立的充气梁供风系统,加速熟料在该区域的冷却。(4)高温区细料侧设置通风侧吹盲板,保护边上的篦板,减轻红河带来的影响。(5)修复活动框架,更换已变形的纵梁,篦床重新找正。(6)更换阻力偏大的进风管道,降低压损。(7)优化风机配置,以适应提产的需求。(8)检修漏料锁风系统,减少风室漏风。(9)换上新型的活动框架纵梁穿过隔室的密封装置,避免风室间的窜风现象。

4调试过程

此次调试过程中,对冷却机的控制进行了调整。(1)由于篦床面积增加,一段传动转速降低了3~5转,确保二室压力在4.3~4.6kPa;(2)由于产量增加,二段转速增加2~3转,确保五室压力在1.7~1.9kPa;(3)此次技改后,额定风量增加79300m3/h,但实际用风量经计算只增加20000~35000m3/h。调试时对风机风门进行了合理调整,调整原则是:确保窑运行稳定,高温段风门大,低温段风门小,风量必须合理,风量过小则冷却效果差,窑内燃烧不充分,风量过大则火焰不稳定,即通常讲的坏“火头”。通过实践目前已确保风机风门控制合理。(4)此次冷却机技改增加风机4台,调整3台位置,额定风量增加79300m3/h,风机功率增加365kW。改造前,窑运行过程中,冷却机10台风机的风门都是全开98%,由于头排和高温风机功率并没有提高,加上窑系统用风量要非常合理,改造后,为确保稳定煅烧,投料量在175t/h时,新增加的4台风机如此配置:侧吹盲板风机G3门为15%,固定充气梁风机G12风门为70%,二室和三室两台串联在一起作充气梁风机,即G36和G37风门都为70%;原风机风量配置如下:一室风机、二室风机、充气梁G8和充气梁G9控制在80%,三室风机风门70%,四室风机风门60%,五室风机风门40%,六室风机风门30%。当产量提高到180t/h时,所有风机风门依次增加5%;当产量提高到185t/h时,所有风机风门再提高3%;当产量提高到188t/h时,所有风机风门再增加2%,侧吹盲板风机G34不调整。改造后的风机配置可以满足3000t/d产量,提产空间十分富余。

5效益分析

(1)提高熟料产量2.5~3.0t/h;(2)风机功率增加365kW,熟料电耗=(62.5×2750+365)/2810=61.3kWh/t,相比改造前下降1.2kWh/t,年运转率按300d,每年节约电费60.7万元;(3)耐热皮带技改前每年需要700m,改造后只需200m左右,节约15万元;(4)由于熟料冷却效果好,易磨性提高,水泥磨提产5~10t/h;(5)技改后冷却机地坑几乎不漏料,每年减少劳务费5万元左右;(6)熟料实物煤耗下降3~5kg/t,原煤按800元/吨计算,每年节约原煤费用269.8万元。

篇7

一、我国寒冷地区建筑能耗现状

 

据资料显示,我国新增采暖能耗以每年6×109kg标准煤的速度在增长。我国北方城镇采暖人口只占全国人口总数的13.6%,但北方集中采暖地区的房屋建筑的建筑面积约占全国采暖房屋面积的50%,且每年有3~6个月的采暖期。在80年代末期,寒冷地区采暖能耗占到当时全国年总能耗的11.5%,占采暖地区全社会能耗的20%以上,在一些严寒地区城镇建筑能耗则高达当地社会总能耗的50%以上。因此,我国建筑节能中心工作首先是围绕着降低北方寒冷地区城镇的采暖能耗展开的。寒冷地区的建筑能耗主要是以供热为主,所以,建筑节能绝大部分是供热节能。

 

二、建筑物能耗消耗的途径

 

寒冷地区建筑物的能耗主要取决于围护结构的热传导和冷风渗透,建筑围护结构的散热量,往往要占采暖热耗的1/3以上,如果建筑围护结构具有良好的保温隔热性能,便可减少冬季室内传出室外的热量和夏季室外传入室内的热量,从而减少为维持室内舒适热环境提供的采暖和制冷能量。

 

建筑节能按围护结构界面划分主要包括墙体节能、门窗节能和屋面节能。如何改善建筑围护结构的保温隔热性,节约能源,开发和利用太阳能,保证人们生活在良好的环境中,是建筑设计中应重点考虑的。

 

三、寒冷地区建筑节能设计

 

笔者认为寒冷地区的建筑节能设计应着重做好以下三方面的工作:一是要从建筑物的规划设计之初进行节能控制;二是要发展高效的保温隔热材料,做好屋面保温隔热防止室内外热交换,从而减少建筑能耗;三是要控制建筑物的体形系数、选择适宜的朝向及采用合理的构造措施。下面将详细论述。

 

(一)建筑的规划节能设计

 

现在说建筑节能,人们往往只考虑建筑的构造、材料、围护结构的热工性能,而忽略了建筑规划设计创作阶段的节能控制。我们应该在设计之初将建筑设计创作与规划、构造、材料等方面进行综合考虑,从而全面提高住宅建筑的节能效果和建筑品质。

 

1、住宅选址与规划布局

 

国内住宅建筑多以小区形式出现,住宅建筑选址的好坏、规划的合理性是决定住宅节能设计的先决条件。住宅小区选址应根据地形特点,选择避风向阳的朝南坡地或平原,避开迎风的水域岸边或容易形成风道的山谷、山顶等,因为冬季冷气流在凹地里易形成对建筑物的“霜洞”效应。

 

2、道路设计与小区通风

 

为使建筑单体争取更好的朝向,我们在设计初通常将小区道路的布局与用地结合布置。除施工便利、方便使用,道路也是整个小区的通风道。道路设计时应便于组织小区通风,并与城市、小区绿化空间结合,把新鲜空气引入小区,从而提高居住区内的小气候环境质量。

 

3、景观绿化设计

 

小区环境绿化要突出居住条件的均好性和共享性,为居民提供户外休闲、观赏和改善生态环境的绿化空间。景观绿化可以有效降低气温、调节湿度、防风抗风、改善通风质量,从而抑制热岛效应,改善住宅建筑外维护结构的热工性能。绿化应以绿植物为主,形成点、线、面相结合的完整绿化系统,形成良好适应气候特点的植物群落。

