装置设计论文模板(10篇)

时间:2023-03-23 15:21:57

导言:作为写作爱好者,不可错过为您精心挑选的10篇装置设计论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

装置设计论文

篇1

1.1超声波收发电路由于检测装置工作于井下,井口只为其提供了一路+24V直流电源,各单元电路的工作电源需要依靠DC/DC变换电路获得。控制系统和信号处理系统使用的+5V和±12V电源由LM2596-5.0承担,其主路输出+5V/2A电源供单片机等数字系统使用,将其储能电感改用5026-47μH环形功率电感,并在其上增加两个辅助绕组,经整流、滤波和LM78(79)L12三端稳压IC后产生±12V/0.1A直流电源供信号处理系统使用;超声波发射采用了高压脉冲激励方式,+200~300V激励电压由+24V供电电压经简单的Boost升压电路获得,利用单片机送来的1ms周期、5μs脉宽脉冲信号控制MOSFET开关管实现对超声波发射探头的激励,储能电感选用TDK-NL565050T-822J-PF(8.2mH)贴片电感,NMOS开关管选用2N60即可。超声波激励及电源变换电路如图2所示。经实测,激励脉冲会在接收探头中产生一个较大的谐振频率为5MHz、大约5个周期的串扰信号,为此,接收电路设计了一个对发射激励脉冲延迟6μs、持续30μs的使能控制信号,控制接收放大处理电路仅在使能信号有效期间实现回波信号的放大和输出,使之能够在钢管内壁和外壁反射的一次、二次回波信号到来之前有效地消除激励脉冲串扰的影响,使能控制信号时序关系见图3。检测装置中用于时间差测量的TDC-GP2的典型应用是作为超声波流量计、激光测距仪的时间间隔测量、频率和相位信号分析等高精度测试领域。在这些应用中输入信号一般都较强,经简单处理后即可作为TDC-GP2的START、STOP控制信号使用,而该检测装置的超声波回波信号尤其是多次反射回波信号非常微弱且杂波较大(实测回波信号大约在mV数量级),必须经高增益宽带放大器放大和滤波、检波、整形处理后才能胜任。宽带放大器由AD604承担,可获得6~54dB的增益并可由VGN端电压连续控制,可较好地满足超声波回波信号高速高增益放大的要求[2]。考虑到仅需将回波信号放大处理后形成STOP控制脉冲即可,故电路仅利用可调电阻对2.5V基准电压(由TL431产生)分压获得的VGN电压进行增益设定,但设计电路亦有预留接口可用于接受经单片机和DAC输出的AGC控制电压,实现增益的闭环控制。AD604前级放大电路如图4所示。带通滤波器选用由MAX4104构成,设计中心频率为5MHz,带宽约为1MHz;钳位和检波由AD8036完成,具有卓越的钳位性能和精度高、恢复时间短、非线性范围小、频带宽的特点;检波输出信号的整形处理由MAX9141负责,这是一款具有锁存使能和器件关断功能的高速比较器,具有高速、低功耗、高抗共模能力和满摆幅输入特性等,回波信号经其整形处理后可获得理想的脉冲前沿,并便于与TTL逻辑电平接口,还可以方便地实现回波信号输出的使能控制。信号调理电路如图5所示。

1.2时间差测量电路回波信号时差测量选用了德国ACAM公司的高精度时间间隔测量芯片TDC-GP2。TDC-GP2采用44脚TQFP封装,内含TDC测量单元、16位算术逻辑单元、RLC测量单元及与8位处理器的接口单元和温度补偿单元等主要功能模块,利用内部ALU单元计算出时间间隔,并送入结果寄存器保存。TDC-GP2基于内部的硬件电路测量“传输延时”,以信号通过内部门电路的传输延迟来实现高精度时间间隔测量,测量分辨率可达pS数量级,可以很好满足项目测量的要求。单片机在给超声波传感器提供发射激励脉冲的同时给TDC-GP2提供START信号指令使之开始计时工作,超声波接收头接收到的反射回波信号经放大、处理后作为STOP指令信号,由TDC-GP2完成两次反射波时间间隔的测量。由前述可知,STOP与START信号的时间差大约在6~40μS之间,时差测量分辨率约为0.07μs,为此,设定TDC-GP2工作于“测量模式2”,在该模式下芯片仅使用通道1,可允许4个脉冲输入,实现STOP1与START信号之间的时间差测量,测量范围在60ns~200ms,然后,由TDC-GP2计算出各回波信号间的时间差Δt=tB-tS=tn-tn-1。测量原理如下:在输入START信号指令后,芯片内部测量出该信号前沿与下一时钟上升沿的时差,标记为Fc1;之后,计数器开始工作,得到predivider的工作周期数,并标记为Cc;这时,重新激活芯片内部测量单元,测量出输入的STOP1信号的第一个脉冲(一次反射回波)前沿与下一时钟上升沿的时差,标记为Fc2,将STOP1信号的第二个脉冲(二次反射回波)前沿与下一时钟上升沿的时差标记为Fc3,……;Cal1和Cal2分别表示一个和两个时钟周期。

1.3单片机接口电路实现系统控制和数据处理的单片机选择余地较大,项目结合TI公司中国大学计划选用了美国德州仪器公司生产的MSP43016位单片机,具有16位总线、带FLASH的微处理器和功耗低、可靠性高、抗强电干扰性能好、适应工业级运行环境的特点,很适合于作现场测试设备的控制和数据处理使用[4]。TDC-GP2其与单片机的通信方式为四线串行通信(SPI),利用MSP430的4个P2.x和P4.2I/O口实现GP2的选通、中断和开始、结束使能以及复位等控制功能。MSP430除用来对GP2控制和数据处理外,还可以留出一些资源实现设备其他电路和动作机构的控制使用。单片机接口电路原理和程序流程分别如图8和图9所示。

篇2

植入式装置(例如植入式心脏起搏器、神经电刺激器等)的体内植入部分和体外程控器之间进行遥测时,工作距离不超过40mm,一般选用电磁耦合方式实现数据的传送。由于体内植入装置的能量供应受限制,为了延长其使用寿命,需要系统发送数据时的功耗尽量低。据此,本文设计了一种采用脉冲位置调制(PPM)的植入式装置遥测技术,包括控制单元、耦合单元、发射预处理单元和接收预处理单元。在发送数据时平均功耗很低,且电路简单可靠,可以减小装置的体积。

1硬件设计思路

硬件电路是采用PPM方式进行遥测的物理基础,由于当前的植入式装置一般都具有双向通信功能。因此本文对体内植入部分和体外程控器采用相同的遥测电路结构,如图1所示。

(1)控制单元

由于体内植入部分对功耗、工作电压、装置体积及电路复杂度等因素的严格要求,所以采用静态功耗少、电压低、功能多、体积小的单片机进行控制。采用软件实现数据的脉冲位置调制和解调过程。

(2)数据发射单元

来自控制单元的数据信号,驱动能力很弱,无法直接驱动耦合回路将数据发射出去。采用MOS开关作为中间级,用来自控制单元的数据信号控制MOS开关的开启和闭合,驱动耦合单元发射瞬间的高压脉冲。

(3)数据接收单元

接收端接收到的信号由发射端天线的反冲电压耦合到接收端天线上形成,具有衰减的振荡拖尾。通过接收单元,把有衰减振荡的脉冲波形变换成标准的方波信号,使控制单元能够直接处理。

(4)耦合单元

脉冲信号的发射和接收效果与耦合单元性能有关,本文采用优化的空心短圆柱线圈作为天线。

2工作原理

(1)模式切换

如图1所示,开关P是P沟道MOSFET,其栅极G由MCU控制。当栅极G被设置为低电平时,开关P导通,此时电路工作在数据脉冲的发射模式;当栅极G被设置为高电平时,开关P关断,这时电路工作在数据脉冲的接收模式。

(2)脉冲的发射

不同于电路比较复杂的谐振回路发射信号,本文中数据信号的发射基于电感升压原理:当发送端的开关N(N沟道MOSFET)导通时,电流流经线圈L1,电磁能量储存在线圈L1中;当N关断时,回路截止,线圈L1感应出瞬间的高压窄脉冲,紧接着是衰减的振荡拖尾信号,其中高压窄脉冲被用作PPM信号。接收端通过电磁耦合方式接收信号。

开关N关断时线圈上产生自感电动势(即反冲电压)ε=-L,而dt是N由导通到闭合的转换时间,N确定则dt为定值,同时线圈固定则L也为定值,因此当N导通时电流I越大则N关断瞬间产生的反冲电压就越大。另一方面,要求脉冲发射时能耗尽量少,因此N的导通时间设置为使I接近饱和。为了便于观察,在回路中串接阻值小的电阻R2,如图1所示。当N导通时,根据R2上测得的电压波形,就可以方便地看到I是否接近饱和,从而优化N的导通时间。

(3)脉冲的接收

耦合到接收端线圈L1的脉冲信号经过隔直电容C4,直流分量被滤掉,有用的信号(频率)分量传送到脉冲判别和脉宽延展电路。

运放A1和电阻R3、R4、R5、R6、R7,以及电容C2、C3组成脉冲判别和脉宽延展电路:其中C2起滤波作用,使接收到的脉冲信号振荡减弱。可变电阻R7用来调节门限。运放A1平时输出为高电平,当A1反相输入端接收到脉冲幅度大于门限时,输出反转,变为低电平。电容C3起正反馈作用,延展负脉冲宽度,以使单片机能够识别处理。延展后的负脉冲作为外部中断触发单片机,请求响应。

(4)电源的稳定

如图1所示,VDD是装置的直流电源电压。为了能在线圈L1发射数据信号时提供足够能量,并且不使电源受到数据发射时电感上感应电动势的波动影响,由电阻R1和电容C1组成去耦电路。数据发射周期T必须大于时间常数τ1=R1·C1,一般要求满足T>3~5)·τ1。

在做植入式装置遥测实验时,通过MCU控制电阻R8与发光二极管LED组成的指示电路,可以直观地了解通信状况。

3软件设计

本文研究植入式装置的数据遥测,综合考虑信息传输速率和平均功率消耗等因素,采用4-PPM方式。即每两位二进制数据信号调制成一个4-PPM(四进制)信号。数据的调制和解调,以及4-PPM信号以帧格式发送和接收都由软件控制。

定义传输一个4-PPM信号的基本时间单位为一帧(frame),如图2所示,A~F构成一帧。把一帧的持续时间平均分成8份,每一小份时间段代表一个时隙(slot),则一帧由slot0~slot7组成。每一帧里的8个时隙组成4个固定的时区,在每一个时区内包括一定的变化脉冲位置:

(1)第一个固定时区由时隙slot0和slot1组成,如图2中的A、B。在每一帧里的预定脉冲位置产生一个帧同步信号,从而使接收端确定这是一帧的开始,使帧同步。帧同步信号位于每一帧的第一个固定时区内,而且是唯一的同步信号。如图2所示,帧起始由脉冲P1确定,它所在的时隙则定义为slot0,帧同步脉冲P2位于帧的第一个固定时区内的固定位置--时隙slot1。当接收端在接收到P1之后(设为slot0),若接着在slot1接收到P2,则可以确定正在接收一帧,即发送端和接收端之间实现帧同步。

