数字电路设计论文模板(10篇)

时间:2023-03-22 17:46:29

导言:作为写作爱好者,不可错过为您精心挑选的10篇数字电路设计论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

数字电路设计论文

篇1

(1)高速数字电路信号的完整性;

(2)高速数字电路电源的设计两个方面。在本节中,笔者将进行系统的阐述,强化对高速数字电路设计的认识与研究。具体而言,主要在于以下几点内容:

1.1高速数字电路信号的完整性设计

在高速数字电路信号的完整性设计中,最主要的研究要点在于两个方面:一是不同电路信号网传输信号的干扰情况;二是不同信号在电路信号网中的相互干扰情况。也就是说,在电路信号的完整性中,信号干扰是最为关键的因素,无论是对于干扰问题,还是对于反射问题,都是高速数字电路信号完整性设计的研究要点。在理想状态之下,不同阻抗是相等的,存在相互匹配性。所以,在电路设计的过程中,要特别注意阻抗的控制,阻抗过小(过大)都会对线路中的电流及电压造成影响,进而形成信号干扰问题。当然,在高速数字电路的设计中,是很难以让临界阻抗与电路新城相互匹配的状态,这就强调,高速数字电路信号系统,应最可能的处于较为合适的状态,以最大程度上提高高速数字电路的信号质量。

1.2高速数字电路电源的设计

高速数字电路电源设计,是设计技术研究的重点内容之一。对于高速数字电路而言,需要大量的低电压元器件的应用,以更好地确保设计的需求。但是,低压元器件的应用,带来了一个问题,即电源稳定性受到一定的影响,造成电源设计问题的出现。因此,在实际的设计过程中,需要对高速数字电路电源设计作充分的考虑。在电源设计中“,电源完整性”是主要的关键因素,是指电源波形的质量。这一因素的影响主要表现为:

(1)瞬间电流产生过大,即在高速开关状态下,线路器件极易产生过大的瞬间电流;

(2)信号回路阻抗变大,即在电路之中,过多的电感以至于回路阻抗变大,进而产生一定影响。因此,在高速数字电路电源的设计中,最为理想的状态的设计就是在高速数字电路电源系统中,并不存在所谓的“阻抗”。这样一来,不仅不存在阻抗所带来的损耗,而且确保了系统中各电位的恒定,当然,在实际之中,理想状态的设计是不存在,电源系统所形成的干扰噪声,对高速数字电路系统的运行造成较大影响。于是乎,电路设计应对电源的电阻及电感做充分的设计考虑,提高高速数字电路设计的有效性。

篇2

    随着高职院校实验教学改革的深人,实验教学已成为高职院校教学工作的重要组成部分。实验教学已从过去单纯的验证性实验逐步深人到综合性、设计性实验,从利用实验来加深对已学理论知识的理解,深人到将实验作为学生学习新知识、新技术、新器件,培养学生实践能力、创新能力的重要目的仁‘〕。

1高职院校实验教学存在的问题

    数字电路实验是高职院校电子信息类、机电类专业必修的实践性技术基础课程,对培养学生的综合素质、创新能力具有重要的地位。在传统的实验教学中,数字电路实验教学多以验证性实验为主,并按实验指导书的实验步骤去完成实验,这种实验教学模式禁锢了学生的创新思维,失去了“实验”真正的含义,培养出来的学生实践技能差,无法达到高职教育人才培养的要求〔2)0

2开设数字电路设计性实验采取的措施

通过多年来的实验教学改革实践,证明了开设设计性实验有利于巩固课堂所学的理论知识;有利于提高学生电子系统设计能力、综合素质、创新能力[’]。2005年我校电子技术实验教学中心(以下简称中心)以“加强基础训练,培养能力,注重创新”为指导思想,在面向各类专业的数字电路实验教学中,开设了以学生为主、教师为辅的数字电路设计性实验教学,取得了良好的教学效果。

2. 1构建实验教学课程体系

    数字电路设计性实验是一种较高层次的实验教学,是结合数字电路课程和其它学科知识进行电路设计,培养学生电子系统设计能力、创新能力的有效途径,具有综合性、创新性及探索性[[4]。数字电路设计性实验是学生根据教师给定的实验任务和实验条件,自行查阅文献、设计方案、电路安装等,激发学生的创新思维。设计性实验的实施过程,如图1所示。

    为了提高学生的电子设计能力和创新能力,中心根据高职教育教学特点与规律,构建了基础型、提高型、创新型三个递进层次的数字电路设计性实验课程体系。三个实训模块的内容坚持以“加强基础型设计性实验,培养学生的电子设计能力、创新意识”为主线,由单元电路设计到系统电路设计,循序渐进,三年不断线,为不同基础、不同层次的学生逐步提高电子设计能力、创新能力的空间,如图2所示。

基础型设计性实验是课程中所安排的教学实验,学生在完成了验证性、综合性实验以后,具有了一定的实验技能,结合数字电路的基本原理设计一些比较简单的单元电路,学生按照教师给出的实验要求根据实验室所拥有的仪器设备、元器件,从实验原理来确定实验方法、设计实验电路等,且在规定的实验学时内完成实验。如表1所示。这一阶段主要是让学生熟悉门电路逻辑功能及应用,掌握组合逻辑电路、时序电路的设计方法,培养学生的设计意识、查阅文献等能力。

    提高型设计性实验对高职院校来说,可认为是数字电路课程设计。它体现了学生对综合知识的掌握和运用,课题内容是运用多门课程的知识及实验技能来设计比较复杂的系统电路,如表2所示。整个教学过程可分10单元,每个单元为4学时,每小组为一个课题。学生根据教师提供的设计题目确定课题,查阅文献、设计电路、电路仿真、电路安装调试、撰写课程设计报告等,完成从电路设计到制作、成品的全部实践过程。通过这一阶段的训练,学生的软硬件设计能力进一步提高,报告撰写趋于成熟,善于接受新器件,团队协作趋于成熟。

    创新型设计性实验主要为理论基础知识扎实、实验技能熟练的优秀学生选做,为“开放式”教学,实验内容主要是结合专业的科研项目、工程实际及全国或省级电子设计竞赛的课题。通过创新型设计性实验,强化学生电子系统设计能力,充分发挥学生的潜能,全面提高学生的电子系统设计能力、创新能力,为参加大学生电子设计竞赛奠定坚实的基础。

   数字电路设计性实验课程体系将数字电路基本原理、模拟电路、eda技术等多门课程知识点融合在一起,从单元电路设计到系统电路设计,深化了“系统”概念的意识。在每一轮设计性实验结束后进行总结,开展学生问卷调查,对设计性实验的教学方法、手段等进行全面评估,从而了解设计性实验教学的效果。在实验过程中,实验教师鼓励学生从不同角度去分析,大胆创新,设计不同的方案。