 

4、雨水收集利用。

 

在现代住宅的节能设计中,应建立雨水收集与中水利用系统,并使其用量达到总用水量的30%。一般住宅小区,屋面与路面面积之和约占地面面积40%,做好屋面和路面收集将是雨水收集的重要部分。屋面雨水收集主要是通过水落管将雨水收集引流,进入小区内中水处理系统。小区路面通常采用铺贴渗水砖和设置路面排水沟,这样雨水可以通过渗水砖和水沟进入小区的中水系统中,为小区的绿化灌溉和中水使用提供水源。

 

(二)建筑外围体系节能设计

 

建筑物耗热量主要由通过围护结构的传热耗量构成,其数值约占总耗热量的1/3以上,所以改善围护体系节能对于提高住宅节能设计有着深远的影响。住宅建筑围护体系的节能设计重点在其外墙、门窗和屋面三大部分。

 

1、外墙保温设计

 

(1)外墙节能构造

 

目前外墙节能的主要方式是采取复合墙,即在墙体不同部位设置高效保温隔热层,形成外墙内保温、外墙夹心保温、外墙外保温3种复合墙体。

 

(2)外墙内部保温

 

外墙内保温是用保温材料置于外墙的内侧,它的优点在于:对饰面和保温材料的防水、耐候性等技术指标的要求不高;内保温材料被楼板所分隔,仅在一个层高范围内施工,不需搭设脚手架,施工方便。

 

(3)外墙夹心保温

 

外墙夹心保温是将保温材料置于外墙的中间部位,内外侧墙均可采用传统的砖、混凝土空心砌块等,这些传统材料的防水、耐候等性能均较好,对内侧墙和保温材料形成有效的保护,对保温材料的选材要求不高,聚苯乙烯、玻璃棉、岩棉等保温材料均可使用。夹心保温墙施工季节和施工条件的要求不十分高,不影响冬期施工,近年来在严寒地区得到一定的应用。

 

(4)外墙外保温

 

由于对节约能源与保护环境的需求不断提高,建筑围护结构的保温也在日益加强,其中以外墙外保温的发展最为迅速。外保温墙体适用于有采暖和空调要求的工业与民用建筑,既可用于新建建筑,又可用于既有建筑节能改造。其对主体结构具有保护作用,有效避免了室外气候变化引起墙体内部温度变化,使结构主体寿命延长;有利于消除或减弱冷、热桥的影响;可避免室温发现较大波动;对原有建筑改造时,减少对室内的干扰;不占用室内空间,在二次装修时,避免对保温层进行破坏;增加了立面装饰效果;适用范围广泛,综合效益显著。

 

外墙外保温技术在国内已有良好的基础,特别是在北方寒冷地区推广应用中已取得了成效。因此应成为日后寒冷地区外墙保温的首选设计。

 

2、窗体节能设计

 

窗户是建筑外围结构重要的组成部分,也是外围护结构中能量损失最大的部位。一般住宅的外窗(包括阳台门)面积约占建筑面积的20%左右,其中通过外窗传热散失的能量约占建筑能耗的28%左右,通过外窗透气散失的能量占建筑能耗的27%左右。

 

(1)合理选择玻璃类型

 

玻璃是窗户中面积最大的组件.改进这部分的热工性能对整个窗户的节能性能有很大的影响。随着技术的发展和人们节能意识的提高,窗户玻璃材料发生了巨大的技术进步。从透明玻璃到有色玻璃、镀膜玻璃,从单层玻璃到双层玻璃以及中空、真空玻璃。使用节能型窗玻璃,是提高整个窗户保温性能的一大重要措施。目前节能效果好、具有推广价值的节能型玻璃有中空玻璃、镀膜玻璃等功能性玻璃。

 

(2)提高外窗气密性

 

如门窗框与墙间的缝隙可用弹性松软型材料(如毛毡)、弹性密闭型材料(如聚乙烯泡沫材料)、密封膏以及边框设灰口等密封。框与扇之间的密封可用橡胶、橡塑或泡沫密封条以及高低缝、回风槽等。

 

(3)选择节能的窗型

 

目前常用的窗型有外平开窗、左右推拉窗、固定窗、亮窗和上下悬窗,还有内开下悬翻转窗、上下提拉窗等。固定窗如果安装合理是气密性最好的,且造价低,但是在要求有良好通风的地方不能使用,故一般用于工业建筑中。安装了密封条的外平开窗、下悬翻转窗有适度的气密性,在开启时还有良好的通风性能,但开启时需占用空间。平开窗由上部固定扇和下部推拉扇组成,平开窗能移动的窗扇越少气密性相对越好。平开窗在窗扇关闭后,窗扇和窗框之间压条压得较紧,很难形成对流,节能优势明显。

 

3、屋面的节能设计

 

从保温原理来说,热气流是向上运动的,而冷气流则向下运动,屋顶可截住热气流使热量不散出室外,屋顶作为建筑的主要围护构件比其他界面更要起到保温、隔热作用,是建筑节能的主要部位之一。

 

屋面节能措施应主要选择密度大,传热系数小的保温材料,不宜选择吸水率大的保温材料,以防止保温层大量吸水而降低保温效果。北方地区经常采用的水泥珍珠岩、加气混凝土砌块及水泥聚乙烯苯板等保温材料上铺防水层方法,经过多年使用效果很好。

 

结语

 

节能降耗是目前建筑业发展的趋势,寒冷地区建筑节能的主要途径就是要加强外围结构的保温设计,应用高效保温隔热材料并改进建筑构造。使中国建筑业不断走向可持续发展的道路,为创造节约型社会做贡献。

 