(2)第二个固定时区由时隙slot2组成,如图2中C。这个时区是一个保护带,因为保护带的存在,使帧同步脉冲和数据脉冲在一起不会被当作新的帧同步脉冲,从而唯一地确定一帧,防止数据交迭。

篇3

2管道腐蚀检测装置创新设计

2.1在役管道腐蚀检测原理

我国在役管道大都铺设在野外且都埋在地下,其底部最容易发生腐蚀,对于在役运输管道发生的腐蚀采用射线检测技术,其检测原理如图2所示。射线机发射检测光线,穿透管道待检测部分,然后被探测平板接收,通过对接收射线的情况进行分析处理,便可以判断管道是否存在腐蚀以及腐蚀的位置、程度。

2.2检测装置问题分析

由于在役管道所处的环境比较复杂,对检测装置提出了非常苛刻的要求:不宜在管道内进行检测,也不允许检测装置从管道两端套进,只能从中间夹紧管道。当前的管道腐蚀检测装置主要存在的问题为:①结构复杂,装夹不便;②人工干预程度大,自动化程度低,检测效率低;③只能检测某一管径管道,适应性差。检测装置的创新设计必须解决上述问题,对于上述问题我们分析归纳为以下两个问题:Q1:提高检测效率,要求检测装置能沿着管道轴向进行移动检测,并对管道进行可靠地夹持。Q2:检测装置能实现系列管道(Φ159mm~Φ500mm)的检测,并保证检测装置不复杂、结构紧凑。对于Q1,要求检测装置沿着管道轴向移动检测以提高检测效率,但另一方面会导致夹持装置的夹紧力不够、可靠性降低,这就形成一对技术冲突。对应TRIZ标准工程参数,这对冲突中的改善参数为时间损失,恶化参数为可靠性。对于Q2,要求检测装置实现不同管径的管道检测,但同时会增加装置的复杂性,这也形成一对技术冲突。对应TRIZ标准工程参数,这对冲突中的改善参数为适应性及多用性,恶化参数为复杂性。

2.3检测装置问题解决

(1)针对Q1,查询TRIZ冲突矩阵得到发明原理10,30和4[7],经分析这3个原理无法解决该问题。我们采用物质—场模型来分析此问题,两种物质分别为S1(管道)和S2(检测装置),场为机械场,检测装置及场提供的功能是不完整的,其物质—场模型描述如图3所示。检测装置要求对管道有足够的夹持力,实现管道的可靠夹持,但检测装置与管道很难发生相对运动,实现管道轴向移动检测。由此可见,检测装置提供的场是一个可控性较差的场。查询标准解,得到第二类标准解No.16,即增加一个易控制的场,因此在检测装置和管道之间增加一个可控的外力,即在检测装置前后分别采用4个滚轮实现管道的夹持,在前后轮之间的管道上增加一个可控的驱动机构(如图4所示),在夹紧定位的同时提供外力以促使检测装置与管道之间发生相对运动。当管道检测装置实施检测时,不与管道发生相对运动,对管道进行定位夹紧;当检测完一个位置时,驱动机构提供外力促使检测装置与管道之间发生相对运动,检测装置运动到管道的下一个检测位置。(2)针对Q2,查询TRIZ冲突矩阵得到4个发明原理15,29,37和28。经过分析,发现发明原理15(动态化)有助于该冲突的解决。应用发明原理15,将滚轮与检测装置的联接部分改为可调机构,采用如图5所示的可调滑块机构,滑块沿着圆弧板径向安装,均匀并且对称安装在上、下圆弧板端面,通过调节滑块实现所要求的系列管道检测。

2.4在役管道腐蚀检测装置创新方案

综合上述2个问题的解决方法,得到如图6所示的在役管道腐蚀射线检测装置创新方案。检测装置采用两段半圆弧铰接而成的剖分式结构和螺旋夹紧机构实现快速夹紧和拆卸;采用8轮夹持机构以及驱动机构实现检测装置对管道的定位夹持,并能沿着管道轴向移动,实现自动检测;调节与轮子联接的滑块机构以实现不同管径的夹持检测。

篇4

2设计方案

2.1硬件设计

散热装置主要由MCU、风扇电路、温度监测电路、串口驱动电路、供电电路和MCU电路组成。以下对散热装置各个功能电路进行详细设计介绍。

2.1.1MCU

散热装置的MCU采用LPC2132微控制器,其主要功能为基于I2C的IPMI通信接口、风扇控制、温度传感器数据读取和数据打印,它是整个散热装置的控制核心。LPC2132微控制器基于16位/32位ARM7TDMI-SCPU,该CPU支持实时仿真和嵌入式跟踪。

2.1.2风扇电路

散热装置中的风扇采用四线制可调速风扇,风扇的速度通过改变接到调速PWM信号线上的PWM占空比的大小,来调整速度值得大小。占空比越大,风扇速度越大,反之,则越小。把风扇的调速PWM信号线接到了MCU(LPC2132)的PWM输出引脚上,用于控制风扇转速。风扇的反馈速度信号线上传输的是一个矩形波信号,信号的频率,表示了风扇的转速大小,信号频率越高,风扇转速越快,反之,则越小。风扇的反馈速度信号线接到MCU的捕获口上,通过计算风扇反馈速度信号的频率,计算出来风扇的实际转速。