2. 2加强实验教师队伍的建设

    近年来,中心依托省级精品课程“数字电路与逻辑设计基础”、省级应用电子技术精品专业建设,合理规划,制定了实验教师队伍培养计划;专业教师定期到企业培训;专职实验教师参加实验教学改革研讨和对新知识、新技术的培训;同时制定优惠政策,吸引企业中具有丰富实践经验的工程师、技师到实训基地担任实验教师tb},形成一支能培养高素质技能型人才、能跟踪电子信息技术发展、勇于创新并积极承担教学改革项目的专兼职结合的实验教师队伍,实现了实验教师队伍的整体优化。

2. 3开放实验室

    为了保证设计性实验教学的有效实施,中心实行时间和内容两方面开放的教学方法。学生除了要完成教学计划内指定实验外,还可以根据自己的专业和兴趣,选择规定以外的实验项目。为了提高设计性实验的教学效果,学校制定了系列激励政策,调动了实验教师及学生的积极性。

2. 4建设创新实训室

    为了培养学生的电子设计能力、创新能力,给优秀学生营造良好的自主学习环境,提供展现创新设计的舞台,中心先后投人了30多万元,更新了实验仪器设备,建设了一个软件环境优良、硬件条件先进的创新实训室。该实训室配置了计算机、函数信号发生器、频率计、扫频仪、数字存储示波器、单片机系统设计实验开发系统、打孔机、制版机等仪器设备〔7〕。

2. 5完善实验考核机制

篇3

1概述

在教学过程中,具备数字系统设计实践工程能力,涉及相关数字系统课程体系教学与实践,在各高校的电气、电子信息类专业中,数字电路是一门专业基础课程,随着数字技术应用领域的不断扩大,在后续专业课程中,显而易见,随着电子产品数字化部分比重增大,它在数字系统设计中基础性地位越来越突出。

因此,培养适合现代电气、电子、信息技术发展的卓越人才,创新数字电路的课程几次理论与工程实践教学迫在眉睫。

根据我校近几年电气、电子课堂教学的实践情况,数字电路课程应该以面向应用的数字电路设计为核心,在熟练掌握基本电路教学内容的基础上引入先进的数字系统设计方法的课程教学和实践内容。

工程实践过程中,逐步从自底向上的设计方法逐步转变到自顶向下的设计方法中来,以教师科研应用来拓展,以全面培养优秀数字设计卓越技术人才[1]。

2探索构建数字电路教学中的多层次的创新实践平台

2.1多层次的数字电路创新实验平台构思。

面向卓越人才培养的数字电路课程创新实践教学,可以分层次进行在各个教学阶段逐步推进,包括:面向基础的数字设计的基本原理与工程创新实验教学模块、面向应用的数字电路课程设计教学和结合科研项目的创新实践平台[2][6]。

多层次的数字电路创新实验平台架构如图1所示。

2.2数字设计的基础原理与实验教学。

数字电路基础原理和实验教学是数字系统设计的课程体系的基础入门阶段,是培养数字逻辑代数与逻辑电路的重要过程,大类可分为时序逻辑电路和组合逻辑电路,其中时序逻辑电路主要包括:锁存器、触发器和计数器,组合逻辑电路包括,编译码器、多路复用器、比较器、加(减)法器、数值比较器和算术逻辑单元等。教学的目的是训练学生掌握组合和时序逻辑电路坚实理论基础,使学生掌握数字电路的基本概念、基本电路、基本分析方法和基本实验技能,不但要注重基本数字电路与系统设计理论的理解,同时让学生在学习中逐步了解面向应用和现代科技进步数字电路新的设计理念[2][3]。

2.3面向应用的数字电路课程设计实践教学。

随着电子设计自动化技术(EDA)和可编程器件(CPLD)的不断发展和应用,以EDA技术为主导的数字系统理念已经成为企业工程技术的核心。数字电路课程设计主要培养学生利用中小规模数字集成电路器件和大规模可编程器件进行数字电路设计和开发能力。在卓越工程师培养背景下,结合前阶段数字电路课程理论教学和实验教学的实际情况及EDA技术的发展状况,适时进行数字电路课程设计和EDA技术课程的综合衔接,以及课程深度融合[4]。主要内容包括:

2.3.1基于Multisim等相关软件的数字系统仿真实验。可以构建虚拟数字实验系统,不但较好地模拟实物外观外,还可以利用系统提供的实验平台开展实验的设计、仿真,进行实验内容的逻辑验证。

2.3.2基于通用和专用数字芯片的数字系统设计。其主要特点是有很好的直观性和具体性。

2.3.3基于硬件描述语言(HDL)的数学系统硬件描述。采用硬件描述语言实现数字逻辑设计,基于EDA环境仿真和验证。可以结合上述(1)和(2)的优点,采用硬件设计软件化技术应用于数字电路课程设计的实验教学中,通过综合性实验的自行设计和实验,对实验内容、实验规模、实验方法进行了综合创新设计[5]。

2.4结合科研项目的数字设计实验创新平台。

在高等院校,教师即承担教学任务,同时有各自的科学研究方向,同学们可以根据自己的研究兴趣,加入教师的科研团队,形成教学与科研互利的良性循环。面向卓越工程师培养的数字系统设计,可以借助横向或纵向科研项目形成综合教学体系。比如:搭建在线可编程门阵列(FPGA)创新实验平台,形成数字电路、电路线路课程设计、可编程逻辑器件以及集成芯片系统设计,形成面向数字系统设计的课程体系[3]。同时,应用高校与知名企业建立的校企合作平台,把企业界的研究信息和研发需求引入到教学平台,开拓了学生的研究思路和视野,提升了学生设计复杂数字系统的能力;目前,我校正在与国际知名的半导体公司Xilinx、Altera和Cypress陆续建立卓越人才大学培养计划,利用大学设置小学期,在FPGA和PSoC开发平台上进行了面向实际应用的数字系统设计,在实践平台上不仅有学校的任课教师,还有知名企业派来的一线工程师指导同学们的实践,相比改革前,取得很好的实践效果,同学们的数字系统设计水平得到了提高,同时在编程、接口、通信协议等方面也有了深刻的认识。

对于优秀的学生,借助全国各种形式的大学生电子(信息)设计竞赛这个创新平台,组织他们积极参与,激发他们的学习研究兴趣和创新意识,综合所应用的数字系统设计知识,发挥竞赛团队的协作精神。每年,我们都有部分优秀学生通过努力,创新设计的作品获得专业认可,并取得了良好的参赛成绩,也使得数字设计课程体系的建设上了一个新的台阶。

3基于创新平台的课程体系优化与实践

卓越工程师培养要求的数字电路系统设计课程体系协调好相关电气、电子类专业上下游相关理论课程、实验综合性设计同时得到协调发展。如何实践论文所提到的创新实验平台,应该引进现代数字设计理念,重点把EDA软件、设计工具、开发平台与传统的数字电路基础理论教学相衔接。我们在这几年对数字系统设计课程体系、创新实践教学内容等方面的进行了改革与探索,取得了一定的成效。经过这几年的实践,我们逐步构建了面向应用的数字系统设计课程优化体系[5],如图2所示。