篇8

复合墙体节能是我国的国策,建筑节能是节能中的重中之重,应该列为我国建设工作中的重要位置。建筑能论文耗在我国整个能耗中的地位也越来越重要。1996年中国建筑年消耗3·3亿吨标准煤,占能源消耗总量的24%,到2001年已达到3·76亿吨,占总量消耗的27·6%,年增长比例千分之五;随着建筑业的高速发展和人民生活质量的改善,建筑能耗占全社会总能耗的比例还会继续增长。据有关数据显示,我国当前的房屋建设规模堪称世界第一。目前全国房屋数量有400亿m2左右,房屋建筑规模看来已超过所有发达国家,仅去年一年房屋竣工面积是19·7亿m2,这几年差不多都是接近这个数字。而据预测,到2010年,我国房屋总建筑面积将达到519亿m2,其中城市171亿m2。然而,截至到去年,我国节能建筑的总面积还只有2·3亿m2,在每年近20亿m2的竣工面积当中,只有五六千万平方米是节能建筑,只占3%左右,也就是说有97%属于高耗能建筑。我国的高层建筑有近七十年的历史,然而城市中任何建筑都是城市设计、规划的一部分,城市设计是一项十分复杂的工作,我国在这方面的经验不多,而且管理机制尚不健全,往往受一些因素的影响,工作不甚周密和协调,甚至失去控制,有许多的问题等待我们去解决,有待于探索和改进,所以说,今天的高层建筑设计仍处在一个不太成熟的阶段。

高层建筑体形庞大,如容积率过高,相邻建筑互相遮挡、不通透,形成大面积阴影区,城市人居环境质量下降,市中心人口膨胀、交通拥挤。除此之外,近些年在某些城市建高层建筑已成风气,设计者往往贪大求高,大部分精力放在追求立面形式和使用功能上,而往往忽略生态环境的保护、建筑设计节能意识淡薄,造成高能耗、低效益,影响常年使用,浪费巨大。

建筑节能包含两部分内容,一部分是加强围护结构的保温隔热能力,另一部分就是从供暖、供冷的热源、输送渠道及实现方式来节约能源。一般的房子里,30%的热量从窗户跑掉了。如果选用双层玻璃,中间再充上惰性气体,就可在一定程度上阻断热量散发。35%热量从墙体散发,如采用隔热材料,增加保温层,节能效果就很明显。智能化建筑首先要达到节能的标准和良好的居住舒适度,其次才是家具的智能化和安全保卫的智能化。实际上,智能化建筑不一定就是豪华的,但它必须是低能耗的。美国有些智能化建筑造价比普通建筑还低15%,因为它们追求合理的结构,讲究实用功能和外观的简洁,利用了可回收材料,而不追求豪华装饰。还可以充分利用地热泵技术,如冰岛等国家,建筑房子时先在地上打两个洞,通过电泵将地下水循环起来,为整座房子供热。惟一耗能的就是电泵。而在丹麦等国,由于地处海边,太阳能和风能的利用条件得天独厚,使用热泵技术时结合风能与太阳能,用风能与太阳能来带动电泵就可以做到“零能耗”。所以建筑节能不仅是建筑本身的节能,且由城市的综合环境、气候条件、总体布局;建筑物的形体变化、朝向;护结构保温、隔热的性能;门窗质量等许多综合性因素构成,因此,高层建筑的节能首先应为设计者重视。

1优化建筑位置及朝向设计高层建筑的定位首先应考虑对城市环境的影响容积率过高很难满足日照要求,阳光有着巨大辐射能量。据有关资料分析,地球每年接收的能量有60亿亿千瓦,这么大能量弃之可惜,从某种意义上讲地球本身就是巨大的太阳能接收器,阳光不仅对人的身体健康有着很大影响,对建筑的节能也有着十分重要意义。城市规划应注重应用日照原理,合理的确定建筑位置与朝向,使每幢建筑能接收更多的太阳辐射热能,因此,建筑的方位与节能有着直接关系。如,在北纬40°~45°度地区,冬天建筑的朝向所得到的辐射能量几乎比夏天多两倍,而在夏天东、西向所得到的能量比南向多2·5倍,不同朝向,不同季节,建筑物所得到的太阳辐射热能量不同,热损失也不同,尤其是在冬至前后,由于太阳高度角低,房间所接收的太阳光线的面积比夏天多得多。在确定建筑的方位时首先应考虑环境情况,按其太阳高度角做出日影响图,以确定冬季每天的日照时间,建筑南向开窗面积尽可能大些,在满足采光条件下,北向、东向窗尽可能小些,从而获得更多的太阳光线,减少热损失,保持室内舒适的温度环境。

2优化围护结构墙体设计(1)外墙是围护结构的主体部分,高层建筑的围护结构不同于砖石结构房屋,前者是钢筋混凝土框架或剪力墙结构承重,因此,围护结构属于填充材料,为了减轻荷载,达到保温、隔热要求,采用轻质高效保温材料,目前在寒冷地区常用的墙体做法有:页岩陶粒混凝土空心砌块;粘土空心砖与实心砖复合墙体;粘土实心砖或空心砖岩棉夹心复合墙体等。但存在问题较多,节能的效果仍达不到标准的要求。围护结构的材料布置分外侧和内侧,在寒冷地区的同一气候条件下,由于材料层次布置不同所取得的保温效果也不尽相同,为防止墙体内产生冷凝水,保温层设在外侧更为妥些。

(2)高层建筑的围护墙体不宜采用外侧保温的聚苯乙烯泡沫板(舒乐板、PG板),岩棉板等轻质保温材料。一幢建筑的寿命少则几十年,多则上百年,材料的应用与建筑整体的寿命应同步。对于轻质的外保温复合墙体,笔者认为存在以下不足之处:1)抗震能力差,易松散,与结构构件结合不好,整体性能差。2)不能承受外部装修贴、挂荷载,如:贴石材,安装装饰构件等。3)不能承受有振动的凿、刨的装修,如:剁斧石面层、予留洞、槽易出现冷桥。4)墙表面易出现裂纹。除此之外,复合墙体由于框架梁拉、剪力墙的嵌入,墙体内容易造成冷桥,是保温、隔热的薄弱环节。据测定,高层建筑所出现的冷桥约占整个热损失的5%~13%,因此应引起设计者重视,采取有效构造措施尽可能避免产生冷桥。(3)国外普遍推广采用混凝土空心砌块用于高层建筑围护结构保温,欧、美各国取得不少先进经验。如:美国研制的TB型保温隔热复合砌块;波兰的咬合式保温砌块,两块组合成320厚墙体,在空心砌块内填入高效保温材料,墙体传热系数K=0·1209W/m2·k~1100W/m2·k;芬兰研制的一种空心砌块,空隙之间填入聚胺脂保温材料,300厚,传热系数K=0·25W/m2·k~0·28W/m2·k。某些欧美国家50%左右的建筑已应用多种形式的混凝土空心砌块。由于混凝土空心砌块保温效果好,又具有一定强度,避免了轻质复合材料墙体的一些弊端。

