期刊在线咨询服务,期刊咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

三相异步电动机论文模板(10篇)

时间:2023-03-21 17:14:22

导言:作为写作爱好者,不可错过为您精心挑选的10篇三相异步电动机论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

三相异步电动机论文

篇1

相应对策:①尽量消除工艺和机械设备的跑冒滴漏现象;②检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应作保护罩;③对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。

2.由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:①轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。②轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。④由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。⑥由于不同型号油脂混用造成轴承损坏。⑦轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未进行中修。

相应对策:①卸装轴承时,一般要对轴承加热至80℃~100℃,如采用轴承加热器,变压器油煮等,只有这样,才能保证轴承的装配质量。②安装轴承前必须对其进行认真仔细的清洗,轴承腔内不能留有任何杂质,填加油脂时必须保证洁净。③尽量避免不必要的转轴机加工及电机端盖嵌套工作。④组装电机时一定要保证定、转子铁心对中,不得错位。⑤电机外壳洁净见本色,通风必须有保证,冷却装置不能有积垢,风叶要保持完好。⑥禁止多种油脂混用。⑦安装轴承前先要对轴承进行全面仔细的完好性检查。⑧对于长期不用的电机,使用前必须进行必要的解体检查,更新轴承油脂。

3.由于绕组端部较长或局部受到损伤与端盖或其它附件相磨擦,导致绕组局部烧坏。

相应对策:电机在更新绕组时,必须按原数据嵌线。检修电机时任何刚性物体不准碰及绕组,电机转子抽芯时必须将转子抬起,杜绝定、转子铁芯相互磨擦。动用明火时必须将绕组与明火隔离并保证有一定距离。电机回装前要对绕组的完好性进行认真仔细的检查确诊。

4.由于长时间过载或过热运行,绕组绝缘老化加速,绝缘最薄弱点碳化引起匝间短路、相间短路或对地短路等现象使绕组局部烧毁。

相应对策:①尽量避免电动机过载运行。②保证电动机洁净并通风散热良好。③避免电动机频繁启动,必要时需对电机转子做动平衡试验。

5.电机绕组绝缘受机械振动(如启动时大电流冲击,所拖动设备振动,电机转子不平衡等)作用,使绕组出现匝间松驰、绝缘裂纹等不良现象,破坏效应不断积累,热胀冷缩使绕组受到磨擦,从而加速了绝缘老化,最终导致最先碳化的绝缘破坏直至烧毁绕组。

相应对策:①尽可能避免频繁启动,特别是高压电机。②保证被拖动设备和电机的振动值在规定范围内。

二、三相异步电动机一相或两相绕组烧毁(或过热)的原因及对策

如果出现电动机一相或两相绕组烧坏(或过热),一般都是因为缺相运行所致。在这里不作深刻的理论分析,仅作简要说明。

当电机不论何种原因缺相后,电动机虽然尚能继续运行,但转速下降,滑差变大,其中B、C两相变为串联关系后与A相并联,在负荷不变的情况下,A相电流过大,长时间运行,该相绕组必然过热而烧毁。

三相异步电动机绕组为Y接法的情况:电源缺相后,电动机尚可继续运行,但同样转速明显下降,转差变大,磁场切割导体的速率加大,这时B相绕组被开路,A、C两相绕组变为串联关系且通过电流过大,长时间运行,将导致两相绕组同时烧坏。

这里需要特别指出,如果停止的电动机缺一相电源合闸时,一般只会发生嗡嗡声而不能启动,这是因为电动机通入对称的三相交流电会在定子铁心中产生圆形旋转磁场,但当缺一相电源后,定子铁心中产生的是单相脉动磁场,它不能使电动机产生启动转矩。因此,电源缺相时电动机不能启动。但在运行中,电动机气隙中产生的是三相谐波成分较高的椭圆形旋转磁场,所以,正在运行中的电动机缺相后仍能运转,只是磁场发生畸变,有害电流成分急剧增大,最终导致绕组烧坏。

篇2

中图分类号:TM343 文献标识码:A 文章编号:1009-914X(2016)14-0089-01

三相异步电动机由于其具有结构简单、运行可靠、检修维护方便、以及价格便宜等优点被广泛应用到各工程领域,作为电能转换为其它能量的主要动力载体。众所周知,电动机处于直接启动运行工况时,其启动电流一般可以达到额定电流的8倍以上,有的甚至可以达到15倍,强大的启动冲击电机会对电机供配电网、负载机械、以及电动机自身等造成巨大冲击破坏,不仅会影响到电机系统以及其拖动的机械设备的综合使用寿命,同时还会造成电机供电配电网电压发生突降,直接影响到同一配电网中其它用电设备的高效稳定运行。电动机在额定负载率附近工况范围内运行时,其效率较高,通常在80%左右;然而,当电动机拖动负载出现下降现象时,电机系统的运行效率也会随之发生显著下降。在电动机拖动系统选型设计时,通常都是按照系统最大负载和最坏运行条件情况来选定电机功率。在实际运行过程中,电机系统由于负载波动等原因,通常处于轻载(空载)或不均匀时变负载运行工况,导致电机运行在低效工况区,势必会造成大量的电能损失和浪费,因此,提高电机启动运行工况,保障整个电机系统具有较高的运行效率就显得很有必要[1]。

1 电动机软启动及节能方法简介

传统的串联电阻(电抗器)、并联自藕变压器、以及星型一三角形(Y-)等减压启动方式,不仅造价较高,而且电机在启动过程中均会经历一个由辅助供电系统到工频供电系统的跳跃过程,使得电机系统中的某些特征电参量发生特变,不能稳定连续平滑调节启动运行,容易导致电机系统发生机械或电气故障,加上电机控制系统变得越来越复杂,这类控制方式经济性能普遍较低,因此,其逐步被软启动控制系统所取代。

由于供电距离、电机功率等造成电动机直接启动方式,不能满足电机系统配电网电压降要求时,为了确保电机高效稳定的启动运行,应采取相应技术手段,通过降低电机定子电压的启动模式,达到限制启动电流保障电机高效可靠启动运行目的[2]。

基于电机控制系统中电动机启动的主要特性和节能基本理论方法的基础上,本文将对电机节能软启动器的逻辑结构和运行效果进行详细探讨。

2 节能软启动控制器在电机控制系统中的应用

2.1 系统功能单元组成

节能软启动器控制系统是综合三相异步电动机启动和运行保护为一体的节能保护启动控制装置,主要包括电动机软启动自动控制、系统输出输入能量平衡、以及电机故障保护等三大功能模块,其具体逻辑工作原理框图如图1所示:

从图1可知,当三相异步电动机处于起动过程时,控制系统各功能单元就会将电机机端的电压、电流、以及转速等信号经相应A/D模数转换电路,转换成相应的数据信号后送至控制系统中,与系统原始设定值进行动态比较分析后,计算获得对应的电参量偏差和偏差化率值,然后形成对应的控制决策,通过控制系统触发脉冲的宽度来动态调节晶闸管的触发角大小,完成对电机启动的实时控制。通过控制晶闸管触发角的大小,达到改变晶闸管输出电压实现电机降压软启动控制目的。从电动机启动特性来看,电机起动过程中,晶闸管的触发角会随电机启动过程的进行而不断开打,从而实现电机从零转速开始逐步加速无级平滑启动控制运行。当三相异步电动机出现故障时,系统就会检测到已成的工作电压和电流值,控制系统就会通过保护电路完成电机保护跳闸操作,防止电机故障进一步扩大给电机系统带来更加严重的危害,并能通过对应的可视化显示界面,提醒运行人员对相关异常单元进行检查,大大提高电机控制系统的人性化服务水平[3]。

2.2 软启动器PID控制

由于异步电动机控制系统是一个多参量、动态时变、非线性、强耦合的多阶复杂大系统,很难利用一种简洁的控制模型进行描述表达。PID控制系统可以通过内部电路自动分析获得对应准确的控制信号,是现代控制系统中常采用的控制方式,其典型控制原理如图2所示[4-5]:

2.3 应用效果分析

为了分析节能软启动控制器在三相交流异步电动机控制系统中节能降耗作用,在结合前面的理论分析的基础上,通过相应的功能单元组合,形成对应的软启动控制系统,整个系统基本参数为:三相异步电动机额定功率为22KW,额定电流为44A,额定电压380V,采用市电直接供电方式。按照图1所示的结构将异步电动机软启动控制系统进行有效连接,通过电机控制系统中有无装该节能软启动控制器进行比较试验,获得对应的试验数据如表1所示:

从表1可以看出,在加上节能软启动控制器后,电机启动工况特性得到有效改变,不仅降低电机的启动电流(使其比额定电压条件下的38.5A还低,仅为34.7A),有效避免了电机启动时强大启动电流对电网和电机的影响,同时还提高了电机系统的功率(从0.608提高到0.852),保障电机具有较高的工作效率,达到节能降耗的目的。

3 结束语

将以晶闸管为核心的节能软启动控制器应用到三相异步电动机控制系统中,可以有效解决了传统异步电动机启动运行性能水平较低的问题,达到了降低电机启动电流、提高运行效率的节能降耗稳定经济启动运行目的。

参考文献

[1] 徐甫荣,崔立.交流异步电动机启动及优化节能控制技术研究[J].电气传动自动化.2003.25(l):1-7.