2.1.3温度监测电路

电路功能监测设备内部温度,并将温度数据传给MCU。电路的温度传感器选用LM92C,该温度传感器的准确度可达±0.33℃,温度刷间隔500ms,温度数据输出采用I2C口。

2.1.4串口驱动电路

串口驱动电路主要功能,将MCU的RS232串口转换为标准串口电平,驱动芯片选用MAX3223,用于散热装置温度数据、风扇转速和告警状态数据的打印。

2.1.5供电电路

电路的功能是控制风扇12V上电,可以通过MCU(LPC2132)控制风扇打开与关闭,使得散热装置更加人性化。电路控制芯片选用LM5069,通过MCU(LPC2132)控制LM5069的UVLO脚,高电平控制12V上电,低电平控制12V断电;通过MCU(LPC2132)读取LM5069的PGD脚状态可以查看12V上电是否成功。

2.1.6MCU电路

MCU电路功能是配置MCU正常工作,主要有时钟、MCU复位处理、看门狗处理和JTAG程序下载。

2.2软件设计

散热装置软件为MCU控制软件,它主要包含MCU初始化软件模块、IPMI通信软件模块、风扇速度控制软件模块、风扇速度检测软件模块、风扇板温度值读取软件模块和调试串口软件模块。

2.2.1MCU初始化软件模块

MCU初始化软件模块的主要功能是根据MCU硬件电路配置MCU相应功能寄存器,使得MCU能按硬件电路设计正常工作。MCU的GPIO管脚的初始化是根据硬件设计来规划。对于LPC2132来说,每个GPIO的配置需要经历管脚功能选择、上拉下拉模式选择、输入输出方向选择、高低电平设置四步。

2.2.2IPMI通信软件

IPMI通信软件模块主要功能为运用MCU硬件I2C0接口与上层控制单元进行数据通信,采用IPMI(IntelligentPlatformManagementInterface)通信协议,用于设备的物理特征,如各部件的温度、电压、风扇工作状态、电源供应以及机箱入侵等,散热装置用于传输温度、风扇转速、告警等信息。

2.2.3风扇速度控制软件模块

风扇速度控制软件模块主要功能根据设备温度值或上层控制命令调扇转速,风扇转速可以0%、30%、50%、70%、90%和100%几个级别进行调节包含根据主控发送温度值调扇转速。散热装置风扇速度控制由MCU(LPC2132)的脉宽调制口PWM控制,根据软件设置,PWM可以输出不同占空比脉宽信号,风扇1、风扇2、风扇3和风扇4转速分别由PWM2、PWM4、PWM5和PWM6控制,每个风扇的转速都可以单独设置。

2.2.扇速度监测软件模块

风扇速度监测软件模块主要功能是监测风扇转速,判断风扇工作状态。风扇速度监测由MCU(LPC2132)的定时器捕获口CAP0检测,CAP0每捕获到一个下降沿产生一次中断,风扇1、风扇2、风扇3和风扇4速度监测分别由CAP0.0、CAP0.1、CAP0.2和CAP0.3读取。

2.2.5温度读取软件模块

温度值读取软件模块的主要功能为读取设备上温度传感器LM92温度数据。温度传感器温度读取端口为I2C口,MCU设置为主设备,通信速率设置为400kb/s,定时器间隔1s读取温度传感器的温度值。

篇5

长期以来,粉体的计量装置及控制系统在化工"制药"食品行业!以及军事工业等领域都有着广泛的应用,由于实际情况的不同!对计量及加料装置的精密程度的要求也不相同,例如在制药业中!出于对病人生命安全的考虑!对药量的控制非常严格!这就要求有一套非常精密而且可靠的系统!来完成药粉的添加和计量,在军事工业。

并能在输送过程中起到掺和拌匀物料的作用!因此应用在本系统中是非常适合的,在本设计中传统的螺杆经过改造!镂空了原有的螺杆!只留下类似弹簧状的螺棱!这样做的好处是避免了由于加料的不均!在狭窄的螺槽中可能带来的粉末被挤压成块状!导致粉末输送的不均匀性,其基本组成,电控部分采用为核心。驱动步进电机转动,利用带输出接口的电子天平测量粉体质量!并实时反馈给以调节步进电机的转速!当粉体的质量达到要求时!步进电机暂停,完成粉体质量的输送,各部分装置如下采用型为主机,其特点是外形小巧,功能强大可根据本系统的要求添加,通信板与电子天平进行通信电子天平采用上海精天电子仪器有限公司型精密电子天平主要参数如下,称量范围精度输出接口电源,称盘尺寸步进电机采用型两相混合式步进电机,其驱动电压为,既可以与专门的驱动器配合使用。

计量加料装置也可以作为弹药装填控制系统的一部分!精密控制火药的用量$本设计正是考虑到了精密计量这一关键问题!采用先进的,控制手段!配合精密的螺旋输送设备,力求达到最小的误差!最佳的效果,系统组成及工作原理本系统的基本组成如图,所示,下面从机械和电控两方面进行阐述,机械部分以螺旋输送器为主体!螺旋输送是固体物料输送的一种重要方式!它主要依靠螺杆自身的旋转将物料输送出去!由于螺旋是连续的!故可实现输送的连续性,螺旋输送器可以输送粮食饲料铁粉等颗粒或粉状物料!推荐阅读:计算机应用型教育教学方法研究毕业论文

步进电机的输出为两相四线,我们采用半步工作方式所以绕组的通电顺序为正转反转,对于驱动步进电机所需的时钟脉冲"可以采用定时器产生并控制脉冲的频率,也可以利用内部的特殊辅助继电器产生时钟脉冲比如的时钟脉冲。

也可以直接接在,的输出端,利用软件编程分配脉冲的方法来直接驱动步进电机,电控部分接线图及部分程序利用软件编程分配脉冲的方法来直接驱动步进电机的接线。

用于的通信板=可连接到系列可编程控制器的主单元,并可在设备之间进行数据传输,本系统就是通过在电子天平与之间进行数据通信的关于控制系统的流程图和部分程序图。

篇6

该皮带机运输能力200t/h,胶带宽度B=1000mm,带速为1.6m/s,输送机倾角14°,提升角度15m,输送机长度74.5m。要求在设计时采用涡轮卷筒拉紧装置尾部水平拉紧方式,拉紧装置的最大拉力不小于50kN,拉紧行程不小于3m。结合该公司多年生产带式输送机的经验和用户的实际情况,对该皮带机的设计方案进行反复的思考比较,最后在综合了多种方案优劣的情况下对改皮带进行了优化设计。

皮带输送机拉紧装置常见的主要有螺旋拉紧装置、重力拉紧装置、固定绞车拉紧装置、自动拉紧装置四种类型。这四种常见的皮带输送机拉紧装置各有各的优势和缺点,我们针对其优势和缺点,在本次设计中做了研究。

①螺旋拉紧装置。螺旋拉紧装置结构简单,拉紧行程太小,只适用于短距离输送机,一般机长小于80m时才选用,缺点是当胶带自行伸长后,不能自动拉紧。

②重力拉紧装置。重力拉紧装置是结构最简单,应用最广泛的一种拉紧装置。它是利用重锤来自动拉紧,由于重锤靠自重拉紧,所以它能保证拉紧力在各种工况下保持恒定不变,能自动补偿胶带的伸长。重力拉紧装置的特点是拉紧力不变,拉紧位移可变,它适用于固定式长距离运输机,优点是安全可靠性高,缺点是拉紧力不能调节,空间要求大,在空间受限制的地方,无法使用。

③皮带输送机固定绞车拉紧装置。它是利用小型绞车来拉紧,绞车一般用蜗轮蜗杆减速器带动卷筒来缠绕钢绳,从而拉紧胶带。这种拉紧装置的优点是体积小,拉力大。缺点是它只能根据所需要的拉紧力调定后产生固定的拉紧力,拉紧力不能自动调节,当绞车和控制系统出现问题时,对胶带机不能产生恒定的拉紧力或拉紧力失效,安全可靠性相对降低。

④自动拉紧装置。自动拉紧装置不但能根据主动滚筒的牵引力来自动调整拉紧力,而且还能补偿胶带的伸长。自动拉紧装置由电机、制动器、减速器、钢丝绳、滚筒等组成,采用大拉力张紧装置张紧输送带,同时配备张力传感器,测定输送带的张力,当输送带张力发生变化,超过输送机正常运行的范围时,自动张紧装置迅速动作,调整输送带张力,保证输送机正常运行。自动张紧装置与自移机尾配合使用,可实现在输送机不停机的条件下,实现输送机机尾的移动和输送带的伸缩,大大提高了输送机的输送效率。自动绞车拉紧装置由压力传感器根据胶带输送机运行工况的需要自动控制拉紧力的大小,液压拉紧装置由液压站产生的液压力通过油缸对皮带输送机施加拉紧力,可根据胶带机运行工况的需要调节拉紧力的大小。

篇7

2管道腐蚀检测装置创新设计

2.1在役管道腐蚀检测原理

我国在役管道大都铺设在野外且都埋在地下,其底部最容易发生腐蚀,对于在役运输管道发生的腐蚀采用射线检测技术,其检测原理如图2所示。射线机发射检测光线,穿透管道待检测部分,然后被探测平板接收,通过对接收射线的情况进行分析处理,便可以判断管道是否存在腐蚀以及腐蚀的位置、程度。

2.2检测装置问题分析

由于在役管道所处的环境比较复杂,对检测装置提出了非常苛刻的要求:不宜在管道内进行检测,也不允许检测装置从管道两端套进,只能从中间夹紧管道。当前的管道腐蚀检测装置主要存在的问题为:①结构复杂,装夹不便;②人工干预程度大,自动化程度低,检测效率低;③只能检测某一管径管道,适应性差。检测装置的创新设计必须解决上述问题,对于上述问题我们分析归纳为以下两个问题:Q1:提高检测效率,要求检测装置能沿着管道轴向进行移动检测,并对管道进行可靠地夹持。Q2:检测装置能实现系列管道(Φ159mm~Φ500mm)的检测,并保证检测装置不复杂、结构紧凑。对于Q1,要求检测装置沿着管道轴向移动检测以提高检测效率,但另一方面会导致夹持装置的夹紧力不够、可靠性降低,这就形成一对技术冲突。对应TRIZ标准工程参数,这对冲突中的改善参数为时间损失,恶化参数为可靠性。对于Q2,要求检测装置实现不同管径的管道检测,但同时会增加装置的复杂性,这也形成一对技术冲突。对应TRIZ标准工程参数,这对冲突中的改善参数为适应性及多用性,恶化参数为复杂性。

2.3检测装置问题解决

(1)针对Q1,查询TRIZ冲突矩阵得到发明原理10,30和4[7],经分析这3个原理无法解决该问题。我们采用物质—场模型来分析此问题,两种物质分别为S1(管道)和S2(检测装置),场为机械场,检测装置及场提供的功能是不完整的,其物质—场模型描述如图3所示。检测装置要求对管道有足够的夹持力,实现管道的可靠夹持,但检测装置与管道很难发生相对运动,实现管道轴向移动检测。由此可见,检测装置提供的场是一个可控性较差的场。查询标准解,得到第二类标准解No.16,即增加一个易控制的场,因此在检测装置和管道之间增加一个可控的外力,即在检测装置前后分别采用4个滚轮实现管道的夹持,在前后轮之间的管道上增加一个可控的驱动机构(如图4所示),在夹紧定位的同时提供外力以促使检测装置与管道之间发生相对运动。当管道检测装置实施检测时,不与管道发生相对运动,对管道进行定位夹紧;当检测完一个位置时,驱动机构提供外力促使检测装置与管道之间发生相对运动,检测装置运动到管道的下一个检测位置。(2)针对Q2,查询TRIZ冲突矩阵得到4个发明原理15,29,37和28。经过分析,发现发明原理15(动态化)有助于该冲突的解决。应用发明原理15,将滚轮与检测装置的联接部分改为可调机构,采用如图5所示的可调滑块机构,滑块沿着圆弧板径向安装,均匀并且对称安装在上、下圆弧板端面,通过调节滑块实现所要求的系列管道检测。

2.4在役管道腐蚀检测装置创新方案

综合上述2个问题的解决方法,得到如图6所示的在役管道腐蚀射线检测装置创新方案。检测装置采用两段半圆弧铰接而成的剖分式结构和螺旋夹紧机构实现快速夹紧和拆卸;采用8轮夹持机构以及驱动机构实现检测装置对管道的定位夹持,并能沿着管道轴向移动,实现自动检测;调节与轮子联接的滑块机构以实现不同管径的夹持检测。

篇8

1.2选择和分析解决方案查找TRIZ矛盾矩阵,得出消防炮升降塔装置的阿奇舒勒矩阵如表1所示,共有9个发明原理。结合实践需要,推荐的消防炮升降塔装置的发明原理序号共4个,对应的发明原理为10-预先作用、15-动态化、24-中介物、29-气压或液压结构。10-预先作用:在操作开始前使物体局部或全部产生所需变化;预先对物体进行特殊安排,使其在时间上有准备或已处于易操作的位置。采用的油缸活塞杆是中空结构,并在活塞杆内部设有一根内导管(中空结构),在活塞杆与内导管之间还设有一根外导管。在油箱上方设有空气滤清剂,并在其他方位设有液位控制器,温度继电器,液位液温计。15-动态化:使物体或其环境在操作的每一个阶段自动调整,以达到优化的性能;把物体分为几部分,各部分之间可以相对改变位置,将不动的物体改变为可动的或具自适应性。在油缸完全伸出、缩进处装有限位开关。24-中介物,使用中介物传递某一物体或某一中间过程,或将一个容易移动的物体与另一个物体暂时结合,采用液压油实现传动。29-气压或液压结构:将物体固体零部件用气动或液压零部件代替。在创新设计中,采用液压传动代替原机械传动实现升降塔的升降动作,采用电磁换向阀换向实现消防炮的升降。

1.3具体解决方案通过以上创新原理的分析,以此为创新设计思路,得出最终的消防炮升降塔装置创新设计方案:采用液压传动机构,包括电动机、接近开关,油缸,设置在油缸内部的活塞及活塞杆(中空结构)、油缸回路,钢筒端部设置的法兰,油箱,泵组,控制阀组。油箱、泵组、控制阀组通过管路连接形成动力站,如图1所示。油箱上方设有空气滤清剂,并在其它方位设有液位控制器、温度继电器、液位液温计。油缸活塞杆为中空结构,并在活塞杆内部设有一根耐腐蚀内导管(中空结构),并在油缸完全伸出、缩进处装有限位开关,在活塞杆与内导管之间还设有一根外导管。油缸如图2所示。在液压吸油管处设有单向阀。控制阀组设有两个油路,分别连通油缸的有杆腔和无杆腔,每个油路进油端设有单向阀和溢流阀,单向阀流出口连接一个换向阀,通过控制换向阀从而控制油流入的是有杆腔还是无杆腔,换向阀流出口分别设有平衡阀,油通过平衡阀大部分流入有杆腔(无杆腔)、少许压力油通过平衡阀作用将无杆腔(有杆腔)回路打开,从而使无杆腔(有杆腔)中油流回油箱,形成锁紧回路,在平衡阀流出口并联一个溢流阀。消防炮升降塔装置的液压系统原理图如图3所示。

篇9

引言

我国是世界上最大的发展中国家,国民经济快速发展,人民生活水平不断提高,与此同时,干燥技术的应用在市场需求的刺激下也出现了迅猛增长的势头。我国的干燥技术应用经历了引进、消化吸收及自制等阶段,是世界上拥有干燥设备制造厂数量最多的国家,但我国大部分的农产品仍没有条件获得先进干燥技术的处理。据有关统计,由于得不到及时的干燥处理,我国平常年景损失的粮食达50亿Kg。至于干燥技术对粮食产品外形和口味的影响尚无力顾及,今后与进口粮食产品全面竞争的局面迟早要出现,届时,这方面的缺陷将削弱我国产品的竞争力。

干燥能源通常使用煤、电、油、气等,而且随着世界煤炭、石油等能源的枯竭,使用成本愈来愈高,太阳能、微波能、远红外、生物质能等新能源的开发及应用愈发受到重视。本文介绍的是利用天然气燃烧产生的气体作为热介质,利用微波进行辅助加热的一种组合干燥机,具有绿色、无污染,温度易控制,热利用率高的特点,另外微波还具有杀菌的作用。