篇9

AbstractAmodelofheattransferthroughlow-Ewindowsisdeveloped.Thetwomostimportantperformanceparameters-overallheattransfercoefficient(Uvalue)andSolarHeatGainCoefficient(SHGC)arecalculatedandanalyzed.Thefactorsthatinfluencethetwoparametersoflow-Ewindowsarediscussedandthemechanismofwhylow-Ewindowscansavebuildingenergyisdiscussed.Italsogivesanexampleofthesimulationoftheimpactoflow-Ewindowsonair-conditioningandheatingenergycostinfourtypicalclimatesinChina.Basedontheresultsofthesimulation,themosteligibleclassoflow-Ewindowsisproposedforeachclimateforthebestenergysavingeffect.

Keywordslow-emissivitywindows;low-E;energy-saving

0引言

减小空调和供暖系统能耗电量降低建筑能耗的重要途径,而由于玻璃窗引起的空调供暖能耗在整个建筑能耗中占有相当大的比重,减小这部分能耗,是降低建筑能耗的一条行之有效的方法。在我国普遍采用的是单层或双层普通玻璃窗,能大大降低窗户的传热系数,从而减小由玻璃窗引起的建筑能耗。因此,研究低辐射能窗,并将其用于我国建筑,对于降低我国建筑能耗水平有着重要意义。

1低辐射能玻璃简介

低辐射能玻璃,即low-E玻璃,是利用真空沉积技术的在玻璃表面沉积一层低辐射涂层,一般由若干金属或金属氧化物薄层和衬底组成。普通玻璃的长波热辐射发射率约为0.8左右,low-E玻璃长波热辐射发射率最低可达到0.04,对长波热辐射光谱有很强的反射作用。并可调整制造工艺制造出各种不同光学性能的产品,如对太阳光有不同透过率的高透过low-E玻璃、低透过low-E玻璃等,见表1。但一般来说,都对可见光透过率影响不大。

表1玻璃材料

Table1Glass

编号厚度D/mmTsolTirEmis1Emis2K

高透30.60600.8400.0920.9

低透30.35400.8400.0920.9

普通30.83400.8400.8400.9

内Low-E30.60600.8400.0880.9

外Low-E30.60600.0880.8400.9

2低辐射能窗的传热原理

2.1窗的物理传热模型

在有太阳辐射的情况下,考虑有N层玻璃的窗户,忽略通过窗框的传热与玻璃边缘和窗框之间的传热,可以认为窗户仅由N层玻璃和N-1个密闭空间组成。假设每层(如第i层)玻璃有3个节点:第i层的中心节点i、第i层的两个表面节点i,s1和i,s2,如图1。玻璃本身的热容量不考虑。窗户传热方式有:和室内外环境的辐射换热、最外表面强迫对流换热、最内表面自然对流换热、玻璃层间的对流换热和辐射换热、玻璃层内的导热以及玻璃对太阳能的吸收。太阳光一部分直接透过窗户进入室内,还有一部分是由各层玻璃的中心节点吸收太阳能量后,以点内热源的形式向室内传热。玻璃窗热性能用总传热系数U和太阳得热系数SHGC(SolarHeatGainCoefficient)来表征。

图1窗户计算模型

Fig.1Schematicsofthewindow

2.2传热系数U

窗户的总传热系数U是指在单位温差下通过单位面积窗户所传递的热量。因此,U就是上述窗户有传热热阻之和Rtota的倒数,即:

(1)

由于对流、辐射传热的热阻是温度的函数,因此应首先通过求解各个节点的热平衡方程来确定窗户各层玻璃的温度值。在稳态传热情况下,对任意节点,流入流出该节点的净热流量为零。对于有N层玻璃的窗户,有N个中心节点和2N个表面节点。

2.2.1节点温度的确定

第i层玻璃的中心节点热平衡方程:

(2)

式中,Ri-1、Ri+1分别为第i中心节点与第(i+1)中心节点之间、第i中心节点与第(i+1)中心节点之间的换热热阻,即玻琉层内的导热、层间的对流换热和辐射换热的热阻之和,它们分别为:

(3)

(4)

第i层玻璃两个表面节点i,s1、i,s2的热平衡方程:

(5)

(6)

温度求解是一个迭代过程。首先设定N个中心节点温度,解出2N个表面节点温度,再以此求出热阻和热流,并解得下一步的中心节点温度。重复此过程,直到求出敛解。

2.2.2对流换热

外表面的对流换热系数是风速和风向的函数:

迎风情况下,若风速υ大于2m/s,hc,out=8.07υ0.605(7)

若风速小于2m/s,hc,out=12.27(8)

背风情况下,hc,out=18.64(0.3+0.05υ)0.605(9)

对垂直安装的窗户,内表面对流换热系数是温差的函数:

hc,in=1.77(TN,s2-Tin)0.25(10)

各个层流间对流换热系数hc,i=λ×Nu/ωi=1,N-1(11)

对于Ra<2×105

Nu=[1+(0.0303Ra0.402)11]0.091(12)

2.2.3辐射换热

对N层玻璃组成的具有2N个表面的系统,若各层间填充的气体对长波热辐射无吸收,则长波热辐射能量在各层间传递的过程中没有损失。对于第j与(j+1)层玻璃间的空气层所对应的第(j,s2)和(j+1,s1)两个玻璃表面,离开某个表面的净长波热辐射能量为:

Qrj,s2=Sj,s2+ρj,s2Qrj+1,s1(13)

Qrj+1,s1=Sj+1,s1+ρj+1,s1Qrj,s2(14)

其中,。一般玻璃的长波热辐射透过率为0,因而ρj,s2=1-εj,s2

所以,窗户的各辐射换热热阻为:

最外表面辐射换热热阻(15)

最内表面辐射换热热阻(16)

层间辐射换热热阻

(17)

窗户的总热阻Rtotal为:(18)