[2] 高淑萍.智能型交流异步电机软起动器的研究[硕士学位论文][D],西安:西安理工大学,2004.

篇3

一般性能的节能调速在过去大量的所谓不变速交流传动中,风机、水泵等机械总容量几乎占工业电气传动总容量的一半,其中不少场合并不是不需要调速,只是因为过去交流电机本身不调速,不得不依赖挡板和阀门来调节送风和供水的流量,许多电能因而白白的被浪费掉了。如果换成交流调速系统,把消耗再挡板和阀门上的能量节省下来,每台风机、水泵平均约可节能20%,效果是很可观的。

高性能交流调速系统许多在工艺上就需要调速的生产机械,过去多用直流传动,鉴于交流电机比直流电机结构简单、成本低廉、工作可靠、维护方便、转动惯量小、效率高,如果改成交流调速,显然能够带来不少的效益。但是,由于交流电机原理上的原因,其电磁转矩难以像直流电机那样直接通过电流实行灵活的即时控制。70年代初发明了矢量控制技术,通过坐标变换,把交流电机的定子电流分解成励磁分量和转矩分量,用来分别控制磁通和转矩,就可以获得和直流电机相媲美的高动态性能,从而使交流电机的调速技术取得了突破性的进展。

特大容量及高转速的交流调速直流电机换向器的换向能力限制了它的容量和转速,其极限容量与转速的乘积约为10KW·r/min,超过这个数值时,直流电机的设计与制造就非常困难了。交流电机则不受这个限制,因此,特大容量的传动,如厚板札机、矿井卷扬机等,和极高转速的传动,如高速磨头、离心机等,都以采用交流调速为宜。

一、起重机发展趋势

物料搬运成为人类生产活动的重要组成部分,距今已有五千多年的发展历史。随着生产规模的扩大,自动化程度的提高,作为物料搬运重要设备的起重机在现代化生产过程中应用越来越广,作用愈来愈大,对起重机的要求也越来越高。起重机正经历着一场巨大的变革。发展趋势:大型化和专用化、轻型化和多样化、自动化和智能化、成套化和系统化、新型化和实用化。

二、电动葫芦

电动葫芦,简称电葫芦。由电动机、传动机构和卷筒或链轮组成,分钢丝绳电动葫芦和环链电动葫芦两种。通常用自带制动器的鼠笼型锥形转子电动机(本次设计既是选用此种电机)(或另配电磁制动器的圆柱形转子电动机)驱动,起重量一般为0.1~80t,起升高度为3~30m。多数电动葫芦由人用按钮在地面跟随操纵,也可在司机室内操纵或采用有线(无线)远距离控制。电动葫芦除可单独使用外,还可同手动、链动或电动小车装配在一起,悬挂在建筑物的顶棚或起重机的梁上使用。

三、三相异步电动机及工作原理简介

三相异步电动机由定子和转子两大部分组成,定子和转子之间是空气隙。三相异步电动机具有结构简单、性能优良、制造成本低、维修费用省、坚固耐用等优点,在工农业生产中得到了广泛应用。正常情况下,定子旋转磁场的转速n和转子转速n不同步,这是因为如果同步,转子与旋转磁场之间不再有相对运动,导体不再切割磁场,就没有感应电动势产生,也就没有了转子电流和电磁转矩,无法维持电动机继续运行。

三相异步电动机有一个很重要的参数:转差率——用s表示,其定义式为在很多情况下,用s表示电动机的转速比直接用转速n方便得多,使很多运算大为简化。一般异步电动机的转差率在0.02~0.05之间。大部分厂家生产的异步电动机的铭牌上标有下列数据:1.额定功率P:电动机额定运行时轴端输出的机械功率,单位一般为kw

2.额定电压U:电动机额定运行时定子加的线电压,单位为v或kv

3.额定电流I:定子加额定电压、轴端输出额定功率时的定子线电流,单位为A

4.额定频率f:我国工频为50Hz

5.额定转速n:电动机额定运行转子的转速,单位为r/min

四、笼形转子异步电动机的特点

笼形转子异步电动机具有转子结构坚实、效率高、价格低、控制设备简单和维护使用方便等优点,因此在各种应用领域中使用最广泛。但这种电机的启动性能较差,即启动转矩低而启动电流很大。因此在选择使用时应考虑启动问题,即:1.启动转矩Tk应大于负载静转矩Tl;2.启动电流在供电电网上造成的瞬间电压降不能超过容许值;3.在启动过程中电动机的能量损失要小。

本次设计用电机为锥形转子三相异步电动机。常用的电动葫芦用锥形转子制动三相异步电动机型号有:YEZS、YREZ、YBFZ和YBEZX等几种。该类型电机的主要特点是利用其锥形转子的特殊结构在通电时产生磁拉力,打开制动机构,使电机正常运转。

该类电动机的定额是断续周期工作制S,负载持续率不低于25%,每小时等效起动次数不低于120次。电源频率为50Hz,同步转速为1500r/min。4.5KW及以下的额定转速为1380r/min。7.5KW以上的额定转速为1400r/min。允许最大转速为3750r/min。新晨:

【参考文献】

篇4

中图分类号:TM341 文献标识码:A 文章编号:1003-9082(2015)09-0273-02

引言

在工业、建筑以及公用设施领域中电动机是重要的原动力设备,也是电能消耗的最大用户,和节电潜力的最大用户。2012年我国各类电动机总装机容量约为5亿千瓦,其中异步电动机的装机容量占全国电动机装机容量的90%,约占全国用电量的60%,占工业用量的75%,系统用电效率比国外先进水平低5%-15%,相当于每年浪费电能约1500亿千瓦时。

目前工业领域中采用的高压中、大功率异步电动机普遍存在效率偏低、功率因数差等浪费电能现象。而高效永磁同步电动机能否达到高效节能目标,现场应用前景如何,已经引起国内各大企业关注。2013年工业和信息化部印发(2013年工业节能与绿色发展专项行动实施方案)提出,选择电机在能效提升和绿色发展方面要取得突破。本文将通过在张家口发电厂首次应用和现场试验进行分析。为企业应用永磁同步电动机提供参考。

一、高压永磁同步电动机概述

1.高压永磁同步电动机的发展历程

电机属于电磁装置,其工作原理是通过磁场实现电能与机械能间的不断转换。在电机的工作过程中,气息磁场是必不可少的。获得磁场的方法有两种,其中一种是通过电流得到。该种电机叫做电励磁电机,这种电机需要具备专门用来产生电流磁场的绕组,同时,为了保证电流的正常流动还需要为电机提供不间断的能量供应。另一种方法是通过永磁体来获得磁场,这可以大大简化电机的结构,同时,因为永磁体一旦磁化(充磁)之后就永久具有磁性,不再需要外界供给能量,这也大大的减少了能量的损耗。

高压永磁同步电动机就是通过永磁体获得磁场的电动机,永磁体材料的发展促进了此种电动机的发展。稀土钴和钕铁硼永磁分别在20世纪60年代和80年代出现,这两种永磁材料的出现极大的促进的电动机的发展,因为这两种材料具有特别适用于电机装置的特性,包括高剩磁密度、高矫顽力、线性退磁曲线以及高磁能积。

我国专家学者自主开发的高效高压永磁同步电动机,采用实心转子磁极铁芯和启动笼复合结构,消弱了齿谐波,减少了转子表面损耗,提高了电机效率。同时,非均匀气隙和优化通风散热,有效的控制了电机温升。该种电机同异步电机相比各项指标显著提供,额定负载效率大于96%,功率因数大于0.98,综合节电率在8%-15%。

2.高压永磁同步电动机的优点

2.1高效率

使用永磁材料产生磁场,代替了原有的电流装置,一定程度上减少了定子电流及其电阻损耗。此外,当电机正常工作时,工作效率因为没有了转子的电阻损耗和磁滞损耗而得到提高。当电机额定工作时,电机的效率在96%以上,低负载工作时,该电机仍然具有相对较高的工作效率,宽幅的高效运行区为负载在不同负荷段运行提供了良好的节电效果。

2.2高功率因数

该种新型永磁电机的转子使用的是永磁材料,不需要感应电流来产生磁场,定子绕组具有阻性负载的特点,这使得该种电机的功率因数在1附近。此外,当电机在20%~120%额定负载范围工作时,电机的功率因数和工作效率都会处于一种相对较高的水平。具体说来,当电机负载较小,即轻载工作时,该种新型电机可以大大的节约能量消耗,而当电机在额定负载工作时,其功率因数是大于0.98的。

2.3启动转矩大

该种永磁电机的转子采用的是一种实心的永磁材料,这使得该种电机的启动转矩明显增大,达到了3.5~4.3范围内,而相同功率的一般电机的启动转矩仅为1.8~2.2倍。

2.4体积小,重量轻

和相同功率的一般电机相比,该种电机的体积约是一般电机的60%,体积明显减少,重量约是一般电机的83%,减轻了约16%。

2.5永磁电动机还具有如下特征:

2.5.1运行时间明显增加;

2.5.2工作过程中的维护费用降低;

2.5.3磁场强度很稳定,不会出现显而易见的退磁现象;

2.5.4电机振动小;

综上所述,新型的永磁电动机较异步电动机相比具有容量大、功率因数高、工作效率高等特点。

二、高压永磁同步电动机的应用分析

1.应用原理

高效高压永磁同步电动机启动时依靠定子旋转磁场与笼型转子相互作用产生的异步转矩实现启动;运行时由转子内嵌的永磁体提供磁场结合定子旋转来维持电动机同步运行。

大唐国际张家口发电厂共有8台30万千瓦机组,装机容量240万千瓦,电厂自用电量占发电量的5%左右,其中电动机是电厂用电的主要设备。通过首次使用山西北方机械制造有限责任公司生产的高效永磁同步电动机,有必要对其经济性、可靠性进行验证。

该公司生产的高效永磁同步电动机,通过了理论分析、实验室试验和国家权威机构检测。但该产品在生产现场应用中缺乏大量的实践数据支持,针对发电企业没有进行试验应用案列,对现场系统、设备没有建立直观理论和实际体系,无法通过试验和监测手段对高效永磁同步电动机进行经济效益分析。

本次现场试验,是TYC4002-6型高效永磁同步电动机首次在生产现场进行运行经济性、安全性、可靠性试验,并和原异步电动机进行比较鉴定。

2.试验方案研究与分析

通过设备筛选和系统可靠性分析,决定在排浆泵的驱动电机进行试用,并成立课题小组进行跟踪、试验、分析,以验证其节电、环保性能指标,为节能技术改造奠定基础。原排浆泵驱动电机为JS148-6三相异步电动机,更换电机为山西北方机械制造有限责任公司生产的TYC4003-6(6kV315kW)高效高压永磁同步电动机。

2.1电机试验方案确定

电机安装地点确定后,我们对现场系统和设备进行规划和调整:

2.1.1确认了用缓冲水箱容积变化来计量系统出力的精确测试方案;

2.1.2将原排浆泵出口阻力不匹配的并列管道进行改进,对排桨泵叶轮、轴封、调整门进行检查更换,对电机地基进行检查,对电测仪表(电压、电流、功率因数、总功率、有功功率、无功功率、有功用电量、无功用电量)进行检验;

2.1.3对S148-6三相异步电动机和TYC4003-6高效永磁同步电动机的技术指标、参数、特性做分析对比;对排浆泵系统、电测系统、轴封水系统、补水系统、水箱结构、监测表计等进行分析评价。

2.2设备主要技术参数

二单元3组一级排桨泵驱动原电机是兰州电机厂生产的JS148-6三相异步电动机额定,代替的高效永磁同步电动机是采用TYC4003-6,在不改变工况和电机控制系统的情况下,进行试验(试用),其电机的主要参数对比如下:

2.3参数收集及试验系统:

试验中电机电压、电流、有功功率、功率因数、有功用电量、无功用电量的数据,均取自配电控制柜电测仪表记录的实际数值。流量是通过标尺测量缓冲水箱水位的变化。

3.应用情况

3.1 TYC4003-6高效高压永磁同步电动机与JS148-6三相异步电动机试验比较发现,在输出有功功率满足现场使用条件下,电机输入功率得到减低,功率因数得到了大幅度的提高达到0.997,永磁同步电动机电流降低了13.65%,无功功率降低了82.89%,节电效果明显。

3.2在同等工况下,高压永磁同步电动机带动的排浆泵比三相异步电动机带动的排浆泵出力明显上升,流量多出18%,即多做功。

3.3电机通过气隙、风道和轴流风扇的优化设计,提高了通风散热效果,有效降低了电机温升。

3.4采用实心磁极和启动笼的复合转子结构,提高了电动机的启动性能。同时因转子表面损耗和杂散损耗的减少,提高了电动机效率。

3.5由于大量无功损耗的降低,使得系统电压稳定,电压质量提高,能够降低变压器的负载率,提高供电系统的经济运行水平,为企业产生间接的经济效益。同时,电机转速升高,对泵或风机的效率产生影响,因出力增加通过对系统调整节电效果显著。

3.6永磁电机绕组温度低比异步电机偏低10多度,前、后轴承温度正常。

3.7永磁电机运行振动小、噪音低,运行平稳。

四、永磁同步电动机应用的方向和前景

将永磁同步电动机在大范围内替换现有的异步电动机还是有诸多困难:

1.永磁同步电动机是一种技术节能新产品,而现有的工艺系统已经很成熟;

2.该新型电动机的价格远高于异步电动机的价格,用户需要投入大量的资金,而获得收益的时间则较长;

3.怎样处理更换下的异步电动机也是一个有待于解决的问题。但是,根据永磁同步电动机的实际运行和对运行数据的计算结果来看,新型的永磁电动机可以减少能量损耗,同时还可以提高功率因数,进而减少无功功率,尤其在降低无功损耗的领域有着广泛的应用前景,可以大大减少企业的运营成本,减低供电系统的安全隐患。永磁同步电动机在电力行业目前已经应用在磨煤机、氧化风机上,结合该电机的特点,认为在负荷调整范围较大的磨煤机和送风机上应用效果会更理想。

五、结束语

与传统的异步电动机相比,高压大功率永磁同步电动机减少了能量损耗,节电效果良好。高压永磁电动机的广泛应用将会使其在电机行业占据重要重要位置,因此,研究高压永磁电动机是很有必要也是非常重要的。高效高压永磁同步电动机创新性强,产品节能效果显著,符合国家节能减排政策,能有效提降低设备能耗,提高企业经济效益,具有推广和应用价值。

参考文献

[1]黄明星.新型永磁电机的设计、分析与应用研究[D].博士学位论文:浙江大学,2008.

