期刊在线咨询服务,期刊咨询:400-888-9411 订阅咨询:400-888-1571股权代码(211862)

期刊咨询 杂志订阅 购物车(0)

汽车设计论文模板(10篇)

时间:2023-03-22 17:46:10

汽车设计论文

篇1

在刚刚过去的2008年,两位日本设计大师在伦敦科技博物馆举办的以“为拥挤的地球设计汽车”(DesignsforaCrowdedGlobe)为主题的展览,展示了包括丰田、日产等在内的七家日本汽车制造商在“移动的个人空间”(mobilecell)概念探索中的最新设计成果。

事实上,无论是平面装帧设计还是工业产品设计,日本显然已是全球范围内公认的佼佼者,因此要挑选能够代表日本设计精神和水准的选择并不算少,令坂茂与原研哉最终将目光定格在汽车上的重要原因是——日本汽车已然成为可以反映本国文化和思考的象征物。

在坂茂看来,展览并不为单纯展示汽车,而是要揭示出其背后隐含的各种文化的、心理的、地域的、环境伦理的等在内的意义。“汽车不单纯是为了运输,不单纯是一种工具,对于日本人来说,这是一个生活空间,所有与生活有关的都蕴含在里面。”他说。

在这次展览中,“尺寸”、“环境”和“移动的个人空间”是在未来城市流动生活的基础上所探讨的三个主题。与技术创新同样出名的是日本的人口密度,这使得较早地迈入小型城市用车(日本称为KeiCar)及燃料汽车的研发领域、并有着丰富阅历和经验的日本汽车制造商所提供的各种城市运输解决方案颇具借鉴意义。

篇2

1SABER软件仿真技术

SABER软件是一个在数学模拟及硬件设计方面功能卓著的仿真工具。对于复杂的混合信号设计和验证问题,SABER软件为设计工程师提供了一种功能强大的混合信号行为仿真器。由于混合信号硬件描述语言——MAST的支持,SABER软件实现了单一内核混合信号及混合技术的仿真,完全改变了模拟电路仿真的现状。SABER软件在混合技术领域具有多个仿真引擎,可以分别处理不同领域的设计单元,且遵循相应的守恒定律,支持电力系统、机电一体化、机械系统、电子系统、光电控制系统、液压系统等系统单元。现在,SABER软件在汽车和飞机制造领域已得到广泛的应用。尤其是在汽车制造领域,许多欧美公司已将它定为行业标准,并投资SABER软件的发展以不断满足新的设计需要。

SABER软件具有明显的优势:分析从SOC到大型系统之间的设计,包括模拟电路、数字电路及混合电路;通过单一的混合信号仿真内核就可以提供精确有效的仿真结果;通过对稳态、时域、频域、统计、可靠性及控制等方面的分析来检验系统性能。

SABER仿真器能够让设计人员对从汽车的最初设计方案(方框图)到由实际电路和机械实现的完整系统进行仿真。这种能力对于复杂运动控制系统的设计(如ABS系统、安全气囊系统、发动机控制系统、车身控制系统等)尤为重要。

2汽车电子仿真技术的应用

汽车在投产之前要经过大量的测试试验,对原设计不断地进行修正往往会耗费大量的物力和时间。在设计阶段,对各种状况进行模拟仿真、修正、完善设计,能够提高效率、缩短开发周期。使用SABER软件进行仿真,主要分为3个阶段:建立数学模型、对系统原理进行仿真和对仿真模型进行修改检验。

2.1建立数学模型

所谓计算机仿真就是将实际系统的运行规律用数学形式表达出来,它们通常是一组微分方程或差分方程,然后通过计算机采用数值求解法求解这些方程。

在仿真之前,首先对系统原理图中的所有零部件进行抽象化,建立数学模型,绘制系统的数学模型。为了对电路或系统进行计算机仿真,经常需要开发一个或一组模型。要研究电路的详细特性,可能要求对物理器件建模,有时还需要对大型电路或系统建模。系统模型可能无需和器件模型一样详尽,但作为大系统仿真的一部分,系统模型仍然非常有用。零部件数学模型的质量直接关系到仿真结果的准确性。通过对数学模型各种参数属性的设置来模拟零部件的功能,同时,经过大量计算和试验,不断修正、完善数模。对于同一类零部件可以共用一个(或一类)模型,通过调整数模参数值来实现零部件的更迭。这对于缩短开发周期、节省开发成本,起着至关重要的作用。

在一定外界条件(即输人或激励,包括外加控制与外加干扰)的作用下,从系统的一定初始状态出发,所经历的由其内部的固有特性(即由系统的结构与参数所决定的特性)决定了整个动态过程。研究系统及其输人、输出三者之间的动态关系,即可确定其性能的属性。图1是汽车音响系统中扬声器的物理模型,其中In_pfUIn_m作为输人信号、由电磁学可知,可以进一步将其简化为力f(t)输人。

于是可将其进一步简化为质量-阻尼-弹簧系统,如图2所示,图2中m、c、k分别表示质量、粘性阻尼系数、弹簧刚度。对系统而言,质量受外力f(t)的作用,质量位移为y(t)(实际扬声器衔铁的振幅),系统的动力学方程为my"(t)cy''''''''(t)ky(t)=f(t),y(o)=yo,y''''''''(o)=y''''''''。

其中,y(0)与y''''''''(0)分别为质量的初位移与初速度,这就是在输人作用于系统之前系统的初始状态。显然,此系统在任何瞬间的状态完全可以由质量的,y(t)与y''''''''(t)这两个变动着的状态(即状态变量)在此瞬间的取值来刻画。因为y(t)在此瞬间的取值代表了位移的情况,y''''''''(t)在此瞬间的取值代表了y(t)在此瞬间的变化趋势(速度)的情况。

还有一种更直接的建立数学模型的方法,就是模拟硬件描述语言(AHDL)的含义。MAST就是一种AHDL,Saber仿真器可以仿真用MASTAHDL描述的网表。

零部件的模型是建立在大量计算和试验基础上的,SABER软件提供了大量的零部件库文件,对于类似的零件只需修改其属性参数值即可。

2.2对系统原理进行仿真

在仿真过程中,将数学模型转变成为计算机上运行的仿真模型,是由SABER软件系统来完成的,并同时根据仿真模型编制出仿真程序。通过对系统的仿真,可以随时得出各个子系统或零部件的瞬时工作状态及性能参数变化,如电压、电流、功率、转矩等各参数的波形。通过对这些波形与实际试验的结果进行对比分析,找出两者的差别,从而修正原设计。