由式(15)至(17),玻璃的辐射热阻与其热辐射表面的长波热辐射半球发射率有关,ε越小,辐射热阻越大,从而增大了窗户总热阻。同时,各层辐射热阻与对流换热热阻并联,因而ε减小对窗户总热阻的影响,也和与其并联的对流换热热阻的大小有关,该对流换热热阻越小,ε增大总热阻的程度也越小。因此,安装窗时要考虑low-E面的安装位置,使它位于对流换热热阻较大的表面。

2.3太阳得热系数SHGC的求解

来源于太阳辐射的室内得热量一部分是直接透过窗户进入室内的,还有一部分是各层玻璃吸收太阳能量后,作为一个独立的小热源,向室内放出的热量。所以,SHGC可写为:

(19)

式中,βi是该层吸收的太阳能量向室内流入的比例,等于该玻璃层中心节点以外的总热阻与整个窗户总热阻之比,为:

(20)

所以,室内得热量Q=U(Tout-Tin)+SHGC×I(21)

3窗户传热性能分析

使用LBL1994年了出品的Window4.1软件[2],计算了几种窗户的性能参数并进行比较,所计算的窗户包括单层和双层的普通玻璃窗及low-E玻璃窗。所计算工况见表2,所使用的玻璃的物性说明见表1,所计算的窗户种类及计算结果见表3。从计算结果可以分析得知下述结论。

表2模拟计算条件

Table2Thesimulatedconditions编号工况描述

A有太阳入射,垂直入射强度为783W/m2,室外温度-17.8℃,室内温度21.1℃,风速6.7m/s,迎风

B有太阳入射,垂直入射强度为783W/m2,室外温度31.7℃,室内温度23.9℃,风速3.4m/s,迎风

C计算U:无太阳,室外温度-17.8℃,室内温度21.0℃,风速6.7m/s,迎风。

计算SHGC,垂直太阳入射强度为783W/m2,室外温度31.7℃,室内温度23.0℃,风速3.4m/s,迎风

表3窗户种类和计算结果(U:W/(m2℃);T:℃)

Table3Thecalculatedvalueforthedifferentwindows

编号层数所用材料冬季工况夏季工况

外层内层USHGCT1,s2USHGCT2,S2

1a1普通6.290.85-6.55.850.8631.9

1b1内low-E3.860.63-7.43.270.6336.4

1c1外low-E6.120.64-4.75.510.6533.1

2a2普通普通2.820.7612.53.130.7632.4

2b2内low-E普通1.770.5716.61.820.5730.7

2c2普通外low-E1.760.6020.71.840.6134.3

2d2外low-E普通2.780.5611.63.010.5731.8

2e2普通内low-E1.870.5915.92.360.6043.2

3.1低辐射涂层(low-E层)可以降低窗户的传热系数

low-E材料的应用能够降低窗户的传热系数U,结果见表3。如有low-E层时U值最大可降低约50%,但low-E层位置不同,降低窗户传热系数的作用不同。

3.2low-E层位置对传热系数有重要影响

从表3可以看出,对于单层玻璃窗,low-E层(ε=0.088)在室内侧和在室外侧时,其传热系数有很大差别。表3中所计算的窗户,除low-E层位置不同外,其它参数均相同。在相同工况下,编号为1a、1b和1c的三种窗,1b的传热系数要比1c的低约40%;而1a和1c的传热系数几乎相同,即此时low-E几乎没有起到作用。对于双层玻璃窗也具有同样的情况。可见ε对U的影响与low-E面的位置有关。对单层玻璃窗,low-E层的最佳位置是室内侧;对双层玻璃窗,low-E层的最佳位置则是中间空气层的内或外侧。

3.3ε、τ值和SHGC的影响

ε(ε是窗户的low-E面的长波热辐射发射率)和τ(τ是窗户的法向总太阳透过率)对U和SHGC的影响与玻璃窗的结构、形式,即玻璃层数、low-E层的安装位置等因素有关,下面探讨在这些因素一定时,ε、τ对U和SHGC的影响。图2和图3分别为反映ε、τ与U和法向SHGC的关系的等值线图,其中,窗户的形式是表3中的2c(双层窗low-E面中置),计算工况为表2中的工况C。

对U起决定性影响因素的是ε,ε值的变化改变了总热阻中的辐射阻部分,从而达到了改变传热系数U的目的。ε值越小,辐射热阻越大,U也越小。不同τ值下,各玻璃层吸收的太阳能量不同,使得玻璃窗各节点的温度分布不同,从而对应的U值不同,但τ对U的影响很小,如图2示。

图2双层窗U-ε、τ等值线

Fig.2Theisolinefordoublewindow

SHGC主要受τ影响,τ越大,SHGC相应越大,而ε对SHGC的影响主要在于ε改变了各层玻璃的热阻,从而改变了各层所吸收的太阳能量中流入室内的比例。由图3可以看出,SHGC基本上只与τ有关。

图3以层窗SHGC-ε、τ的等值线

Fig.3TheSHGCisolinefordoublewindow

3.4low-E层降低了热负荷的波幅

图4绘出了哈尔滨冬季某日逐时室内得热量Q(计算式见21),设室内温度恒为20℃,进入室内热量为正。由图可见,使用low-E窗户,一天的得热量波动小于普通窗户,可削弱室外环境变化对室内环境的影响,使得用于维持室内恒定舒适环境的能耗也相应降低。Low-E窗户的传热系数U降低的同时,由于它本身材料的光学特性,SHGC也随之降低,这对于冬季工况要求尽量利用太阳辐射能是矛盾的。有low-E层玻璃窗白天虽然U值降低,但同时太阳得热也降低。图4中可以看到,有low-E的双层窗(2b)白天太阳得热的降低值大于U值降低所减少的失热量,因此白天时对太阳能利用效果不如没有low-E层的普通双层玻璃窗(2a);但单层玻璃窗(1b)则与双层相反,这主要是因为对单层来说,U值的降低起主要作用。从全天效果来看,有low-E层的窗户还是比普通窗户节能。

