时间:2023-03-21 17:15:25
导言:作为写作爱好者,不可错过为您精心挑选的10篇水产论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
底部增氧方式是一种立体曝气增氧技术,是近几年从充气式增氧技术发展而来的增氧式技术。底部增氧方式的典型机型是微孔曝气增氧机,该增氧机由风机与管道构成。微孔曝气增氧机主要是在水体底部进行增氧,而风机的功率和管道布管的密度大大影响这增氧机的增氧能力。微孔曝气增氧机的安装过程比其他增氧机要复杂许多,第一步是在水体底部铺设微孔管道,然后利用风机对管道进行加压,使微孔中冒出的微细气泡呈现弥散状态,这样微细气泡可以一边上升一边与低溶氧水体进行融合,从而提高水体底部的溶氧水平。
1.2平衡增氧方式
平衡增氧方式是在水体净化技术基础上进行增氧设计的。该设备的典型代表是耕水机,耕水机的缺点是功率小、转速低,增氧能力和瞬时增氧的效果也不如传统的增氧机好。但该种设备也具有传统增氧机所不具有的优势,该设备能够24h不间断地低能耗运行,以使表层的富氧水与底层的缺氧水进行不间断的置换,从而提高水体的整体溶氧水平,缓解水体底部的缺氧状况。
2淡水水产养殖中机械增氧技术的应用现状
2.1机械增氧设备的总量仍然不足
当前我国在增氧机方面增长的速度很快,但是总量不足,现有设备数量难以满足高产高效养殖的需要。一般情况下,增氧机的数量是与淡水养殖的面积和养殖密度成正比的,也就是说,养殖水面越大、密度越高,那么对增氧机的需求量就会越大。但是按照我国现有增氧机的动力效率和有效的增氧面积计算,产量在15000kg/hm2以上的,每66.67hm2的养殖面积至少要配备3kw的增氧机134~167台,现有的设备数量是不能满足如此高产高效淡水养殖的需要的。
2.2设备结构不尽合理
当前的增氧机格局是叶轮式增氧机占主导地位,而其他增氧机的增速缓慢。这是由于淡水水产养殖户的从众心理,他们愿意选择大家都选择的增氧机,而忽略了水产养殖的品种问题。据相关统计显示,叶轮增氧机一度上升到增氧机总量的99%,这就导致设备的现状不仅与名特优水产养殖强劲的发展趋势相背离,其增氧方式也违反了淡水养殖品种的生活习性。
3几种机械增氧方式在池塘养殖中的增氧性能比较
3.1机械增氧方式对增氧性能的影响
3.1.1叶轮增氧机
叶轮增氧机在清水试验中的增氧能力和动力效率指标要高于水车增氧机和螺旋桨增氧机。这是由于叶轮增氧机在水体中的混合与提升能力较强,能获得较大的氧液接触面积,增氧性能会很好。
3.1.2水车增氧机
水车增氧机在清水试验中的增氧能力和动力效率指标略低于叶轮增氧机,而高于螺旋桨式增氧机。这是由于水车增氧机在水体的中上层的推流能力和混合能力较强,其氧液的接触面积也会较大。水车增氧的适用范围是水深1m左右的浅池。
3.1.3螺旋桨增氧机
螺旋桨增氧机在清水试验中的增氧能力和动力效率指标要远低于叶轮增氧机和水车增氧机。这是由于螺旋桨增氧机在整个水体中的推流能力和混合能力较弱,在池塘试验中底层的溶氧值有明显提升,但上下层溶解氧的均匀性较差。
3.2机械增氧方式对不同深度水层增氧能力的影响
由于淡水水产养殖中养殖品种的不同,那么对淡水增氧的方式要求也不尽相同。一般来说,叶轮增氧机的性能较好,能够同时提升淡水池塘中不同深度水层的溶解氧;水车式增氧机的优势是能提升水体中上层的溶解氧,而对水体底层溶解氧的提升能力较差;螺旋桨增氧机的突出优势则是提升水体底层的溶解氧,其对水体中上层溶解氧的提升能力则较弱。
4淡水水产养殖中机械增氧技术的发展趋势
4.1增氧设备的节能低耗、高效可控发展趋势
淡水水产养殖中机械增氧技术的发展趋势是向着低耗、高效的方向发展。这是由于传统的增氧设备具有高耗能低效率、依靠人工操作的缺点。因此,要致力于机械增氧设备水平的提升和智能操控系统的研究,这将是今后机械增氧技术的发展重点和方向。
1.2潜在变量(LatentVariable,LV)在利用PLS方法建立模型时,非常关键的一点是所选取的对于建模最优的LV个数,LV和主成分分析中主成分类似,第一个LV贡献率最大,第二个次之,以此类推。如果选取的LV个数偏少,则无法全面代表样本的光谱特性,造成模型精度下降,影响模型的预测效果。而如果选取的LV个数过多,则会带入模型的噪声,干扰建模效果。
1.3建模分析方法用三种建模方法,分别是偏最小二乘回归(partialleastsquares,PLS),BP神经网络(backpropagationneuralnet-work,BPNN)和偏最小二乘支持向量机(leastsquaresupportvectormachine,LS-SVM)。采用PLS建模方法时,基于全谱作为模型输入,使用BP神经网络和LS-SVM建模时,把PLS回归模型得到的LV作为输入,进行对比分析。神经网络由一个输入层、一个或多个隐含层和一个输出层构成。BP神经网络是一种非线性的建模方法,广泛应用于光谱建模分析中[12]。LS-SVM是在经典支持向量机算法基础上作了进一步改进,能够同时进行线性和非线性建模分析,是解决多元建模的一种快速方法。
1.4定量模型评价标准定量模型的评价指标主要有决定系数和均方根误差(rootmeansquareerror,RMSE)。建模集决定系数用R2表示,预测集决定系数用r2表示。决定系数越接近于1,表示模型相关性越好,预测效果更好。一般来说,RMSE越小说明模型的误差越小,模型精度越高。建模集均方根误差用RMSEC表示,预测集均方根误差RMSEP表示。
2结果和讨论
2.1UV/Vis光谱图及COD浓度的统计分析图1为甲鱼养殖水样本的UV/Vis原始光谱曲线,从图中可以看出各个水样的光谱曲线的趋势相类似,没有呈现显著性差异,由于水体中硝酸盐、有机酸、腐殖质等物质对紫外光的强烈吸收,在波段200~260nm区域的吸收度明显高于其他区域。试验水体样本COD值统计结果如表1所示,模型的建模集和预测集COD值覆盖了较大范围,有助于建立准确、稳定和具有代表性的模型。
2.2基于全波长的PLS模型为了更好的分析三种消噪算法检测水体COD含量的性能,将对不同预处理方法获取的评价指标相比较,基于全谱的PLS模型的计算结果如表2所示。由表2可知,小波算法去除噪声后的光谱PLS模型取得了最佳结果,建模集的R2为0.79,RMSEC为15.89mg•L-1,预测集的r2为0.78,RMSEP为15.92mg•L-1。SG平滑和EMD算法虽然部分去除了噪声,但建模效果并没有得到相应提高。故后面建模分析在WT分析基础上进行。
2.3LV一般选取最优LV个数的标准观察RMSEP值随LV个数变化情况,如图3所示,当LV个数较少时,RMSEP值较大,随着LV个数的增加,RMSEP随之减小,当LV个数增加到6时,RMSEP的值保持稳定,LV个数继续增加,RM-SEP值也没有随着增加。取前6个LVs作为偏最小二乘支持向量积的输入建立模型。从贡献率角度解释,PLS建模得到的6个LVs分别作为LS-SVM的输入,之所以取前6个是因为这样几乎可以100%表达原始光谱有用信息,如表3所示,且降低了模型复杂度,提高模型运行速度和精度。
2.4BP神经网络模型根据前文得到的结果,将表3中选出的LVs作为BP神经网络模型输入,BP神经网络模型的计算结果如表4所示。分析表4可知,将6个LVs作为LS-SVM模型输入的结果,其建模集的R2为0.82,RMSEC为15.77mg•L-1,预测集的r2为0.81,RMSEP为16.67mg•L-1。
2.5基于LVs输入的LS-SVM模型LS-SVM模型预测结果如表5所示。采用LVs作为LSSVM模型输入,得到的结果优于基于BP神经网络模型。其建模集的R2为0.83,RMSEC为14.78mg•L-1,预测集的r2为0.82,RMSEP为14.82mg•L-1。
2.6PLS,BP神经网络和LS-SVM模型比较PLS,BPNN和LS-SVM建模方法的结果比较如图3所示,Cal表示模型的建模集(calibration),Pre表示模型的预测集(prediction)。不难发现,在LS-SVM模型和BP神经网络模型中,基于LV作为模型输入-建立的LS-SVM模型取得了最优的效果,BP神经网络模型的预测效果较优,且LS-SVM模型和BP神经网络模型都优于全波长的PLS模型结果。
1、光合细菌高密度鱼虾池水中所含的大量粪便和残饵,腐改后产生氨态氮、硫化氢等有害物质,污染水体和底质,造成鱼虾生长缓慢甚至中毒死亡。同时,水体富营养化后病原微生物滋生,鱼虾会感染发病,光合细菌能吸收水体中有的有毒物质,长成自己有效力的细胞,并形成优势群落,抑制病原微生物生长,净化水质。施用光合细菌,苗池每次用10-50毫克/升;成鱼、虾、蟹池首次用5-10毫克/升,以后用量减半,每次间隔7-10天。
2、硝化细菌在水环境中,硝化细菌可将由腐生菌和固氮菌分解或合成的氨或氨基酸转化为硝酸盐和亚硝酸盐,使水体和底泥中的有毒成分转化为无毒成分,净化水质。成鱼、虾、蟹池每次施用硝化细菌2-5毫克/升。
3、乳酸菌群乳酸菌属嫌气性菌群,靠摄取光合细菌、酵母菌产生的糖类形成乳酸。乳酸具有杀菌作用,能抑制有害微生物活动,致病菌增殖和无机物腐败;并能使木质和纤维素有机物发酵分解,有利于动植物吸收。
4、酵母菌群酵母菌属好气性菌群,它能利用植物根部分泌及其他有机物质产生发酵力,合成促根系生长及细胞分裂的活性物质。酵母菌能为乳酸菌、放线菌等提供增殖基质,为动物提供单细胞蛋白。
鱼、虾、蟹等经1年的饲养后,池底往往沉积着大量的食物残渣和排泄物,这些有机废物经腐烂、分解后在池底形成淤泥,而淤泥是细菌很好的培养基。因此,当淤泥沉积到一定厚度时,必须及时清除。银鲫类的出血病及罗氏沼虾、青虾等细菌性病害的发病率的上升与池底淤泥不及时清理有一定的关系。按国外对虾养殖经验来看,高密度虾类养殖,最好每年将池底的1层浮泥予以清除,其目的也是去除细菌滋生所需的营养源。另外,淤泥中有大量的寄生虫卵及孢子等,挖除多余的淤泥亦可大大减低侵袭性病害的发生率。一般来讲,池底淤泥厚度只需15cm左右即可。这样既使水体有一定肥度培育浮游生物,满足水产养殖类对天然饵料的需求,又可减少致病菌的滋生场所和细菌密度。因此,每年对鱼池清整时,必须清除池底多余的淤泥。
1.2池底曝晒与冰冻
池底每年需经15d左右的曝晒和冰冻,一是改良池底的土质,二是使池底淤泥中的致病菌和寄生虫卵及孢子的密度下降。池底经曝晒和冰冻的鱼池,养殖病害的发病率明显下降。但池底干枯时间过长则易引起草荒。
1.3药物清塘
生石灰清塘可有效地杀灭致病菌、寄生虫及孢子等,同时可改善池底土质。
2放养健壮苗种
选择的标准:体质健壮,无畸型苗,且规格均匀。体表、鳍条或附肢无炎症,无烂鳃、白肝等异常病症。苗种游动(或爬行)灵活,无病态。有条件的单位或个人可用显微镜对体表、鳃、肝等部位取样进行镜检,应无寄生虫或致病菌。对罗氏沼虾和南美白对虾来讲,应选购经过检疫不带病毒的虾苗。
3种苗放养前药浴
对鱼类可用15~20mg/kg浓度的高锰酸钾溶液药浴15~20min,具体视鱼类对药物的忍受力而定。蟹种放养前,在水温5~8℃时,用高锰酸钾20g/m3浸洗3~5min,或用3%~5%的食盐水溶液药浴消毒,用来杀灭河蟹体表上的细菌和寄生虫。虾苗进池后即用二溴海因等(浓度达0.3mg/kg)进行全池泼洒4食台或食场消毒
用250g左右的漂白粉对水,泼洒在食台或食场的周围,一般从4~9月每月2次;石灰轻消可有效地抑制致病菌,并可及时补充水体中的钙质,使水体常年呈偏碱性。这对养特种品甲壳类尤为重要。生石灰轻消方法:常规养鱼池一般每米水深为225kg/hm2,特种水产品(如鳜鱼、虾、蟹等)一般每米水深为75~105kg/hm2。
5选购优质配合饵料
要求颗粒均匀、水中稳定性好、营养全面、饵料系数低等,并添加诱食剂及稳定维生素C等,促进养殖品种的摄食、消化和吸收,促进其生长,增强抗病力,提高成活率。要注意投喂饲料的科学性,不要投喂单一饲料,避免缺少某种营养元素而引起营养性疾病。如虾、蟹养殖中,除投喂动物性饵料和全价配合饲料外,还应保证充足的植物性饲料。
6采用生物调控水质
采用生物调控水质,确保有一个良好的生态环境,从而提高鱼、虾、蟹等水产品的体质和抗病力。生物调控水质可采用种植水草、放养螺蛳、添加有益菌和培育浮游生物(如施肥)等。可根据养殖品种选择相应的生物调控法。浮游植物的光合作用能使水体富含氧气,减少氨氮、硫化氢等有毒物质的生成,创造良好的生态环境,抑制致病微生物的滋生。定期用有益活性微生物制剂施放光合细菌、复合型活菌生物净水剂(如西菲利)等,它们在水体中能快速将有机物质彻底分解成单细胞藻类可利用的无机营养盐,减轻有机废弃物的污染,而本身对养殖品种无害,同时自身在水体中能迅速繁殖生长形成优势菌群,通过食物、场所竞争及分泌类抗生素物质,直接或间接抑制有害菌群的繁殖生长。生物调控水质的方法可减少池水排换量,从而减少从外界水源带来的污染。研究和实践证明,通过大排大灌换水的方法改善底质,效果不佳,会造成南美白对虾生长不适,应激生病。
7配套增氧机械
通过增氧机的打水作用,增加水体的溶解氧,使底质中的有机物和水中鱼、虾、蟹的排泄物及残饵等充分氧化分解成单细胞藻类所需的无机营养盐,减少有机废弃物的污染,保持水质条件良好,从而避免诱发疾病的应激条件产生。
8掌握病害发病规律
掌握某些水产养殖病害的发病规律,定期在水体中施用药物或投喂药饵,杀灭病菌,减少致病因素,但需注意药物的拮抗作用和协同作用,并且不能与微生物制剂同时使用。如银鲫的出血症,在发病季节每隔15~20d对水体消毒1次,并投喂药饵2~3d。
论文关键词水产养殖;病害预防;鱼塘清整与消毒;药浴;食场消毒
乳酸菌是鱼肠道中的正常菌群,能在鱼肠道中定植,定植后能合成动物所需要的多种维生素,如维生素B1、叶酸等;在动物体内通过拮抗降低pH,阻止致病菌的侵入和定植,维持肠道内的生态平衡;能阻止和抑制有害物质,抵抗革兰氏阴性致病菌,增强抗感染能力;降解动物体内氨、粪臭素等有害物质;活菌体和代谢产物中的活性物质能增强机体肠黏膜的免疫调节活性,增强体液免疫和细胞免疫,增强机体调节活性,促进生长。
二、乳酸菌产品在水产上的应用
1.泼洒降pH值
乳酸菌制剂泼洒进入水体后,在适合的条件下繁殖,分泌乳酸等代谢产物降水体的pH值,具有持效的特点。乳酸菌因厌氧或兼性厌氧,在池底会长得好。使用:将乳酸菌产品用50倍以上池水稀释后全池均匀泼洒,每亩水面(水深1米)使用乳酸菌制剂100克以上(1克活菌量≥50亿个)。使用注意事项:①晴天上午使用,使用时及时有效增氧2小时以上,当晚注意有效增氧;②使用时配合红糖溶解泼洒效果更佳;③避免与氧化剂、抗生素或消毒剂同时使用。
2.乳酸菌内服
乳酸菌是目前广泛应用的一类益生菌,是温血动物胃肠道中的优势菌群。乳酸菌在饲料添加剂中具有重要地位,在美国FDA公布的42种微生物中有近30%是乳酸菌类。乳酸菌虽不是鱼类肠道内的优势菌群,但普遍认为乳酸菌是鱼类肠道的正常菌群成员。在鱼类养殖中,通过添加含乳酸菌的饲料可抵御致病菌侵袭、提高苗种成活率,有促进生长的作用。乳酸菌产生的代谢产物能降低日粮pH值,使胃内pH值下降,酶的活性提高;胃肠道微生物区系改善。有些有机酸是能量转换过程中重要中间产物,可直接参与体内代谢,提高营养物质消化率。乳酸菌作为鱼类益生菌,在肠道内具有较好的定植能力,而且在水产动物中,这种定植无明显的宿主特异性。乳酸菌内服的缺陷性:该菌在生长过程中不形成芽孢,抗逆性差,易失活而难以保藏,在饲料中添加使用受到一定限制。
3.乳酸菌发酵饲料
近年来,使用乳酸菌产品发酵水产饲料后再投喂,诱食、增食效果好,提高成活率明显。尤其在南美白对虾的养殖上,使用发酵饲料可以增加投喂量,缩短摄食时间、降低发病率,接受度颇高。
常见的虾饲料发酵有两种方式:①充分发酵,乳酸菌、饲料、水充分混合,密闭容器,放置于常温下发酵培养5天以上,闻之有酸香味,pH在4.0左右表示培养成功;②快速发酵,发酵20小时左右。先把200克菌粉(1克活菌量≥50亿)放入14千克水中溶解,加入20千克干饵料混匀,密闭容器(如果是湿饵料,加水到物料用手捏住有水快速滴下即可)。根据气温变化大概24~48小时发酵好,有一股酸香味,可投喂。发酵饲料的注意事项:①饵料中不要添加抗生素或消毒剂;②饵料发酵成熟再使用;③发酵时每40千克饲料添加500克红糖效果更佳。
1.2信息汇聚智能体设计信息汇聚智能体结构如图3所示。该结构具有两项功能:一方面起到环境因子数据的中转作用,按现场监控智能体的要求,采用轮询的方式读取本池中各信息采集智能体发送来的数据,并发送给现场监控智能体;另一方面兼有图像采集与发送功能,利用串口CMOS摄像头进行养殖物图像采集,摄像头通过RS232与CC2530中的无线单元ZigBee相连,由无线单元ZigBee完成图像向现场监控智能体的传输。
1.3环境调节智能体设计环境调节智能体由无线收发模块和工控机组成,两者通过RS485相连,如图4所示。无线收发模块负责接收现场监控智能体通过无线通信发送过来的环境因子数据,进行解调,最终上传给工控机。工控机接收到数据后,首先根据其具备的知识对数据进行推理(推理模块),并将推理结果(调节任务)交给决策模块进行评价和决策。决策模块利用已有的知识和各种状态数据对推理结果进行评价和决策,如果具备执行该任务的能力,则交给控制模块去执行,否则启动通信模块与现场监控智能体进行协商。控制模块通过设备接口把任务交给执行机构去完成。决策模块还能通过人机界面向操作员分发报警、决策请求等事件,并接收操作员的输入信息。工控机强大的控制功能和可扩展性,使得一个环境调节智能体能够对所有养殖池的环境参数进行调节。系统中的执行机构主要有电磁阀(温度和pH调节)、水泵、增氧机、搅拌机等,用于调节养殖池中各环境因子,以提供养殖物生长的最佳环境。环境调节智能体对养殖环境的调节采取闭环控制,即执行机构在进行环境调节的同时,该智能体中的无线收发模块实时读取养殖池中的各项环境参数,并进行判断,任一项参数达到调节要求即关闭相应的执行机构。
1.4现场监控智能体设计现场监控智能体由信息收发单元和监控计算机组成,两者之间通过RS232/485总线连接,其功能结构与环境调节智能体基本相同。信息收发单元负责接收各养殖池中的IGA上传来的信号,并传送给监控计算机进行保存,监控计算机通过比较判断,如需要对环境进行调节,则通过信息收发单元以无线方式通知环境调节智能体工作,实现对养殖环境的闭环控制。监控计算机的另一项任务,是通过信息汇聚智能体定期采集养殖物质体的图像(此时信息采集智能体处于休眠状态),并利用专用软件对采集到的图像进行处理与诊断,如发现有病变嫌疑则及时报警,避免重大损失的发生。
1.5各智能体间的协作基于多智能体的协同水产养殖监控系统,通过多智能体之间的相互协作,来增强系统的监控能力,系统具有更好的灵活性和鲁棒性,便于适应多变的养殖环境,其协作模型如图5所示。下级智能体接收到上级智能体的任务请求后,根据自身的能力描述和当前状态,判断任务是否可以接受:如果处于故障状态或忙碌状态,则对该请求进行回绝;如果能接受这项请求,则返回接受信号,对请求的任务进行评
2监控软件设计
现场监控智能体的监控软件采用C语言编制,具有参数配置、实时监控、历史数据和系统说明4个模块的功能。实时监控模块用于对养殖水体的溶解氧、温度、pH以及水位等关键因子进行自动监测。每台计算机同时监测6个养殖池,分池、分监测点以数值的形式显示关键因子,并通过算法综合判断,给出养殖环境状态的提示。如图6所示为1号池的实时监控界面。历史数据模块用于对历史数据进行查询。参数配置模块用于对各养殖池的理想参数进行设置。系统说明模块提供相关信息服务,并对软件的使用提供帮助。
3现场试验
试验现场选在山东省日照市的某水产养殖有限公司,试验鱼池规格为6m×6m,水深0.5m。鱼池中养殖大菱鲆,其适宜的养殖环境为:温度10~20℃,溶解氧大于6mg/L,pH为7.6~8.2。据此,试验鱼池的初始环境因子参数设置为:温度17℃,溶解氧7mg/L,pH为7.9。试验以温度值的变化为观测点,以验证环境调节智能体的工作性能。
(1)系统的测量精度满足要求。
(2)通过人工措施在10:30的时候使水体温度降低到15.7℃,此时环境调节智能体开始工作,起动加热系统给水体加热,11:21池中的测量温度为16.6℃。试验测得加热时间约为56min42s,水温达到设定温度要求,加热系统自动停止。系统工作效率高于一般的在线监测系统,满足环境调节要求。
混凝沉淀技术就是利用化学原理,将混凝剂加入水中,对水中的污染物进行有效去除,石灰铁盐与有机絮凝剂等常用的混凝剂因为其具有一定的毒性,所以不能直接在养殖用水中应用,而是用在水产养殖排水水质的处理上。
1.2臭氧氧化技术
臭氧如果具有强氧化性,就能在水中迅速自行分解,避免造成二次污染,具有除臭、杀菌、脱色以及去除有机物的作用,是一种比较有效的绿色氧化药剂,这种技术主要运用于海水工厂养殖排水水质的处理中,具有较强的氧化作用,能够有效分解、溶解以及降解水中的有机物。
1.3紫外辐射技术
紫外辐射技术利用紫外辐射对水体进行消毒,不仅能够破坏水中残留的臭氧,还能将大量的病菌杀死,具有无毒、高效以及低成本的特征,紫外辐射技术是一种比较成熟的养殖排水水质改善技术,主要应用于水产生殖排水的循环过程中。
1.4其他处理技术
在对水产养殖排水水质进行改善处理的过程中,离子交换技术以及电化学技术也是一种水质处理技术,但是离子交换技术主要在水族馆或者科研项目中运用,应用范围较小,而电化学技术还处于试验阶段,不完全适用于生态农业园的需求。
2生物处理技术
2.1人工浮床净化技术
人工浮床净化技术通过模拟自然界的各种变化规律,利用高分子材料和混凝土等载体,对水生植物进行种植,使其发挥清除水体污染物的作用,这种技术能够净化水质、美化水体景观,为生物创造生存空间的功能,促进周围生物的多样性发展,加强其生态系统的完善,能够很好地适用于生态农业园区的水产养殖排水中。
2.2人工湿地净化技术
人工湿地净化技术能够按照水体的具置和实际情况,模拟湿地的结构与功能,综合净化与处理污水,构成水体、基层、微生物以及水生植物等人工湿地的主要元素,对铵、氮、硝酸盐以及亚硝酸盐等化学物质进行有效清除。
2.3水生动物净化技术
水生动物净化技术就是将水生动物放养于水产养殖所用水体中,不仅能够起到净化水质的作用,还能提高生态农业园水产养殖的经济效益,是一种兼具实用性与经济性的水质净化技术。
2.4水生植物净化技术
水生植物主要有沉水植物、浮叶植物以及漂浮植物,通过水生植物在生态农业园水产养殖区域的种植,能够抑制水体中藻类的生长,并且具有一定的观赏价值,同时能够有效起到净化水体的作用,实现一定的经济效益。
二、防治措施
1.细菌性病害的防治对策
在防治过程中只要能够掌握其发病规律,就可有效的避免此类疾病的发生。在防治过程中主要有以下几方面的措施。网箱是设置在大水体中且鱼群密度很高,因此预防不能照搬池塘养鱼的方法,如不宜使用全箱泼洒等方法。首先,饵料配方要合理,投饵量要适当,防止因饵料配方不当引起鱼的营养缺乏症或因饵料不足使鱼体消瘦,发生鱼病。饵料加工杜绝使用霉烂、变质原料,混合各种添加剂时,要搅拌均匀,否则也是引起鱼病的原因。其次,发现病鱼、死鱼及时捞出,要深埋不能乱丢,防止传播病菌或败坏水质。其次,种苗的消毒。种苗消毒可以采用复合型的二氧化氯或者高效的菌毒消毒剂进消毒处理,采用还需要此阿勇肠炎灵、鳃病灵、克血灵或者烂尾灵拌饵喂食。当鱼苗处于发病季节前后,应该每隔半个月使用高氯精、溴氯海因、二溴海因等药物进行消毒。并使用大蒜素和克血灵拌饵投喂两天,同时还可以在发病季节每隔两周左右用新鲜生石灰化水泼洒一次,调节水的PH值。
2.病毒病的防治措施
继发性的感染细菌性疾病是水产感染病毒后死亡的主要原因,这些水产疾病主要包括河蟹抖抖病、虾类肌肉白灼病以及病毒性的败血症等疾病。预防该种疾病的重点是要做好细菌性病害的防治工作,同时,还需要采用相应病毒的预防措施。首先,在对鱼塘彻底清塘之后,在放养的前一周之内,采用精碘进行消毒一次,精碘对病毒病的预防有着优良的治疗效果;其次,在发病季节来临之前,应该加强对网箱(鱼塘)进行消毒处理,以增加消毒的次数。在发病季节之前采用精碘消毒两次;最后,对已经发病的鱼应该积极的采用内服药物进行防治,以防止病害的发生。
2水色肥活嫩爽的要求
在水产养殖过程中,水色一般要求肥活嫩爽,这是判断水产养殖水质优劣重要的和直观的参考指标。肥表示水中浮游生物量大,有机物与营养盐类丰富;所谓活,一方面从浮游生物角度来说,表示水色经常在变化。水色有月变化和日变化,比如“早淡晚浓”或“早红晚绿”,这变化体现在时间和空间上,另一方面从水体本身的交换;嫩:从浮游生物本身来说,是指各种浮游生物处于生命初期和繁殖旺盛期;从浮游生物组成上说,主要有硅藻、绿藻、隐藻、金藻等组成,蓝藻的数量较小。藻相平衡,分布均匀,不成团、成缕,不浓稠。水面无死亡的浮游生物尸体形成的浮膜;爽:表示池水透明度适中(25~40cm),水中溶氧条件好。“肥、活、嫩、爽”是水产养殖者的经验总结,具备这四个条件的水是好水。
3常见优质水色对应的藻相及转化特点
3.1培育优良水色和藻相结构
组成水色的物质中以浮游生物及底栖生物对水色的影响最大。培养水色主要指培养浮游藻类,良好的水色标志着藻类、菌类、浮游动物三者的动态健康平衡,是健康水产养殖的必要保证。良好的水色可以保证水中足够的溶解氧、可为水产养殖对象提供新鲜适口的天然饵料、可保持良好的水体肥度,为水产养殖对象的生长提供一个适宜的生长环境、可抑制病菌的繁殖、降低水中有毒物质的含量、稳定水质环境。
3.2优良的水色和藻相结构
优良的池塘水色大致可分为两大类:一类是以茶(棕黄)色系,包括棕黄、茶褐、棕色、棕红色等;另一类是绿色系,包括黄绿、淡绿、嫩绿、浓绿、蓝绿等。这两类水色较肥。茶色的水质优于绿色水。
3.2.1茶色(棕色、黄褐色)系
这类水一般肥、活、浓。水中的藻类以硅藻、隐藻、甲藻、绿藻、金藻等为主,常见的有三角褐指藻、新月菱形藻、骨条藻、角毛藻、裸甲藻、圆筛藻、直链藻、小球藻等,这些藻类都是鱼、虾、蟹、贝等苗期甚至成体的优质饵料。在不同的温度下,培育的这种水色会出现变化,15℃以下较低温度时为淡棕色,超过15℃以上颜色变深,如棕色、深棕色等,如维持浅棕色,需以氮肥为主进行肥水。深棕色水藻类的种类和数量都很丰富,浮游动物也较多,属肥水、活水,但如果氮过量积累,会变为蓝藻水。在精养池中,磷含量一般超过0.02mg/L,此时氮磷比超过15∶1时,微囊藻等蓝藻会大量生长,此时要控制氮肥,适量单施磷肥,使其它浮游藻类快速增长。茶色水质经常隐藻比例较高,王武等试验表明,隐藻分泌的抗生素对裸甲藻的生存和生长无多大影响,因此,黄褐色水质有利于鱼类容易消化的藻类生长[3]。茶色水稳定性持久性较差,随着营养条件以及藻类数量比例改变,裸藻、隐藻、绿藻等比例增大,—般保持10~15d左右就会逐渐转成褐绿色水,此时要通过换水、营养物质比例调整、特定营养元素添加等措施防止水质老化。
3.2.2绿色系
这类水中的藻类以绿藻、裸藻为主,如扁藻、小球藻、衣藻、栅藻、四角藻、新月鼓藻、裸藻等,绿藻吸收较多氮肥,该水色说明水中氮含量较高,同时可以降低水中氮含量,有利于净化水质。绿色系水色以草绿、嫩绿、亮绿为好,肥度适中或较肥,水产养殖对象生长速度较快,水产养殖周期短,产量高。要注意施加磷肥,适当降低氮磷比,可以将草绿水转化为更优质的含硅藻、隐藻较多的棕色水,另外也可以防止转化为浓绿水、老水。黄绿、淡绿水质偏瘦,需氮磷肥水。黄绿水有两种情况,一种是因为水质较瘦,水产养殖对象搅动底泥所致,前述即指此类水;另一种是硅藻和绿藻共生的水色,此为优质水,黄绿水要具体分析,区别对待。浓绿色水浓,透明度较低。水质过肥,老化,水中的藻类以裸藻、扁裸藻、小球藻为主,种类少,数量多。应单施磷肥,降低氮磷比,使水变嫩。蓝绿水也属老水,以蓝藻为主,有鱼腥藻、束丝藻、螺旋藻、颤藻等,也有部分实球藻、空球藻、栅藻、衣藻等,主要是氮积累过多造成,应该利用水质改良剂降氮,下风处使用杀藻剂,适量单施磷肥,半月内可变为硅藻、甲藻为主的深棕色水。绿藻水相对稳定,一般不会骤然变清或转变成其他水色。
4不良水色及调节
不良水色常见的有两类:一类是深色系,包括褐色、深褐色、酱色、黑色、浓绿等,另一类是白色系,包括白清、灰白、白浊等,还有一些特殊类型的水,比如黄色水、红色(铁锈)水、铜锈水、发光水、泥皮水等
4.1深色系
深色水很多属于老化水,比如褐色、深褐色、酱色、浓绿水,水体中蓝隐藻、裸甲藻,隐藻等较多,种类单一,个体形成优势种,数量极多,有时总生物量会降低,水质不稳定,一旦天气等环境因子出现变化,会造成藻类大量死亡,从而造成大量耗氧、有毒物质分解产生等,造成水产养殖对象大量死亡。该类水色大多数是因为水质过肥,氮肥超过0.2mg/L,磷肥超过0.02mg/L,很多时候是氮肥超标,经常在水产养殖中后期会出现这种情况。泛塘后或污水塘会出现黑水,属于死水,蓝隐藻、原生动物的纤毛虫很多。出现这类水,一般首先换水,通过杀藻剂清除一部分优势藻类,然后通过微生态制剂分解有机质,调节改良水质,适量单施磷肥,待水色正常后再进行水产养殖。对于泛塘过的以及死水类还必须在换水后经过生石灰等消毒处理,再进行后续调节。
4.2白色系
白清水一般浮游藻类种类少,数量也少,水质偏瘦。经常出现在新塘或开春刚注水的池塘,也有在藻类高峰过后,出现大量浮游动物,还有一种是水体中出现形成青泥苔(青苔)的澄清水,主要是刚毛藻、水网藻、水绵等丝状绿藻因清池不彻底、水瘦、塘浅等的水产养殖池塘大量发生,青苔一方面可与其他藻类争夺营养和生活空间导致,另一方面也能直接对鱼虾蟹贝等水产养殖对象苗种甚至成体造成缠绕窒息。浮游动物较多时,随着水产养殖对象增大,可以进行捕食,水色会慢慢恢复正常;如果较严重,且水产养殖对象不能以之为食,那必须先杀灭水体中的浮游动物,然后施肥来培养、调节水色。对于丝状绿藻较多时,可以通过杀藻、足量均衡肥水等方法恢复正常水色。严重污染的水体会出现灰白水,水中只有大量的纤毛虫等,没有藻类,必须通过大量换水、杀虫、施肥等措施改良水质;
4.3特殊类型水
4.3.1红色水
亦称“铁锈水”,主要含纤毛虫、甲藻等,指水体中大量黄褐色的甲藻在繁殖时受阳光照射所呈现的红棕色。多发生在有机质多、硬度大、呈微碱性的水体[1]。这种水色主要是前期水色太浓,通过换水、杀藻等措施进行缓解。还有形成铁锈色水膜,主要是由血红裸(眼虫)藻引起,属于瘦水型水质[3]。
4.3.2铜锈水
又称湖靛水,主要是由蓝藻中微囊藻和水华微囊藻大量繁殖,在池水面形成了铜绿色水华。微囊藻外面包着一层胶质,鱼类不能消化,还会抑制其它藻类生长繁殖,导致水质清瘦。可以通过换水、物理或化学方法除藻、增施磷肥等措施抑制其形成水华。
4.3.3黄色水
是指水体中多以双鞭毛的金藻为优势种群,还有部分甲藻,水面覆盖一层金黄色的油膜。可以通过换水、杀藻、微生态调节水质等措施,恢复正常水色。
4.3.4“泥皮”水
也称油皮水,腐烂的藻类、原生动物尸体、排泄物、残饵等有机物混合残留的腐殖质,粘附尘埃或污物后在水面形成的灰黑色的浮膜。导致水产养殖对象的误食,也影响水面气体的交换,增加有机物耗氧,导致水质恶化。可以通过换水、用草木灰吸附捞出、微生态制剂加速有机物分解等措施处理。
4.3.5发光水
造成水体发光的原因有几种情况,一是由发光弧菌引起,一般发生在虾类水产养殖的中后期、水体、虾体均能发出荧光。弧菌附体会导致摄食减少,触角断,常缓游于池塘浅水处,多聚下风,反应迟钝,造成死亡。可采用消毒杀菌剂进行处理,或采取部分注入淡水降低盐度,另外投放微生态制剂培育有益的优势菌群。二是由夜光虫引起,主要由于水体中有机质丰富,夏季高温引起,主要是水体发光,而虾体不发光,但夜光虫可附着于虾的鳃丝上,会出现虾鳃微弱发光,危害主要有:增加耗氧、妨碍虾的呼吸、抑制其它藻类生长、有些会分泌毒素,另外水体发光会引起虾产生应激反应等。可以通过加大增氧,减少投喂,投放有益菌加速有机质分解,或者直接杀藻等措施改善水质。
2饲用芽孢杆菌的益生功能研究进展
2.1维持肠道微生态平衡
目前,关于芽孢杆菌维持肠道微生态平衡的机制,普遍认可的主要有以下三个方面:一是生物夺氧。枯草芽孢杆菌属好氧性细菌,而病原菌也多为好养性细菌,枯草芽孢杆菌在肠道中的生长繁殖必然消耗氧气,对病原菌造成颉颃作用,同时造成肠道厌氧环境,有利于肠道原籍优势菌繁殖,维持肠道正常生态平衡的作用;二是定植抗力。枯草芽孢杆菌及因其生长繁殖更加有利的动物肠道原籍优势菌都会在肠道内占据一定的位点,导致病原菌可结合位点减少,从而因无法定植而被排斥;三是产生抑菌物质。芽孢杆菌生长繁殖中产生的乙酸、丙酸和丁酸等挥发性脂肪酸可降低动物肠道pH,从而有效抑制病原菌生长。此外因生长环境有利,一些原籍优势菌可产生更多的细菌素和类细菌素等抑菌代谢物。
2.2促进营养物质的消化吸收
枯草芽孢杆菌进入动物肠道后,能迅速在肠道中萌发并增殖,产生多种消化酶,增强动物肠道对饲料的消化能力,促进营养物质的消化利用。芽孢杆菌不仅能产生蛋白酶、淀粉酶和脂肪酶等,还可诱导动物机体内源消化酶的分泌,产生的非淀粉多糖酶可以降解内源酶难以降解的植物性复杂糖类,如纤维素、果胶和葡聚糖等,有利于肠道更好地利用糖类,提高饲料转化率。另外,枯草芽孢杆菌在生长代谢的过程中能产生其他多种营养物质,如维生素、氨基酸和促生长因子,参与动物自身新陈代谢,促进营养物质的消化吸收。
2.3增强机体免疫力
研究表明,芽孢杆菌可促进动物免疫器官发育,加快免疫系统的成熟,T淋巴细胞及B淋巴细胞的数量增多,使动物肠道相关淋巴组织处于免疫准备状态。其机制可能是芽孢杆菌进入动物肠道后,可作用于肠道集合淋巴结的抗原结合位点;此外,芽孢杆菌可通过调节动物肠道的微生态平衡,特别是对双歧杆菌的调节,间接增强动物的免疫力。
3饲用芽孢杆菌在水产养殖中的应用
肠道微生态的平衡是水产动物保持健康的重要保障,肠道微生态平衡一旦被打破,肠道环境会更利于病原菌的生长繁殖。当前,集约化养殖带来的水体负荷过大和水质恶化等环境胁迫,极易导致水产动物肠道微生态失衡,使水产动物表现为病理状态。因此,基于维护肠道微生态平衡的考虑,芽孢杆菌,尤其是枯草芽孢杆菌在水产养殖中得到了越来越广泛的应用。目前,芽孢杆菌在水产养殖中的应用主要有以下两种方式:直接投放于水体,起到改善水质和颉颃病原菌的作用;添加于饲料中投喂,起到改善生长性能、增强免疫功能、调节肠道菌群及保护肠道黏膜组织形态等作用。
3.1作为水质改良剂改善养殖水体的水质
芽孢杆菌能及时分解水体中的有害污染物质,将有机质分解为小分子有机酸、氨基酸及氨为单胞藻提供营养,净化和稳定水质。尹文林等(2006)研究发现:枯草芽孢杆菌具有降解养殖水体氨氮、亚硝酸盐氮和硫化物等作用。而张峰峰(2009)认为:虽然能够降低水体pH及显著降低水中硝酸盐和亚硝酸盐含量,但不具有提高水体中溶氧含量和降低硫化物含量作用。赵迷淼等(2003)发现:施用枯草芽孢杆菌后,对虾养殖池中的亚硝酸盐和硫化氢等有害物质减少,施用芽孢杆菌的池塘化学含氧量(COD)值每次测量都低于未施用芽孢杆菌的池塘,且从施用前的9.5下降到8.2(施用10d),总碱度(ALK)降低,pH也稳定在适宜对虾生长的水平。
3.2作为饲料添加剂提高水产动物的生长性能
芽孢杆菌添加于饲料中可改善动物的生长性能、增强免疫功能、调节肠道菌群及保护肠道黏膜组织形态等作用。这里重点阐述对动物生长性能的改善作用,主要在以下两方面发挥作用。一是产生多种水解酶,可促进营养物质在动物体内的消化利用。芽孢杆菌在生长繁殖过程中可产生蛋白酶、淀粉酶和脂肪酶等消化酶,促进相应营养物质的消化利用。丁贤等(2004)在凡纳滨对虾、刘小刚等(2002)在异育银鲫上都验证了此作用。此外,芽孢杆菌还能分泌非淀粉多糖酶,如果胶酶和葡聚糖酶等,可降解饲料中复杂糖类。其次是产生营养物质直接供动物吸收利用。芽孢杆菌在生长繁殖过程中可产生维生素、氨基酸、有机酸和促生长因子等多种营养物质,参与机体新陈代谢,直接为机体提供营养物质。与此同时,还可促进动物对钙、磷和铁的利用,促进维生素D的吸收。