如先前所提及的,安全性和舒适性的需求导致了新的、高能耗的负载。这些负载可能随着汽车产品的进一步电子化,汽车电子控制装置得到更多的应用,所消耗的电能也将大幅度地增加。现有的12V动力电源已满足不了汽车上所有电气系统的需要,今后将采用集成的42V起动机-发电机供电系统,发电机最大输出功率将由目前的1.4kW提高到8kw左右,发电效率将会达到80以上。伺时,电压等级的提升还将同时带来许多新的问题。12V/42V汽车双电压系统原理图如图3所示。

在双电压系统中,把用电设备分成两部分:中小功率负载由14V电压供电,如室内灯、中控锁、收音机、仪表、车载导航系统等主要为车身电子设备;大功率负载,如电控机械制动装置、电控机械气门正时装置、三元催化转换加热器、电控悬架等,主要为发动机、底盘系统电子设备,由42V电压供电。此双电压供电系统有两个关键器件,一个是DC/DC变换器,它能把交流发电机输出的42V高电压转变为14V的电压。另一个,是装在发动机和变速器之间的起动-发电机,借助一个半导体整流-逆变功率变换器,它不仅充当交流发电机,发出42V的高电压,而且在发动机起动时还作为起动机用。由于它是直接起动发动机,起动时间仅为0.5s,所以噪声很小。

2.2.2起动机/发电机系统

大功率起动机与发电机(IntegratedStarter/Alternator,ISA)的转矩特性一致,因此,集成两种设备于一体在技术上是可行的,在经济上的效益也显而易见。如图4所示的输出功率与内燃机曲轴转速的关系曲线,ISA让内燃机的速度达到600v/min的起动速度,然后切换到发电模式。由于42V系统能够提供足够的电能,发动机在极短的时间内起动且在点火前达到更高的转速,这样可以降低低转速下的排放,换句话说,使得汽车重起动变得更加容易。

2.2.3双电压系统中42V供电系统

在运行中,双电压系统的电压随着转速变化而变化,电压峰值对电器元件的影响是非常明显的。图5所示的是双电庄系统中42V供电系统的变化曲线,非常清晰地显示了在转速急剧变化时电压的瞬时值,此脉冲电压峰值在电气系统设计和选择电子电器元件时有着非常重要的参考价值。

在仿真过程中,主要分两种类型进行。为了描述简单,这里将42V与14V分开进行讨论。第一种方法,全部打开所有的电子设备,可以观察到整个系统及各个电子器件的电压、电流波形,以及各个电子电器设备互相切换或同时打开时的电压、电流波形。同时,很方便地观察到在抛载状况时的峰值电压波形,局部抛载或全部抛载对系统的影响。

2.2.414V供电系统

14V电压系统主要用于各控制单元,对波形要求甚高。若峰值电压及电流产生严重的脉动,使蓄电池两端电压产生脉动干扰,控制单元搭铁(蓄电池负极)电位也将随之产生脉动干扰。如果这个干扰脉冲幅值过大,就会造成原有信号的丢失,引起控制失灵。观察峰值电压的波形,判定是否符合系统要求。14V线路上的电压波形如图6所示。

2.3对仿真模型进行修改、检验

篇3

多元智能理论(MultipleIntelligencesTheory)由美国哈佛大学发展心理学家、教育学家霍华德•加德纳教授于1983年在《智能的结构》一文中提出后,在世界范围内引发了教育的“革命性”变革。我国于20世纪90年代引进多元智能理论,国内有专家认为,多元智能理论无疑是我们长期以来一直在努力推崇的“素质教育的最好全释”;还有人指出:多元智能理论与建构主义理论一道,构成了我国新课程改革的强大理论支撑。多元智能理论指出人类内涵的能力至少有八种:包括语文智能;音乐智能;逻辑—数学智能;空间智能;肢体—运作智能;人际智能;自省智能;自然观察智能。加德纳认为,相对于过去的一元智力理论,多元智能理论能够更全面地描绘和评价人类的智力能力。加德纳还指出,人类智能还包含有次级智能和多种次级构成要素。

二、基于多元智能理论的汽车英语课程设计

(一)汽车英语课程设计的基本条件

Posner(1994)认为,课程设计的基本条件包括:了解学生的需求、兴趣、能力、知识水平等例如:学生需要什么、需要的原因、已有的能力、待补的能力、已有的基础或条件,缺乏什么等等。熟悉课程情况例如,有能力识别和解释该课程的基本概念和技能,全面和细致的有关知识,目前这个课程的开设情况等。擅长听说读写译五项必备能力,具有丰富教学经验,而不是简单的拼凑、复制、模仿依据以上课程设计的基本条件,做好高职英语课程设计就要求教师进行问卷调查或访谈学生已经完成的课程标准或已经具备的语言知识,要求通过参考有关著作、论文、同类课程、教材等,与同行交流,收集积累案例或经验等等。

(二)汽车英语课程设计的标准

根据Furey提出的标准,高职英语课程设计必须把握下列标准:

1.是否有足够的理论依据英语课程设计必须基于什么样的科学理论基础,是否遵照其本身的科学性和社会性?

2.是否适合学生目标在从事高职英语教学中,教师要因材施教。不但熟悉、掌握学生的自身学习情况、学习兴趣,也注重培养学生的实际效果性。

3.是否具有成功实施的可能性和效果的可评性在从事高职英语教学中,教师要不断自评课程设计的真实效果。

(三)汽车英语课程设计的内容

汽车英语课程设计的内容取决于授课的理念。针对英语语言,如果认为语言是符号系统,课程设计就由语音、词汇、语法、句型构成,强调语言形式的正确性;如果视语言为交际工具,课程设计要考虑的是交际的人,交际发生的条件、交际的目的等。英语课程设计关注的不仅是语言形式的正确性,还有社交的适当性。在教学研究过程中,在多元智能理论的指导下,根据调研结果对课程教学内容进行逐步更新,教材从最初的纯英文阅读形式的到单独开发学生的专业英语阅读能力,从听、说、读、写等能力的平行拓展,汽车专业英语校本教材内容新颖,图文并茂,根据主题确定教学内容、重点及难点,融专业英语听、说、读、写训练于一体,重点突出,实用性强,有利于开发学生的多元英语语言智能,改善课堂教学氛围,提高教学效果。

三、多元智能理论下汽车英语课程设计需注意的问题

首先,汽车英语以提高口语交际能力为本位,突出应用性本课程在对汽车企业英语应用能力需求深入调研的基础上,按确定工作任务模块、同时突出语言技能的要求制订教学大纲和授课计划,明确了教学应达到的知识标准和技能标准。其次,课程体系整合突出全面性、逻辑性、典型性和实用性本课程以国际汽车行业最新的知识体系为基础,以市场为导向,将传统汽车英语课程的以训练专业英语阅读能力为主体的教学内容,整合成为汽车构成的4大部分分别为发动机、底盘、车身、电气设备以及发动机的两大机构五大系统和底盘的传动系统、行驶系统、转向系统和制动系统等各个任务模块以系统的知识主题构成课程内容体系。最后,教学手段优化,突出多元英语智能培养在教学实践中,注重将互动教学、角色扮演、案例教学、多媒体听力、课件加视频等教学手段相结合,增加学生的学习兴趣,提高其用英语分析和理解专业知识的能力和用英语进行专业领域的交际能力,并结合具体课程内容指导学生进行延伸性思考,以增强学生的创新能力,全面促进学生多元智能的发展。

篇4

本文着力介绍离合器及其操纵系统的结构知识,设计理论和方法,及离合器的故障分析与排除等。主要介绍离合器的结构形式,工作特性,结构的选型等。主要阐述了离合器(EQ153)从动盘设计,压盘的设计,离合器盖的设计,分离杆等的设计。

关键词:从动盘压盘离合器盖分离杆

Abstract

Thisarticlefromanalyzestheautomobiledevelopmentconditionbeginning,willnarratetheautomobileclutchdevelopmentandthefuturetendsto,pointedoutthecouplingproductwillbesupposedtohavefunctionandtoproductdesignbasicrequest.Thisarticlestrengthintroductioncouplinganditsthecontrolsystemstructureknowledge,thedesigntheoryandthemethod,andthecouplingfaultanalysiswithremovesandsoon.Mainlyintroducesthecouplingthestructuralstyle,theoperationalfactor,thestructureshapingandsoon.Mainlyelaboratedthecoupling(EQ153)thedesign,pressestheplatethedesigndesign,disengagingleverandsoondesign.

Keyword:pressestheplatedisengaginglever

离合器是汽车传动系的组成部件之一,在以内燃机为动力的汽车机械传动中,它通常装在发动机飞轮的后端,传动系通过它与发动机相联系,即其主动部分与发动机飞轮连接,从动部分与变速器相连接。在汽车行驶中,驾驶员为了适应同使用情况(如起步、换挡、制动、停车)的需要,常常要频繁地踩下、松开离合器踏板,使发动机与传动系暂时分离,以中断动力传递,随后又使之逐渐接合,以便传递动力。

由此可见,汽车有起步、进入正常行驶、变速、制动直至最后停车的整个行驶过程中,离合器都在起作用。

离合器的分类与基本要求

全套离合器应由两部分组成:离合器和离合器操纵。

就摩擦式离合器本身而言,按其功能要求,结构上应由下列几部分组成:主动件、从动件、压紧弹簧和分离杠杆。

盖总成通过螺栓安装到发动机的飞轮上,飞轮和压盘为主动件,发动机的转矩通过这两个主动件输入。飞轮和压盘之间为从动盘总成,它作为从动件通过摩擦接受由主动件传来的输入扭矩,并通过其中间的从动盘花键输出转矩。压紧弹簧通过压盘把从动盘总成紧紧压在飞轮上,形成工作压力。当发动机带动飞轮和压盘一道旋转时,通过压盘上压紧弹簧产生的工作压力所形成的摩擦力,带动从动盘总成旋转,完成转矩的输出。

摩擦式离合器结构类型较多,且可有许多组合。

离合器的结构型式可以不相同,但在使用上它的基本要求是一致的,它们应该是:

(1)能可靠地传递发动机的最大扭矩;

(2)接合过程要平顺、柔和,使汽车起步时没有抖动和冲击;

(3)分离时要迅速、彻底;

(4)离合器从动部分的转动惯量要小,以减轻换挡时变速器齿轮轮齿的冲击并方便换挡;

(5)高速旋转时具有可靠的强度,应注意平衡并免受离心力的影响;

(6)应使汽车传动系避免共振,具有吸收振动、冲击和减少噪声的能力;

(7)操纵轻便,工作性能稳定,使用寿命长。

以上这些要求中最为重要的是使用可靠、寿命长以及生产和使用中的良好技术经济指标和环保指标。(所有权:爱毕业设计网)

所谓使用可靠,指的是离合器机构或零部件在预定期内一直能正常工作。这意味着在使用中要注意保养,其耗费的劳动量也要尽量小。这就取决与制造和装配质量、结构设计和使用状况。很多情况下,离合器不能可靠工作就是和不完善的技术保养,零部件缺少必要的和调整有关。

高的技术经济指标指的是具有高性能质量的离合器且有相对便宜的价格。这主要由结构设计、制造工艺和生产组织管理等方面予以保证;减少零件数目,采用通用化、系统化设计和大批量生产,都有利于提高离合器的技术指标。

所谓环保,就是希望离合器工作时不产生有害的粉尘和不良的气味。因为要求车身或飞轮外壳全封闭是不可能的,也是不恰当的,因此只能从离合器上着手解决。离合器粉尘来源于从动盘总成摩擦片的磨损。以石棉基为原料的摩擦材料,其粉尘特别有害人体健康,应尽量避免使用。

目录

摘要…………………………………………………………I

引言…………………………………………………………II

第一章汽车离合器………………………………………1

1.1概述…………………………………………………………1

1.2汽车离合器的基本作用……………………………………1

1.3离合器的分类与基本要求…………………………………2

第二章离合器零件的结构选型及设计计算……………4

2.1从动盘总成…………………………………………………4

2.1.1从动盘总成设计……………………………………4

2.1.2从动盘结构与组成…………………………………4

(所有权:爱毕业设计网)

2.1.3从动盘摩擦材料……………………………………5

2.2压盘与离合器盖…………………………………………6

2.2.1压盘设计……………………………………………6

2.2.2离合器盖设计………………………………………6

2.3离合器的分离装置…………………………………………6

2.3.1分离杆结构型式的选择………………………………6

2.3.2分离杆的设计…………………………………………6

2.3.3分离杆的材料与热处理………………………………8

2.4弹簧的设计…………………………………………………8

第三章离合器常见故障的判断与排除…………………9

3.1离合器打滑……………………………………………………9

3.2离合器分离不彻底…………………………………………10

3.3离合器发抖…………………………………………………11

3.4离合器发闯…………………………………………………12

3.5离合器异响…………………………………………………12

3.6离合器踏板自由行程忽高忽低……………………………12

第四章离合器的正确使用与维护………………………14

4.1离合器的正确使用…………………………………………14

4.2离合器的维护…………………………………………………14

参考文献…………………………………………………15

结论………………………………………………………16

致谢………………………………………………………17

参考文献

[1]徐石安,肖德炳,刘伟信.《离合器》(汽车设计丛书).北京:人民交通出版社,1981

[2]林世裕主编.《膜片弹簧与碟形弹簧离合器的设计与制造》.南京:东南大学出版社,1995

[3]汽车工程手册编辑委员会,《汽车工程手册:基础片》.北京:人民交通出版社,2001

[4]张洪欣《汽车设计》北京:机械工业出版社,1995

[5]刘惟信,《机械最优化设计》北京:清华大学出版社,1994

[6]葛安林,《车辆自动变速理论与设计》,北京:机械工业出版社1998

[7]雷雨龙《机械式自动变速器起步过程控制》机械工程学报2000

篇5

20届经济管理系

专业建筑室内设计

学号1731024

学生姓名

指导教师

2019年4 月 27 日

毕业设计(论文)评语及成绩

学生姓名

班级

高职二班

学号

毕业设计

(论文)题目

汽车文化沐餐厅空间设计

指导教师姓名

指导教师职称

指导教师评语:

答辩小组意见:

答辩小组组长签字:年月日

成绩:

教研室主任签字:年月日

毕业设计(论文)任务书

题目

汽车文化沐餐厅空间设计

专业

建筑室内设计

班级

高职二班

学生姓名

所在系

经济管理系

导师姓名

导师职称

一、设计(论文)内容

汽车不单单只有冰冷的,我们可以通过颜色与材质的改变与添加来拉近汽车与人的关系,使得他汽车的用途被最大的发掘,使得汽车不单单是只能在马路上驾驶那么简单,我们也可以在餐厅中,坐在温暖的汽车中吃着美味的事物,看着节目享受着悠闲的时光,这就是我们进行这项设计的想法和出发点。

二、基本要求

1. 综合运用所学的知识,毕业论文必须坚持理论联系实际的原则,坚持理论研究的现实性。

2. 在进行实地考察的同时运用所学进行分析。

3. 保证论文质量,同时运用多种方法,写作规范。

三、主要技术指标(或研究方法)

1. 文件研究法。

2. 案例研究法。

3. 通过网络查找资料,和对相关经验进行综合分析。

四、应收集的资料及参考文献

[1]梁佳驰.绿色建筑设计理念和设计方法[J].工程技术研究,2016(5):118~119.

[2]段杰.室内设计中灯光的艺术设计分析[J].科技与创新,2018(13):122-123.

[3]谭慧婵.人性化室内设计理论探讨[J].建筑知识,2016(7).

[4]黄媛媛,吴章康.主题性餐饮空间的设计.现代装饰,2017(04):20~22.

[5]孔祥骏.从营销角度探析主题性餐饮文化空间室内设计.山东工艺美术学院,

2012.

[6]余晓宝.氛围设计[M].清华大学出版社,2006.

五、进度计划

4月 10日-4月 17日 确定论文题目、收集资料、完成开题报告;

4月 17日- 4月 27日 通过实地考察来制作平面布置图等 CAD图纸

4 月 27日-5月 7日 制作效果图与排版

5 月 7日-5月 14日 完成设计内容与报告和论文全文、审核并装订。

5月 14日-5月 24日 进行答辩并最终提交报 4月 30

教研室主任签字

时间

年月日

毕业设计(论文)开题报告

题目

汽车文化沐餐厅空间设计

专业

建筑室内设计

班级

学生姓名

000

一、文献综述(立论依据)

汽车的文化可以追溯到 1867年的往复活塞式发动机,从 1867年到现在,人们也越来越离不来汽车这种代步工具了,而汽车餐厅就是在这样的一个社会背景中的产物,通过对汽车的延展设计,开展关于以汽车为主题的餐厅,在对汽车再定义的基础上,拉近人与汽车的关系!

二、研究内容及预期目标

通过在汽车中添加不同的材质,使得汽车拥有温暖的感觉,通过汽车出现的不同场合和不同颜色的搭配来改变汽车的格调,给人眼前一亮的新鲜感,使得冰冷的全金属空间汽车变成一个温暖的饮食空间。

三、研究方案(研究方法)

1. 通过在线上线下进行关于大家对于汽车主题餐厅的需求进行调查问卷分析。

2. 通过对现有的汽车主题餐厅进行实地考察,提炼出不足和优点,并进行优化设计。

3. 通过大量的文献汇总,研究并敲定最终的设计方案。

四、参考文献

[1]梁佳驰.绿色建筑设计理念和设计方法[J].工程技术研究,2016(5):118~119.[2]段杰.室内设计中灯光的艺术设计分析[J].科技与创新,2018(13):122-123.[3]谭慧婵.人性化室内设计理论探讨[J].建筑知识,2016(7).

[4]黄媛媛,吴章康.主题性餐饮空间的设计.现代装饰,2017(04):20~22. [5]孔祥骏.从营销角度探析主题性餐饮文化空间室内设计.山东工艺美术学院,

2012.

[6]余晓宝.氛围设计[M].清华大学出版社,2006.

五、进度计划

4月 10日-4月 17日 确定论文题目、收集资料、完成开题报告;

4月 17日- 4月 27日 通过实地考察来制作平面布置图等 CAD图纸

4 月 27日-5月 7日 制作效果图与排版

5 月 7日-5月 14日 完成设计内容与报告和论文全文、审核并装订。

5月 14日-5月 24日 进行答辩并最终提交报 4月 30

指导教师签字

时间

年月日

汽车可以说是我们日常交通中不可或缺的一个部分了,大家也几乎人人使用过汽车,而对于汽车的概念可能还停留在冰冷,没有温度的阶段,但是他有没有办法通过一些材质的更换或者是出现环境的改变,使得他能够从大众视野中的冰冷的属性中走过来那?

我想是肯定的,在我们设计中就是要把不可能改变成可能,而改变物体的感知这个部分的处理,我们通常会通过灯光的处理和颜色和材质的处理来进行,进行一些视觉和感知上的改变,比如在灯光的采用中我们可以使用相对柔和的软光灯,而在材质上可以选择大自然的木质等一些亲近自然的材质,在颜色的选择上也可以尽量避免采用冷色调的颜色处理,以此来达到“沐”的感觉。

关键词:色彩应用;灯光应用;人体工程学;汽车元素

第一章前言1

1.1 、主题餐厅的目的与意义1

1.2 、主题餐厅的发展现状1

1.3 主题餐厅的发展趋势1

第二章形体训练内容概括2

2.1 汽车元素在主题餐厅中的应用2

2.2 人体工程学在主题餐厅中的应用2

2.3 色彩在主题餐厅中的应用2

2.4 灯光在主题餐厅中的应用2

第三章汽车主题餐厅设计空间的设计方案4

3.1 设计主题概况4

3.1.1 设计艺术层次的概括4

3.1.2 市场结合概括4

3.2 功能分区与动线分析4

3.2.1 功能分区5

3.2.2 动线分析5

3.3 汽车主题餐厅的色彩设计5

3.3.1 心理学角度分析5

3.3.1艺术角度分析5

3.4 汽车主题餐厅的灯光设计5

3.4.1 心理学角度分析6

3.4.1艺术角度分析6

第四章汽车主题餐厅空间设计的展示表达7

4.1 CAD绘制图展示7

4.2 3D绘制图展示7

总结8

参考文献9

致谢10

致谢

篇6

 

1 引言

《汽车设计》是车辆(汽车)工程专业或方向的一门专业核心课程,也是一门实践性非常强的课程。该课程任务是使学生学会分析和评价汽车及其各总成的结构和性能,合理选择结构方案及有关参数,并学到一些汽车主要零部件的设计和计算方法和总体设计的一般方法,为从事汽车技术工作打下良好的基础。然而《汽车设计》课程因为涉及内容广泛、概念众多、公式量大,因此采用传统的教学模式已经不能适应社会需求的发展[1]。目前我校汽车设计课程在教学中存在教学过于理论化,学生对于其理论知识的学习深度不够,知识难以接受理解。实践教学相对理论教学滞后,因此有必要对课程教学方法进行改革。

2教学方法改革

2.1多媒体演示教学

将多媒体教学课件引入到汽车设计理论教学中,具有以下几个优点:①图文并茂;它既能通过图形的讲解去理解结构的设计原理,又能通过文字对内容的归纳进行理论教学[2]。②信息量大、满足教学要求;枯燥的理论教学激发不了学生对课程内容的兴趣,通过课件可以引入很多实际设计中的知识从而增强学生的学习激情。③三维动画能清楚反映总成部件的相互运动情况,从而更好地加深学生对知识的理解。如手动变速器的设计教育论文,由于涉及众多齿轮的设计公式,教师很难讲授清楚,学生理解起来也很吃力。通过计算机课件,把变速器的设计过程通过动画直观展示,使学生形成清晰的感官认识,对正确理解和掌握知识点发挥了很大的作用,不仅顺利完成了难点教学,也使学生体验到科学的奥妙和技术的强大动力。④通过课件的声、图、文字、动画有机的融合,能激发学生的兴趣,使学生能够集中注意力进行听课,从而提高课堂教学质量的效果。

2.2 CAD/ CAE/ VPT等先进设计方法引入汽车设计教学中

随着计算机相关技术的发展,几何模型的设计从二维转向三维。在实现CAD/ CAE/ CAM 一体化的过程中,产品的设计、制造、检测全部实现无纸化,因此在汽车设计的教学中要与时俱进,将现代的设计手段、设计方法引入到汽车设计教学中[3-4]。

在汽车设计的教学中,对于传统部件的设计,可以采用CAD的设计方法进行教学,教学的重点可以通过使用三维设计软件进行汽车总成部件的设计。如图1所示,左图为变速器设计中所用设计公式的计算小软件,通过课程教学中的演示学生可以清楚地看出设计的步骤,根据计算后的结果引入CAD设计软件,最终形成右图所示的三维总成件,整个变速器的设计清楚可见,同时又通过先进的设计方法使学生掌握了现代汽车设计的相关方法论文格式范文。目前,机械CAD软件可以实现从概念设计、三维零部件建模到装配分析等各功能的设计。

图1 变速器设计实例

CAE设计方法的引入是汽车设计教学中又一个形象的方法。目前汽车制造企业在样机的制作、实验和性能评价过程中会充分利用计算机技术进行分析和仿真,这样无疑可以减少样机或试制品的制作次数。在三维模型组装完毕后,可将模型转化到仿真软件上进行动态仿真,模拟真实环境进行三维动态和碰撞等的分析,可以发现部件运动以后的问题,还可将关键部件或部位放在有限元分析软件中,对其在各种工况下的受力和变形进行分析,及时发现设计的薄弱环节,避免设计缺陷。CAE设计方法引入汽车设计课程教学中,不仅可以提高学生对课本理论知识的理解,更可以使企业实际需求与学生学习相结合,从而引导学生进行更加有针对性的学生。如图2所示,为转向节设计的CAE受力分析结果图,通过改组图片对比学生可以容易明白转向节在设计时应该考虑到三种特殊工况情况下的受力分析。

(a)车轮越过不平路面工况(b)紧急制动工况(c)侧滑工况

图2转向节设计实例

虚拟样机技术(VPT)就是在建筑第一台物理样机之前,设计师利用计算机技术建立机械系统的数字化模型,进行仿真分析并以图形方式显示该系统在真实工程条件下的各种特性,从而修改并得到最优化设计方案的技术。虚拟样机技术利用虚拟环境在可视化方面的优势以及可交互式探索虚拟物体的功能教育论文,对产品进行几何、功能、制造等许多方面交互的建模与分析。它在CAD模型的基础上,把虚拟技术与仿真方法相结合,为产品的研发提供了一个全新的设计方法。图3为引入VPT技术形成的车桥差速器仿真模型,通过该模型的运动仿真可以清楚地分析出部件在运动过程中的受力变化情况。

图3VPT设计实例

只有这样才能够提高学生的动手能力,增加学生对汽车设计理论的直接了解,有利于老师和学生之间的互动水平。

2.3 项目教学法引入到汽车设计教学工作中

项目教学法是一种以项目为导向,将理论与实际相结合的先进教学方法[5]。汽车设计课程因为所涉及实际性较强,教师在教学中可以设立相关小的项目。项目教学法便于用在汽车某个总成或部件的设计项目上,如转向器的设计、麦弗逊式独立悬架的性能计算、离合器膜片弹簧的优化设计等。通过项目教学进一步巩固学过的知识,强调学生的动手能力。

3.结束语

综上所述,通过对汽车设计课程教学方法的改进,按照新的教学改革思路,经过这几年的摸索,不断总结经验,初步取得了较好的成绩,学生对于汽车设计课程的教学测评已经连续2年获得优秀等级,达到了课程的培养目标。

参考文献:

[1]罗永健.汽车构造课程教学改革的探索与实践[J]广西大学学报(自然科学版),2002,(增刊):80 - 82.

[2]田国红,卫邵元,李刚.汽车构造课利用多媒体教学的探索与实践[J]辽宁工业大学学报(社会科学版),2008,10(2):121-122.

[3]段红杰,于善武.面向三维CAD/CAM技术的机械类专业教学改革的研究与实践[J]郑州航空工业管理学院学报(社会科学版):2007,26(5):125-127

[4]石良武,王建明.精品课程网络教学模式的研究[J]教育与现代化,2006,(2):45-49.

篇7

2汽车企业工艺设计解决方案

结合国内某个自主品牌汽车企业的现状,在经过分析研究汽车企业工艺设计与管理信息化需求的前提下,通过一系列的市场调查与各种设计解决方案的比较,选择了其中一种比较适合企业自身特点的工艺设计与管理信息化解决方案。

2.1各类BOM的不同视图管理

在产品开发过程的三个重要环节中,各类BOM作为串联三个环节的关键数据信息,在每个环节所对应的工作人员、功效以及需求也有很大区别,而且每一类BOM也会有比较大的区别,不同环节当中的工作人员对产品的视角也会有所差异,所以每类BOM一定要符合每个环节的需求。工艺设计部门通过同一个平台进行工艺路线工作的设计,根据不同环节及工艺四大专业的区别产生不同的专业视图,从而每输,除去工艺设计及管理系统自身的功能外,个专业都可以根据适合自己专业的BOM视图来设计完成工艺规划。

2.2工艺设计及管理系统数据模型

对于工艺设计及管理阶段来说,主要有以下四个方面的数据信息:produc(t制造什么),process(怎样制造),plan(t在什么地方制造),resource(使用什么设备造)。通过使用面向对象的系统开发方法,把以上四个方面的数据信息有机整合在一起,形成一个比较完备的数据管理模型(也可称为PPPR模型,在企业中形成一个串联产品设计、工艺设计及管理以及产品制造三个阶段的结构化数据信息统一体系。为了使产品在开发过程中的各类数据信息可以准确、快捷地在各个环节之间进行传输,除去工艺设计及管理系统自身的功能外,工艺设计及管理信息系统还需要做到能与上游的PLM系统以及下游的ERP系统集成,与上游的PLM系统集成可以将其上游的E-BOM经过调整后直接传输给工艺设计系统,从而可以作为工艺规划的基础;与下游的ERP系统集成可以将各种供应链信息传输到生产制造部门,作为产品制造的基础。

篇8

对日趋复杂的汽车部件及电子系统,传统的控制方法已显得力不从心。例如,传统发动机点火时序控制都是基于表格查找方法。这种方法对现动机来说有很多局限性,一是表格法不能将发动机的动态特征考虑进来;二是现动机需要控制的状态从以前的几百个到现在的上万个,这样,用表格查找的方法就很难实施,也无法再继续提高发电机的性能。随之而来,一种代替这种方法的现代控制是基本模型的控制方法(。这种方法的实施过程不太随发动机的复杂程度而变,但需要一个较准确的发动机的动态模型。另外,汽车电子器件与系统的开发方式和过程也必须加快速度、降低成本、增加质量才能满足厂家的管理目标。传统的硬件研制、测试、再研制、再测试的重复模式就显得费时、费力,成本也会相应增加。

在这样的背景下,越来越多的汽车电子厂家利用计算机辅助工程软件来加速研发过程,降低研发成本,提高产品质量。具体做法是:厂家在计算机的虚拟平台上来完成尽可能多(可高达80到90的工作量)的产品设计、分析工作,只是在最后一步才进行实际硬件实施。

无刷电机代替有刷电机油泵的设计实例

我们以发动机的油气控制系统为例来说明设计过程。如图1所示。首先,一个厂家决定用无刷电机来代替传统的有刷电机油泵。它可以从RMxprt软件开始,该软件中有包含无刷电机在内的13种电机和发电机模式。用户只需要输入与电机有关的设计参数,例如输入电压、功率、极数、永磁铁类型等,RMxprt就可以自动设计出一个基本的无刷电机,并计算出该电机在不同运营状态(例如空载和全载)的性能参数,例如力矩、转速和效率等。

如果用户想对以上设计的基本电机进行更进一步的分析与优化,他可以选用全功能的FEA软件。Maxwell是一套通用的用于电磁分析的FEA软件。它可以对任意的两维或三维的实体设计,其中每一物体可以有不同的包括非线性的电磁特性,进行与电磁场有关的静态或动态的性能分析。例如,用户可以分析一个电机内的磁场强度的分布来确定定子槽距的间隙,或者调整空气间隙来确定力矩的大小。同时Maxwell一个很重要的功能就是动态的损耗计算,包括由涡流和滞回引起的铁芯损耗。由于Maxwell软件的通用性,它可以用于除电机外任何包括电磁原理的系统分析与设计,例如可变磁阻的速度传感器、电磁线圈(Solenoid)、电抗器以及变压器等。

电机设计完成后,其准确的仿真模型可直接应用于线路仿真系统软件Simplorer中。这种从FEA模型直接生成线路模型的过程省去了很多对物理系统建模的繁杂过程。Simplorer是一个以电路为核心并具有包括机械、液压、热能等多物理域的仿真系统软件。与许多其他线路仿真软件不同的是,Simplorer线路中所用的元件都是基于物理原理的模型,而不是行为模型。这样,当整个系统模型建成后,其行为由每个元件的物理特性所决定。在线路仿真中,电机驱动控制电路的设计和分析首先得到完成,这包括用固体开关元件和PWM的控制方法对电机进行调速控制。

电路以外的系统设计实例

此外,Simplorer还可用于电路以外的系统设计。在下面的油路控制示意图(图2)中,由上面设计的电机来驱动油泵。燃油通过油泵过滤器,油压控制阀进入电控喷头。电喷头的开关与时间的长短由电磁阀来控制,阀中所用的电磁线圈也是由FEA的精确设计而来,电磁线圈的上端接电控部分,下端接电喷的滑体与顶针。这样整个油路的控制的系统模型就完成了,油路的压力及流量的动态特性就可以用仿真进行分析和调试。

与此类似的是燃气控制系统,其中所有元部件模型均来自Simplorer软件所随带的汽车和液压系统模型库,这些模型库包含了许多汽车中用到的基本元部件,例如导线、保险丝、点火器、发动机和变速箱等等。这样,汽车电子设计工程师可以很快地建立起所设计的系统模型。在油路和气路控制完成后,就可以进行点火系统的设计。在点火系统中,直接安插在点火器的点火线圈(ignitioncoil)的设计也是用FEA的方法设计出最优的电磁特性。通过电子控制的方式将电能转换成点火器所需要的高压电弧,因为电弧特性(电压高低、电弧延续时间长短)对发动机点火过程和运行性能有很大影响,所以用CAE设计出的一个性能良好的点火系统很有意义。由计算机仿真出来的点火器上的电压和电流波形图与其后的实际测试结果与仿真结果非常吻合。

本文小结

美国Ansoft公司EM工具是包括北美、欧洲及日本在内的汽车电子行业内的一种主流CAE产品,它的产品用于机电系统的仿真、分析、设计与优化。EM工具包括:专用元部件设计软件RMxprt和Pexprt;通用电磁系统的有限元分析软件(FEA)Maxwell;通用的多物理域仿真软件Simplorer组成。这些产品有机地组合在一起形成一个流畅、高效的设计平台。以上实例说明,利用先进的设计仿真软件,像发动机油气点火系统这样复杂的过程也可以在设计出实物之前进行精确的性能分析。

Ansoft的EM工具在汽车设计的其它方面也得到了广泛的应用,在下列汽车电子系统中,EM工具用来设计和分析传感器、驱动器、通讯和控制系统,它们包括:

动力系统:包括油气控制、点火系统、电水泵、电压缩机和电控阀门系统等。

变速系统:包括电控液压系统和舒适换速等。

底盘及悬挂系统:包括半积极和全积极悬挂系统。

轨道控制系统:包括ABS、电助力转向系统(EPS)、轮胎压力管理系统(TPM)等。

篇9

无源保护电路

用于汽车电子产品的无源保护网络如图1所示。与此相同或类似的电路广泛用于保护与汽车12V总线连接的各种系统。这种网络防止高压尖峰、持续过压、电池反向和电流过度消耗造成损害。图1的电流保护作用很明显,如果负载电流超过1A的时间很长,保险丝F1就会熔化。D1与F1结合防止电池反向连接造成损害,大电流流经正向偏置的D1并烧断保险丝。电解电容器大约在额定电压的150时有一个有趣的特性:随着终端电压的提高,这种电容消耗的电流也越来越大,就C1而言,它在输入持续升高时起箝位作用(最终烧断保险丝)。双电池助推时的电压为28V左右,这不会烧断保险丝,因为C125V的额定值足够高,额外消耗的电流很少。电感器增加了很小的电阻,以限制峰值故障电流以及输入瞬态的转换率,从而在存在尖峰时帮助C1实现箝位。

无源网络的主要缺点是它依靠烧断保险丝来防止过流、过压和电池反向造成损害。另一个缺点是,它依靠电解电容实现箝位。这种电容器老化以后,电解质会变干,等效串联电阻(ESR)提高的特性也就消失了,这会损害箝位效果。有时D1采用大的齐纳二极管以帮助这个电容器发挥作用。人们已经设计出了有源电路来克服这些缺点。

有源电路

图2显示了一个有源解决方案,该方案用于屏蔽敏感电路,使其免受变化不定的12V汽车系统的影响。采用LT1641来驱动输入N沟道MOSFET,而上述提供无源解决方案就不具备这种附加保护:首先,LT1641在输入低于9V时断开负载,以防在低输入电压时系统失灵,并在起动时或充电系统出现故障时,减少系统向非关键负载提供宝贵的电流的机会;其次,LT1641在首次加电时逐渐升高输出电压,对负载实行软启动;第三,通过限流和定时断路器保护输出免受过载和短路影响。如果发生电流故障,断路器就以1至2Hz的速率自动重新尝试建立连接,可以设定保护电路上行线路保险丝的容限,让它在LT1641的下行线路出现电流故障时不熔化;最后,图2所示电路隔离出现在输入端的过压状态,同时提供箝位输出,以便负载电路在出现过压时能继续正常工作。

在12V输入的通常情况下,LT1641将MOSFET的栅极充电至大约20V以充分提升MOSFET的电压,并向负载提供电源。27V齐纳二极管D1的两端分别连接栅极与地,但是在9至16V的工作电压范围内不起作用。当输入升高到超过16V时,LT1641继续给MOSFET的栅极充电,试图保持MOSFET完全接通。如果输入升得太高,齐纳二极管就会对MOSFET的栅极箝位,并将输出电压限制在大约24V。LT1641本身在其输入端能够处理高达100V的电压,而且不受栅极箝位动作的影响。栅极箝位电路比无源解决方案的箝位电路精确得多,而且简单地通过选择一个具有合适击穿电压的D1,就可以轻松调整栅极箝位电路以满足负载要求。

图2所示电路在负载电流高达1A左右时工作得很好,但是就更高的负载电流而言,推荐使用图3所示电路来防止MOSFET过度消耗功率。如果过压状态持续存在,如电气系统由两个串联电池供电的时间超过通常所需时间,或负载突降后电流慢速上升以及MOSFET较小时,那么过度消耗功率是有风险的。输出由D1和D2取样,如果输入超过16.7V,那么就向“SENSE”引脚反馈一个信号,以将输出稳定在16.7V。这里的调节比图1所示电路的调节更精确,并且可以通过选择合适的齐纳二极管轻松定制,以满足负载的需求。

总的功耗由“TIMER”引脚限制,这个引脚记录MOSFET调节输出所用的总时长。如果过压状态持续超过15ms,那么LT1641就停机并允许MOSFET停止输出调节。在大约半秒钟以后,该电路尝试重新启动。这种重启周期一直持续,直到过压状态消失并恢复正常工作为止。处理过流故障的方法与图2描述的方法相同。

电池反向保护

简单地增加一个串联二极管,就可以给图2或图3所示电路增加电池反向保护功能。

在大多数情况下,采用普通p-n二极管就可以,如果正向压降很重要,可以选择肖特基二极管。在隔离二极管中的功耗不可接受的关键应用中,图4所示的简单电路就可以解决这个问题。

在正常工作情况下,MOSFETQ2的体二极管正向偏置,并传送功率至LT1641。LT1641接通时,Q2栅极获得驱动,从而完全接通。如果输入反向,那么Q3的射极就被拉低至低于地电平,Q3接通,从而将Q2的栅极拉低并保持其接近Q2的源极电平。在这种情况下,Q2保持断开状态,并隔离反向输入,使其不能到达LT1641和负载电路。微安级电流流经1MΩ电阻,到达LT1641的“GATE”引脚。

高压LDO用作电压限幅器

最高输入电压额定值为25V或更低的降压稳压器(如LT1616)一般不考虑用于汽车应用。然而,如果与LT3012B/LT3013B等低压差(LDO)线性稳压器结合使用,在输入电压上的缺点就可以轻松克服。这种尺寸小、效率高的组合如图5所示,可以在汽车环境中提供3.3V输出。

LT3013B拥有4V至80V的宽输入电压范围,并集成了电池反向保护功能,无需特殊电压限制或箝位电路,因此节省了成本和电路板面积。在以适中的负载电流工作时,LDO稳压器的效率近似等于VOUT/VIN。如果VOUT比VIN低得多,那么LDO的效率就会下降。例如,将12V输入降至3.3V输出时,效率仅为28。

篇10

2排样图设计

采用单排排样,引导孔定位,有切口的级进模设计方案。考虑到翻边时孔会产生变形,工艺排样的原则是底部预冲孔,再拉深、翻边、整形、然后落料、切断。该零件成形共分为12个工步,条料宽度为114mm,步距为110mm。排样图见图2。

3多工位成形工艺的数值模拟

3.1多工位级进模排样条料模型建立

对于切边、冲孔、落料等相关的工序,在Dynaform里没有实际的模拟过程[7],故模拟从第4工步拉深开始。简化后工序最终确定为拉深-整形-冲孔-翻边-整形共5个工序。初始的毛坯条料形状设置为第3工序完成之后的形状,其5工位的排样如图3所示,毛坯材料为304不锈钢。为了得到精确的模拟结果,需将前一步模拟结果作为后一步工序的毛坯导入,图4所示为完成全工序模拟之后的条料排样图。

3.2有限元模型建立及数值模拟

从第4工位拉深开始建立有限元网格模型,如图5所示。根据工艺分析计算,将其主要工艺参数设置如下[8-10]:凸凹模间隙为1.1t,根据理论计算,拉深时压边力为26~35kN之间,取压边力为31kN,凹模、压边圈速度为3000mm•s-1,凹模行程为28mm,压边圈行程为25.5mm,压边圈行程滞后时间为0.00083s。第4工位的拉深模拟结果包括拉深极限图和厚度云图,如图6所示。由成形极限云图6a可以看到,拉深件所有单元的应变均在安全域以内,其拉深区域没有出现拉裂,在其边缘位置和侧壁上部分区域出现轻微的起皱现象。从厚度云图6b可以看出,拉深件的最大减薄区域为底部过渡圆角区,其最小厚度1.291mm,最大减薄率为14%。由于边缘区域最后要作落料切边处理,不影响零件质量,故只对零件侧壁处起皱区域采样,发现其最大厚度为1.548mm,最大增厚率为3.2%。对于板料拉深成形而言,一般认为变薄率在20%以内,增厚率在7%以内都是可行的[11],所以该零件在拉深成形之后厚度分布合理。图7为第5工位的拉深整形模拟结果,可以看到经过整形之后侧壁的起皱现象已经基本消失。零件的最大减薄率保持不变,只是底部减薄的区域有所增大。图8和图9分别为翻边及整形工序模拟结果,由于零件翻边底部倒角处最小直径为Φ1.1mm,无法一步成形,故在翻边和整形工序时分别设置此处的凸凹模间隙为1.15和1.1mm,通过挤压方式使其变薄。从模拟结果,该厚度基本达到要求,翻边处没有出现破裂和起皱现象。通过对简化后的多工位级进模进行全工序模拟,其结果如图10a所示,由图可见,零件的成形区域没有出现拉裂现象,起皱情况在整形之后基本消除,模拟结果与实际级进冲压得到的条料(图10b)成形情况比较吻合。以上结果表明,该零件成形工艺方案和工艺参数的设置在实际的生产应用中是合理可行的。

4多工位成形工艺方案试验验证

根据上述有限元数值模拟得出的零件成形工艺方案和工艺参数,生产出汽车冷却器缓冲罩多工位级进模。从图11可以看出,模具主要成形部件采用镶块方式加工,闭合高度为540.5mm,送料高度为34.2mm,在3150kN的压力机上安装试模。图12所示为试模所获得汽车冷却器缓冲罩,可以看出零件的表面光滑,无起皱、破裂的现象发生。利用超声波仪器进行产品的厚度测量,并将其与模拟的结果进行比较,其结果见图13。考虑到产品的对称性,选取了中心截面右侧零件沿Z轴方向的厚度变化值进行比较。从图中可以看出,模拟值与实测值厚度变化趋势一致,实测值小于模拟值,其最大差值为0.043mm,最大相对误差为2.87%。实际零件底部1.1mm处最小厚度为1.091mm,满足产品在此处的厚度要求。目前,该级进模已用于生产实际,每年可生产150万件。