图4哈尔滨冬季某日室内逐时得热量

Fig.4ThesolargaininHarbin

4低辐射能玻璃对建筑全年能耗的影响

如前所述,U和SHGC只是反映在某一特定工况下的玻璃窗性能的静态参数,而不能反映全年气象条件波动下玻璃参数的变化以及这种变化对建筑能耗的影响。因此,要分析低辐射能窗对建筑能耗的影响,就应该对由玻璃引起的空调和供暖负荷进行全年模拟。用传递函数法进行负荷模拟一个例子,通过模拟来分析使用低辐射能玻璃的节能效果。

4.1模拟房间描述和负荷计算方法

选取了编号1b的单层low-E窗以及编号2b的双层low-E窗两种形式进行负荷模拟计算。与之比较的普通玻璃物性见表1。Low-E玻璃厚为3mm,普通表面的长波热辐射发射率ε均为0.84,low-E表面的ε值范围为0.04到0.7,窗户的太阳透过率τ取值范围分别为单层窗户0.04到0.7;双层窗户0.04到0.6。实际的U值随室内外气象条件等因素而随时变化,但是全年的波动范围不大,因此在得热量计算中采用了工况C下的定值;τ和SHGC则进行了逐时计算。

所计算的房间模型为重型结构[4],朝南一面全部为玻璃窗,其余5面均为室温恒定的相邻房间。其面积为21.6m2,其净空尺寸:长×宽×高为6m×3.6m×3m。南面玻璃净面积为9m2。据实测验结果,该房间的辐射型得热传递函数系数为V0=0.32,V1=-0.25,W1=-0.93,传导型得热传递函数系数为V0=0.68,V1=-0.61,W1=-0.93。求得冬夏两季的逐时空调负荷再相加(根据ASHRAEHandbookofFundamentals,1993),可求得全年的空调能耗。冬季设计室温为20℃,夏季设计室温为25℃,允许室温波动范围均为±1℃,冬夏两季均来用热泵式空调,同时不考虑室内设备和照明产热。

4.2计算结果及其分析

为能反映低辐射能玻璃的节能效果,引入了一个新的参数--节能百分比

,单层窗与单层普通玻璃窗进行比较,双层窗与双层普通玻璃窗进行比较。η可以充分反映单位面积低辐射能玻璃窗的节能效果,而不用考虑负荷绝对量值的大小,η值越大说明节能效果越显著。图5、6是哈尔滨、广州二地采用不同材料的low-E窗的情况下(根据1999年清华大学的建筑能耗分析用气象数据生成系统MEDPHA),,η与ε、法向τ的关系的等值线图。

图5单层窗η-ε、τ等值线图

Fig.5Theηisolineformonolayerwindow

图6双层窗η-ε、τ等值线图

Fig.6Theηisolinefordoublewindow

1)哈尔滨

气温较低,太阳辐射强度较小。由图看出,采用单层窗时ε值越小,τ值越大,节能效果越好;采用双层窗时ε越小越好,而τ值应适中。这是因为单层窗U值较大,由温差引起的传热量很大,冬季能耗是主要部分。而双层窗U值较小,温差传热量在总传热量中所占比例减小,冬季能耗在全年能耗中所占比例降低;太阳得热对全年能耗的影响比单层窗显著,如果τ值太大,会增大夏季能耗,反之,若τ值太小,会增大冬季能耗。

2)广州

冬夏两季气温比北方明显增高,辐射强度也较大,且夏季辐射尤为突出,减小夏季供冷负荷是主要矛盾,冬季供暖量非常小,太阳得热对负荷的影响非常大。由图看出,全年能耗与τ值关系密切,τ越小,能耗越小,而在保证一定小的τ后,能耗基本与ε值大小无关。

由所得的η值可见,无论是北方还是南方地区,使用低辐射能玻璃都不同程度地节省了全年的空调能耗。

5结论

1)低辐射能玻璃是否全年节能与地区有关

低辐射能玻璃的节能是由于ε主要影响传热系数U,从而影响由温差引起的对流传热和辐射传热。对于气候寒冷的北方地区,采用低辐射能玻璃有明显的节能效果,ε越小,全年能耗节省情况越佳。而在南方,由太阳辐射引起的空调能耗是全年能耗的主要部分,ε值的变化仅减小传热系数U,对这部分能耗影响不大。南方使用low-E玻璃造成的节能效果,除U的降低是一个因素之外,最主要的原因是low-E玻璃的材料特性使它对太阳透过,相对于普通玻璃必定有一定程度的削弱。所以在南方,单纯的ε值减小对节能作用不显著,如果能够用其它措施(如内、外遮阳)来降低太阳得热的话,可以不使用low-E玻璃来达到相同程度的节能效果。但如果要求较好的视野,例如商用建筑采用大面积的玻璃幕墙,low-E玻璃是很好的选择,在保证自然采光的同时可降低空调能耗。

2)室内热源的影响

在计算空调负荷时,省去了设备和照明负荷。但在实际应用中,如果采用的低透玻璃减小了太阳光进入房间的强度,使得房间内必须采用人工照明的情况,由于提供相同照度人工照明造成的负荷更大,可能会出现采用低透玻璃夏季空调负荷反而增大的情况。所以在确定低透的low-E玻璃的透过率时,要结合房间功能等因素综合考虑。

3)根据具体情况决定是否选用low-E玻璃窗

使用low-E玻璃窗,不一定符合夏季工况的要求,反之亦然。所以,在具体选用low-E窗户时,仅有U和SHGC这两个静态参数是不够的,应根据具体气候、建筑类型等因素综合考虑。对于气候较寒冷、全年以供暖流为主的地方,由于室内外温差大,以降低传热系数U为主;而对于气候炎热、太阳辐射强、全提以供冷为主的地方,可选择SHGC较低的low-E窗户种类和安装方

式。有条件的话,应进行全年负荷的模拟计算,选取用合适的U和SHGC的组合以及窗户的适当安装方式。

本次模拟的房间在结构上属于重型结构,其它结构和类型的建筑还没有进行模拟,这是下面有待进行的研究,以便分析不同建筑对窗户使用的不同要求。同时,本次模拟采用的空调系统是热泵式空调,这与我国大部分地区的供暖与供冷实际情况并不完全符合,这也有待于进一步研究改进。

