时间:2023-03-23 15:22:38
导言:作为写作爱好者,不可错过为您精心挑选的10篇抗干扰技术论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
跳频抗干扰技术,是主要应用于超短波通信装备的一种较成熟的抗干扰技术。该技术抗干扰能力很强,广泛应用于民用无线通信系统。无线电发信频率技术是跳频抗干扰的核心技术,它是能按照特定规律、速度来回进行跳变的频率。与传统的无线电发信频率技术相比,该技术可以使载波频率不断跳变而达到频谱扩展的目的,就一般情况而言,无线通信载波频率的跳速高低能够直接反应出该系统的性能好坏。具体来讲,载波频率跳速越高,该通信系统的抗干扰性能也就越好;相反,载波频率跳速越低,该通信系统的抗干扰性能则会越差。除此之外,增加跳频的带宽也能提高无线通信抗干扰性能,带宽增大,抗干扰性能变好,带宽减小,抗干扰性能则变差。
1.2扩频抗干扰
扩频抗干扰技术,它主要是通过有效调整信号功率,从而对合成噪声进行一种编码、解码操作,正是把无线通信设备释放、接收的信号像这样隐藏在波状形的噪声中,就能有效地避免来自外界的电磁干扰。当前,最典型的扩频抗干扰手段是直接序列扩频法,它通过扩展无线信号的频带,降低其功率谱密度也就是说降低单位频带内的功率,这样就能让无线通讯信号在噪声中淹没隐藏。无线通信信号通过利用直接序列扩频法来避免干扰,不仅有很好的隐蔽性,还能实现多径抗干扰的目标。CDMA技术是我国3G(第三代移动通信系统)的关键技术之一,它也是主要使用直接序列扩频法。但是,CDMA用户所使用的扩频码一般不可以做到严格正交即无法准确同步,所以,CDMA技术随机接入多个用户时,它所使用的直接序列扩频法会时常受到多址干扰的影响。因此,这一缺陷会导致CDMA技术的通信质量以及系统容量受到很大程度上的影响,即其抗干扰性能会有所不足。
1.3多入多出或智能传输抗干扰
当前,无线通信领域中,应用度比较高的抗干扰手段还有多入多出抗干扰技术。该技术经过多根发射天线发送信号,同时使用多根接收天线接收无线信号。采用这种信息传输技术时,待传输的信息根据数学表达模型分解成了若干信息通道中的分量形式,所以当其中的一个通道中的信号分量受到干扰因素的影响而有所损耗时,我么可以通过其他分量通道进行逆变换从而得到未损耗的信号,从这里我们可以看出这种技术的特性就是,相对于单一载波信号传输,分通道传输能够有效抵抗信息传输过程的干扰,提高系统安全性。同时,还有经常使用的空时编码技术也能够通过相应技术处理提高信息传输的抗干扰性能,使信息传输更加安全可靠。此外,多入多出技术相对于一般的信息传输技术能够显著的提高总的通信系统容量,有效改善传输系统的通信性能。
2未来无线通信发展抗干扰技术的趋势
2.1自适应抗干扰
现阶段,随着对无线电通信理论研究的不断深入、调制技术和编码技术在无线通信领域中的迅速发展、计算机技术和数字信号处理技术的大量实践应用,调频技术已经突破传统的技术模式,向着自适应的方向快速发展。在学科定义上,调频技术是指随着通信系统中通信环境的不断变化,信号传输能力随之进行自动跳频、主动逃避受干扰频点等来适应环境变化,提高信息传输能力。自适应抗干扰的技术分类有很多,比如:频率自适应、功率自适应、速率自适应等。但是无论技术方法怎么变化,我们的目的只有一个:通过不断的进行信号选频和信号换频来保证无线电通信系统的信号通道在通信条件不断变化的情况下仍然处于良好的性能状态。
2.2超窄带抗干扰
超窄带技术是相对于超宽带技术而言的,超宽带技术的理论和方法已经非常的成熟,这种技术通过将待传输信号的能量在比较大的传输宽带上进行分散操作,避免不利的通信条件对通信系统造成影响。相对而言,超窄带技术就是将传输信号限制在带宽比较窄的传输通道中进行信号能量的相对集中,对于频带之外的信号能量传输时将其忽略,同样这种技术也可以提高通信系统的稳定性。
2.3组合集成抗干扰