就北方的玉米干燥而言,降速干燥阶段时间占整个干燥时间的2/3,蒸发掉的水分却不足全部水分的1/3,本发明设想在传统干燥的恒速干燥最后阶段,在进入降速干燥之前,加入微波辅助加热,加快内部水分向外部扩散的速率,这样可以大大缩短降速干燥阶段时间,也使整个干燥时间缩短,从而达到高效节能的目的。

一、总体结构

烘干机由四部分组成:带式干燥机及配风系统、天然气燃烧系统、微波辅助加热系统、控制系统。

带式干燥机由机箱、带传动系统组成,带速可无级调节。配风系统包括进、出风管、循环风机、排潮风机及控风门。

微波辅助加热系统包括微波加热腔、微波源、微波源外罩及进、出料微波抑制器。

控制系统控制传送带开/停及变频调速;循环风机、排潮风机开/停;微波源分组开启/关闭及状态显示;料温显示及报警;风温显示及报警。

二、烘干机主要参数的确定

通过干燥过程的物料衡算和热量衡算,确定主要参数,包括计算水分蒸发量、空气耗量、天然气用量及微波能耗。

在干燥过程中,新鲜空气(其状态为环境温度t0,湿度H0,热焓I0,干空气量L)进入空气加热器,加热后(其状态为t1,H1=H0,I1,L)进入干燥器,在加热器中物料燥,由含水率m1降至m2,物料温度由tm1升至tm2后排出干燥器;而干燥空气温度下降、湿度增加后排出干燥器(其状态为t2,H2,I2,L)。

(1)原料玉米的质量流量G1(kg/h):根据要求G1=1000kg/h。

(2)产品玉米的质量流量G2:G2=G1*(1-m1)/(1-m2)

式中:G2为产品玉米的质量流量,kg/h;G1为原料玉米的质量流量,kg/h;m1为原料玉米的湿基水分,28%;m2为产品玉米的湿基水分,14%。带入数值,计算得到:G2=837kg/h。

(3)玉米中去除水分的质量流量mw:每小时去除的水分质量流量mw,由如下公式计算:mw=G1*(m1-m2)/(1-m2)

式中:mw为每小时去除的水分质量流量,kg/h;带入各值,计算得到:mw=163kg/h

(4)干燥介质进入干燥室时的湿含量H1:因H1=H0,当温度为t0=-20℃,相对湿度为35%,查表得H1=0.001

(5)干燥介质离开干燥室时的湿含量H2:温度为t2=35℃,相对湿度为80%,查表得H2=0.029

(6)干燥介质湿比容υ(m3/Kg):υ=(0.773+1.244*H1)(273+t1)/273=1.002(m3/Kg)式中:t1=70℃

(7)干燥介质流量L(Kg/h):L=mw/(H2-H1)=5821.4(Kg/h)

(8)干燥介质体积流量V(m3/h):V=L*υ=5833(m3/h)

(9)干燥介质离开干燥室时的焓值I2:I2=1.01t2+H2(2501+1.86t2)=35.35+0.029*2566.1=109.8(KJ/Kg)

(10)干燥介质进入加热室时的焓值I0:I0=1.01t0+H1(2501+1.86t0)=-20.2+0.01*(2501-37.2)=4.44(KJ/Kg)式中:t0=-20℃

(11)加热器加入的热量QH(KJ/h):系统输入热量:1)湿物料G1带入的热量:因为G1=G2+mw,所以湿物料G1带入的热量为G2Cmtm1+mwCtm12)空气带入的热量LI03)加热器加入的热量QH

系统输出热量:1)产品G2带走的热量:G2Cmtm22)废气带走的热量:LI23)干燥器散热损失QL取QL=10%QH

综合以上:G2Cmtm1+mwCwtm1+LI0+QH=G2Cmtm2+LI2+10%QH得:90%QH=G2Cm(tm2-tm1)+L(I2-I0)-mwCwtm1式中:Cw为水的比热容,4.187KJ/(Kg·℃);tm1为原料玉米的温度,-20℃;tm2为产品玉米的温度,60℃;Cm为产品玉米的比热,2.01KJ/(Kg·℃)最后QH=846202(KJ/h)=202150Kcal/h

(12)天然气燃烧热为8000Kcal/m3,则天然气用量为25.3m3/h。:

(13)微波功率P(Kw):假设降速干燥开始时,玉米中应去除的水分还剩1/3(54Kg),此时的质量流量(包含水分在内)为Mj,含水率wj=(54+1000×14%)/Mj=21%,设经微波加热后,含水率为20%,粮食温度由T1(60℃)变为T2(70℃),加热效率η1(80%),微波转换效率η2(70%),在标准大气压力下,水的气化热539Kcal/Kg,产品干燥时,所需要的热量为Q,可得:

Mj=1000×(1-28%)+54+1000×14%=914Kg/h=15.23Kg/minQ=Mj×〔W1(T2-T1)×1+C(1-W1)(T2-T1)+539(W1-W2)〕=171.8(Kcal/min)则微波功率P=0.07Q/η1η2=21(Kw)

三、总结

玉米是我国主要的粮食资源,研制烘干玉米的关键技术和装备,已成为节能减排、建设玉米绿色供应链的关键,且众多生产领域还没有采用先进的干燥技术和装备,更有巨大的市场还有待于开发。

使用可燃气,主要成份为甲烷,燃烧生成二氧化碳和水,属于清洁能源,采用微波干燥,速度快、加热均匀,同时具有杀菌、减少污染的作用,结合热风干燥,能达到节能的目的,目前在粮食烘干领域还未见应用,但经广大科技人员的研究与推广,我国的粮食干燥技术及装备必将取得更多成果。

参考文献:

[1]金国淼等.干燥设备[M],化学工业出版社,2002.