4不断探索数字电路理论教学内容的改革与实践

4.1以数字电路设计为目的强化基本逻辑电路理论教学。

在进行复杂数字系统设计之前应该熟练掌握这些常用基本组合和时序逻辑电路,包括电路的功能、电路的描述以及电路的应用场合等。

树立电路设计思想首先需要熟练掌握一些基本的逻辑功能电路。其次,树立电路设计思想需要理论讲解与实践相结合,逐步熟悉硬件描述语言的描述方式。数字系统设计强调采用硬件描述语言来对电路与系统进行描述、建模、仿真等[2][3]。

4.2掌握面向应用的数字系统工程设计方法。

学生在掌握数字电路基本概念和一般电路的基础上,进一步掌握数字系统设计的方法、途径和手段。其主要内容包括:数字系统与EDA的相关概念、可编程逻辑器件、硬件描述语言、电路元件的描述、数字系统的设计方法、开发环境与实验开发平台以及应用实例的介绍等。这些课程内容涉及面较广,为了提高教与学的效果,探索总结了以下的教学重点内容,并作为教学实践中的教学切入点[1]。

随着电子技术不断发展与进步,现代数字系统设计在方法、对象、规模等方面已经完全不同于传统的基于固定功能的集成电路设计[1][2]。现代数字系统设计采用硬件描述语言(HDL)描述电路,用可编程逻辑器件(PLD)来实现高达千万门的目标系统。这一过程需要也应该有先进的设计方法。根据硬件描述语言的特性和可编程逻辑器件的结构特点以及应用的需要,在教学过程中阐述了先进设计方法。例如:采用基于状态机的设计方法设计复杂的控制器(时序电路),应用或设计锁相环或延时锁相环来处理时钟信号,应用自行设计(IPcore)软核来提高数据吞吐量[1][2][3]。

4.3深化数字电路实验教学改革。

实验实践教学过程中,注重基础训练与实践创新相结合的实验教学改革思路,加强学生工程思维训练、新平台工具的使用、遇到逻辑问题的综合分析能力,理论与实践相结合的分析能力。在实践过程中的提高创新性和综合性能力,面向应用的数字电路创新平台建设,需要不断提高课程试验、实验和实践过程在教学中的比例,在符合认知规律的同时,逐步加强来源与实际需要的综合性数字设计实验。

5结语

数字电路是电气、电子信息类专业的一门重要的专业基础课程,论文针对当今卓越工程师培养的要求,以及在教学过程中遇到的主要问题,探讨了面向应用的数字电路课程创新实践平台。提出了多层次的数字电路创新实验平台结构和面向应用的数字系统设计课程优化体系。目的在于,通过课程及相关课程体系改革与创新,使得学生更快、更好的适应现代数字技术发展的需求。

参考文献

[1]孔德明.《数字系统设计》课程教学重点的探讨,科技创新导报,2012.1,173-174.

[2]任爱锋,孙万蓉,石光明.EDA实验与数字电路相结合的教学模式的实践,实验技术与管理,2009.4,200-202.

[3]叶波,赵谦,林丽萍.FPGA课程教学改革探索,中国电力教育,2010,24,130-131.

篇4

 

数字电路时钟实验电路的设计方案种类很多,但大多是静态显示电路。本设计是一种动态显示的数字时钟,使用4位LED数码管,可显示小时和分钟,电路功耗低、显示器件寿命长;采用4.19MHz晶振荡作为时基,计时非常准确;用加速输入脉的方法进行调时、调分,使时间调整更加方便准确;全部使用CMOS集成电路,减少整机功耗,提高了可靠性;虽然动态扫描显示的电路相对比较复杂,但作为实验电路,它用到数字电路各部分知识,如振荡电路、分频电路、计数电路、译码电路、动态显示电路及控制电路等,对于刚刚学习过电子技术基础的学生来说,是非常适合的,对电子爱好者学习电子电路设计也是很适用的。

一、电路组成及工作原理

篇5

关键词:

CDIO;教学模式;实践环节;课程衔接

由麻省理工学院等4所大学创立的CDIO工程教育理念,是继承和发展欧美工程教育改革的一种新的教育理念。该理念包括12条标准,涵盖了具有可操作性的能力培养、全面实施以及检验测评。它以产品研发到运行的生命周期为载体,让学生以主动的、实践的、课程之间有机联系的方式来学习工程的理论、技术与经验[1-2]。数字电路设计是计算机组成原理、接口与通信以及嵌入式类课程的先修课程。如果在数字电路设计的教学中没有考虑好与后续课程在理论教学与实践教学内容上的衔接,则容易导致学生在后继课程的学习中遇到困难[3]。

1数字电路设计课程实践环节的教学条件和教学现状

(1)社会对软件人才的需求量远大于对硬件人才的需求量,学生出于就业考虑,容易形成重软件轻硬件的观念。(2)硬件课程入门较难,实践环节大都是验证性的,缺乏探索性,不利于培养学生解决实际问题的能力,从而打击了学生学习硬件课程的积极性,导致学生形成“好软怕硬”的思想。(3)传统教学模式是教师课堂讲授,适当结合验证性实验,不能激发学生的学习积极性。学生学完理论、做完实验后,仍然缺乏解决实际问题的综合能力、工程实践能力及创新能力[4]。传统教学模式的弊端导致在与计算机组成原理等后继课程的衔接中,学生不能从系统的高度认识数字逻辑[3-5]。(4)计算机学院开设的数字电路设计和计算机组成原理等课程,采用同一套实验设备,在一定程度上能让学生的学习具有连续性。(5)自创的“try”教学方法可适用于数字电路设计课程及实践环节的教学[6-8],但由于算机组成原理和数字电路设计两门课程的内容和要求不同,“try”教学方法在应用于后者时,应有所调整。

2数字电路设计课程实践环节改革方案

2.1实践环节的层次设计为了获得更好的教学效果,教师探索了各种方法,其中有案例法、项目驱动法、任务驱动法等[9-12]。从实验室建设、实验手法、课程整合等不同角度来提高实践环节质量[13-14]也能够有效提高教学效果。比较上述方法后,考虑与后续课程的衔接等因素,根据CDIO标准3、5、7的要求,结合自创的“try”教学方法,我们将数字电路设计课程的实践环节分成两个层次,从最简单的门级电路编程开始,难度由低到高、循序渐进,最终让学生完成源于实际案例的综合实验,初步具备实际工程能力。表1从实验项目设计、教学方法等7方面对基本实验和综合实验进行了对比。在教学中,学生学习的主要障碍不是掌握理论方法,而是缺乏理论知识和实践问题认知的沟通[11]。因此,我们在理论教材中选择15个知识点,设计成相关的任务和实验内容,如全加器、表决器等,采用“try”教学方法并结合任务驱动法,鼓励学生多动手多尝试,通过任务、查资料、仿真、实物验证、教师验收、撰写实验报告和总结这7个步骤完成对15个理论知识点的学习。为了进一步提高学生的实际工程能力,基于科研项目,贴近实际生活,我们编写了自动售货机、出租车计费器、电梯控制器等6个综合实验。实验采用分组方式,每组学生自行选择一个题目,在规定时间内完成该综合实验。综合实验的教学过程一般包括:教师项目及要求、学生分组并认领项目、组内分工、查资料、设计方案、论证可行性、学生在宿舍仿真、学生在实验室的硬件开发板上实物验证、教师验收、提交实验报告、实验答辩、成绩评定等13个环节。教师在项目要求的时候,只给出最基本的要求,学生在设计的过程中可以自行扩充,也就是说,同一个综合实验题目,其设计可繁可简,不同学生设计的电路可能会不一样。

2.2实践环节评价体系的构建根据CDIO标准11,构建了实践环节的评价体系。

2.2.1基本实验评价方法基本实验评价指标是:①时限;②工作量;③完成质量;④验收程序;⑤实验报告。其中①、②、④、⑤考核了学生的个人能力和表达能力,指标③、④、⑤考核了学生的专业知识、建造产品和系统的能力。对这5项指标加权平均得到该基本实验项目分数,如式1所示,其中Sj表示某个基本实验的得分,Ki表示某个考查指标的系数,Mi表示在某个考查指标上的得分。由15个基本实验的得分累加后除以15,得到基本实验项目的总得分,如式2所示,其中BS表示基本实验的总得分,Sj表示某一个基本实验的得分。

2.2.2综合实验评价方法综合实验评价指标是:①时限;②查资料的能力;③实验方案;④创新性;⑤设计说明书;⑥完成质量;⑦团队合作能力;⑧工作量;⑨验收;⑩实验报告;实验答辩。其中①、②、⑤、⑦、⑧、⑨、⑩、项考核了学生的个人自身能力、探究能力、团队合作能力和表达能力,指标③、④、⑤、⑥、⑨、⑩、考核了学生的专业知识、建造产品和系统的能力。修改式1可对这11项指标的得分加权平均,从而得到综合实验的分数。

2.2.3实践环节最终成绩评定办法及选优措施实践环节总评成绩由基本实验成绩和综合实验成绩两部分加权平均得到,从工作量及投入时间方面考虑,一般建议两者各占50%。综合实验结束后,根据学生在实践环节的学习情况和成绩,特别是综合实验中的表现,向各相关学科实验室推荐优秀本科生,使他们有机会加入科研项目组,参与教师的科研工作。

3实施效果及分析

为检验课改成果,我们设计了一套课程评价系统,包括一套具有反向题的学生调查问卷、学评教的数据、学生的理论课成绩单、实践环节成绩单、一套后继课程教师评价学生掌握先修课程知识的调查问卷、一套学生所在学科实验室评价该生的调查问卷等。评价系统还包括对这些数据的统计和分析。统计数据显示,在CDIO模式基本实验和综合实验实验项目设计上,学生满意度达到81.6%,在教学内容、教学方法、实验环节考核方法等方面,学生满意度达到97.4%,比传统模式提高了20几个百分点。这些数据表明,新教学模式比传统模式更能激发学生的实验兴趣,促进他们较大幅度地提高项目设计能力、动手编程能力、团队合作能力。我们将2013级计算机科学与技术专业的学生分成两组,采用相同的教学资源和不同的教学方式分别授课,一组采用新模式教学,另一组采用传统模式教学。经过一个学期的学习,2015年1月数字电路设计课程理论考试中,在试卷相同的情况下,新模式组成绩优良率达到52.9%,比传统模式组高24个百分点;新模式组不及格率为15.7%,比传统模式组低15个百分点;新模式组平均卷面成绩为78分,比传统模式组高6.1分。由此可知,基于新标准并结合“try”方法的新教学模式能够提高实践环节的教学质量,切实促进学生深入理解理论课的相关知识点,有助于学生更好地完成课程衔接,为学生后继课程的学习打下坚实的基础。追踪这些学生后继课程的学习情况,统计2015年6月计算机组成原理课程设计期末考试成绩后发现:原新模式组优良率达到80.3%,比传统模式组高25个百分点;原新模式组不及格率为0,比传统模式组低21个百分点。计算机组成原理课程理论考试中,原新模式组平均卷面成绩为68分,比传统模式组高5分;原新模式组不及格率为17.4%,比传统模式组低5个百分点。此数据表明,数字电路设计课程实践环节采用新教学模式教学有助于学生对后继课程的学习,特别是实践环节成绩有了大幅提升,不及格率也明显下降。

4结语

新教学模式基于CDIO理论,结合“try”教学理念,将数字电路设计课程实践环节分为基础实验和综合实验两个层次,并包含了配套的成绩评定方法和课程评价系统。实践证明,新教学模式能够更好地促进课程衔接,有利于培养学生自主学习、主动探索的精神和能力,培养学生的工程实践能力、沟通交流能力及团队协作能力。改革的下一步,是根据每一门课的特点,把基于CDIO理念的教学模式推广到课程群其他课程的教学中去,以期从课程层次化、课程间网络化等多角度、多层面地把学生培养成为优秀的工程技术人才。

参考文献:

[1]百度文库.CDIO工程教育模式探析[EB/OL].(2012-09-15).

[2]查建中.工程教育改革战略“CDIO”与产学合作和国际化[J].中国大学教学,2008(5):16-19.

[3]白中英.数字逻辑、计算机组成原理两门课的衔接性[J].计算机教育,2011(19):36-36.

[4]陈进,吴柯.从一个工程实例对“数字电路”教学的反思[J].电气电子教学学报,2012,34(2):112-114.

[5]曹维,徐东风,孙凌洁.基于CDIO理念的数字逻辑实践教学探索[J].计算机教育,2012(12):75-77.[6]包健.计算机组成原理课程及实验的改革与建设[C]//全国大学计算机课程报告论坛论文集.北京:高等教育出版社,2007:75-77.

[7]FengJ,DaiG,BaoJ.PedagogicalpracticeofE-learninginthecourse“theprinciplesofcomputerorganization”[C]//IEEEInternationalConferenceonScalableComputingandCommunications&TheEighthIEEEInternationalConferenceonEmbeddedComputin.NewYork:IEEE,2009:529-532.

[8]章复嘉,包健,吴迎来.网络化计算机组成原理课程辅助教学方法探索[J].计算机教育,2012(2):67-70.

[9]贾熹滨.案例教学法在数字逻辑教学中的应用[J].计算机教育,2011(13):67-70.

[10]程书伟,张丹,程晓旭.基于“项目驱动法”的数字电路课程教学的探索与实践[J].电脑学习,2010(3):138-139.

[11]曲凌.任务驱动的小组教学法在实践教学中应用[J].实验室研究与探索,2014,33(6):200-203.

[12]李文.IACI-CDIO理念下项目驱动的数字逻辑实验教学改革与实践[J].实验室研究与探索,2014,33(6):161-164.

篇6

 

0.引言

自激多谐振荡器接通电源后,不需要外加触发脉冲,就能自动振荡,输出一定频率的矩形脉冲。因为矩形波中含有非常丰富的谐波成分,故称之为多谐振荡器,由于其没有稳定状态,故又称为无稳态多谐振荡器。多谐振荡器在数字电路中常常作为脉冲信号源, 触发器和时序电路中的时钟脉冲一般是由多谐振荡器产生的[1]。故多谐振荡器在实际生产生活中应用非常广泛,如汽车的转弯灯等,故对该电路的研究工作具有很大的实用价值。。

电路仿真软件可以对所设计的电路的性能进行预计、判断和校验[2]。使电路设计人员在设计阶段直观地、快捷地检验电路参数设置的合理性,以免造成时间和物质上的极大浪费,是电路设计人员提高工作效率、减小工作强度的有效手段。。本文对所设计的三极管无稳态多谐振荡器电路进行了理论计算,然后利用Protel 99 SE软件模拟仿真了该电路的工作过程,输出了各测试点的电压波形,直观地验证了理论分析的结果,并得到相关结论。。

1.理论计算

篇7

绍兴文理学院(以下简称“我院”)作为一所地方性本科院校,在国家本科人才培养体系中,承担着培养应用型人才的任务。应用型人才必须掌握较为系统、扎实的专业知识和技能,而且应具备较强的实践能力和二次开发、创新能力。如何提高应用型人才的培养质量,课程教学是一个十分关键的环节。

“数字电路”是我校自动化专业的一门专业基础课程,在整个人才培养方案中起着承上启下的作用,它既有自身的理论体系,又有很强的实践性。传统讲授式的教学方法主要由老师讲解一些事实、原理、特点和推理过程;在描述一个电路时,老师一般只从理论上讲解电路的原理及运行结果,学生只需要认真听讲,课后在练习本上做些习题。这种教学方法虽然注重了教学的系统性和完整性,但学生只能被动地接受知识,学习兴趣得不到有效激发,实践应用能力也得不到充分的培养,已不适用于基于应用型人才培养目标下的“数字电路”课程教学。为了提高我校应用型人才的培养质量,改进传统的教学模式势在必行。本文围绕应用型人才培养目标,总结了“数字电路”在课程教学模式改革方面的实践探索。

一、课堂教学模式改革实施情况

应用型人才的培养必须落实到课程教学中,而课堂教学是学生获取知识、培养能力的重要途径,如何构建有效课堂、体现学生的主体地位,使学生不仅能掌握较为系统的专业知识,而且能提高实践、创新能力,“数字电路”课程在以下几方面进行了改革尝试。

1.应用目标导入式教学模式

应用型的定位应真正体现“以应用为本”、“学以致用”的理念。应用目标导入法是以一种实际应用项目为载体,以完成项目设计过程中的某个阶段性结果为目标,导入其中必备知识的教学方法。

在学习“逻辑函数”这一章节内容时,在以往教学过程中,没有应用目标引入,按教材内容直接讲解“逻辑函数”,学生学习比较盲目,学习的目的性和主观能动性有待提高。本次课堂教学中,先讲解一个简单的“少数服从多数表决电路”的设计过程:逻辑抽象—列出真值表—写出逻辑函数—画出逻辑电路。从设计过程引入逻辑函数在数字电路中的重要作用:逻辑函数是实现逻辑电路的依据,逻辑函数的复杂程度直接决定电路的复杂程度。为了能设计出符合要求的经济而可靠的逻辑电路,引入“逻辑函数”这一章节的教学内容。通过应用目标导入教学内容,学生明确了所学知识的实际应用,不仅激发了学生的学习积极性,而且为知识的实际应用奠定了基础。

2.探究式的教学模式

应用型人才需要具备较强的分析、解决问题的实践能力及二次开发能力。探究式的教学模式是一种以学生为主体,由教师引导学生发现数字电路在实际应用中可能存在的问题、探究解决问题的教学方法。在教学过程中,学生是主体,而教师处起到引导作用,对每个问题如何提出,又怎样展开和论证,都必须精心设计。

在学习“组合逻辑电路中的竞争冒险”这一章节内容时,传统的教学方法是教师直接从理论上讲解竞争冒险的产生原因和消除方法,内容比较抽象,学生不容易理解,属于教学难点。在本次教学过程中,先让学生对某一实际电路写出逻辑函数;然后通过Proteus仿真此电路,分析电路运行结果,引导学生发现问题:电路的仿真输出结果与理论结果不完全符合,产生不符合逻辑的尖峰脉冲或毛刺,即竞争冒险;然后引导学生分析问题:为什么会产生这样的结果?最后让学生根据问题产生的原因,自己分析解决问题的办法,对原有电路进行改进。

本次教学中,结合形象直观的实际应用,通过探究式的互动教学方式,活跃了课堂气氛,激发了学生的学习兴趣,不仅增强了学生对知识的理解,同时培养了学生分析、解决实际问题的能力。

3.基于项目设计的课堂讨论模式

基于项目设计的课堂讨论法就是在课前先布置一个设计项目,然后让学生在课堂上讨论、点评、拓展及改进。这种教学方法可以活跃课堂气氛,充分发挥学生的主观能动性,培养学生的知识应用能力和创新能力。

在学习“组合逻辑电路设计”和“时序逻辑电路设计”等章节内容时,课前先布置三个具有应用背景的设计题目,要求学生分三组,每个学生都必须将三个题目都做在练习本上,同时每一小组的同学分别仿真一个设计项目。在布置设计任务时,为了培养学生的创新能力,教师只规定主要设计任务,而电路具体功能可以让学生自由发挥,合理即可。在课堂上教师对每个题目的设计任务进行新的拓展,要求学生分组讨论,如何对现有电路进行改进,完成新的设计。经过10分钟左右的分组讨论后,每组派三名同学先仿真调试课前布置的设计任务,然后当场修改电路以完成新的设计任务。当有同学在讲台上讲解、设计和调试电路时,下面的同学精神集中,发现错误及时更正,充分发挥了学生的主观能动性,提高了学习效率。通过学生讨论,活跃了课堂气氛,培养了学生分析、解决问题的能力和团队协作精神。同时,学生在设计过程中会产生许多意想不到的错误,而这些错误也可以帮助教师及时补充相关知识点,以帮助学生解决疑难问题。

4.基于proteus的仿真项目驱动

Proteus是英国Labcentwer electronics公司开发的多功能EDA软件,它比较适合仿真数字信号,还能仿真单片机及外围器件。本次课堂教学模式改革中,将“基于proteus的数字电路仿真项目”贯穿于整个教学过程中,把传统的理论教学与实际应用相结合,通过对数字电路的仿真,变抽象的电路为形象的仿真,不仅有助于学生对知识的理解,而且提高了学生的项目设计能力。

二、精选教学内容,拓展课堂内容

应用型人才需要具备扎实的专业知识,但必须强调以应用为主。传统的“数字电路”教学中,偏重于教学的系统性和完整性,教师通常按照教科书的编排顺序组织教学,缺少与实际应用项目的有效配合,学生不能切实体会到工程实际与理论知识之间的关系,实践应用能力得不到有效提高。在本次数字电路教学过程中,根据实际需要对教材内容进行了精选,对于集成电路芯片,删掉了其内部结构方面的教学内容,简单介绍工作原理,重点增加了集成芯片的实际应用案例。同时,为了培养学生的课外实践能力,利用课程网站引入课外应用广泛的芯片,通过介绍资料的查询和阅读方法,拓展课堂内容,增强学生的课外知识,有利于学生今后实际工作的开展。

三、考核方式改革

篇8

一、课程体系改革

课堂教学和实验教学是相辅相成的,是学生学习与掌握知识的重要手段。学生在大学期间的学习,是一个认识、实践、再认识、再实践的过程。就认识而言,可以在课堂上认识,也可以在实验室里认识;而就实践而言,也同样可以在课堂上实践。主课程设置上可作如下安排:(1)一年级下学期开设《电路分析》课程并安排实验课,让学生掌握基本的分析电路和设计电路的知识;(2)二年级上学期开设《电子技术基础》课程并安排实验课,在学期末进行两周的电子技术基础课程设计,让学生掌握模拟电路和数字电路的分析和设计知识,锻炼工程实践能力,使学生对电子专业产生浓厚的兴趣;(3)二年级下学期开设《高频电路》《EDA》和《电子电路设计(Protel)》课程并安排实验,培养学生利用计算机设计电路的能力;(4)三年级上学期开设《单片机原理与接口技术》和《传感器原理与应用》两门课程并安排实验,在学期末进行两周的单片机课程设计,让学生制作一个简单实用的电子产品,充分调动学生的积极性,在设计过程中初步掌握程序编制及单片机电路的设计方法,了解电子产品的开发过程;(5)三年级下学期开设《电子测量》和《单片机应用设计》选修课,以单片机为控制核心并结合数字电路和模拟电路设计多个电子产品,使学生熟练掌握程序编制及单片机电路设计方法,熟练掌握各种仪器的使用方法,初步具备独立开发电子产品的能力,为电子设计竞赛培养后备人才。

大学生电子设计竞赛分为全国性比赛和省级比赛,都是每两年举办一次,单数年份为全国性比赛,双数年份为省级比赛,通常在九月初举行。参加竞赛的同学主要为大三的学生,参赛前已系统地完成电子线路理论课和实验课的学习,并掌握了一部分单片机和大规模可编程逻辑器件应用的知识,具有一定的理论基础和动手能力。但是,由于所学各门课程比较独立,同学们普遍缺乏解决实际工程问题和设计制作较大规模应用电路的工作经验。因此,在电子设计竞赛前的暑假,需要对参赛队员进行培训。由于学生已经在《单片机应用设计》选修课中得到锻炼,培训可以在此基础上进行。重点提高学生分析和解决问题的能力、设计制作较大规模应用电路的工作经验和多学科知识的综合应用能力。在培训过程中仿照竞赛要求将同学分组,从较简单的应用电路开始,要求每组学生完成数个难度递增的实验电路设计、制作与调试,并写出详细总结报告。在制作每个电路的训练过程中,鼓励学生用不同的方案实现,培养学生的创新能力。

二、师资队伍建设

现行教育体制目前还存在一些问题,重知识传授而轻素质与能力的培养,重理论研究而轻实践环节的训练,重对传统的继承而轻对现状的突破和创新。认为实验课只是一个辅助环节,实验课的老师可以随意配备,任课老师只要会示波器、信号源和稳压电源等简单仪表的使用就可胜任实验课的教学任务,这种观点是片面的。实验课不单纯是让学生学会仪表的使用,学会测量几个实验数据,更重要的是要帮助他们树立一种系统观念、培养他们系统分析问题、解决问题的能力,提高工程实践能力和培养创新精神。这些不仅要求任课老师有深厚的理论基础,而且还要有较高的业务能力。为此,实验课应该配备一支综合素质高、业务能力强的实验教师队伍。我国现行高等院校大部分实验教师是青年教师,他们理论基础较好,但实践经验缺乏。为了提高教学效果,一方面他们可以向有经验的老教师学习;另一方面,可以到电子企业考察学习,从实际的工作中获取实践经验。

篇9

《数字电子技术》是我院应电、通技、电信、微电专业的一门主干专业基础课,有基础性、专业性和技术性强的特点,是一门理论和实际紧密结合的课程。由于半导体技术的迅速发展,微型计算机的广泛应用,数字电子技术在现代科学技术领域中占有越来越重要的地位,数字电路也正朝着大规模、低功耗、高速度、可编程等方向迅速发展,应用也更加广泛。可以说,数字化已成为当今电子技术的发展潮流。

由于受到传统教学模式的影响,我院数字电子技术课程一直沿用比较单一的教学方法,采用“理论—实验—设计” 的教学模式,即将《数字电子技术》、《数字电子技术实验》和《数字电子技术课程设计》三门课程与之对应,分别为纯理论课、纯实践课程和单纯的理论设计。在教学过程中,后者作为前者的后续课程,主观上是为了帮助学生理解理论知识或深化电路基本应用,但由于纯理论讲解枯燥乏味,学生茫然不知所措,因而缺乏主动学习的动力。在实验过程中也不能将理论知识融入其中,弄不懂原理,无法解释实验现象,因而总是疲于应付,交差了事,根本谈不上理论和实践的结合,效果显然不好。在后期的课程设计过程中,学生也只是从理论上设计电路,既不做电路仿真也不进行电路制作,虽然学生在一定程度上对电路功能有了进一步的理解,但实际意义并不大。由此可见,这种模式比较注重教学内容的理论性和系统性,缺乏知识和能力的相互融合,使各环节严重脱节,从而造成了学生不能学以致用,缺乏处理实际问题和解决问题的能力。

为了更好的解决这个问题,我们教学团队大胆提出了“教、学、做合一”的教学思路,使学生能够从实际问题出发,边学边练,极大调动了学生的参与积极性,学习效果显著提高。针对本次教学改革,结合我院实际,具体开展了以下工作。

一、首先,认真挑选教材

为适应高职教育的特点,我们以“必需、够用”为度,认真选取了一本以项目为单元、以应用为主线,将理论知识融入到每一个实践项目中去并有着丰富知识和内容的项目教程,力求通过不同的项目和实例来引导学生,将数字电子技术的基础知识、基本理论融入其中,从而为学生建立一个宽广、针对性和实用性强的知识平台。

二、确定项目内容

由于我们采用的是教学做合一的教学模式,教学内容将紧紧围绕项目进行,因此如何使项目内容具有典型性和可操作性,能不能由简入繁,真正激发学生的学习兴趣就显得尤为重要。我们经过仔细分析和研讨,按层次确定了与教学内容想关的五个项目,主要涉及基本门电路、组合逻辑电路、时序逻辑电路、555应用电路等。在最后的电路设计与制作环节中,我们则选取了综合性较强的“抢答器电路设计”课题,通过电路的仿真、制作、调试和故障排除等,开阔了学生的视野,提高了学生对数字电路的理解和综合应用能力。  三、认真编写训练指导书和报告册

数字电子技术课程的操作性很强,学生操作训练非常重要。一方面可以进一步巩固和加强理论知识,提高解决实际问题的能力,另一方面可以学会使用常用电子测量仪器、学会调试数字电路逻辑功能的方法。由于我院学生的基础较差,理解能力和动手能力相对较差,为了帮助和指导学生顺利完成各个实训项目,我们编写了与实践环节配套的训练指导书,该书共分五个项目,十二个工作任务,内容包括任务要求、任务目标、训练器材、内容和步骤、思考题等,能较全面的指导学生完成各个训练任务。报告册则是与学生操作练习配套的“作业本”,是用于检验学生学习效果、了解学生学习情况的记录本,我们也针对项目要求和结果进行了详细编排。

四、教学方法

(一)根据项目单元所承担的功能,完成项目所应传授的知识和能力,将教学内容分解到每一项目单元中,并根据具体内容采取不同的教学方法及考核方法。

(二)对各个项目之间相互重复与交叉的知识,应进行优化组合,强调知识间的相互联系和衔接,注意知识层次的过渡并加以综合化改造。

(三)理论教学与实践教学相互渗透,理论知识与实践技能考核相互结合,采用“讲练结合”现场教学和“讨论式”课堂交流方式。

(四)实践性教学始终与理论教学紧密结合,将课堂理论教学与仿真实验、电路制作相结合,使学生真正能够在学中做和做中学,达到锻炼自己、提升能力的目的。

(五)教学效果

篇10

 

1 引 言

随着数字电路的发展越来越多的设备上使用数字逻辑电路,而数字电路多以脉冲方波的电流进行驱动和控制。对于电压或电流的测量使用最多的仪器是万用表,但是常见的万用表往往只能测量直流或交流的电压,万用表的交流档测量出来的数值是其有效数值,普通万用表的交流档仅是针对正弦波形的交流电设计的。对于数字电路尤其是以脉冲方波驱动和控制电路或器具而言,使用普通的万用表进行测量显然不准确,这时就需要使用价格昂贵的示波器或是真有效值万用表。无疑给没有试验条件的情况下带来不小的麻烦。

使用常见的微控制器和一些专用的集成电路通过简单的编程就可以实现对数字电路中常见的峰值电压或电流检测,不但简单易用而且成本极低。为了降低开发的难度和电路设计的复杂度,本系统使用Atmega32这款基于增强型的AVR RISC结构的低功耗8 位CMOS微控制器。其具有32K字节的系统内可编程Flash(具有同时读写的能力),1024 字节EEPROM,2K 字节SRAM,32 个通用I/O 口线,32 个通用工作寄存器A/D模数转换,用于边界扫描的JTAG 接口,支持片内调试与编程,三个具有比较模式的灵活的定时器/ 计数器(T/C),片内/外中断,可编程串行USART,有起始条件检测器的通用串行接口,8路10位具有可选差分输入级可编程增益的ADC ,具有片内振荡器的可编程看门狗定时器,一个SPI 串行端口,以及六个可以通过软件进行选择的省电模式[1]。可以满足针对数字电路检测的绝大多数要求。

2 硬件组成

因此使用ATMega32单片机即可以满足设计的需要又可以降低开发成本。该单片机具有8路模数转换通道,选择其中一路作为测量直流电的通道,将负载和采样电阻串联后接入电路,根据负载阻值的不同来设定不同的档位,达到不同范围的测量。而另一路则需要先利用ATMega32单片机的ICP捕获功能[2],捕获脉冲方波的上升沿并且根据这个上升沿信号再产生一个跟随信号作为峰值采用保持芯片LF398的控制信号,当LF398的控制信号为高电平时LF398为采样状态,而控制信号为低电平时LF398为保持状态,因此单片机产生的这个跟随信号正好与要测量的脉冲方波信号为同频同相的信号。当要测量的脉冲方波信号为低电平时,产生的跟随信号也是低电平信号将之前LF398采样到得峰值电平进行保持。这时再利用单片机的A/D模数转换将该峰值进行模数转换进行测量得到了脉冲方波的峰值电压值。两个通道测量的数值均显示在LCD显示屏上结果一目了然。系统的总体结构图如下图1。

由于AVR单片机内部集成A/D模数转换功能,因此可以大大的降低硬件电路的设计复杂度,其外围电路及器件可以尽量的减少。但是在PCB布线的时候应尽量紧凑以避免电磁的干扰。

图1系统的总体结构图

2.1 电源模块

因系统中要使用到峰值采样保持芯片LF398,其供电需要±15伏,因此购买一个18伏的电源作为适配器,需要接7815和7915获得LF398所需的±15伏。在7815后再接7805可获得+5伏的电压给单片机和液晶屏供电。再通过电阻分压的方式与TL431做一个外部的参考电压。该参考电压作为ATMega32单片机的模数转换的参考电压接在单片机的AREF引脚上。

2.2 峰值电压采样保持模块

采用National Semiconductor所生产的LF398芯片作为峰值电压的采样保持芯片。并根据图2保持时间与保持电容的曲线选取所需的保持电容,为能达到理想的保持时间应使用高品质的聚苯乙烯电容[8]。

图2 保持时间与保持电容的选取曲线

LF398的连接示意图如图3所示。引脚3用于连接被测量的脉冲方波的触点,引脚8则接单片机产生的用于控制LF398何时采样和保持的跟随信号控制引脚。引脚5输出的则是被保持住的峰值电压值,将这个模拟量再接回单片机的另一个模数转换通道进行模数转换[8]。

图3 LF398的连接示意图

2.3 显示模块

由于需要显示汉字部分A/D模数转换,系统选用内核驱动芯片为KS0108的12864液晶显示屏,根据要写的字制作字模即可。液晶显示屏使用并口方式连接在Atmega32 单片机的PC端口的8个引脚上。液晶屏上的9~16引脚分别对应接单片机的PC0~PC7引脚。另外液晶屏上还需5个端口。分别是E、RW、DI、CS1、CS2端口分别接在PD端口上的五个引脚即可。液晶屏的供电也来自7805转换后得到的5伏电压。液晶屏和峰值保持电路的接口连接电路图如4所示[3]。

图4液晶屏和峰值保持电路的接口连接电路图

3软件组成

软件部分主要由ICP功能模块、液晶屏显示模块、A/D模数转换模块三大部分组成。开发环境为AVR Studio应用GCC编程。ICP功能使用服务中断的方式,当有上升沿脉冲接入时则发生服务中断并进入中断程序,在服务中断程序中设置延时,设定何时开始和终止跟随信号的产生和关闭。以确保采样保持住的是峰值电压[7]。液晶屏显示模块主要负责液晶屏的初始化和显示功能。A/D模块使用交替法对两个通道进行循环转换,并将数值显示在液晶屏上。

3.1 ICP捕获及跟随控制信号的产生

首先要对ICP端口进行设置和初始化,其目的就是使能ICP捕获中断,同时使能T/C0的溢出中断,跟随控制信号的产生是在捕捉中断处理程序中完成[4]。其端口的初始化程序为:

void init_icp(void)

{

MCUCR= 0x00;

GICR= 0x00;

TIMSK=0X21;//使能ICP捕捉中断;使能T/C0溢出中断

TCCR0=0X02;//8分频,溢出中断T0

TCCR1A=0X00;

TCCR1B=0XC2;

TCNT0=0;

ICR1=0;

TCNT1=0;

SEI();

}

使用ATMega32单片机的PB0引脚作为跟随控制信号产生的引脚,跟随控制信号应在源信号的上升沿之后一定时间后再产生,这样避免采集到的峰值电压偏低,因此要在整个程序中设置两个全局变量,整数f用于设定被测量信号的上升沿之后到产生跟随控制信号的之间的间隔时间,整数b用于设定峰值期间采样的时间,当选择合适容值的保持电容时可以将这两个时间设定值设置的很小以便测量高频率的脉冲信号。为了使A/D转换器满足一定的转换精度[10],应尽量进行多次采样保持测量以保持测量精度。跟随控制信号的中断服务程序为:

void Icp_timer1(void)

{

ICR1=0;

TCNT1=0;

TCCR1B=0XC2;

delay_nus(f);

TCNT0=1;

i++;

PORTB=i;

delay_nus(b);

PORTB=0;

}

3.2 A/D模数转换

本系统采用8MHz晶振,参考电压为外部AVCC即为5.0伏。设置ADC初始化程序为:

void ADCINI(void)

{

ADCSRA= 0x00;

ADMUX=(adc_mux&0x1f)|(1<<REFS0)|(1<<REFS1);

ADCSRA=(1<<ADEN)|(1<<ADSC)|(1<<ADIE)|(1<<ADPS2)|(1<<ADPS1); //64分频

SEI();

}

转换的程序为:

while(!(ADCSRA&(1<<(ADIF))));//等待转换结束

Ddata=ADCL;

Ddata+=ADCH*256;

Ddata=(unsignedint)(((float)Ddata)*5000/1023);

通过这样的转换后得到的Ddata就是量化后的电压数值单位是毫伏。通过对这个整数求商或是余数得到其各个位上的数值,若想使用引脚AREF上的电压为参考电压时,可使ADMUX=(adc_mux&0x1f),根据参考电压的稳定性系统会有1~2mV的偏差。这样就所得到的被测脉冲电压的峰值电压了[2,5,6]。

3.3 液晶屏显示模块

硬件方面系统选用的是内核驱动芯片为KS0108的12864液晶显示屏,KS0108驱动芯片是专用于图形点阵显示的液晶显示控制器,每一个KS0108芯片内置8x64字节显示RAM,可直接控制显示64x64点的LCD显示,用户只需要向KS0108的显示RAM中送数据,KS0108就会自动扫描将显示RAM的数据自动在LCD液晶显示器上显示出来。显示操作的指令仅有5条A/D模数转换,使用起来极其方便。在使用液晶屏之前先要对其进行初始化操作[9],初始化程序为:

void init_lcd(void)//初始化函数

{

set_start_line_L(0); //显示起始行为

set_start_line_R(0); //显示起始行为

write_LCD(LEFT,CMD,DISPLAY_ON);

write_LCD(RIGHT,CMD,DISPLAY_ON);

}

要将数据显示在液晶屏上的话,就是对液晶屏进行写的操作。写液晶屏的操作程序为:

void write_LCD(unsignedchar lr,unsigned char cd,unsigned char data) //写入指令或数据

{

CLI();

LCD_BUSY(lr);

if(cd==CMD) SET_LCD_CMD;

else SET_LCD_DATA;

SET_LCD_WRITE;

SET_LCD_E;

LCD_DIR_PORT= 0xff;

LCD_OP_PORT= data;

asm("nop"); asm("nop");

asm("nop"); asm("nop");

CLEAR_LCD_E;

LCD_OP_PORT= 0xff;

SEI();

}

在主函数中将A/D模数转换后的数值写入到液晶屏上就实现了数值的显示功能,由于是实时显示结果的。所以把显示数值的函数放入到While(1)的死循环中再加上一定的延时程序就完成了实时显示和刷新数值的功能。当没有被测的脉冲方波电压时,由于单片机的ICP引脚没有捕获到上升沿,就不会触发采样保持芯片LF398进行采样保持,因此测量出的数据就是0伏。

4 结语

基于ATMega32单片机和电压采样保持芯片LF398制作的双通道数字电压测量计,主要是利用了AVR单片机强大的集成多通道的A/D模数转换功能。在使用高精度外部参考电压的情况下,A/D模数转换的精度非常的高,误差仅在几毫伏之间。且AVR单片机的抗干扰能力强,基于哈佛结构的AVR单片机具有更高的数据吞吐能力,能完成相当复杂的设计功能,具有普通的单片机所无法比拟的优势。通过细致的制版可以将这个测量计制作的很小便于携带和使用,且测量精度高。对于实验室的学生非常适合。

[参考文献]

[1]刘海成编著.AVR单片机原理及测控工程应用:基于ATmega48/ATmega16 [M].北京航空航天大学出版社,2008.3.

[2]李泓等编著.AVR单片机入门与实践[M].北京:电子工业出版社.2001.

[3]金钟夫等编著.AVR ATmega128单片机C程序设计与实践[M].北京:北京航空航天大学出版社,2008

[4]周兴华编著.AVR单片机C语言高级程序设计[M]. 北京.中国电力出版社, 2008.

[5]张军,宋涛编著AVR单片机C语言程序设计实例精粹[M]. 北京:电子工业出版社,2009

[6]朱飞,杨平编著.AVR单片机C语言开发入门与典型实例[M]. 北京:人民邮电出版社,2009

[7]ATMEL,具有32KB系统内可编程Flash的8位微控制器ATMEGA32数据手册,2007

[8]National Semiconductor ,LF198/LF298/LF398 MonolithicSample-and-Hold Circuits DataSheet,1998

[9]ks0108 12864 液晶的C语言驱动 ,wenku.baidu.com