在对多种传统的通信技术及其抗干扰技术的应用研究的基础上,我们可以将这些技术进行合理的集成,从而扬长避短,发挥各项技术的优势,例如:如跳频/扩频混合技术及时基于这样的设计理念。但是理论上讲,混合技术的集成过程比单一技术的研究使用要困难的多,这种困难不仅体现在理论上也体现在实现上,但是这种技术集成模式能够有效的提高信号传输的稳定性和安全性。比如上面所讲的跳频/扩频混合技术,这种方式在集成时不是简单地将处理增益相叠加,而是采用混合技术得到相对于单一技术模式下更大的处理增益,它是通过将频带拓宽和增加跳频效果实现的。智能天线在无线电通信中的定向接收方面和抗干扰方面都有着很好的技术指标,所以在智能天线系统中加入方向跟踪技术、分通道接收技术等可以有效的阻止干扰信号在通信接收端的被动接收,从而将接收信号和接收的干扰信号的干扰比大幅度提高,除此之外还可以在信号的发射端使用多天线技术,也可以有效提高传输信号在无线空间中的稳定性能和抗干扰能力。
1.引言
码分多址(code division multiple acce-ss,CDMA)系统作为一个自干扰系统,它存在的多址干扰(Multiple Access Inter-ference,MAI)是限制CDMA系统容量和性能的主要因素。在抗MAI方面,近年的研究主要提出了多用户检测、扩频码设计和智能天线技术[1]。其中多用户检测和智能天线技术在对抗MAI方面效果较突出[2]。然而现有的多用户检测只在消除小区内干扰方面取得了较好的效果,而小区间的干扰问题没有解决,智能天线技术很好的解决了这一问题。因此,本文主要探讨基于智能天线与多用户检测技术的联合抗干扰技术。
2.联合抗干扰模型
智能天线分为圆阵和线阵两大类。圆阵与线阵相比,能提供俯仰角的估计,不仅能在水平面内全向扫描,也能产生最大值指向阵面法线方向的单波束方向图进行全向波束赋形,直接对准用户的接收端,还能通过自动调整各个阵元的加权因子,来控制其方向图。故论文以圆阵天线作为接收端的接收天线,以消除小区间干扰。
圆阵天线的阵因子为:
(1)
其中,An为激励电流的幅值,在此为一定值,所以讨论阵因子时它不作考虑。
是第n个单元的角位置,an为激励电流的相位,为了方便下面的讨论,这里我们假设an=0。
则由式(1)得:
(2)
(3)
式中:
,
天线的阵因子为:,,wi为各天线单元加权值。
阵列天线实质上是一个空域滤波器,但对小区内存在的干扰并无明显改善。因此,论文同时引入能有效消除小区内干扰的多用户检测技术。
为了与圆阵天线合理匹配,减小系统复杂度并减小背景噪声,我们选择了多用户检测中的线性变换方式的最小均方误差检测(MMSE)。
其基本思想是使第k个用户发送的信号与估计值的均误方差值最小。为了使接收端信号的判决比特与发送端传输比特bk之间的均方误差最小,现定义第k个用户的线性变换函数wk,满足:
(4)
令,K*K阶的矩阵表示K个用户之间的线性变换矩阵,则MMSE准则下的线性检测问题转换为:
(5)
要求矩阵W以满足上式,则令:
可以解得最小均误方差准则下的线性变换矩阵:
(6)
因此,MMSE线性检测器后的判决输出为:
(7)
3.仿真
利用Matlab进行仿真。联合抗干扰模型分为圆环阵列天线与MMSE检测两个部分。首先,在不考虑系统中所有用户的地理位置分布情况下,选择采用圆阵天线作为接收天线和不采用两种设置,设载波波长为,阵元间距d为载波波长的二分之一,即。圆环阵列天线的阵元数设为8,方位角为(-90o,90o),仰角为(0o,90o)。两种设置在天线接收信号后都采用MMSE最小均方误差法对输出信号进行判决。结果如图1所示。
由图1可知,只有MMSE检测的CDMA系统,信噪比从0dB达到8dB的这一过程中,误码率性能有所改善,但不明显。而引合抗干扰的CDMA系统,误码率性能已经大大下降,达到一个数量级以上。
图1 联合抗干扰引入前后CDMA系统误码率
和信噪比关系图
4.结论
论文论述了基于圆阵天线与MMSE检测的联合抗干扰技术。提出了使用八阵元圆环阵列天线作为接收天线,以MMSE检测作为检测算法的联合抗干扰模型。实验结果表明,引合抗干扰后,系统的误码率性能明显改善,系统容量从而得到了提升。
参考文献
[1]Guerci J.R.,Driscoll T.,Hannigan R.,etc..Next Generation Affordable Smart Antennas[J].Microwave Journal,2014,57(1):24-40.
中图分类号:V443 文献标识码:A文章编号:
一.引言
我们知道在电子电路设计中的接地技术直接关系到了电器的使用寿命以及安全程度。在我国当前,各种各样的电子产品相继诞生,电子产品的应用也日益的广泛,可以说电子产品已经成为了人们生活工作的一个重要的组成部分。我们知道电子干扰是有很大的危害性的,它不仅仅严重的降低了电子系统的可靠性,还能够对人体的健康产生很大的负面作用。例如一些电子产品以及仪器就对电子电路的干扰十分的敏感,最常见的有家用电器比如收音机,电视机等等,还有一些医用设备,比如心脏起搏器等等。这些对电子电路的干扰电磁波都十分的敏感,干扰严重影响了这些设备的正常工作,严重的甚至使这些设备无法工作。为此,我们必须重视电子电路抗干扰能力的设计,可以说电子电路的抗干扰能力已经成了当前电子电路设计的一个非常重要的一方面,这是因为如此接地技术才显得如此重要,可以说接地技术的高低已经直接影响到了电子电路的抗干能力了。
二.接地技术的种类和目的
我们知道电磁干扰对电器具有很大的影响,严重的降低了其稳定性,也不利于工作人员的身体健康。为了保证用户用电的安全可靠,必须注意电子电路设计中接地技术的科学合理性。我们知道安全保护接地是接地技术中比较常见的一种,采用这种接方式地主要是为了保护用户的安全,在实际的生活中有的电器年记哦久了,则其绝缘性能下降,这样就给用户带来了很大的安全隐患,采用这种保护性的接地就是为了消除这种安全隐患而采取的措施。再者一些电器设备在运行的过程中会产生积累静电,这样就及其容易引起接触性的触电,甚至引起电器的爆炸,其危害极大,为了防止类似情况的发生,一般采用的接地方法是屏蔽接地法,能够有效的防止静电积累造成的损失。最后我们知道电磁干扰对电器设备是有很大的影响的,为了避免电器设备受到太多的电磁干扰,采取接地的方法可以有效的配出干扰,保证电器正常运行。
三.接地技术中的接地方式
电子电路设计中接地方式是比较多的,其接地方式不同那么它产生的效果也会不同,所以对于比较常见的几种接地方式我们要充分的了解,只有这样才能在具体的电子电路设计时运用自如。以下介绍两种最为普片使用的接地方式。
保护接零
一般用于三相四线制供电系统中的中性线,是电路环路的重要组成部分,在零线直接接地的一相四线制电网中,设计中一定要注意将电子电器设备征程运行时小带电的金属外壳于电刚的零线连接起来,这样一旦当电器设备中的某一项发乍漏电或者是碰壳时,由于事先金属外壳与零线相连,形成的单向短路,电流非常大,使电路保护装置迅速动的切断电源,从而保护了操作人员的人身安全和电网其他部分的正常运行,同时也可以避免一些重大安全事故的发生。
保护接地
接地保护的主要目的是为了防止用户触电,为了保护用户的安全而采取的措施,保护接地可以说是电子电路设计中最为常见的接地方式,一般来说对于那些中性点不接地的电网都采用保护性的接地方式,采用这种方式则电器设备的支架以及外壳均要接地,这样能够取得比较好的效果,有效的保护的电器安全一用户的安全。
四.电子电路设计中系统接地
通过接地技术的研究我们知道电子电路仪器中的电子仪器设备控制系统中遇到经常需要解决的就是系统接地问题,这也是设计中的一大难点。系统接地线是各种电路中的静态,动态电流的通道,同时又是各级电路通过共同的接地电阻相互耦合的途径,这样就形成了电路之间相互干扰的薄弱环节,所以电子电路设备中的切抗干扰技术,都和接地有很直接的关系。设计合理的接地足抑制噪音和防止干扰的主要途径,不仪能保证电子电器设备的正常,稳定和可靠性工作。
五.电子电路设计中系统接地的原则
根据不同的干扰源要设计不同的接地技术和工艺,不能存在侥幸认为电路中只要有一点接地就能消除干扰,要寻求综合性质的接地方式,才是最为安拿有效的,接地点的选择要恰当,避免设计不当引起的新的干扰。接地点的选择除了安全性外、还要一并考虑屏蔽效果的兼容性,就是要通过接地屏屏蔽技术达到消除多种干扰的综台目的。一般来说.电子电路设计如何和大地接触,与系统的工作稳定性能有着极为密切的关系,设计中常用以下三种方式。
1.浮地方式.不接触大地的悬浮方式。是将电路设备与公共地可能引起环流的公共导线隔离开来,从而抑制来自接地线的干扰。这种接地方式的缺点是设备不与大地直接相连.容易出现静电积累现象,这样积累起来的电荷达到·定程度后,在设备和大地之间会产生具有强人放电电流的静电击穿现象。
2.单点接地方式,我们知道采取两点接地扥方式很容易形成接地环路,一点接地的主要功能就是消除接地环路的形成。
3.多点接地方式,对于工作频率较高的高频电路,由于各元器件的引线和电路本身布局的电感都将增加接地线的阻抗,一点接地方式已不再适用
五.结束语
当前我国的经济快速发展带动了我国电子行业的迅速发展,各种电子产品相继诞生,并且应用日益广泛。在当前,我们已经进入了信息时代,各种各样的电子产品已经成为了人们生活的一部分,和人们的生活紧密相连,所以电子产品已经成为了当今不可或缺的一部分。但是我们知道,电子产品都存在电磁干扰,这不仅仅严重影响了电子系统的可靠性而且也严重危害到了工作人员以及用户的健康状态。所以,正是因为这个原因在进行电子电路设计时,我们要充分考虑其接地技术,这样可以有效的抗干扰能力。提高电子设备的抗干扰能力不仅仅可以提高经济利益还可以提高社会效益。可以说科学的接地技术已经成为了电子电路设计的一个重要的方面,是在电子电力设计工作中必须认真考虑的问题,其重要性不言而喻。所以本文就这个问题作了简单的探讨。
参考文献:
[1]吕俊霞Lv Junxia 电子电路的抗干扰方法与技术[期刊论文] 《印制电路信息》 -2006年8期
[2]李晓海 电子电路的抗干扰技术探析 [期刊论文] 《城市建设理论研究(电子版)》 -2012年9期
[3]蒋伟丽Jiang Weili 浅谈电子抗干扰技术 期浅谈电子电路的抗干扰技术 [期刊论文] 《丽水学院学报》 -2007年2期
[4]郭宝山周勤荣 浅谈电子电路的抗干扰设计 [期刊论文] 《山西电子技术》 -2011年5期
[5]浅析电子电路的抗干扰措施 [期刊论文] 《南北桥》 -2008年7期高玉荣管志刚
机电一体化发展至今也已成为一门有着自身体系的新型学科,随着科学技术的不但发展,还将被赋予新的内容。但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电力电子技术、接口技术、信息变换技术以及软件编程技术等群体技术,根据系统功能目标和优化组织目标,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。
1.机电一体化系统的干扰源
从干扰窜入系统的渠道来看,系统所受到的干扰源分为供电干扰、过程通道干扰、场干扰等。
1.1供电干扰
大功率设备会造成电网的严重污染,使得电网电压大幅度地涨落、浪涌,大功率开关的通断,电动机的启停等原因,电网上常常出现很高的尖峰脉冲干扰。论文参考网。据统计,电源的投入、瞬时短路、欠压、过压、电网窜入的噪声引起CPU误动作及数据丢失占各种干扰的90%以上。
1.2过程通道干扰
过程通道干扰主要来源于长线传输。当系统中有电气设备漏电,接地系统不完善,或者传感器测量部件绝缘不好等;及各通道的传输线如果处于同根电缆或捆扎在一起,尤其是将信号线与交流电源线处于同一根管道时,产生的共模或差模电压都会影响系统,使系统无法工作。
1.3场干扰
系统周围的空间总存在着磁场、电磁场、静电场,如太阳及天体辐射;广播、电话、通讯发射台的电磁波;周围中频设备发出的电磁辐射等。这些场干扰会通过电源或传输线影响各功能模块的正常工作,使其中的电平发生变化或产生脉冲干扰信号。
2.抗供电干扰的措施
2.1配电系统的抗干扰
可采用分立式供电方案,就是将组成系统各模块分别用独立的变压、整流、滤波、稳压电路构成的直流电源供电,这样就减少了集中供电的危险性,而且也减少了公共阻抗以及公共电源的相互耦合,提高了供电的可靠性,也有利于电源散热。另外,交流电的引入线应采用粗导线,直流输出线应采用双绞线,扭绞的螺距要小,并尽可能缩短配线长度。
2.2利用电源监视电路
在配电系统中实施抗干扰措施是必不可少的,但这些仍难抵御微秒级的干扰脉冲及瞬态掉电,特别是后者属于恶性干扰,可能产生严重的事故。
因此应采取进一步的保护性措施,即使用电源监视电路。电源监视电路需具有监视电源电压瞬时短路、瞬间降压和微秒级干扰及掉电的功能;及时输出供CPU接受的复位信号及中断信号等功能。
3.过程通道抗干扰措施
抑制过程通道上的干扰,主要措施有光电隔离、双绞线传输、阻抗匹配、电流传输以及合理布线等。
3.1光电隔离
利用光电耦合器的电流传输特性,在长线传输时可以将模块间两个光电耦合器件用连线“浮置”起来,这种方法不仅有效地消除了各电气功能模块间的电流流经公共线时所产生的噪声电压互相窜扰,而且有效地解决了长线驱动和阻抗匹配问题。
3.2双绞线传输
在长线传输中,双绞线是较常用的一种传输线,与同轴电缆相比,虽然频带较窄,但阻抗高,降低了共模干扰。论文参考网。由于双绞线构成的各个环路,改变了线间电磁感应的方向,使其相互抵消,因而对电磁场的干扰有一定的抑制效果。
3.3阻抗匹配
长线传输时,若收发两端的阻抗不匹配,则会产生信号反射,使信号失真,其危害程度与传输的频率及传输线长度有关。
3.4电流传输
长线传输时,用电流传输代替电压传输,可获得较好的抗干扰能力。
3.5合理布线
强电馈线必须单独走线,强信号线与弱信号线应尽量避免平行走向。
4.软件抗干扰技术
各种形式的干扰最终会反映在系统的微机模块中,导致数据采集误差、控制状态失灵、存储数据窜改以及程序运行失常等后果,虽然在系统硬件上采取了上述多种抗干扰措施,但仍然不能保证微机系统正常工作。因为软件抗干扰是属于微机系统的自身防御行为,实施软件抗干扰的必要条件是:
1)在干扰的作用下,微机硬件部分以及与其相连的各功能模块不会受到任何损毁,或易损坏的单元设置有监测状态可查询。
2)系统的程序及固化常数不会因干扰的侵入而变化。
3)RAM区中的重要数据在干扰侵入后可重新建立,并且系统重新运行时不会出现不允许的数据。论文参考网。
抑制数据采样的干扰可采用:数字滤波,宽度判断抗尖峰脉冲干扰等办法,也可采用重复检查法,偏差判断法来检查判断是否有干扰信号。而程序运行失常的软件抗干扰措施一般有:
1)设置WATCHDOG功能,由硬件配合,监视软件的运行情况,遇到故障进行相应的处理。
2)设置软件陷阱,当程序指针失控而使程序进入非程序空间时,在该空间中设置拦截指令,使程序进入陷阱,然后强迫其转入初始状态。
参考文献
[6]孙永秀. 用纳氏试剂测定氨氮影响因素及解决办法[J]. 山西建筑, 2010, (03) :197-198
[7]宋臻. 从沮丧到快乐——白领如何摆脱心理抑郁[J]. 职业, 2010, (04) :16-17
[8]蒋珍琦. 浅谈电厂PLC控制系统设计的要点[J]. 中国高新技术企业, 2010, (06) :107-108
[9]刘亚龙. 专科高职类理工科女生就业问题的分析及解决办法[J]. 甘肃科技, 2010, (01) :190-191
论文摘要:扩频通信是现代通信系统中新的通信方式,它具有较强的抗干扰、抗衰落和抗多径性能,频谱利用率高。本文介绍了扩频通信的工作原理、特点、及其发展应用。
一、扩频通信的工作原理
在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。
二、扩频通信技术的特点
扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。
1.抗干扰性强
扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。
2.低截获性
扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。
3.抗多路径干扰性能好
多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。
4.保密性好
在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。
5.易于实现码分多址
在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。
三、扩频技术的发展与应用
在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.
引言
钢轨内应力测试系统以单片机为控制核心,应用纵横弯曲理论建立无缝线路轨道力学模型,根据钢轨内应力计算公式,以电测应力法进行比较分析[1],测量时使被测段钢轨悬空,在其中部施加一横向挠动力,分别测试钢轨的横向力、横向位移、轨温和湿度等信号,将信号经A/D转换后计算,快速、准确得出被测线路的内应力,并可将测量数据进行存储,操作人员可通过液晶显示屏测试和查询。
作为电子类产品,提高测试系统的抗电磁干扰能力及屏蔽性能是研发、生产、使用过程中不可缺少的环节。
1.钢轨内应力测试系统的组成
本系统硬件部分由单片机控制器、A/D转换模块、传感器和自加载施力机构等组成。系统选用W77E532单片机为控制核心;压力、位移、温度和湿度为测量钢轨内应力的必要参数;自加载施力机构通过电机给被测钢轨施加定量的压力;U盘存储功能可将系统内数据转存至U盘,可通过U盘将数据转存至上位机管理软件,也可直接通过数据线将测试仪主机的数据转存至上位机。
2.钢轨内应力测试系统的抗电磁干扰方法
2.1 线路板抗电磁干扰设计
以W77E532为处理核心的控制系统具有灵敏度高、处理速度快等特点,正因如此,也更容易影响测试系统的抗电磁干扰能力,测试过程中使系统的性能指标偏离设计要求,导致测量结果误差大[2],因此抗干扰技术己成为设计单片机控制系统时必须考虑的环节。本系统控制电路的抗电磁干扰部分除了采用常规方法,如数字地和模拟地单点相连、缩短旁路电容地线长度、相互关联的元器件尽量放得靠近外,还采取了以下措施:
(1)采用线性光耦PC817将所有模拟量信号与数字量信号输入输出端隔离,为了提高隔离效果,我们将PC817纵向排列整齐,沿PC817焊脚内侧在线路板上开槽。
PC817光电耦合器输入部分和输出部分采用独立的5V电源供电,数字量5V由锂电池经2940稳压后提供,模拟量5V由DC-DC5V提供。
(2)低压差稳压器LM2940及其滤波器件远离单片机放置;
(3)数字量部分沿PC817开槽处双面覆铜接地。采用金属敷层屏蔽材料抑制电磁干扰也是目前常用的方法之一,通过非电解电镀、阴极溅射、真空镀金等方法在绝缘材料的表面形成导电金属薄层[3],可以提高电子设备的抗干扰能力。
2.2 供电部分的抗电磁干扰设计
钢轨内应力测试系统由8V锂电池供电,经两个低压差三端稳压器LM2940后,固定输出5V,LM2940内部含静态电流降低电路、电流限制、过热保护、电池反接和反插入保护电路,再经容阻滤波,给数字量电路供电。
模拟量电路电源经LM2940降压后,由DC-DC5V提供。
2.3 传感器部分抗电磁干扰设计
本系统共有1路数字量和4路模拟量输入,有位移、压力、温度、湿度和电压信号,其中,位移、压力2路信号对测试结果具有决定性影响,我们主要对这2路传感器信号做了抗电磁干扰处理:
(1)位移信号的采集使用千分表,其输出为数字信号,是不随时间连续变化的量,数字信号抗干扰能力强;
(2)压力信号由JLBS-Ⅱ型拉力传感器提供,其采用箔式应变片贴在合金钢弹性体上,可承受拉、压力,具有测量精度高、稳定性能好、温度漂移小、输出对称性好等特点。由于压力传感器的变送器电路处理的是比较微弱的信号,而且还要进行信号转换,外界干扰极易耦合到电路中从而影响有用信号。因此,本系统的压力信号采用电流传输代替电压传输,接收电路低的输入阻抗和对地悬浮的电流源(电流源的实际输出阻抗与接收电路的输入阻抗形成并联回路)使得电磁干扰对电流信号的传输不会产生大的影响,可获得较好的抗干扰性能。
另外,本系统针对模拟量输入通道的抗电磁干扰还采用了以下措施:压力、温度、湿度传感器使用屏蔽线,屏蔽层与线路板GND相连,尽量缩短信号线长度。