符号U-总传热系数,W/(mm2/℃)Emis2-玻璃内表面长波热辐射发射率下标

R-热阻,mm2·℃/Wυ-室外风速,m/si-第i层玻璃的中心节点

T-温度,℃I-太阳入射强度,W/m2i,s1-第i层玻璃外表面节点

Q-热流量,W/m2希腊字母i,s2-第i层玻璃内表面节点

h-换热系数,W/(m2℃)λ-空气的导热系数,W/(m℃)c-对流换热

D-玻璃的厚度,mmω-空气层的厚度,mmr-辐射换热

K-玻璃的志热系数,W/(m℃)ρ-表面长波热辐射半球反射率k-玻璃层的导热

Tir-玻璃的长波热辐射透过率ε-表面长波热辐射半球反射率total-整个窗户

Tsol-玻璃的太阳透过率τ-总太阳透过率in-室内环境

Emis1-玻璃外表面长波热辐射发射率α-玻璃的太阳吸收率out-室外环境

参考文献

1)ArastehDK,ReillyMS,RubinMD."AversatileprocedureforcalculatingheattransferthroughWindows".ASHRAETransactions,1989,95,(2):755-765.

篇10

一、我国建筑节能现状

目前,建筑耗能已与工业耗能、交通耗能并列,成为我国能源消耗的三大“耗能大户”。尤其是建筑耗能伴随着建筑总量的不断攀升和居住舒适度的提升,呈急剧上扬趋势。我国建筑不仅耗能高,而且能源利用效率很低,单位建筑能耗比同等气候条件下国家高出2倍~3倍。仅以建筑供暖为例,北京市在执行建筑节能设计前一个采暖期的平均能耗为32瓦/平方米,执行节能标准后,一个采暖期平均为21瓦/平方米,而相同气候条件的芬兰一个采暖期的平均能耗仅为11瓦/平方米,因建筑能耗高,仅北方采暖地区每年就多耗煤1800万吨,直接经济损失达70亿元,我国现阶段城市房屋建筑中普遍存在围护结构保温隔热性和气密性差,供热空调系统效率低下等问题,以占我国城市建筑总面积约60%的住宅建筑为例,采暖地区城镇住宅面积约有40亿平方米,2000年采暖季平均能耗约为25kg煤/平方米,如果在现有基础上实现50%的节能,则每年大约可节省0.5亿吨煤。2006年底,全国政协调研组就建筑节能问题提交的调研数据显示:按目前的趋势发展,到2020年我国建筑能耗将达到10.9亿吨标准煤。建筑节能要求十分紧迫。

二、建筑节能存在问题

1.我国建筑能耗高,制约经济发展。建筑能耗约占社会总能耗的三分之一,我国建筑能耗的总量逐年上升,在全社会总能耗中所占的比例已从上世纪70年代末的10%,上升到近年的30%,而这“30%”还仅仅是建筑物在建造和使用过程中消耗的能源比例,如果再加上建材生产过程中耗掉的能源(占全社会总能耗的16.7%),和建筑相关的能耗将占到社会总能耗的46.7%。而国际上发达国家的建筑能耗一般占全国总能耗的35%左右,以此推断,随着城市化进程的加快和人民生活质量的改善,我国建筑耗能比重最终还将上升到35%左右,建筑耗能已成为我国经济发展的软肋。

2.高耗能建筑比例大,加剧能源危机。现在我国每年新建房屋20亿平方米中,99%以上是高能耗建筑;而既有的约430亿平方米建筑中,只有4%采取了能源效率措施,单位建筑面积采暖能耗为发达国家新建建筑的3倍以上。根据测算,如果不采取有力措施,到2020年中国建筑能耗将是现在3倍以上,潜伏巨大能源危机。

3.我国建筑节能状况落后,亟待改善,上世纪70年达国家开始致力于研究和推行建筑节能技术,而我国却忽视了这一环节,例如,我国建筑外墙的传热系数是发达国家建筑外墙传热系数的3倍~5倍,外窗传热系数是2倍~3倍,屋面传热系数是3倍~6倍,因此在这一环节上,我国与发达国家存在较大差别。

三、我国建筑节能发展缓慢的原因分析

多年来,我国开展了相当规模的建筑节能工作,主要采取先易后难,先城市后农村,先新建后改进,先住宅后公建,从北向南逐步推进的策略,但是到目前为止,建筑节能仍然在试点,示范层面上,原因如下:

1.建筑节能开发建设成本高,初期投资比较大,国家没有鼓励政策。开发商在建筑节能投入上积极性不高。

2.设计人员对节能建筑设计和施工技术尚未系统化、标准化、相关规范不健全,建筑从业人员的节能意识淡薄。

3.政府部门对建筑节能工作的重要性和紧迫性认识不足,组织管理不力,法规配套不全。

4.建筑节能材料,工艺技术发展缓慢。

5.国家对建筑节能的规范还没有列入强制执行的范畴。

6.建筑节能的政策支持不够。

四、建筑节能的方法

1.墙体保温。墙体保温分为外保温和内保温,保温材料可以用聚苯板或胶粉聚苯颗粒。目前较成熟的外墙外保温技术主要有外挂式外保温、聚苯板与墙体一次浇注成型、聚苯颗粒保温料浆外墙外保温等。节能保温墙体技术中还有将墙体做成夹层,把珍珠岩、木屑、矿棉、玻璃棉、聚苯乙烯泡沫塑料、聚氨酯泡沫塑料(也可现场发泡)等填入夹层中,形成保温层。

2.外墙门窗保温。一般情况下,建筑物的热交换,70%通过门窗,30%通过墙体和屋面。现在居室使用的门窗有单层和双层,双层保温隔音效果好于单层门窗材料。有木门窗、钢门窗、铝合金门窗,塑钢门窗,木门窗很少用在外墙上,塑钢木门窗热传导效果明显好于铝合金和钢门窗。玻璃安装有单层和双层玻璃,有一般3mm或5mm普通玻璃、蓝宝石玻璃、雷射玻璃、中空镀膜玻璃等,在隔声、隔热、节能、减少室内温差,提高采光性方面,中空镀膜玻璃效果最佳。中空玻璃在国外建筑物中已得到普遍应用。