篇10

针对前面的课程设计,在授课之前,校企双方教师应就课程目标、实施意见共同商讨,针对课程内容进行项目任务的分解,理清各阶段的子目标、标准及达成手段。在为服装设计专业二年级学生授课中为某品牌服装企业真实开发产品实施项目化课程所设计的一个教学任务书。在任务书中,应明确课程的内容、目标、组织形式、“双师”分工、课程考核等各环节的安排,这是产品开发类项目化课程有效实施的前提保障。

(二)交替授课、弹性课时

按照上面提到过的师资教学任务分配设计,为了解决企业师资方的时间受限问题,在该教师时间节点授课时间外,为有效监控项目推进效果,可利用网络教学等形式进行时间点外的授课与辅导,达到课时分配的柔性化。企业教师对于学校的前导及后续课程知识链接比较模糊,因此,校方教师在企业教师来校授课节点之外的其他课程时间内,要有意识地针对企方提出的项目,系统讲授完成项目所需的知识技能,并指导学生在项目实施中学以致用。例如,企方在课上提出下一季企划案的设计思想和要求,并下达在两周内完成企划方案的阶段任务。在接下来的授课中,校方教师就需要针对这一内容进行服装商品企划、版式设计等相应知识的讲授或知识串联,使学生能在规定时间内完成企划方案的制作,并在规定的时间点内交由校企双方教师联合验收。这对校方教师的教学能力是一种考验,同时也可提升其“双师”素质。

(三)作业形式向产品转化服装设计类专业的课程作业

通常以实物作品的形式展现。在经过企业综合考核后,作业中优胜者的作品会出现在企业的新品定货会中,以产品形式接受市场的检验。这样,考核方就不仅仅是学校、企业,而转化为市场价值的考量。对于在校生来说,这不仅是对课业成绩的检验,更是对于职业能力的综合评定。

二、项目化课程教学反思

(一)初步形成了“三双、五化、多手段检验”的课程设计思路

第一,运用了“双师引导、双线教学、双场地实训”的课程实施思路。构建了校内、外双向联动的共同培养局面。第二,实现了“教学内容项目化、课时分配灵活化、授课时间弹性化、授课方式多样化、作业形式产品化”的课程实施尝试。第三,采用了调研报告、开发方案、产品画册、产品实物等多种形式的检验方法,集中展现了学生综合的专业能力。

(二)初步形成了“基于过程的动态考核

基于结果的项目验收,基于销量的市场检验”的考核方式考核方式使课程的验收不仅仅局限于校内或某位教师,而是来源于产品进入市场的销量,在更具说服力的同时,也成为学生职业能力的最好检验方法。这样的变革在某种程度上解决了设计类专业教学成果考核局限性的难题。

(三)初步探索了校企产学结合以及师资队伍建设的途径

校企长效合作的基础是要找到共同的利益点,项目化教学在共同培养人这一根本目标之上,又结合了共建师资、共建实训环境等相关的密切合作,使校方受益的同时,企业也可以得到产品销售利润,不失为一种好的合作方式。

(四)对以往存在的教学问题进行了尝试性解决

第一,动态教学计划的尝试,在企业项目与学校教学进度不对接的问题上有了一定突破。第二,在课程中引入网络远程教学的教学手段,在解决企业教师授课时间受限的问题上有一定效果。第三,学校与企业教师交替授课的安排,为实践依据与实践方式的有效衔接提供了可能。第四,在作业—作品—产品的阶段成果的逐一考核中,最终市场的检验成为成品转化的考核标准,使考核方式更加多样化和实用化。第五,在项目化教学过程中,学生的专业能力也在向职业能力转化,学生能够凭实力到企业实习直至就业,校企合作在此过程中真正深化。

三、对课程的思考

(一)可以进行“工学结合、专业融合、校企联合”的产学共建尝试

高职院校的艺术类专业,可以尝试在共建项目化课程的基础上,依托校内、外实训基地,进一步实行工学结合的高职高专教学模式;在成果建设上,实行相近专业的有效融合,比如可结合服装设计与鞋类设计、家居设计等专业的特点,形成作业到作品的成果呈现;再与合作企业联合制定人才培养方案、联合进行课程开发、联合开发新季产品,形成作品到产品的系统转化。

(二)可以在项目化教学的基础上搭建有效的师资建设平台

学校与企业在教学、项目推进中形成深度融合,分工协作,搭建教学、实践交叉组合的师资建设平台,在双赢的局面下,提高企业与教师双方素质,为可持续的师资队伍建设注入活力。校企双方在合作成熟的基础上,可以慢慢发展到共同承接社会培训工作,扩大校企双方的社会影响。

(三)持续进行探索,开辟产学研结合的发展道路

项目化教学的成果转化除了市场价值之外,其社会价值的体现既符合艺术设计类专业的要求,同时也体现了高职教育的社会责任。一方面,在教改科研成果的转化方面,校方应起到主导作用,可结合教学、项目的实施经验,积累相关素材和案例,积极准备编写、出版相关教材,在分享经验的同时,获得更多的社会反馈,形成教育成果在社会上的良性循环;另一方面,校企双方还可集合成员的智力资源进一步拓展产学研究,促进科技和创业教育的成果转化。从本文所讲的整个服装设计专业项目化课程设计与实施过程可以看出,在课程推进中基本实现了“专业与产业对接、课程内容与职业标准对接、教学过程与生产过程对接”,这正是国家对职业教育提出的“三对接”要求。这也再次说明了真正落实职业教育理念归根结底还是在课程的开发和建设上,高职教育工作者为此要不断进行教学改革。