篇5

中图分类号:TP273 文献标识码:A 文章编号:1672-3791(2013)07(c)-0127-02

所谓变频就是利用电力电子器件(如功率晶体管GTR、绝缘栅双极型晶体管IGBT)将50 Hz的市电变换为用户所要求的交流电或其他电源。它分为直接变频(又称交-交变频)和间接变频(又称交-直-交变频),后者又分为谐振变频和方波变频。方波变频又分为等幅等宽和SPWM变频。常用的方法有正弦波(调制波)与三角波(载波)比较的SPWM法、磁场跟踪式SPWM法和等面积SPWM法等[3]。

本设计所设计的题目属于间接变频调速技术。它主要包括整流部分、逆变部分、控制部分及保护部分等。逆变环节为三相SPWM逆变方式。

1 系统简介

1.1 交流异步电动机

三相异步电动机主要由定子和转子两大部分构成,定子是静止不动的部分,转子是旋转部分,在定子与转子之间有一定的气隙,以保证转子的自由转动。异步电动机结构如图1所示。

1.2 SPWM技术

SPWM(Sinusoidal Pulse Width Modulation)技术,即在PWM的基础之上,改变调制脉冲的方式。脉冲宽度和时间占空比按正弦规率变化,这样输出波形经过适当的滤波就可以做到输出正弦波。

产生SPWM信号的方法是用一组等腰三角波(称为载波)与一个正弦波(称为调制波)进行比较,如图2所示,两波形的交点作为逆变开关管的开通与关断时刻。当调制波的幅值大于载波的幅值时,开关器件导通,当调制波的幅值小于载波的幅值时,开关器件关断。

2 系统的硬件实现

基于FPGA的交流异步电动机的变频调速系统,以FPGA为核心控制芯片,利用SA4828芯片产生SPWM波,再通过驱动电路驱动逆变开关。再加上电路,保护电路等,构成整个完整系统。

本设计为交流异步电动机的变频调速,主要涉及主电路和控制电路两大部分(如图3)。

系统各组成部分简介。

供电电源:电源部分因变频器输出功率的大小不同而异,小功率的多用单相220 V,中大功率的采用三相380 V电源。

整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。此处采用三相不可控整流,用不可控的二极管组成三相桥式整流电路。它可以使电网的功率因数接近1。

滤波电路:此处采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。

逆变电路:逆变部分将直流电逆变成我们需要的交流电。在设计中采用三相桥式逆变,开关器件选用全控型开关管IGBT。

以上四个部分组成主电路,其余部分为控制电路。

电流电压检测:一般在中间直流端采集信号,作为过压,欠压,过流保护信号。

控制电路:采用FPGA和SPWM波生成芯片SA4828,FPGA芯片选ALTER公司Cyclone Ⅱ系列芯片。控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。这些信号经过光电隔离后去驱动开关管的关断。从而得到与信号电路对称的SPWM波。

此处选用电动机原始参数如下:

额定功率PN:7.5 kW;

额定电压UN:380 V;

额定电流IN:15.6 A;

效率:86%;

功率因数:0.85;

过载系数:=2.2;

极对数:p=2。

3 系统软件实现的实验结果

电压频率曲线可以分为两段,在额定电压一下,电压频率成正比。当电压上升到额定频率后,不在上升。

对于恒负载时,由前面章节分析可知,电动机的转速会与其电源频率成正比。转速与频率的关系曲线如图4所示。

4 结论

本文采用FPGA控制三相PWM波专用芯片SA4828。具有电源频率可调,删除窄脉冲,响应速度快,可现场编程等特点。最终验证了系统的可行性和有效性。系统中还有过流保护和过压保护等。还可以通过FPGA监视系统的其他故障,SA4828芯片还提供在紧急情况下急停的功能。在这种内部控制保护与电路保护相结合的方式,保证了电机的安全运行。

但系统也存在许多不足之处,如控制方案的实现不够精确,FPGA芯片选择上不够经济,检测保护电路不够完善,这些问题有待进一步研究解决。

参考文献

[1]何超.交流变频调速技术[M].北京:北京航空航天出版社,2006(9):1-65.

[2]董飞燕.变频技术的应用及发展[D].河南:平顶山工学院,2005.

[3]张建军.浅谈我国变频器发展技术[J].科学情报发展与经济,2005(1):134-135.

[4]梁昊.最新变频器标准实施和设计[M].北京:电力出版社,2005(8):125-136.

篇6

在市场经济条件下,高等院校要积极主动地适应社会发展的需要。对于地方性高校工科专业来说,就是要积极主动地服务地方经济建设,科研与生产和教学相结合,为地方培养应用开发型人才。长期以来,我们不断探索,并付诸具体实践,提高了人才培养质量,增强了人才的市场竞争能力。本文以电气技术、自动化专业的科研与教学为例,介绍一些具体做法。

一、以研产学结合为基础,不断深化教学内容改革

(一)科学研究联系生产实际,并以此拓展、加深教学内容

在本地,异步电动机用电量占电力负荷的60%以上,为了缓解用电矛盾,电动机的节能,就具有至关重要的作用。在讲授《电机与拖动基础》(以下简称《电拖》)课程“异步电动机的效率与损耗”时,还结合本地生产中电机节能方面存在的问题,从“减少有功损耗”与“减少无功”两方面详细论述了实现节能的方法,大大深化和丰富了教材内容。有些学生还开发性地应用到其它感性负载(如硅整流设备)中,取得了较好的节电效果。

在本地农村,由于村落分散,输电线路长,加之农忙与农闲用电负荷变化很大,且农闲轻负荷时间长等原因,使得农电变压器的损耗大。在讲授《电拖》课程“变压器的工作特性”时,还深入讲述变压器节电运行的多项措施,并介绍了实际应用中的具体做法,被学生创造性地运用在各自的家乡,收到了好的节电效果,得到了供电部门的表扬。

本地属于农业大省农业大市,农用电动机较多,而配变容量较小、供电线路长且阻抗大,因此农用电动机起动时可不考虑对高压系统的影响,加之农用电动机容量较小,起动次数少,因而对电网与电机寿命的影响都小。在讲授《电拖》课程“三相异步电动机的起动”时,还结合本地农用电动机的具体情况,对教材中允许直接起动电动机的容量公式进行了修正,扩大了允许直接起动的农用电动机容量,减少了扩大容量的电动机所用的降压起动设备,节省了开支。

在讲授《电路分析》课程“高频交流电”时,补充讲解了高频设备的电磁辐射及其防护措施,以满足本地在通讯、广播电视及医疗等方面工作人员的需要。在讲授《供电技术》课程“供电系统的保护”时,补充讲述了电力系统谐波的产生、危害与抑制方法,更好地满足电力工作人员的需要。在讲授《电拖》课程“单相异步电动机”电容时,还对单相电动机运行电容的正确选取提出了具体的计算公式与确定方法;在讲授“仪用互感器”时,还对互感器的接线方式及使用注意事项作了深入分析,以满足本地农村乡镇企业与城市工矿企业电气人员的需要。

(二)科学研究面向生产需要,并以此调整、补充教学内容

在我市有线电厂、无线电一厂等多家单位,由于生产需要,工程技术人员不仅要掌握普通可控硅方面的知识,还要掌握双向可控硅与可关断可控硅知识。根据这一实际,我们把《变流技术》教材中在本地应用很少的“斩波器”省略(学生自学),而补充讲解双向可控硅与可关断可控硅知识,并结合教师的实践经验,具体介绍了普通型、双向型、可关断三种类型可控硅的电极确定、触发性能检测、电路设计要点及使用注意事项,受到了学生与厂方的好评。

我们还把《电拖》教材中分析电拖系统过渡过程情况的繁琐推导省略掉,而采用电路过渡过程的“三要素”法求取电拖系统的过渡过程,快速、简捷明了、实用;把电机“转子串频敏变阻器起动”中的频敏变阻器的结构让同学们自学,而补充讲解频敏变阻器选用与调整的实用知识。

在讲授《电拖》课程“三相异步电动机的起动”时,还把在电源容量较小时工厂起动电动机的特殊方法介绍给同学们。因为电源容量较小,电机难以采用降压起动,更不能采用直接起动,而工厂采用小电机拖动大电机的起动方法,有效地解决了这一难题,同学们增长了实践知识。在讲授“直流电机的换向”、“电机负载率的测定”与“变压器参数的测定”时,把工厂维护直流电动机换向的方法与电机负载率和变压器线圈匝数的简单适用的测定方法介绍给学生。

在讲授《变流技术》课程“可控硅的保护”时,还把工厂实用的选择快速熔断器的具体方法和使用快速熔断器应注意的事项介绍给学生。

二、以研产学结合为契机,不断增强培养人才的适应性

(一)把课堂教学中的相关内容转入工厂讲授

本地许多工厂中生产用的电机等电气设备,因接地保护工作做得不周,常出现停机、损坏设备,有时甚至造成人身伤亡。根据这一实际,在讲授《电工学》课程“接地与接零保护”时,由于教材只简单介绍其基本原理,我们把学生带到工厂,对照实际设备全面讲述了接地装置的安全、安装与检修要求以及接地电阻的测量方法,师生还检查、修理了现场的一些接地保护装置。

电气专业的学生毕业后一走上工作岗位大都要与工厂使用得最多的电机打交道,许多已毕业的学生参加工作后还登门求教电机检修方面的知识。根据这一普遍要求,在讲授《电拖》课程“电机的结构”、“电机绕组的排列与绝缘”等内容时,把学生带到电机制造厂和使用电机较多的工厂,利用工厂的工具仪表,与技术人员、工人师傅一起,现场对学生进行教学,学生边学边用,学用结合,当场就能掌握一些电机检修方面的方法与知识。

在指导学生电工实习、带学生下厂对一般电气设备与线路进行实际操作的同时,还着重对本地应用较多且前景广阔的PLC控制系统进行学习。对于生产现场造成对PLC的干扰这一重要问题,同工厂技术人员、学生一起进行了研讨与实验,提出了一些行之有效的抗干扰措施,使学生学到了实用的知识,如从抗电源干扰、抗线间干扰、抗负载干扰、抗环境干扰四个方面采取有效手段。

(二)把生产实际中的有关问题引入课堂教学

本地一工厂的吊车在轻载运行时制动失效,我们对此进行了原因分析,提出了改进措施,收到了好的效果。在讲授“异步电动机的制动”时,结合这一实例给同学们深入挖掘了制动失效的多种原因,同学们不仅从理论上弄清了这一问题,而且还提出了另外一些实用的改进措施。

在讲授 “电动机的继电保护”时,把当时本地工厂损坏一台200KW大电机与多台小电机的事故介绍给同学们,分析事故原因在于造成电动机的缺相运行与集电环、轴承过热,电机的励磁保护与绝缘保护失效,师生还共同讨论了应该采取的继电保护措施。

国家技术人员联合研制的起重机控制设备20多年来广泛应用在全国的大中型吊车上,但由于控制线路设计中考虑不完善,对操作人员有技术上的特殊要求,人性化不够、劳动强度大,因而在厂里和码头上经常需要修理,于是我们进行了故障诊断和集体研究,发现它有几个值得改进的地方。在讲授《工厂电气控制设备》时,在课堂上进行仔细介绍,并提出一些在生产实际中可能遇到的类似问题,让学生去讨论,甚至让个别学生作为毕业设计课题,学生兴趣很浓,劲头很足,收效很大。

三、形成研产学良性互动,实现多赢互促局面

(一)在课堂教学中引入科研

在讲授《电拖》课程“绕线转子异步电动机的起动与调速”时,把当时为市电机厂进行的一项科研工作“异步电动机转子串电阻电感起动与调速”的情况进行了详细介绍,使同学们开阔了思路,增加了学习与研究的兴趣。在讲授“三相异步电动机的工作特性”时,还把教师自己研究的利用铭牌数据计算工作特性的方法告诉同学们,使学生认识到:不用仪表试验测取,只需较简单的计算就可求得工作特性,方便实用。

在《变流技术》课程中讲述双向可控硅的结构、工作原理及应用情况时,把老师和几位同学为厂矿机关大楼的路灯及室外路灯研制的“路灯节电控制器”、“简易调光电路”和农村养殖业用的“温控器”、“土壤测湿仪”介绍给同学们,使同学们认识到:用双向可控硅构成的控制器更加工作可靠、线路简单、使用方便,增强了同学们的创新开发意识。

在讲授《供电技术》课程“电力网络的基本接线方式”时,把教师研究的“变压器切换过程中不间断供电”的接线方法介绍给同学们,使学生认识到:选用恰当组别标号的变压器,先与要被切换下来的变压器并联供电,再切除原变压器,就能做到不间断供电,克服以往变压器切换时需停电的弊端,从而开发了学生的思维。

(二)在科研工作中启发教学

在为市开关厂进行“异步电动机的电容补偿与阻容起动装置”及“电动机的自起动装置”两项科研工作中,把开辟的异步电动机起动的一种新方法与自起动电路补充到《电拖》教材“三相异步电动机的起动”内容中,对学生进行启发教学,所介绍的自起动电路,具有逆向思维的观点,电路简单、功能齐全、可靠实用,使学生开阔了思路。在研究“三相变压器的联接组别标号”与“变压器的并联运行”时,把探索出的组别标号变化规律与并联运行的新规律引入教材“三相变压器”内容中,并启发他们如何把这些规律应用到实际工作中去。

由国家劳动部资助,常德市新艺劳保用品总厂承担的科研项目“机床用超声波安全生产保护装置”,由杨斌文教授主要负责研制。他把其中应用的负反馈信号放大电路引入《电工学》教材“晶体三极管的放大电路”中,启发学生如何把多种反馈电路选择性地应用到实际放大器中。还把和同学们为工厂、实验室设计制作的“变压器过热报警器”与“失电报警器”所用振荡电路引入《电工学》“晶体管振荡电路”中;把为工矿企业研究的“无功补偿后的增容问题”引入《供电技术》课程“工厂供电系统经济运行管理”教学中,启发学生灵活运用所学知识。

篇7

许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的"无功"并不是"无用"的电功率,只不过它的功率并不转化为机械能、热能

1.影响功率因数的主要因素

1.1电感性设备和电力变压器是耗用无功功率的主要设备

大量的电感性设备,如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。根据前段时间数据统计分析,我矿所消耗的全部无功功率中,异步电动机的无功消耗占了60%~70%;而在异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~70%。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。电力变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。因此,为了改善电力系统和矿山的功率因数,变压器不应空载运行或长期处于低负载运行状态。

1.2供电电压超出规定范围也会对功率因数造成很大影响

当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,根据有关资料统计,当供电电压为额定值的110%时,一般无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。

1.3电网频率的波动也会对异步电动机和变压器的磁化无功功率造成一定的影响

1.4无功补偿原理

当电网电压的波形为正弦波,且电压与电流同相位时,电阻性电气设备如白炽灯、电热器等从电网上获得的功率P等于电压U和电流I的乘积,即:P=U×I。

电感性电气设备如电动机和变压器等由于在运行时需要建立磁场,此时所消耗的能量不能转化为有功功率,故被称为无功功率Q。此时电流滞后电压一个角度f。在选择变配电设备时所根据的是视在功率S,即有功功率和无功功率的几何和:

2.采用适当措施,设法提高系统自然功率因数

提高自然功率因数是不需要任何补偿设备投资,仅采取各种管理上或技术上的手段来减少各种用电设备所消耗的无功功率,这是一种最经济的提高功率因数的方法。下面将对提高自然功率因数的措施做一些简要的介绍。

2.1合理选用电动机

合理选择电动机,使其尽可能在高负荷率状态下运行。在选择电动机时,既要注意它们的机械特性,又要考虑它们的电气指标。举例说,三相异步电动机(100KW)在空载时功率因数仅为0.11,1/2负载时约为0.72,而满负载时可达0.86。所以核算负荷小于40%的感应电动机,应换以较小容量的电动机,并合理安排和调整工艺流程,改善运行方式,限制空载运转。故从节约电能和提高功率因数的观点出发,必须正确合理的选择电动机的;

2.2提高异步电动机的检修质量

实验表明,异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动是对异步电动机无功功率的大小有很大影响。因此检修时要特别注意不使电动机的气隙增大,以免使功率因数降低。

2.3采用同步电动机或异步电动机同步运行补偿

由电机原理可知,同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功取决于转子中的励磁电流大小,在欠激状态时,定子绕组向电网“吸取”无功,在过激状态时,定子绕组向电网“送出”无功。因此,只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网“送出”无功功率,减少电网输送给我矿的无功功率,从而提高了我矿的功率因数。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行状态,这就是“异步电动机同步化”。因而只要调节电机的直流励磁电流,使其呈过激状态,即可以向电网输出无功,从而达到提高低压网功率因数的目的。

2.4正确选择变压器容量提高运行效益

对于负载率比较低的变压器,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善本企业电网的自然功率因数。如:对平均负荷小于30%的变压器宜从电网上断开,通过联络线提高负荷率。

通过以上一些提高加权平均功率因数和自然功率因数的叙述,或许我们已经对“功率因数”这个简单的电力术语有了更深的了解和认识。知道了功率因数的提高对电力企业的深远影响,下面我们将简单介绍对用电设备进行人工补偿的方式和对补偿容量的确定方法。

3.设计总结

以上是我浅谈功率因数对我矿供电A电网的影响以及提高功率因数所带来的经济效益和企业效益,介绍了影响功率因数的主要因素以及提高功率因数的一般方法,还阐述了如何确定无功功率的补偿容量及无功功率的三种人工补偿的具体方式,集中探讨了无功补偿技术对我矿的高、低压配电网的影响以及提高功率因数所带来的经济效益和企业效益,介绍了影响功率因数的主要因素和提高功率因数的方法,确保补偿技术经济、合理、安全可靠,达到节约电能的目的,为保证降低电网中的无功功率,提高功率因数,保证有功功率的充分利用,提高系统的供电效率和电压质量,减少线路损耗,降低配电线路的成本,节约电能,通常在高、低压供配电系统中装设电容器无功补偿装置。

4.设计心得体会

通过这次毕业设计论文让我重新对影响大红山供电的因数有了全新的认识,这也是我第一次独立从找资料到写论文,经历了不少艰辛,但收获同样巨大。通过这次设计培养了我独立工作与学习合理安排相互调节的能力,树立了对自己工作能力的信心,相信会对今后的工作生活有巨大而重要的影响。

参考文献:

[1]主编:孟祥忠.《现代供电技术》.清华大学出版社,2006年第一版,1-303页。

篇8

抽油机节能技术在油田推广应用。一是在管理方面,推广应用抽油机井系统优化软件与单井自动化监控系统,从源头把关,保证系统效率。二是在硬件方面,主要包括抽油机、电动机、控制柜节能技术应用;应用节能电机,如:高滑差电机、永磁交流电机、多绕组电机、双转子电机等节能技术;空抽控制柜、变频控制器和无功补偿箱等控制装置。三是从全年费用“盘子”中,分离出专项费用,实现“专款专用”。选择遵守以下基本原则:

优先原则:根据区块实际特点,在保证油井最佳产能的前提下,优化参数设计、精确调整运行参数。

适用原则:通过现场适应性、实用性试验,优选匹配最佳、节能效果最好的节能产品推广应用,避免盲目引进。

主次原则:以节能电机为主,以节能控制箱为辅的原则,同时兼顾旧机型抽油机和普通旧电机的节能技术改造,充分合理发挥节能设备优势,从而达到在较少资金取得较好的节能效果。

规模原则:节能拖动装置在一定范围内可降低电功消耗。

2.论证节能技术与试用验证

2.1节能技术论证

一般用节能抽油机、控制箱等节能设备较多。筛选永磁电机、空抽控制器、低压无功计量补偿装置等节能设备,并分段实施。

交流永磁电机 采用稀土永久磁铁代替励磁绕组激磁,没有转差损耗,定子电流减小,功率因数高,电机在负载变化和电网电压波动时,不存在速度波动,没有机械传动过程损耗。

直流无刷永磁电动机 是一种典型的机电一体化结构。电动机定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。转子上粘有已充磁的永磁体,为检测转子极性,在电动机内装有位置传感器(霍尔元件)。驱动器由功率电子器件和集成电路等构成,其功能:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等。

空抽控制器 是美国汉诺威专利技术,通过高分辨率传感器检测抽油机电机动力线电流、电压及相位角,计算出电机运转实时有功功率、无功功率,并根据抽油机上行、下行电流变化与抽油机加载、卸载过程的关系准确描述出抽油机加载及卸载过程的电流运行轨迹及加、卸载过程的时间变化,将采集到的数据存储在主控制器的存储区中,并对预置在芯片里的具有广域代表性的数学模型进行个性化修正,找出真实反映每台抽油机实际运行情况的电流、功率及负荷的变化规律,达到对抽油机智能化、科学化管理。通过科学控制间机抽井的启、停状态,防止油井空抽,达到节省能耗、降低磨损的目的。

抽油机变频控制器 是一种输出频率可调的电力拖动设备,从电机转速公式:N=60f/p×(1-S)得出,电机转速与频率成正比,电机在保持磁通量不变,在电压与频率之比为恒定值状态,功率与电压成正比,功率与频率也成正比,下调频率能降低电机输出功率,达到节能的目的。

双转子柔性电动机 由两台同轴不同功率的异步电动机组成,互为主辅电机,不同负荷下分别对应着主电机、辅电机、主辅电机同时运行三种状态。自动控制装置可根据抽油机负载情况,控制运行状态的转换,使其运行在最佳状态。

抽油机机井整体工艺参数优化 在保证产液量的情况下,抽油机井整体工艺参数优化技术采用损失功率最低或机械采油成本最低为原则的设计方法,合理优化抽油机井杆柱、管柱、泵型、电机、调整冲程、冲次等抽汲参数,使抽汲系统达到最优,能对对检泵作业井的参数设计和新投产井机、杆、泵选择及能耗进行预测和分析。

2.2试用验证

2006年开始,组织各采油厂对永磁交流电机、摩擦换向式抽油机、智能变速多功率超高转差电机、直流无刷永磁电机、空抽控制器等技术产品,选择不同的油田、油井进行试装;并对节电情况进行节能测试,作如下对比。

节能率测试结果对比

③.截止2009年底,在油田随检泵作业应用抽油机整体工艺参数优化技术600多口井次,实施优化后,泵径增大130口井,泵径减小52口井,冲次降低250多口井,冲次增大10口井,调大冲程16口井,应用小功率永磁电机178口井。

④.双转子柔性电动机:2007年现场试验4口井,平均有功功率降低0.91kW,无功功率降低13.7kVar,运行电流降低20.54A,平均单井日节电38.84kwh,节电率达20%。

⑤.加装抽油机空抽控制器、变频器;摩擦换向式抽油机等技术改造后,节能效果也比较明显效。

4.认识、体会与努力方向

机械采油是一个系统工程,应将采油工艺、油藏条件、地面设备、地面条件等有机结合起来,结合抽油机、油井效用年限,综合考虑,才能取得最佳的经济效益。

节能抽油机电机或节能控制装置是可以降低电能消耗,降耗低碳是进一步提高抽油井效率的主要手段之一,但要增加技术与管理环节,系统可靠性要降低,维护管理成本会相应地增加,只有加大应用规模,取得规模效应,才能实现好的经济和社会效益。

节能型抽油机是发展方向,能与油井负荷相匹配,并有完善的保护功能;有数据采集和存储功能;联网和通信功能以及遥控遥测功能;并能适应油田的野外环境要求,操作简单,智能化程度高。

自动化控制是攻关方向。应用微型计算处理机和自动适应电子控制器进行控制、监测,具有抽油(液)效率高、节电、功能多、安全可靠、自动化程度高、经济性好、适应性强等特点、功能。

参考文献:

[1]于海迎.抽油机节能技术及其发展趋势.石油和化工节能.2007. 2;

[2]徐甫荣,赵锡生. 抽油机节能电控装置综述. 电气传动自动化.2004.06;

[3]赵来军,倪振文,职黎光,刘刚,黎若鹏. 抽油机变频控制技术.采钻工艺;

篇9

【摘 要】主要介绍了异步电机的节能技术,对离心连接方式、变频调速起动方式、降压起动方式、固态起动器起动方式进行了深入的研究。对异步电动机的损耗进行了分析,并对节能控制抗干扰的技术进行了初步的描述。

关键词 异步电动机;节能;抗干扰;变频调速;变频节能;损耗

0 前言

作为一种重要的动力设备,异步电动机的用电量是非常大的。这些异步电动机一般都是按照设计的负载进行选择的,但在实际使用中,大都经常处在轻载,甚至在空载下运行。电动机的负载率低,效率不高,电能的浪费现象十分严重。因此在目前我国工业生产不断发展,能源日趋紧张,环保要求日趋高涨的情况下,提高电机运行效率可以极大缓解能源紧张状况,提高国民经济效益,具有十分重要的现实意义。

1 异步电动机节能控制的基本方法

异步电动机运行时,一般有三种方式可以达到节能的目的:一是变频节能;二是降低定子电压节能;三是优化电动机本体设计节能。本论文将重点研究电机智能软启动节能控制方式。

异步电机是以反电势来平衡外电压的,反电势随着转子转速的增加而逐渐增大,电动机在起动之初反电势为零,所以起动时冲击电流很大,约为额定电流的5~7倍。对于功率较大的异步电机起动时电流会达到几千安培,会对电网造成很大的冲击,使电源电压下降,影响同一电网上的其它设备的起动和正常工作。基于以上的原因,电动机一般不允许直接起动,必须对其起停加以控制。

可以实现异步电机软起动的方式主要有:离心连接方式、变频调速起动方式、降压起动方式。

1.1 离心连接方式

包括液力耦合器,电磁转差离合器等多种形式。其基本原理是在电机和负载之间加入中间级以起到缓冲作用,离心连接可用于调速,但调速范围不大,精度低。这种起动方式可以防止起动时对负载设备的冲击,但不能防止起动过程中冲击电流对电网的影响。

1.2 变频调速起动方式

变频调速系统除进行电机调速外,还可以实现平滑起动。在电机起动加速时,逆变器输出频率做线性增长,随频率增大电压随之增高,可使电机起动时的电流限制在1.5IN左右。对于有调速要求的电力拖动系统,宜采用变频器调速方式。但这种电机控制器的电路复杂,成本较高,当不需要精确调速时,不适合应用这种起动方式。

1.3 降压起动方式

包括常规的降压起动和固态软起动器起动两种方法。常规的降压起动方式主要有:定子电路中串入起动电抗、星—三角形起动、自耦变压器降压起动等。这类起动控制可以达到减小起动时的机械及电器冲击的基本要求,但它们仅仅是名义上的软起动控制器,因为它们将起动阶段分为两个或多个步骤,起动电流由一级向相邻一级跳变时会产生跳跃冲击,且这类控制器均以接触器为主要部件,虽然经过不断的设计改进,但还是存在不可消除的缺点,如体积大、机械磨损、触头烧熔、工作噪声、工作时的射频干扰和机械震动,为此,起动设备需要经常维修,实践表明,这类起动器的性能比电机本身还要差。

另外一种降压起动方式是用固态起动器起动。固态起动器是一种新型的无触点起动器,通过半导体元件来控制。在三相电路的每一相有两个晶闸管反并联连接,控制输出的触发脉冲即可调整晶闸管的输出电压。

2 异步电动机的损耗分析

2.1 恒定损耗

恒定损耗是指异步电动机运行时固有损耗,它与电动机材料、制造工艺、结构设计、转速等参数有关,而与负载大小无关。恒定损耗包括铁心损耗(含空载杂散损耗)及机械损耗。

2.1.1 铁心损耗

铁心损耗pFe(含空载杂散损耗)亦称铁耗,指主磁场在电动机铁心中交变所引起的涡流损耗和磁滞损耗。异步电动机在正常运行时,转差率很小,转子铁心中磁通变化的频率很小,一般仅为每秒1~3周,故异步电动机铁耗主要为定子铁心损耗。

铁耗大小取决于组成电动机的铁心材料性能、频率及磁通密度,近似公式pFe≈kf1.3B2,k为系数,B为磁通密度,f为转子磁通变化的频率。

空载杂散损耗pσs是指空载电流通过定子绕组的漏磁通在定子机座、端盖等金属中产生的损耗,一般空载电流近似不变,因此这些损耗也是恒定的。铁耗一般占异步电动机总损耗的20%~25%。

2.1.2 机械损耗

机械损耗PΩ通常包括通风系统损耗pV及轴承摩擦损耗pr,绕线式转子还有电刷摩擦损耗。通风系统的风摩损耗主要为产生冷却电机的气流所需的风扇总功率。,H为风扇有效压力,V为气体流量,η为风扇效率。可见,合理的选用冷却风扇所用材料及合理的风道设计等可降低通风系统损耗,具体的不在本文涉及范围。

轴承摩擦损耗主要与轴承型号,装配水平,脂有关。对于滚动轴承,轴承摩擦损耗一般形式为: pr=9.81GVsμ,G为轴承承受的负荷,Vs为轴径线速度,μ为摩擦系数。

机械损耗一般占总损耗的10%~50%,电动机容量越大,由于通风损耗变大,在总损耗中比重也增大。

2.2 负载损耗

负载损耗主要是指电动机运行时,定子、转子绕组通过电流而引起的损耗,亦称铜耗。pCu=mI2r,m为相数,I为每相电流,r为每相电阻。铜耗约占总损耗的20%~70%,电动机容量越大,铜耗占比例越小。

2.3 杂散损耗

杂散损耗主要由定子漏磁通和定子、转子的各种高次谐波在导线、铁心及其他金属部件内所引起的损耗。这些损耗约占总损耗的10%~15%。

3 异步电动机节能控制方法

3.1 异步电动机调压节能

对于变转矩负载,降低端电压不仅可以降低电动机本身的铁耗和铜耗,而且输出功率的降低进一步减小了电动机的输入功率,节能率更高。或者可以理解为降低电动机端电压同时提高了电动机本身和负载的效率。

降压节能电动机

异步电动机采用降压节能运行方式时,必须满足两个先决条件:首先,必须保证电机的稳定运行;第二,转子电流不能超过额定允许值,否则会造成转子过热,严重时会烧毁电机。

电动机转矩不仅与电压的平方成正比,与负载率成反比,而且还与电动机本身的承载能力有关。

功率因数在空载时数值很小,仅为0.1~0.15,随着负载率增加而递增。通常6、8、10极电动机递增幅度比2、4极电动机来得大,小容量电动机的增幅度比大容量递增幅度来得大。不同系列、不同类型的电动机效率、功率因数均不相同。一般说来,同容量的鼠笼型电动机的效率、功率因数要比绕线式电动机高;转速高的电动机效率、功率因数比转数低的高;同一类型电动机容量大的电动机的效率、功率因数比容量小的电动机高。对于同一台电动机,其效率曲线也不是一成不变的,使用时间过长,维护保养不良将使各种损耗增加,导致效率曲线的下降。

要使电动机经济运行,必须合理选择电动机类型、容量与负载机械特性适应,力求有最高的运行效率;对运行的电动机要提高电动机的负载率;加强维护检修,采取各种改造措施减少损耗,提高电动机的效率。

在恒定负载长期轻载运行时,不宜采用降低端电压而应更换小容量电机。需注意的是:降低定子端电压并不显著降低电机转速,即电机转差率在允许范围之内;

电动机本身的空载电流较大,或者电网电压偏高的场合也很适宜降压节电运行。

降低端电压有利于电机经济运行,提高效率,改善功率因数。轻载时,降低定子端电压,可以提高电动机效率,但必须降压合适,否则就不能达到节能效果。

3.2 异步电动机变频节能

电气传动的PWM控制技术是调速传动的关键技术之一,是电气传动自动控制领域研究的热点。PWM控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲序列,并通过控制电压脉冲宽度或周期以达到变压的目的,或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术。

在交流变频传动中,使用较早的控制技术是VVVF控制技术,该控制技术分为两种:一是把VV与VF分开完成,即先把交流电整流为直流的同时进行相控调压,而后逆变为可调频率的交流电,这种前后分开控制的VVVF控制技术称为脉冲幅值调制方式(pulseAmplitudeModulation)。二是将VV与VF集中于逆变器一起来完成,即前面为不可控整流器,中间直流电压恒定,而后由逆变器既完成变频又完成变压,这种控制技术称为脉冲宽度调制技术(PulseWidthModulation)。这种控制技术整流器无须控制,简化了电路结构,而且以全波整流代替相控整流,提高了输入端的功率因数,减小了高次谐波对电网的影响。

PWM控制技术有许多种,而且在不断发展之中,从控制思它们分为四类:(1)等脉宽PWM法,(2)正弦波PWM法,即s流跟踪型PWM法,(3)磁链追踪型PWM法(SVPWM法,也称电压法)。具体实现的技术有:自然采样法,对称规则采样法、特定谐调制技术,相位调制技术,面积等效法等10多种调制技术。

等脉宽PWM法的每一脉冲的宽度均相等,改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法可以实现电压与频率的协调变化,其缺点是输出电压除基波外,包含较多的谐波分量。

SPWM法克服了等脉宽PWM法的缺点,它从电动机供电电源的角度出发,着眼于如何产生一个可调频调压的三相正弦波电源,它是以一个正弦波作为基准波(称为调制波),用等幅的三角波(称为载波)与基准正弦波相交,由它们的交点确定逆变器的开关模式。

电流跟踪型PWM法采用电压源型逆变器,却是控制输出电流的,其基本思想是将电动机定子电流的检测信号与正弦波电流给定信号相比较,如果实际电流大于给定值,则通过逆变器的开关动作使之减小,反之使之增大,这样实际电流波形围绕给定的正弦波做锯齿状变化,而且开关器件的开关频率越高电流波动就越小,使用这种方法,电动机的电压数学模型改成电流模型,可使控制简单,动态响应加快,还可以防止逆变器过电流。

磁链追踪型PWM法,把电动机与逆变器看为一体,着眼于如何使电动机获得幅值恒定的圆形磁场为目标,它以三相对称正弦电压供电时交流电动机中的理想磁链为基准,用逆变器不同的开关模式所产生的磁链有效矢量来逼近基准圆,理论分析和实验表明SVPWM调制具有脉动转矩小、噪音低,直流电压利用率高(比普通的SPWM调制约高15%)。

在进行电机调速时,通常要考虑的一个重要因素是希望保持电机中每极磁通量为额定值,并保持不变。因为如果磁通太弱,没有充分利用电机铁心,这是一种浪费;如果过分增大磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时会使绕组因过热而损坏电机。对于直流电机,励磁系统是独立的,只要对电枢反应进行适当补偿,保持磁通恒定是很容易做到的。而在异步电动机中,磁通是定子和转子磁动势合成的,故要达到磁通恒定的目的就困难得多。

4 抗干扰技术

异步电机节电控制器的工作环境比较复杂和恶劣,其应用的可靠性、安全性就成为一个非常突出的问题。影响系统可靠、安全运行的主要因素是来自系统内部和外部的各种电气干扰,以及系统结构设计、元器件选择、安装和外部环境条件等。这些因素对节电控制器造成的干扰后果主要表现在下述几个方面。

单片机系统常用的抗电磁干扰的硬件措施有滤波技术、去藕电容技术、屏蔽技术与信号隔离技术、接地技术等。常用的软件措施主要有数字滤波、软件冗余、程序运行监视及故障自动恢复技术等。现在介绍主要的硬件抗干扰措施。

4.1 滤波技术

滤波是抑制和防止干扰的一项重要措施。滤波器可以显著地减小传导干扰的电平,因为干扰频谱成份不同于有用信号的频率,滤波器对于这些与有用信号频率不同的成份有良好的抑制能力,从而起到其它干扰抑制难以起到的作用。所以,采用滤波网络无论是抑制干扰源和消除干扰藕合,或是增强设备的抗干扰能力,都是有力措施。此技术在本设计中的直流电源电路、同步信号检测、电流过零点检测等电路中都有用到。

4.2 去藕电容技术

数字电路信号电平转换过程中会产生很大的冲击电流,并在传输线和供电电源内阻上产生较大的压降,形成严重的干扰。为了抑制这种干扰,在电路中适当配置去藕电容。去藕电容一方面提供和吸收该集成电路开门关门瞬间的充放电能量,另一方面旁路掉该器件的高频噪声。

4.3 屏蔽技术与信号隔离技术

屏蔽技术可以抑制外部电磁干扰的作用,屏蔽是用屏蔽体把通过空间进行电场、磁场或电磁场藕合的部分隔离开来,割断其空间场的藕合通道。良好的屏蔽是和接地紧密相连的,因而可以大大降低噪声藕合,取得较好的抗干扰效果。在本系统中可采用铝盒将内部电路板屏蔽起来,对外只留有几个接口。此技术体现在电路板的制作上。

信号的隔离目的之一是从电路上把干扰源和易干扰的部分隔离开来,使单片机与现场仅保持信号联系,但不直接发生电的联系。隔离的实质是把引进的干扰通道切断,从而达到隔离现场干扰的目的。常用的隔离方式有光电隔离、变压器隔离、继电器隔离等。本控制器的同步信号检测、电流过零点检测等电路中都采用了光电隔离技术;晶闸管驱动电路中采用了变压器隔离技术。

4.4 接地技术

接地技术是抑制噪声的重要手段,良好的接地可以在很大程度上抑制系统内部噪声藕合,防止外部干扰的侵入,提高系统的抗干扰能力。接地目的有三个:其一是为各电路的工作提供基准电位;其二是为了安全;其三是为了抑制干扰。

4.5 电路抗干扰技术

由于可控硅开关高次谐波、外部干扰等在采用屏蔽和滤波后仍不能满足抑制和防止干扰的要求,可以结合电路屏蔽,采取平衡措施等电路技术,在电路设计合理布置地线,还可采用其它一些电路技术,例如接点网络,整形电路,积分电路和选通电路等等。总之,采用电路技术也是抑制和防止干扰的重要措施。此外,实际的无源元件并不是理想的,其特性与理想的特性是有差异的。元件本身可能就是一个干扰源,因此选用优质无源元件非常重要。也可以利用元件具有的特性进行抑制和防止干扰。

参考文献

[1]储百森.异步电动机节能方法初探[J].中国电机工程学报,2001,10(6):57-58.

[2]陈伟华,彭继慎.异步电动机的节能控制[J].电机技术,2005,7(5):44-45.

[3]黄慧敏,洪秋媛.功率因数与节能方法[J].电气时代,2004,23(4):86-87.

[4]周鹗.电机学[M].3版.北京:中国电力出版社,1995,5.

篇10

1电机绕组局部烧毁的原因及对策

1.1由于电机本身密封不良,加之环境跑冒滴漏,使电机内部进水或进入其它带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。

相应对策:①尽量消除工艺和机械设备的跑冒滴漏现象;②检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应做保护罩;③对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。

1.2由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:①轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。②轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。④由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。⑥由于不同型号油脂混用造成轴承损坏。⑦轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未进行中修。

相应对策:①卸装轴承时,一般要对轴承加热至80℃~100℃,如采用轴承加热器,变压器油煮等,只有这样,才能保证轴承的装配质量。②安装轴承前必须对其进行认真仔细的清洗,轴承腔内不能留有任何杂质,填加油脂时必须保证洁净。③尽量避免不必要的转轴机加工及电机端盖嵌套工作。④组装电机时一定要保证定、转子铁心对中,不得错位。⑤电机外壳洁净见本色,通风必须有保证,冷却装置不能有积垢,风叶要保持完好。⑥禁止多种油脂混用。⑦安装轴承前先要对轴承进行全面仔细的完好性检查。⑧对于长期不用的电机,使用前必须进行必要的解体检查,更新轴承油脂。

1.3由于绕组端部较长或局部受到损伤与端盖或其它附件相磨擦,导致绕组局部烧坏。

相应对策:电机在更新绕组时,必须按原数据嵌线。检修电机时任何刚性物体不准碰及绕组,电机转子抽芯时必须将转子抬起,杜绝定、转子铁芯相互磨擦。动用明火时必须将绕组与明火隔离并保证有一定距离。电机回装前要对绕组的完好性进行认真仔细的检查确诊。

1.4由于长时间过载或过热运行,绕组绝缘老化加速,绝缘最薄弱点碳化引起匝间短路、相间短路或对地短路等现象使绕组局部烧毁。

相应对策:①尽量避免电动机过载运行。②保证电动机洁净并通风散热良好。③避免电动机频繁启动,必要时需对电机转子做动平衡试验。

1.5电机绕组绝缘受机械振动(如启动时大电流冲击,所拖动设备振动,电机转子不平衡等)作用,使绕组出现匝间松驰、绝缘裂纹等不良现象,破坏效应不断积累,热胀冷缩使绕组受到磨擦,从而加速了绝缘老化,最终导致最先碳化的绝缘破坏直至烧毁绕组。

相应对策:①尽可能避免频繁启动,特别是高压电机。②保证被拖动设备和电机的振动值在规定范围内。

2三相异步电动机一相或两相绕组烧毁(或过热)的原因及对策

如果出现电动机一相或两相绕组烧坏(或过热),一般都是因为缺相运行所致。当电机不论何种原因缺相后,电动机虽然尚能继续运行,但转速下降,滑差变大,其中B、C两相变为串联关系后与A相并联,在负荷不变的情况下,A相电流过大,长时间运行,该相绕组必然过热而烧毁。为三相异步电动机绕组为Y接法的情况:电源缺相后,电动机尚可继续运行,但同样转速明显下降,转差变大,磁场切割导体的速率加大,这时B相绕组被开路,A、C两相绕组变为串联关系且通过电流过大,长时间运行,将导致两相绕组同时烧坏。