3.地板、屋顶保温。选择地板、屋顶保温材料的同时,增加地板、屋顶保温层厚度可以提高保温隔音效果。

4.改变建筑设计布局,提高建筑节能效果。设计应从建筑选址、分区、建筑和道路布局走向,建筑方位朝向、建筑体型、建筑间距、冬季季风主导方向、太阳辐射、建筑外部空间环境构成等方面进行研究。如设计住宅小区时,在总建筑面积不变的情况下,低密度、高容积率对节能有利,要选择在采光、通风条件比较好的地段进行建设,建筑物还应有良好的朝向。设计时还应注意窗墙面积比、遮阳效果、及房间的朝向。设计达到布局合理,有利于提高建筑节能效果。

5.太阳能源与建筑有机结合。现在的建筑设计中建筑师大都考虑的是建筑的造型、美观、适用及与周围的环境协调,面对建筑的耗能与节能却考虑较少。而在现代住宅建筑中要求设计人员的设计要体现“四性”:即可负担性(尽量降低造价,让老百姓买得起);可居住性(居住安全、舒适、健康);可适应性(可满足日常生活及将来的变化);可持续性(实现资源消耗最低,再生资源最多)。而太阳能源是最好的可持续利用的再生能源,从长远来看,比燃气、电器具有更安全、清洁、价格便宜的优势。太阳能源取之不尽,在设计中增设太阳能设施,建筑成本增加少,但节能效果很好。

但是,目前太阳能源在建筑中的利用率还很少,即使常年日照多的地区大多也只是在屋顶上安装一些太阳能热水器来满足家庭热水的需要,而利用太阳能源来照明、取暖,制冷就更少。所以太阳能应用技术应该作为一项专业技术进入到工程设计的范畴,这样就可以从一开始的设计规划中占有一席之地,从而进入并跟踪整个设计全过程,在与相关专业的配合过程中,完成自己的专业设计,使太阳能就像其他建筑部件、构件一样,最终也会成为建筑的一个部件,真正体现出建筑与太阳能工程的一体化,使建筑与太阳能的有机结合及能源的节约从建筑的最初设计开始做起。

太阳能建筑一体化技术已成为一项新兴而热门的技术,它是实现建筑与能源可持续发展的必然产物,是太阳能应用领域扩展的需要。把太阳能同建筑结合起来,把几千年来房屋只是人类居住、遮风挡雨、避寒暑的简单场所发展成具有独立能源、自我循环式的新型建筑,这也是人类进步和社会、科学技术发展的必然。

6.建筑采暖实行分户计量收费。实施建筑采暖计量收费是由过去的按面积收费转向按用热量收费的制度改革,是节约能源,提高住户用热的舒适度,改善大气质量和生态环境的重要途径。20世纪70年代,西欧和北欧等国家为了应对世界范围的能源危机,在建筑采暖用能方面采取了提高建筑的保温性能以降低能耗,推行按热计量收费的制度以节约能源的措施。90年代原苏联解体后,东欧国家随着政治经济体制的变化,在引进西欧、北欧先进供热技术的同时,也开始进行收费制度的改革,由原来的包费制改为按计量收费。这些国家的经验都说明,采用按热量计量收费后,可节约能源20%~30%。我国自20世纪80年代末90年代初,特别是最近几年,一些供热企业就已开始旨在改进供热二次系统,实现按热计量收费的研究和试验,以节约能源,减轻大气污染,促进供热行业面向市场经济。遵循市场经济规律,把热作为商品,由用户自行调节控制和使用,并按实际使用热量合理收费,才能充分调动供热和用热双方的积极性,并对节约能源起到促进作用,因此,实行分户供暖,按实际热计量进行收费已经势在必行。

7.推广使用节能灯,推行“绿色照明”工程也是建筑节能的重要内容。家用小功率的高效节能灯具,其发光效率比普通白炽灯高4倍以上,使用寿命长5倍至10倍,节电效率达70%~80%。

五、我国建筑节能发展对策

1.各级政府要提高认识,转变职能,把建筑节能列入国家和各省市,决策层的重要议程。建筑节能必须首先由政府主导,由国家通过法律强制实施,这一点已经被发达国家的实践所证明。据建设部科技司副司长武涌透露,建设部目前正在完善建筑节能体制、机制、法制的建设,并将出台经济激励政策。

2.各省市组建建筑节能、设计研究领导机构。各地建设局,有关单位组建市建筑节能领导小组,负责推广建筑节能的方法,组织协调和监督管理。

3.各省市制定经济扶持政策,加大对建筑节能资金投入,建立完善建筑节能的经济激励政策,鼓励建设节能工程。以实现在2020年新建建筑节能65%的目标,不执行节能标准的建筑设计、施工单位将受到不同程度的处罚。

首先,政府应提供必要的启动经费支持建筑节能项目的推广;对高能耗的建筑制定相应的处罚措施,包括新建筑不准开工,已有建筑分段能耗收费(高出行业标准一定范围后的能耗采用高收费)等;对节能建筑采取奖励措施,包括可再生能源使用中的优惠政策,转移高峰用电的优惠政策,节能建筑星级标准(对能耗少的节能建筑发放星级标识)等。设立建筑节能监察办公室,对新建建筑和已有建筑进行能耗评估,对于高能耗建筑不予审批或限期整改。由于大量建筑在规划和设计阶段就注定是高能耗建筑,因此在建筑的规划审批时应加强建筑节能内容。同时应在建筑设计、实施和运行的各个阶段定期监测建筑的能耗情况,逐步缩小高能耗建筑的存在空间。超级秘书网

其次是建立住宅建筑能耗标准星级制度,积极推动供热收费体制改革试点,用市场方式催生更多的节能住宅建筑。根据对住宅建筑能耗的评估结果,用能耗星级标准将建筑节能的效果直观地告诉住宅消费者,引导大众消费节能的住宅建筑,从而推动节能住宅建筑的市场化运作。建立不同类型商业建筑能耗标准星级制度,积极推广各种节能技术,降低商业建筑的能耗。

4.各地区积极推广和使用新型建筑节能材料,大力宣传建筑节能的主要意义,广泛宣传“设计标准”。

5.新建和改建建筑节能工程,各级政府应通过公开招标方式选择有实力、有经验的企业作为重点节能工程承包商,搞好节能建筑合同管理,保证节能建筑按合同完成,同时保证节能改造承包商应得利益。

参考文献: