时间:2023-03-23 15:20:55
导言:作为写作爱好者,不可错过为您精心挑选的10篇能源化学工程专业论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
1.化学工程与工艺专业的性质及培养模式
化学工程与工艺专业属于工科专业,授予工学学士学位。由于化学工业的相关领域极为广泛,化学工程与工艺专业涉及的专业方向也就非常多样化,各高校的化学工程与工艺专业特点亦不尽相同。我校近年来根据社会经济、工业发展的需求趋势,兄弟院校化学工程与工艺专业方向的设置,以及我校原有的相近专业优势,设置了能够体现我校特色的化学工程与工艺专业方向,逐步建立了适合我校化学工程与工艺专业的教育培养模式。2008年,我校化学工程与工艺专业已有7届本科毕业生,其学生就业形势良好,社会反馈积极.在制定教学计划的工作中加强教学内容和课程体系的改革,加强实践教学环节,目的在于进一步提高教学质量,培养适应能力更强的化学工程与工艺人才。
2.化学工程与工艺专业的任务
根据化学工程与工艺专业的性质,化学工程与工艺专业的任务是培养学习化学工程学与化学工艺学等方面的基本理论和基本知识,受到化学与化工实验技能、工程实践、计算机应用、科学研究与工程设计方法的基本训练.具有对现有企业的生产过程进行模拟优化、革新改造,对新过程进行开发设计和对新产品进行研制的基本能力。由于涉及化工的学科和领域很多,化学工程与工艺专业除了让学生学习一般应用化工的基本知识和基本技能外,还应该结合本地区、本行业及本校的实际情况,重点学习化工在某个或某几个领域中的具体应用,以便形成不同高校应用化工专业的特色专业方向.
3.化学工程与工艺专业的业务培养目标
本专业培养具备化学工程与化学工艺方面的知识,能在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面工作的工程技术人才。
为了使不同高校既有统一的规范,又有不同的专业特色,根据应化学工程与工艺专业的任务和业务培养目标,化学工程与工艺专业的毕业生应该具有较扎实的化工理论基础,较宽的化工应用知识以及一定的工程技术基础,从而该专业的课程设置(公共课、基础课除外)应由基础化学课、工程基础课和专业方向课3部分组成。基础化学课包括:无机化学、有机化学、分析化学、物理化学等。工程基础课主要包括:化工仪表与自动化、化学工程基础、电工电子学等。专业方向课:可根据具体方向选择专业化学课,如电化学工程方向可选理论电化学、化学电源工艺学、电解工程和电镀工程等。精细化工方向可选择化工工艺学、化工分离工程、化学反应工程等。另外实践性环节包括基础实验、综合实验、提高实验、生产实习、毕业实习和毕业论文等。
我校化学工程与工艺专业方向
基金项目:陕西省高等教育改革研究项目(项目编号:11BY60);榆林学院教学改革与课程建设研究项目(项目编号:HGY2015-10,JG1530,ZD1508)。
榆林学院在陕西省高等学校“质量工程”和“本科教学工程”项目的导引下,以“育人为本、夯实基础、广泛联合、突出实践、注重应用、提高能力”为指导思想,以知识、技能及素质的培养为主线,在地方应用型高校中首次构筑并实践了“重基础、宽口径、广联合、突实践、强能力”的能源化工技能型人才培养新体系[1-2],即从传统化学工程与工艺理论课程体系向“化工课程群―化学课程群―材料科学课程群―装备与控制课程群”四元三阶的交叉学科理论课程体系演变;从传统实践教学体系向“三层次实验―三模块实习实训―多途径技能创新训练”三元三阶的立体化实践教学体系演变。
四元三阶理论课程体系
现代化工学科的发展已经和能源、材料、机械等多个学科深度交叉,化学工程与工艺专业的传统课程体系已经无法为这一发展提供充足动力,能源化工生产过程中也急迫需要化工工艺师、化工设备师、化工仪表师、化工产品分析师等复合技能型人才,这意味着传统化学工程与工艺专业课程体系面临重新“洗牌”的形势,不少课程需要减少学时,一些新课程又需要开设。化学工程与工艺专业从传统课程体系向“化工课程群―化学课程群―材料科学课程群―装备与控制课程群”四元三阶的现论课程体系演变。全新的现论课程体系可以使学生在知识结构上达到“产教融合,卓越培养”,既具备扎实的工科基础,又具备与时俱进的工程思维,有力地提升了学生的综合应用能力[3]。榆林国家级能源化工基地的产业发展为化学工程与工艺专业新课程体系的建设提供了思路。图1显示了已构建的四元三阶理论课程新体系的框架。
“化工课程群―化学课程群―材料科学课程群―装备与控制课程群”均由学科平台课(必修课)、专业方向课(必选课)和选修课组成,使学生具有扎实的化工基础和良好的工程素养,为学生提供了适应地方产业特色的知识体系,为区域能源化工基地的建设提供了大量复合技能型人才。
三元三阶实践教学体系
新形势下,应用型本科院校教学改革的重点是注重应用、重视实践、突出工程思维能力的培养。化工学科作为一门注重实践能力培养的应用型学科,人才培养更需要深入了解实际能源化工生产过程,加强基本技能培养,强化应用能力训练并提升综合工程素质。[4-5]我校构筑的化学工程与工艺专业实践教学体系已从传统单一的“基础实验―专业实验(实习)”演变为“三层次实验―三模块实习实训―多途径技能创新训练”三元三阶的立体化实践教学体系。图2显示了三元三阶实践教学新体系的框架。
三元三阶实践教学体系中,三层次实验包括基础实验、综合实验、专业技能实验;三模块实习实训包括课程设计与专业见习、仿真与综合实训、生产实习;多途径技能创新训练包括毕业论文、科创活动、产教融合。其中,三层次实验、三模块实习实训和毕业论文为必修内容,科创活动、产教融合为选修内容。立体化的实践教学体系贯穿了本科四年的学习,使学生掌握娴熟的实践应用技能。通过系统的、综合的技能训练,使学生了解了产业发展方向和地方经济特点,强化了学生工程意识和实践能力的培养,全面提升了技能型能源化工人才培养质量。
3、宽口径大类培养与特色化分类提高
化学工程与工艺专业工程特色显著、专业口径宽、覆盖面广,作为榆林学院升本后的第一个本科专业,在榆林煤、气、油、盐四种资源转换驱动下,专业培养目标不能局限于单一方向,适应性要广,因此只能实行化工大类招生。新形势下应用型本科教学改革的趋势一是加强专业基础、实行大类培养;二是重视实践、突出创新思维和创新能力的培养。因此,实施“宽口径大类培养与特色化分类提高”的培养方案,对于国家能源化工基地经济建设所需的技能型能源化工人才的培养具有十分重要的意义。
参考文献:
[1] 张鹏、高维平、李健秀:《化工专业人才培养的教育内容和知识体系的构建》,《化工高等教育》2007年第24卷第5期,第1-4页。
[2] 刘峥、陶慧林:《地方高校化工专业人才培养方案构建与实施》,《教育教学论坛》2010年第35期,第214-215页。
[3] 姚干兵、王雅琼、张晓红:《拓展化工专业实践 优化创新人才培养》,《广州化工》2012年第40卷第23期,第170-172页。
当前,大多数工科专业将无机化学和分析化学的课程内容进行重新组合,形成无机及分析化学。通过系统地学习和掌握化学的基本概念、基本理论以及化学基础知识,培养学生对化学的兴趣和解决化学问题的能力。无机及分析化学中的化学热力学、化学动力学、物质结构、四大平衡理论是要求必须掌握的。这些基本理论和知识在能源化学中的应用是很基础的东西,能为后续专业课程的学习奠定良好的化学基础。[1]我们所开设的新专业能源化学工程,主要研究方向为:能源清洁转化、煤化工、环境催化、绿色合成、环境化工。它以化工的理论与技术为应用基础,围绕新能源利用与化学转化,实现能源利用和可持续发展。重视与提高课堂教学质量和推动无机及分析化学实验在培养学生动手能力与实验创新能力方面起着重要作用,是无机及分析化学课程改革必须直面的棘手问题。因此,进行模块化优化无机及分析化学教学内容、多方面激发学生学习无机化学的兴趣、充分利用现代多媒体技术革新教学方法、培养学生的知识运用能力、有效提高无机及分析化学课程教学质量,可以满足社会及区域经济的发展对人才的需求和素质教育的要求。
一、模块化优化无机及分析化学教学内容
所谓课程模块,描述的是围绕特定主题或内容的教学活动的组合,或是一个内容上及时间上自成一体、带学分、可检测、具有限定内容的教学单元,它可以由不同的教学活动组合而成。模块化教学强调理论教学、实践、练习、研讨的同步式一体化的教与学,强调在专业教学过程中,把理论、实践等环节紧密结合。基于以上课程模块化的考虑,将无机化学和分析化学两门课程的教学内容进行模块化教学(见表1)。由于将无机化学和分析化学的课程内容打乱后进行重新组合,导致概念和知识点多,各章节之间存在较强的独立性。[2]因此,要合理安排大一第一学期的教学内容,这样有助于学生转变思维方式和学习方法。
二、多方面激发学生学习无机及分析化学的兴趣
兴趣是最好的老师,良好的学习兴趣是主动学习的原动力。要学好无机及分析化学,激发学生的兴趣至关重要。[3]在绪论教学过程中,要做好本课程的介绍及发展前景和学生学习心理方面的工作,在无机化学教学中建立好教师、学生和教材三者之间的相互关系。第一,在绪论课上介绍无机和分析化学发展过程及发展前景,让学生认识到学习本课程的重要性,以达到激发学生学习兴趣的目的;接着主要介绍无机及分析化学的作用及学习方法和相关考核办法。第二,阐明化学与人类生活密切相关的环境、能源、材料以及人类社会生活中的热点问题,以此为载体深入浅出地介绍化学与人类生活、社会发展的关系。第三,在专业导论课上强调无机及分析化学是能源化工类相关专业的基础课,能为以后的专业课学习和将来从事工作奠定基础。第四,通过新生认知见习,让学生在参观相关无机化工企业中获得感性认识;在平时的课堂教学中,利用一些贴近生活的例子解答知识疑惑,激发学生的学习兴趣。第五,建立合作学习小组,布置课后课题作业,利用网络资源学习无机及分析化学,查找相关资料完成课程论文作业。
三、充分利用现代多媒体技术革新教学方法
在无机及分析化学教学中,利用现代多媒体技术革新教学方法能提高教学效果。要面对的教学问题有:课前制作精美的多媒体课件,发挥多媒体课件的优势;主讲教师课堂讲授“动”与“静”结合,活跃课堂气氛;不可彻底忽略传统的板书;进行多媒体技术与传统教学技术相结合,有效提高课堂教学效果。[4]第一,使用多媒体技术教学可以模拟化学反应历程,让学生清晰地看到原子或分子的拆分及重新组合的过程,化抽象概念变为具体事物,这样可以加深学生对化学概念的理解。如,Flas制作了各种类型分子杂化轨道(sp,sp2,sp3,dsp2等)的形成过程。第二,采用多媒体教学手段展示教学重点、难点,实现人机对话,有助于学生理解和记忆课本内容。第三,进行多媒体教学时,应以学生为主体,但教师依然是教学活动的组织者和引导者。
四、培养学生知识的运用能力
通过学校组织学生参加各类化工学科竞赛活动是调动能源化学工程专业学生对无机及分析化学基础课程兴趣的重要举措。[5]第一,积极组织学生参加广西各类化学实验技能竞赛,坚持开展国家级、省部级大学生创新创业实验项目。第二,为了鼓励和培养大学生创新能力,学院组织学生参加化工年会化工论文竞赛。第三,开放实验室,鼓励学生积极参与到开放实验室的研究课题;设立创新实验基金,由学生自由申请,对实验取得阶段性成果的学生给予创新基金资助。此外,改革无机化学教学方法,必须将传统的验证性实验转变为新型的探究性实验,通过探究性实验培养学生的创新能力。在导师的指导下,学生在设计实验方案中能够开发智力、培养良好的实验素养,锻炼自学能力。
五、适应能源化工专业要求方面的改革
能源化学工程专业是一个综合性、实践性很强的专业,在理论教学上要求学生掌握能源化学工程基础理论和相关技能。在实践教学上,应明确教学过程中的内容重点和难点,尤其是热力学方面的内容应该重点详细讲解,使学生更好地理解能源转化及利用过程中的一般规律,为低碳环保使用能源奠定基础。我们针对实践性很强的能源化学工程专业,依据其专业的特点实施校内实训和校外实习相结合,使课程实验、课程设计、毕业设计、社会实践活动等环节能为培养具备高素质的能源化学工程专业人才服务。此外,我们还完善校内实验实训和校外实习基地的建设,向企业提供人才培养方案,共同建设与加强人才培养方案中的实践性教学环节。在实践评价体系的建设中,收集专家评价、教师评价、实习接收单位评价、系(分院)自评、学生评价等信息,做到以评促建。
六、结论
本文针对我校能源化学工程专业开设的无机及分析化学课程,在优化教学内容、激发学生兴趣、利用各种教学方法、培养学生能力以及适应专业要求方面对教学环节进行了总结和探究。加强基础理论知识教学使学生具备扎实的实践技能,进一步培养学生的创新能力,提高教学质量,能为培养能源化学工程专业创新型人才奠定基础。
[参考文献]
[1]韩洪晶,杨金保,刘淑,等.能源化学工程专业本科生创新能力培养体系的建立与实践[J].教育教学论坛,2013(15):228-229.
[2]孟广波,毕孝国,付洪亮.能源化学工程专业优化实践教学体系研究[J].中国电力教育,2014(3):145-146.
[3]朱清,李成胜,张征林.无机及分析化学教学改革初探[J].化工时刊,2013(4):49-50.
根据现代化学工业的特征及社会对化工人才需求的趋势,应用型高校化学工程与工艺专业的目标是培养化学化工理论基础扎实,实践动手能力、自主学习能力、创新能力及外语与计算机应用能力较强,适应化工、冶金、能源、轻工、医药、环保等部门从事工程设计、技术开发、生产技术管理等方面工作的应用型高级工程技术人才[2]。为了实现上述目标,化学工程与工艺专业应用型本科人才应具备的基本素质与专业能力包括7个方面:①树立正确的世界观,具有良好的人文精神、科学素养,能处理好人与环境、人与社会的关系;②掌握化学工程与工艺的基本理论和基本知识;③掌握化学装置工艺与设备设计方法,掌握化工过程模拟优化方法;④具有对新工艺、新产品、新技术和新设备进行研究、开发和设计的初步能力;⑤了解化学工程的理论前沿,了解新工艺、新技术与新设备的发展动态;⑥掌握文献检索的基本方法,具有一定的科学研究和实际工作能力;⑦具有创新意识和独立获取新知识的能力[2]。因此,根据现代科技和生产的发展需要,以服务地方经济社会发展为目标,把握高等教育规律和化学工程与工艺专业特征,制定化学工程与工艺专业应用型人才培养方案。在人才培养方案制定的过程中,合肥学院借鉴德国应用科学大学培养应用型人才成功经验,非常重视企业的作用,将企业要求与学生的培养相结合,构建理论教学与实践教学相学体系,确定了以“面向企业、立足岗位、注重素质、强化应用、突出能力”为指导思想的“应用型”人才培养模式。理论教学体系体现“三个服务”原则:基础理论教学要为专业技术课教学服务,理论教学为提高学生综合素质服务,把素质教育贯穿于教学全程,为培养学生具有独立分析和解决实际问题的能力服务,注重培养学生对技术成果的吸纳和综合应用能力。建立与培养目标相适应的实践教学体系,形成基础实训、专业实训及校内、外实训教学相结合的综合实训教学一体化,完成实训教学。促进学生掌握专业技能,实施“四年九学期制”,提高学生就业竞争能力。
1.2化学工程与工艺专业人才要求
化学工程与工艺专业是为了适应新世纪化学工业的发展而设置的,是由原来的化学工程、有机化工、无机化工、高分子化工、精细化工、煤化工、工业催化等专业合并而成的宽口径专业,覆盖面宽、涉及领域广[3]。该专业具有两大特色:一是覆盖面广。研究领域涉及无机化工、有机化工、精细化工、材料化工、能源化工、生物化工、医药化工、微电子化工等诸多领域;二是工程特色显着。该专业以化学工程与化学工艺为两大支撑点,化学工程主要研究化工过程及设备的开发、设计、优化和管理。化学工艺则研究以石油、煤、天然气、矿物、动植物等自然资源为原料,通过化学反应和分离加工技术制取各种化工产品。化学工程与工艺专业涉及的工程放大技术、系统优化技术和产品开发技术,不仅在化工领域,而且在医药、材料、食品、生工等众多相关领域均大有用武之地。因此,化学工程与工艺专业培养的学生应有较强的工程能力和工作适应性,需掌握化工生产技术的基本原理、专业技能与研究方法,具有从事化工生产控制、化工产品和过程的研究开发、化工装置设计与放大的初步能力[4]。
1.3应用型化工人才实践教学体系构建
高等工程教育强调综合素质的基础作用和工程素质的定型作用。培养应用型化工特色人才,核心就是培养实践能力强的应用型人才。以培养应用型人才为目标,以科学发展观为指导,遵循教育教学基本规律,坚持育人为本,教学为纲,根据学生需要,围绕学生能力拓展和知识结构构建实践教学体系。该体系由基本技能、专业能力、综合能力三层次训练组成,将课外创新活动和社会实践有机融合。借鉴德国成功的经验,培养学生工程设计能力、项目实现能力及创新能力。实践教学根据能力要求可分为3个层次:基础实践层、专业实践层、综合和创新实践层。基础实践层以强化“三基”,培养基础能力为目的,将基础化学实验分为3个层次和5个模块,构成一个彼此相连,逐层提高的体系[5]。通过化学专题研究训练,强化了知识和技能的综合性;认知实习在实践教学体系中处于承上启下阶段。学生在与自己相近或相关的岗位上经过认知实习,了解专业所需要的专业知识、能力、素质,有利于他们结合自己的兴趣,规划未来发展,在专业方向的选择、课程模块的选择上会更加理性。2周金工实习和1周电工电子实习,实现基础能力培养目标;专业实践层是在理论教学和基础能力培养的基础上,通过专业基础实验、课程设计、工程实训等实践教学的环节实现专业能力培养;综合和创新能力是对技术基础知识、运用专业知识解决实际问题能力和知识迁移能力的综合体现,反映学生整体素质。通过毕业实习、毕业设计(论文)等实践教学环节,配合第二课堂科技活动,达到培养专业技术应用能力的目的。总之,各层实践教学活动层层递进、相互渗透,达到培养目标规定的专业技术应用能力的要求。
2围绕工程能力培养,实施实践教学改革
2.1突出强化实践锻炼,提高教师实践教学水平
教师是实践教学体系的主导者,也是实践教学体系的实践者。要培养高质量应用型人才,必须要有高水平的教师队伍。按照这一思路,为所有的实验室配备了具有硕士学位的专职实验教师,采取走出去、请进来的办法培养教师的实践能力,派合肥学院高学位高职称的教师到企业去锻炼6~12个月,增加教师的工程意识和实践能力。根据学院要求成立了实验技术教研室,这不仅是名称和内涵的改变,更重要的是教育理念的转变,建立实验技术教研室,由教授、博士担任主任,具有研究生学历的教师为成员,研究实践教学内容、方法和手段,进行实验教学、实验课程内容和方法改革等工作。目前,和化学工程与工艺专业实验实践教学有关的合肥学院院级教研立项6项,安徽省教育厅立项3项,获得教学成果奖合肥学院二等奖一项、三等奖一项;安徽省三等奖一项。聘请企业和设计院等单位人员担任教师,让学生参与解决实际工作问题,提高实践能力。
2.2加强实践教学条件建设,提供实践教学载体
实验室和实习基地是完成实践教学内容所必需的保障平台。在实验室建设方面,加强以无机化学、有机化学、物理化学、分析化学课程为支撑的基础化学实验室建设,和以化工原理为支撑的化工基础实验室。专业实验作为一门最能反映专业特色,与专业科学技术发展关系最为密切的实践性课程,必须跳出原有的框架,重新构建一个能够全面反映化学工程学科发展方向、适合按专业大类组织实验教学、有利于培养学生工程实践能力和创新能力的新框架。根据化学工程与工艺核心课程化工热力学、传递过程原理、化学反应工程、分离工程和技术化工工艺学作为构架,遵循以下原则:紧扣化工过程研究与开发的方法论;充分考虑工程学与工艺学实验的适当平衡;具有典型性、力求先进性、增加综合性;实验内容既符合化学工程与工艺学科发展规律,又具有鲜明的先进性和特色,建立了化工热力学实验室等专业实验室。根据专业和学生发展需要,在专业方向上设立分离工程和精细化工2个化工专业方向,并建立精细化工和分离技术2个实验室,建立膜材料和膜过程院级重点实验室1个。校外实习是强化专业知识、增加学生的感性认识和创新能力的重要综合性教学环节,校外实习基地是培养学生实践能力和创新精神的重要场所,是学生接触社会、了解社会的纽带[6]。以校企互利双赢为机制,开展产学合作,和中盐四方集团等14家企业建立良好的合作关系,与企业合作共建实验室2个。每年由校内和企业教师共同指导学生进行实习,并在毕业论文(设计)环节,由企业提出课题,真题真做,学生将所学知识和生产实际相结合,取得在书本上得不到的收获。中盐四方集团、东华集团工程技术人员指导学生设计多次获合肥学院优秀毕业设计(论文)奖。
2.3第一课堂与第二课堂相结合,着力培养学生创新能力
培养目标:使毕业生适应国家经济与科技发展的需求,成为具备宽厚的理论基础知识,通晓化工生产技术的专业原理、专业技能与研究方法,能够从事过程工业领域的产品研制与开发、装置设计、生产过程的控制以及企业经营管理等方面工作的高素质科技人才。
主干学科:有机化学、物理化学、化工原理、化学反应工程、化工机械、精细有机合成原理等。
主要课程:无机化学、分析化学、大学物理、有机化学、物理化学、化工原理、化学反应工程和一门必选的专业方向课程。 另外辅修化工经济技术分析、电工电子等。
主要专业实验:有机化学实验、无机化学实验、化工热力学、化工传递过程、化学反应工程、化工过程系统工程、工业催化和应用化学等。
主要实践性教学环节:包括化学与化工基础实验、认识实习、生产实习、计算机应用及上机实践、课程设计、毕业设计(论文)(计算机应用要求较高)等。
专业发展方向:化学工程、化学工艺、精细化工。
1.华东理工大学 2.天津大学 3.北京化工大学 4.南京工业大学 5.大连理工大学
6.浙江大学 7.中国石油大学 8.华南理工大学 9.太原理工大学 10.四川大学
11.郑州大学 12.湖南大学 13.哈尔滨工业大学 14.西安交通大学 15.上海交通大学
16.江南大学 17.中南大学 18.南京理工大学 19.中国矿业大学 20.湘潭大学
大连理工大学化工系创办于1949年,1952年高等学校院系调整时,一批著名化学家汇集大工,形成了具有雄厚实力的化工学科。改革开放后,化工各学科发展很快,师资队伍和招生规模不断扩大,1984年发展为化工学院,学院设有化学、化学工程、生物工程、材料化工、化学工艺、工业催化、精细化工、高分子材料和化工机械等9个系,24个教研室。现有本科生2410人,硕士生494人,博士生241人,博士后科研人员7人。教职工370人,其中中国工程院院士1人,双聘院士3人,“长江学者奖励计划”特聘教授2人,博士生导师37人,教授53人,副教授80人,高级工程师17人。
化工学院现有化学工程与技术一级学科博士学位授予权,覆盖了其全部五个二级学科――化学工程、化学工艺、应用化学、工业催化和生物化工,并设有化学工程与技术博士后科研流动站。此外还有高分子材料、无机非金属材料及化工过程机械博士点和3个理科化学硕士点。生物化工、应用化学、环境学科设有“长江学者奖励计划”特聘教授岗位。学院拥有应用化学国家重点学科,化学工程、工业催化和生物化工三个辽宁省重点学科,精细化工国家重点实验室,分析中心及15个研究所,拥有400兆核磁共振,气/液质谱、飞行时间质谱、X射线衍射仪等大型分析仪器40余台,成为我国培养化工高层次人才和科学研究的基地。
化工学院作为大连理工大学的重要学院,50年来为国家培养了2万名毕业生,其中许多人成为国家各部委和省市领导,中科院院士,国家有突出贡献的专家以及大专院校、科研院所和厂矿企业的厂长、经理、总工及业务骨干,为适应社会需求培养了复合型、外向型高技术人才。
化工学院广泛开展国际学术交流和技术合作,已经与日本、韩国、美国、加拿大、澳大利亚、德国、奥地利、英国等国家的大学、研究机构或公司建立科技合作和学术交流。
化工学院办学宗旨是以人才为本、创新为先,办学思路是以贡献求支持,以改革促发展。重视面向社会经济建设的重大关键技术的基础研究和应用基础研究,每年都承担一批国家、省市级科学基金和“973”“863”及“九五”重点攻关项目,同时与企业建立产、学、研三结合紧密型协作关系,解决技术难题及高新技术和新产品的开发工作,化工学院每年科学研究经费达3000万元以上,近两年科技成果显著,获国家科技进步奖二等奖一项,省部级科技进步奖一等奖三项、二等奖三项。
问题1:化学工程与工艺专业的学生应掌握怎样的知识和能力?
1.掌握化学工程、化学工艺、应用化学等学科的基本理论、基本知识;
2.掌握化工装置工艺与设备设计方法,掌握化工过程模拟优化方法;
3.具有对新产品、新工艺、新技术和新设备进行研究、开发和设计的初步能力;
4.熟悉国家对于化工生产、设计、研究与开发、环境保护等方面的方针、政策和法规;
5.了解化学工程学的理论前沿,了解新工艺、新技术与新设备的发展动态;
6.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。
问题2:化学工程与工艺专业的学生就业方向?
本专业毕业生知识面宽,可到工业部门从事化工类产品的设计、施工、生产管理、技术开发、应用研究以及贸易等方面的工作,也可到科研、商贸、行政等部门从事与化学工程相关的工作。
也可在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面的工作。
还可以到化学工厂、大学、政府社团、保健服务、中学、医院、工业实验室、图书馆、医药公司、私人企业、实验研究所等从事相关的工作。
问题3:化学工程与工艺专业方向的不同有差异么?
化学工艺包括能源化工、材料化工、有机化工、环境化工、高分子化工、无机化工等众多领域,覆盖面广。它不仅涵盖了传统的基础领域,同时与材料、能源、生物、医药、环境等学科渗透融合,不断地培植出新的生长点。它既是一个历史悠久、曾作出重大贡献的学科,又是一个新世纪不可缺少的充满了生机与活力的学科。
化学工程是以化学工业及相关生产过程中所进行的化学、物理过程为研究对象,探究其所用设备的设计原理与操作方法以及最终实现过程优化所应遵循的共性规律。本专业方向学生主要学习化工流体流动与传热、化工传质与分离过程、化工热力学、化学反应工程、化工传递过程基础、化工数学、化工分离过程、化工工艺学、化工过程分析与合成、化工设计等课程。为拓宽专业面,增加适应性,还开设生化基础、石油炼制工程、环境化工、化工机械基础、ChemCAD等课程。
问题4:与化学工程与工艺专业相近的专业是什么?
制药工程(主要是化学制药)。
问题5:化学工程与工艺专业中的催化科学与工程具体是什么样的学科?
它是催化化学、材料物理及化学工程之间的交叉学科,具有理工结合的特点。
【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2014)01-0224-01
1.现状
化学工程与工艺专业是一个老牌的专业,长久以来为行业输送着新鲜血液,促进着经济的长足进步。但是近年来,由于高校的扩招,挂靠化工专业的热门方向此起彼伏诞生,专业师资的整体能力跟不上等等原因,使专业人才的整体素质和能力有所下降,而国民经济的不断发展,技术水平的不断提升,对专业人才的需要异常迫切。高校要抓住机遇,善于利用地方资源,促进专业办学特色, 提升人才综合能力, 提振专业的就业水平与竞争力。因此高校培养既有专业理论能力,又有动手能力的高素质人才尤为重要。
因此,新培养方案的制定与实施尤显突出。我校于2010年着手修改化学工程与工艺专业培养计划,新培养方案于2011届开始实施。
2.新培养方案的特点
2.1 培养目标明确,突出专业特点,体现专业应用
“本专业培养德、智、体、美全面发展,能够掌握化学工程与工艺方面的基础理论、基本技能以及相关的工程技术和知识,能在石油化工、煤化工、化工工艺、工业催化、能源、医药和环保等部门从事生产、服务、研发以及设计的高级技术应用型人才。”
“本专业执行宽专业,厚基础的教学指导方针,在培养学生理解和掌握化学工程与工艺学科理论知识的基础上,着重培养学生掌握化工领域工艺设计与设备设计、模拟优化方法、对新产品、新工艺、新技术和新设备进行研究、开发和设计的基本能力。学生在专业课学习阶段,通过专业实习等途径,紧密联系石油化工、煤化工的生产实际,使学生具有独立思考和解决实际问题及创新的初步能力”。
我校的化学工程与工艺专业有两个方向,即石油化工方向和煤化工方向。我校地处辽宁化工城,素有“煤都”之称,既有石油化工的研发和生产优势,又有煤化工的产业与科研依托,发挥优势,凝练特色,致力于教学理念和方式的创新,培养应用型人才,具有强大的优势。
2.2注重培养规格,强化毕业生应获得的知识和能力
首先,强调德、体。“热爱祖国,遵纪守法,身体健康,具有良好的思想品德、社会公德和职业素养”。
其次,强调外语和计算机能力。外语和计算机属于工具型能力,会广泛应用于将来的工作和学习。
重点强调专业能力。获得专业基本知识,具备在专业生产第一线工作的基本能力;掌握专业领域内工艺与设备的基本设计能力;了解专业学科前沿,了解新装置、新技术、新工艺的发展动态;具有对新装备、新技术、新工艺、新方法理解、运用和掌握的初步能力。
再次,强调了学生掌握文献检索、资料查询的基本方法,要具有创新意识和独立获取知识的能力。
2.3优化课程体系,体现厚基础、宽专业的培养特色,拓宽专业口径,淡化专业意识,加强基础教学,培养通才,增强人才的适应能力,提升自我发展能力。
首先,新培养方案提高了原来要求的规定修满教学学分,其中适当增加了实践教学学分。
学校前两年实施通识教育,不分专业,基础教育课程一致性,后两年体现专业特色,突出学科优势。
其次,在专业基础课设置上,强化了四大化学的理论课时与实验课时,同时整合了两个培养方向在《化工原理及实验》、《化工热力学》、《化学反应工程》、《化工设计》、《专业外语》、《仪器分析与实验》、《电工学》等课程的一致性,体现了厚专业基础,宽专业口径的特点,增强了人才强大的理论基础。
在专业必修课设置上,既要突出两个方向的特色专业,又要体现我们学校的办学特点,扬己之长,使培养的人才具有特色,满足化工不同行业的需要。因此,我们将两个专业方向的部分特色课程交叉选修。如:石油加工方向选修《煤化工基础》、《洁净煤技术》,煤化工方向选修《石油化学》、《石油加工基础》,使所有的学生,既懂得了本专业的知识,也跨入了另一个相邻领域,扩展了知识面,也强化了就业优势。
2.4重视实践和创新能力培养,锻炼和强化学生实践动手能力,培养学生的创新思维和综合实践能力,最终成为具备实践和创新能力的应用型化工人才
新培养方案中,在实践教学环节,除了传统实习之外,引入了仿真教学,综合实验和综合能力素质训练,强化了实践能力的重要性,促进了学生综合能力的提升。
在实践教学体系中,金工实习、认识实习、生产实习,为学生提供了广阔的实践平台,我们学校先后与地方6个化工企业及科研院所签订了实习协议,每年都有学生去进行不同类型的实习,同时,我们也鼓励学生到企业委托实践,增强学生理论与实践结合能力的培养。
在课设和毕业设计(毕业论文),大胆创新,允许学生参与教师或者企业的科研课题,发散思维,在实践中提升学生的创新能力;鼓励学生积极参与“挑战杯”、“创新实践”、“科技小论文大赛”“资格认证”、各种论文和实验等大赛、以及参与各种培训及调查报告等,提升学生的创新思维,培养创新能力。
在仿真教学环节,学校引入了化工仿真实训软件,提供计算机房,使学生足不出户,在计算机上就可以模拟实际化工工艺路线与实际化工装置,自己动手操作,将理论知识与实际处理问题相结合,既巩固了专业知识,也应用了专业知识,同时提升了动脑和动手能力。
在专业实验环节,既体现两个专业方向的共性,也强化了专业方向的特色。比如;石油化工方向学生开设化学工艺学专业实验与石油加工专业实验,而煤化工方向学生开设煤化工专业实验的同时,也进行石油加工实验,这样既淡化了专业方向性,强化了大化工的概念,也使学生在就业中更具备了竞争力。
3.新培养方案的实施效果
新培养方案从2011届开始实施至今,效果明显。具体体现在如下几个方面:
学生对学习的课程感兴趣程度增强,理论课学分普遍提高,受学业警示率明显下降。
2卓越计划化学工程与工艺专业教学资源建设的思路
卓越工程师背景下的化学工程与工艺专业需要根据行业对化工工程师知识、素质和能力的要求,确定相关课程和实践教学环节,将涉及工程意识、工程素质、工程实践能力、工程综合能力培养、企业以及工程项目管理知识的课程纳入培养方案中,增加工程教育相关课程,因此,必须按照新的人才培养方案,以教材建设和精品课程建设为手段,改革教学内容,加强教材建设,自主编写和完善系列专业教材,使教学内容充分反映新世纪化工实际生产和化工行业可持续发展的新要求。总体建设思路如下:
2.1构建“新体系”
构建以培养工程意识、工程素质、工程实践能力、工程综合能力为目标的实践教学新体系。按照基本技能层、知识应用能力与工程实践能力层、创新能力与工程综合能力层等“三层次”,循序渐进地培养学生的工程综合能力和创新能力。在基本技能层,主要通过课程实验、上机操作等实践环节加深对理论课程基本概念、基础知识和基本理论的理解和基本技能的培养;在知识应用能力与工程实践能力层,主要通过课程设计、专业实习、社会实践等环节实现对学生知识应用能力的培养;在创新能力与工程综合能力层,主要通过化工企业轮岗实习、化工企业项目设计与研究、毕业设计(论文)、大学生“挑战杯”竞赛、大学生科技创新活动、产学研合作开发等方式实现对学生的工程综合能力与创新能力的培养。
2.2突出“厚基础”
本专业卓越工程师教育专业培养方案课程设置分为通识教育,专业基础课和专业课三大模块。通识教育包括数学与自然科学、人文与社会科学、体育、素质教育公共选修课等,其课程学时占总学时的47.7%,课程学分占总学分的47.5%;专业基础课包括相关学科基础课和专业基础课,其课程学时占总学时的34.9%,课程学分占总学分的34.3%;专业课包括基本专业课和专业方向课,其课程学时占总学时的17.4%,课程学分占总学分的18.2%。突出了卓越工程师培养的厚基础,为卓越工程师的培养奠定坚实的基础。
2.3强化“宽口径”
本专业卓越工程师教育专业培养方案设置了精细化工、能源化工和生物化工三个专业方向课程模块。其中,精细化工方向课程模块开设了精细化学品化学、精细化工工艺学、精细化工过程与设备、精细化工及分离实验等课程;能源化工方向课程模块中开设了煤化学、煤化工工艺学、洁净煤技术、煤化工实验等课程;生物化工方向课程模块中开设了工业微生物学、生物化工工艺学、生化分离技术、生物化工实验等课程。强化了卓越工程师培养的宽口径,以满足大化工行业对工程技术人才的要求。
2.4体现“重创新”
教材建设也是教学资源建设不可缺少的内容。在化学工程与工艺专业的专业基础课和专业课教材的选用上,以“加强基础、精选内容、有所创新、有利教学”为原则,尽量选用国家规划教材或者比较权威的高水平教材。同时,组织教师立项编写或参编高质量教材,如普通高等教育国家规划教材或精品教材;自编配套辅导教材和讲义,制作和充实各类声像教学资料,积极开发具有专业特色的CAI课件,录制网络教学视频。重点开展精品课程建设,争取获得1门国家级精品课程、2~3门省级精品课程、4~5门校级精品课程,通过改革与建设,不断提高教育质量和人才培养质量,努力培养学生的创新精神和实践能力,打造出有扎实理论功底、掌握化工专门技能、有很强事业心和吃苦耐劳精神的应用型专业人才,以满足现代化工业发展对化工专业高素质人才的需求。我们将不断完善卓越背景下化学工程与工艺专业的教学资源建设,确保学校教学质量不断提高,确保专业建设项目绩效。
3卓越计划化学工程与工艺专业教学资源建设存在的困难
卓越计划化学工程与工艺专业教学资源建设的内容相当丰富,在实际操作过程中需要突破重重难关,其中最为突出的有校企合作、人才需求的个性化和多样化以及师资队伍建设三个方面。
3.1校企合作是首先要解决的问题
近年来,我院不断探索和完善校企合作的长效运行机制,努力通过各种渠道与企业沟通,先后在多家大中型企业设立了教学实习基地并成立了一个工程实训中心,为学生营造了在企业进行实践学习的良好机会。但有些企业为了兼顾安全生产、产品质量和生产效益,不能为学生提供在相应的技术岗位上动手操作的机会,这样一来学生的动手能力就得不到真正的锻炼。
3.2人才需求的个性化和多样化
不同的公司对技术应用型人才的需求均存在差异,如同样是培养化学工程与工艺卓越工程师,有些公司需要学生具有精细化工或生物化工方面的知识,而有些公司则需要学生具有能源化工方面的知识。因此,我们必须有的放矢地进行化学工程与工艺专业卓越工程师教学资源的建设,以满足不同公司对技术应用型人才的多样化需求。
3.3师资队伍的建设
化学工程与工艺专业卓越工程师培养必须摆脱传统的大学生培养模式,为了实现卓越工程师的培养目标和落实卓越工程师的培养标准,形成具有良好的学缘结构、知识结构和以中青年为主体的双师结构教学团队是顺利、高效进行教学资源建设的必要条件。而要改变目前师资水平不足,知识结构单一和学缘结构不合理的现状将是一个长期而艰巨的过程。
关键词:化学工程;绿色科技;环境保护;绿色化学
1 通过合理运用绿色科技可以减少温室气体的排放量
一般来说,温室气体指的主要是二氧化碳。无论是在工业革命以及科技革命时期,还是在科技含量比较多的现代社会,发展日趋国际化和现代化,这些化工工厂所排放的二氧化碳量有的达到数万吨,有的每年甚至会向大气排放数十万吨。大量的二氧化碳的排放,是导致全球温室效应日益严峻的罪魁祸首。由于相关的法律规定还不算很健全,没有明确的法律处罚规定,所以在此之前,那些造成这一现象化工企业却没有为温室效应负担任何一点费用。
如今我们越来越重视环境气候,这种状况也有了明显的改进,越来越多的化工企业都在积极的应用以及开发新的技术,从而降低二氧化碳的排放量。还有一些新兴的企业,变废为宝,将二氧化碳利用到部分化工产品中,成为一种材料,只是这一项化工工艺,就可以使整个企业每年排放的二氧化碳量降低数十万吨。
2 在海水淡化工程的预处理过程中充分运用绿色科技
水是我们赖以生存不可缺少的,也是生活中的必需品,是社会发展稳步前进的重要资源。同时,占据如此重要位置的水资源,却有着不可再生以及有限性的特点。当今社会的经济发展飞速,淡水的日益减少,这种危机成为了全球性的一个环境难题。中国,是目前世界上淡水资源比较匮乏的国家之一。而新兴的海水淡化技术,随着它的广泛应用,成功而且有效的缓解了我们目前淡水资源相对比较缺乏的现状。早期此项技术的研发的不全面,成本也比较高,随着科技的不断更新,海水淡化的成本也在逐渐减低,成本的价格也能被大众接受,不再是那些经济发达国家才能使用的奢侈技术,在一部分发展中的国家也可以引进了。
海水淡化技术指的就是一种利用物理上或者化学上的方法将海水里面的盐和水进行分离的技术。在进行海水淡化技术的预处理进程中,任何影响环境状况的不良影响都没有产生。并且在获取海水资源的过程中,并没有继续对生态环境构成伤害。我们的党所提倡的可持续发展战略的思想,就是指要在满足自身生存发展的需要的同时,为子孙后代留下了可以继续发展的环境状况。因此,将绿色的化学工艺运用于海水淡化的过程中的这一举措至关重要。因此,将绿色的科学理念与化工产品的生产过程联系在一起,便成为了现代世界化的化工生产中的主要方向之一。在海水淡化构成的预处理过程中产生了一些氢氧化镁,成为了环保领域新的宠儿,这种物质具有成本低廉,工艺简单、不产生二次污染,处理效果良好的特点,具有非常广阔的发展前景。
3 将绿色化学技术广泛应用在我国传统香精香料制造中
在日常化学产品的生产中,香精香料是不可缺少的添加剂之一。我国的香精香料产品在国际市场上的出口,是我国进出口贸易的一项重要组成部分。但是由于经济危机的影响逐渐加深,及全球性经济萧条的状况逐渐加剧,我国的香精香料出口产业收到了很大的打击,产品订单大幅度减少。
在深入地调查我国香精香料产品出口订单锐减现象的原因之后,不难发现,产品中有害杂质含量超标,是其最主要的原因。造成有害杂质含量超标的原因则在于生产工艺方面的缺陷。例如提取原料的时候在产品中有残留以及包装材料的使用不当等原因。其中,提取原料在产品中的残留的问题,可以通过研究和开发新的提取技术来改变。包装材料使用不当的问题,则应通过加强企业和工厂的监管力度,督促生产商家和企业反复试验,选取符合有害杂质含量标准的外包装物等方法来改善。还要牢牢掌握我国香精香料产品的优势方面,不断加强新技术的研究和其在实际生产中的应用,才能够满足生产出高质量、低能耗的香精香料产品的要求。
4 绿色化学使可持续发展战略任务逐步向前推进
化工生产的改革,为人们的日常生活提供了必要的能源以及物质方面的基础。化学化工生产对于社会的进步发展方面的贡献显而易见。与此同时,大量的化工生产所产生的工业废渣中,具有很多有毒物质,未经处理合格而随意的排放,导致生态环境平衡失调,还会造成严重的污染问题。这些都会导致社会发展缓慢。新世纪,面对严峻的环境污染所提出的挑战,可持续发展战略这种道路的选择,成为了历史的必然。
实现社会经济的可持续发展,已经成为了我国的一项基本的国策。作为社会经济的重要组成部分的化学工业,在这一基本国策的指导之下,最行之有效的实现可持续发展战略的方法便是绿色化学的开发和利用。绿色化学,不单单是指那些对环境产生的有害影响小甚至没有有害影响的化学生产过程,更重要的是包括那些行之有效的且作用明显的价格平民化的化学化工技术的研究以及应用。绿色化学的生产过程只产生非常少量的废物处理,或者不产生废物处理。其最主要的特点便是在生产的过程中,最大程度地充分利用资源,使原材料转化为产品,尽量不产生污染。有利于化学化工产业的发展以及可持续发展战略这一道路的切实执行。
参考文献:
[1]臧树良、关伟、李川等,清洁生产及绿色化学原理与实践[M].北京:化学工业出版社,2006(3):228-232.
[2]刘森,罗泽鹏,都颖,刘思乐. 绿色化学工程工艺对化学工程节能的促进作用分析[J]. 黑龙江科技信息. 2016(02)
[3]李兴华,王增,王志营. 枣庄市煤矿绿色生态文明矿区建设综合技术研究与应用[J]. 山东煤炭科技. 2015(03)
[4]龙泽波,张大群,张万钦,张寿生,赵文喜,Fernando Javier,赵斌,张英峰. 渤海海水淡化反渗透法的预处理工艺[J]. 城市环境与城市生态. 2003(06)
[5]谢萍华,陆伟. 绿色化学与我国化工行业的可持续发展[J]. 杭州化工. 2008(02)
化学反应工程已成为化工类本科教育的一门专业课程,它以物理化学、化工原理、化工热力学等化工专业基础课为先修课程[1],但由于课程涉及大量的数学模型的建立、理论的推导,大多数学生在学习时普遍感到理论抽象,且在实际问题面前束手无策的高分低能现象。为适应新形势国民经济的发展和要求,我校化学反应工程课程体系在逐渐发生变化,探索出一种适合我校学生特点的新的专业课,为提高工程人才的培养质量、推动高等工程教育改革具有重要意义。
一、改革与具体研究方法
结合反应工程理论教学与学生工程实践能力培养的特点,我校化学反应工程课程教学团队认为该课程体系的改革,应从单向传授知识向互动性教学体系转变,建立系统传授与探索和创新研究相结合的新教学体系,具体如下:
1.课程体系“1+x”模块化建设:课程体系“1+x”模块化建设[2],深化反应工程理论的工业应用,直接关系到学生反应工程基本原理学习程度以及反应器设计与分析等工程能力的培养质量,不仅能增强理解理论知识的准确性和科学性,也扩展了反应器应用与新能源电容器、燃料电池等领域的应用,提高学生把握科技创新发展的命脉,锻炼学生的科研思维,为其在将来就业后能独立工作打下一定的基础。
将化学反应工程课程体系进行“1+x”模块化整合。其中,“1”指化学反应的基础理论知识及理想反应器,“x”指化工不同专业方向的非理想反应器及特色反应器。根据我校化学工程与工艺、应用化学、工业催化、制药工程等专业方向的特色,分别设置非理想反应器、催化反应设备、聚合反应器和制药反应设备,并将催化反应设备与结合当代新能源领域电池、电容器研究相结合,帮助学生扩展知识应用范围。根据学生情况及当代新能源研究热点,建立师生互动栏目、网络课堂和自测考试、qq群等,丰富学生第二课堂生活,扩展知识范围。
2. “启发互动式”教学法,充分调动学生学习思考的积极性,多媒体课件与实际工厂设备相结合[3],有助于提高学生感观认识;模拟反应器操作的仿真动画,使学生加深对这些理论、概念的认识、理解,增强学生综合运用知识解决问题的能力。
精心策划授课内容,培养学生的创新能力:要求课程教学团队精心策划、设计授课内容,合理运用多媒体与传统板书相结合的教学手段,多采用 “启发互动式”教学法,充分调动学生学习思考的积极性。比如:我校教学中采用多媒体技术模拟反应器操作的仿真动画,结合生产实际操作中各种反应器的影像资料,不仅解决了传统教学中老师难教、学生难懂的难题,而且大大提高了教学效率和授课效果,丰富了课堂教学内容,同时也培养了学生的学习创新能力;采用flas进行图文并茂,生动形象的影放化工过程和化工设备的实际运转实况,并辅以实验与理论的紧密结合,有助于教学质量跨上一个新台阶。
3. 建设化学反应工程精品课程:精品课程要求具有一流教师队伍、一流教学内容、一流教学方法、一流教材等特点的示范性课程。近年来,我校汇聚了一些化学反应工程的研究人才,如来自于新加坡南洋理工、南京大学、中科院大连化学物理研究所等著名学府,其组建的反应工程教学团队将围绕反应工程课程建设和当今新能源领域研究热点进行大量的教学改革,通过课程网站建立师生互动栏目、多媒体课件、网络课堂和自测考试、qq群等交流平台,使课堂整体教学与网络教学相互补充,并将课堂教学延伸到教室外,给学生增添更多的自主学习机会,进而动了学生的学习积极性。
4. 精选国外经典教材,为实施双语教学做准备:双语教育正成为中国课程改革中的一个热门话题,是21世纪实现创新教育的一种重要教学方式。为了提升我校本科人才培养专业素质,提高学生专业英语的理解与应用水平,拟实施部分双语教学在课程的考核中,专业术语用英文来表述,英文阅读和答题占试卷的60%以上。
二、改革目标
课程教学方法改革与创新有效提高学生的学习兴趣和教学质量,确定一套适合我校学生特点的灵活多变的教学方法,建立具有我校特点的化学反应工程实践教学内容和培养方案,进一步提高我校化学反应工程课程的教学质量,为学生今后顺利完成毕业论文和毕业设计,以及科研能力的培养奠定扎实基础。同时,使学生掌握基本的理论外,注重培养学生起对工程问题的分析和解决能力,使学生能运用所学知识解决化工及相关领域的实际问题。
三、结论
化学反应工程已成为化工类本科教育的一门专业课程,随着化学工业的快速发展和环境污染问题的日益突出,新型反应设备与技术显得越来越重要,反应要从实验室放大到工业生产以及工业反应器的设计等一系列重要的化学工程问题都离不开化学反应工程的指导,为了适应新世纪知识经济时代的发展、国家及我校创新高素质人才培养目标的要求,进一步深化化学反应工程课程改革,想方设法调动学生的学习兴趣,丰富教学内容,培养学生分析、解决工程问题的创新能力,形成适合新时代人才发展的教学方式具有划时代的深远意义。
参考文献:
[中图分类号] G643 [文献标识码] A [文章编号] 2095-3437(2017)05-0181-02
党的十以来,同志把创新摆在国家发展全局的核心位置,高度重视科技创新,实施创新驱动发展战略,加快推进以科技创新为核心的全面创新,提出一系列新思想、新论断、新要求,而且多次强调创新是引领发展的第一动力。
化学工业在我国国民经济中占有重要地位,是我国的基础产业和支柱产业。化学工业包括炼油、冶金、能源、石化、医药、塑料、化纤、橡胶、涂料等众多工业,其发展速度和规模对社会经济的各个方面有着举足轻重的影响。化学工业的发展离不开人才,特别是具有很强科研创新能力的高层次人才,因此培养大量化工类科技创新人才成为我国研究生教育中的重要任务。
一、化工类研究生的培养目标
化学工程与技术学科是研究化学工业及其他工业生产过程中的物质转化、物质组成和物质性状变化的一般规律,以及相关工艺与装备设计、操作及其优化等关键技术的一门工程技术学科。它以化学、物理、数学、传递过程原理、化学反应工程等基础理论为基本知识体系,以实验研究、理论研究和计算机模拟等为研究方法,通过工程应用服务于经济与社会的各领域,尤其是资源加工、原材料制造、专用化学品生产等。化学工程与技术研究生的培养目标是培养适应我国社会主义现代化建设需要,德智体全面发展,掌握现代化学工程与技术的基础理论和实践技能,具有较强科研创新能力的高层次专门人才。
二、提高化工类研究生创新能力的方法与途径
(一)加强化工类研究生创新意识的培养
创新意识是人类进行创新活动的出发点和内在动力,是产生创新思维和创造力的前提。要想提高化工类研究生的创新能力,首先要做的就是增强其创新意识。指出:教育是知识创新、传播和应用的主要基地,也是培育创新精神和创新人才的摇篮。研究生教育一定要加强研究生创新意识的培养,以尊重科W、大胆创新的思想影响学生,并鼓励学生发挥想象力,大胆地异想天开。爱因斯坦说过:“想象力比知识更重要,因为知识是有限的,而想象力概括着世界上的一切,推动着进步。”
(二)改革化工类研究生课程教学方式
化学工业是属于知识密集型的行业,涉及化学、物理、数学、机械、电子等多门学科。化工类研究生要掌握如此庞大的知识体系并非一件容易的事情,这就对研究生教师提出了很高的要求,需要教师不断更新教学方法。比如过去一般采用的是教师讲、学生听的单向教学模式,学生学习被动。改革后的研究生教学,教师可以安排学生先对书本知识进行自主学习,再由学生讲述、教师听讲并提问,这样能充分调动学生学习的主动性。教师也可以采用研究性的教学方法,将书本里的主要理论观点、疑难问题、有争议的学术问题、学术前沿提出来,让学生在学习书本知识的基础上查阅其他文献资料,独立钻研或和同学进行合作交流,激发学生的想象力与创新欲望。
教师在实践课程的教学过程中,可组织研究生到生产现场,利用工厂的机器设备进行实践教学,以研究生的独立操作和学习为主,教师的指导为辅,结合工厂生产中的实际案例,提高学生解决问题的能力。化工产品品种繁多,原料来源多种多样,工艺流程也各不相同,而且每种产品的生产都有可能涉及不同的技术。为了克服现场生产条件的局限性,教师还可将现场教学与计算机模拟仿真有机结合起来,通过将模拟结果与生产实际进行比较,培养学生的想象力和创造力。
(三)注重化工类研究生实践能力的培养
化工学科是一门实践性很强的学科,创新思想也只有通过实践才会具有实际意义,因此必须注重研究生实践能力的培养。在研究生实践能力培养的过程中,教师要利用实验室设备进行现场指导,运用科学的方法引导研究生主动观察,通过提问引导研究生积极思考,开展互动式的教学实践。[1]教师要让研究生在实践活动中灵活运用所掌握的理论知识和专业技能去发现、分析和解决问题,有意识地培养研究生的观察能力和解决问题能力,为研究生提升创新能力打好基础。
在实践能力培养过程中,导师应让研究生积极参与到科研项目中来,开展科研实践。为了激发研究生的研究热情,导师可以让研究生独立负责部分课题研究内容的设计与实验,并且注意关注学生的研究进展与及时加以点拨。在科研实践中,导师要充分挖掘研究生的想象力,鼓励研究生提出新的理论观点,肯定研究生的创新思维,从而提升研究生的科研能力和创新能力。
(四)营造良好的创新环境
要为研究生营造良好的创新环境,首先应建立和谐的师生关系。创新意味着标新立异,需要个性的充分发展与张扬。导师要充分尊重研究生的创新思维和创新思想,让学生大胆地设想、实践, 并在实际科研工作中不断总结经验和教训,通过实验和实践来提高自己的研究能力。导师要给学生多一些肯定,鼓励他们敢于挑战,敢于标新立异,敢于创新。导师只有充分尊重研究生的创新精神,才能最大限度地激发其创新能力。
其次要为研究生创造合适的交流平台。给研究生创造学术交流的条件,鼓励他们多参加各种学术会议,多听学术讲座,使他们了解本学科的前沿动态,提高其专业水平和表达能力。通过与不同领域的研究人员进行交流,研究生可以接触到更多更新的科研领域,这不仅能开阔研究生的视野,活跃其思维,激发其求知和创新欲望,还能培养其竞争意识和团队合作精神,从而对其创新能力的提高起到重要的促进作用。[2]
再次要尽早让研究生参与导师的科研课题,调动研究生从事科研工作的主动性,使其不被动学习,不过分依赖老师,并通过对实验设备的自由操作、同学之间的相互交流,及时地发现并解决问题,培养自己的科研创新能力。在研究生学位论文的选题上,导师应给予学生充分的自由度。导师要以论文是否有创新作为评价选题价值的基本出发点,结合社会实际的需要,让研究生选择自己感兴趣的论文题目,并给他们充足的时间进行创造性思考,从而让学生通过自由、创新的选题,将创新思维贯穿于课题研究的始终。[3]
(五)提高化工类研究生导师的业务素质和创新能力
导师的业务素质和创新能力,对研究生培养质量起着至关重要的作用。要提升研究生的创新能力,需要导师具有渊博的知识、精湛的专业技术和强烈的创新意R。为了适应新形势的发展,导师要加大知识的储备量,加快知识的更新,了解学科发展的最新动态,掌握学科最新的技术、方法和工艺,不断提高自己的专业能力和学术水平。[4]名师出高徒,导师只有不断提高自身业务素质,才有可能培养出高质量的学生。当然,导师在授之以鱼的同时更要注重授之以渔,让学生学会获取知识的方法。
在培养研究生的过程中,导师自身要敢于创新。一方面,导师强烈的创新意识与创新精神可以对学生产生潜移默化的影响;另一方面,导师应对学生研究方案的创新性提出较高的要求。这就要求导师掌握本课题最新的研究动态,也要求导师自身有很强的创新能力。有很强创新意识和创新能力的导师,肯定会鼓励学生敢于提问、敢于创新,对于学生提出的问题也会认真对待或给予解答或引导学生去寻找答案,对于学生提出的新观点也会尊重,还有可能引导学生设计实验进行验证,这样就可以激发学生的创新激情,挖掘学生的创新潜能。
三、结束语
化学工业将随着分子设计、催化、激光和化学仿生等方面的重大技术突破而进入一个崭新的时代,这既是化工类研究生的重要机遇,也使他们面临严峻的挑战。高校作为研究生教育的主要基地,任重而道远。化工类院校只有增强研究生的创新意识,改革研究生课程教学方式,提高研究生的实践能力,为研究生营造良好的创新环境,并不断提高研究生导师的业务素质和创新能力,才有可能有效提高化工类研究生的创新能力,培养出满足社会需要的高层次化工人才。
[ 参 考 文 献 ]
[1] 张晓桂,高波.硕士研究生创新能力培养路径与策略[J]. 中国印刷与包装研究,2010(4):70-73.