2.4 外壳抗电磁干扰设计
为了使外壳在操作者和内部电路间建立隔离、形成屏蔽层,起到抗电磁干扰作用,本系统主机箱采用金属铝壳,既可以防止因操作者对金属外壳的直接接触放电造成干扰,又可以防止环境干燥时操作者对周围物体放电形成的电磁干扰耦合到测试系统内部。即便如此,我们在做抗电磁干扰试验时,发现还是存在干扰现象,液晶屏出现乱码,经过分析,我们认为此现象是由于主机箱上铣了液晶屏安装槽、航空插座孔、充电口、电源开关孔、键盘孔等造成,于是又采取了以下抗干扰措施:
(1)尽量缩短主机箱内部导线长度,并在每根导线上增加磁环;
(2)将主机箱内固定线路板的所有金属小件都更换为绝缘材料,在液晶屏与主机箱外壳之间增加一层绝缘纸;
(3)主机箱内部在充电孔、航空插座孔、电源开关孔及液晶屏开孔处喷涂三防漆,三防漆是一种特殊配方的涂料,用于保护线路板及其相关设备免受坏境的侵蚀。三防漆具有良好的耐高低温性能,其固化后成一层透明保护膜,具有优越的绝缘、防潮、防漏电、防震、防尘、防腐蚀、防老化、耐电晕等性能;
(4)主机箱底部装设一只金属螺帽作为电磁干扰泄放通道,在操作者对外壳的孔、洞、缝隙放电时将放电电流泄放,防止对内部电路直接放电。
2.5 软件抗电磁干扰设计
若单靠硬件措施消除干扰会增加系统的硬件成本,使系统复杂化,而且并非所有因干扰而产生的故障都可通过硬件抗干扰措施得到完全解决;软件抗干扰技术不仅可使系统结构简化,成本降低,设计也很灵活方便[3]。
本系统的控制软件由KeilC编制,软件组成主要包括A/D转换、键盘响应、液晶显示、数据存储读取及分析计算等部分。本系统采用数字滤波、设立软件陷阱、看门狗(Watchdog)和软件冗余等技术,提高系统的抗干扰能力。
3.结束语
影响钢轨内应力测试系统抵抗电磁干扰能力的因素有很多,本文从系统硬件的线路板、供电电源、传感器、外壳等部分入手,分析并提出了测试系统抗电磁干扰的方法,提高了测试系统的抗电磁干扰的能力,解决了系统受干扰时液晶显示屏出现乱码的情况,保证了系统运行的稳定性。
参考文献
[1]王建文.无缝线路温度力及锁定轨温测试技术研究.扩大铁路对外开放、确保重点物资运输――中国科协2005年学术年会铁道分会场暨中国铁道学会学术年会和粤海通道运营管理学术研讨会论文集,2005.
二、单片机开发中的几个基本技巧
在单片机应用开发中,代码的使用效率问题、单片机抗干扰性和可靠性等问题仍困扰着。现归纳出单片机开发中应掌握的几个基本技巧。
1、如何减少程序中的bug。对于如何减少程序的bug,应该先考虑系统运行中应考虑的超范围管理参数如下。物理参数:这些参数主要是系统的输入参数,它包括激励参数、采集处理中的运行参数和处理结束的结果参数。资源参数:这些参数主要是系统中的电路、器件、功能单元的资源,如记忆体容量、存储单元长度、堆叠深度。应用参数:这些应用参数常表现为一些单片机、功能单元的应用条件。过程参数:指系统运行中的有序变化的参数。
2、如何提高C语言编程代码的效率。用C语言进行单片机程序设计是单片机开发与应用的必然趋势。如果使用C编程时,要达到最高的效率,最好熟悉所使用的C编译器。先试验一下每条C语言编译以后对应的汇编语言的语句行数,这样就可以很明确的知道效率。在今后编程的时候,使用编译效率最高的语句。各家的C编译器都会有一定的差异,故编译效率也会有所不同,优秀的嵌入式系统C编译器代码长度和执行时间仅比以汇编语言编写的同样功能程度长5-20%。对于复杂而开发时间紧的项目时,可以采用C语言,但前提是要求你对该MCU系统的C语言和C编译器非常熟悉,特别要注意该C编译系统所能支持的数据类型和算法。虽然C语言是最普遍的一种高级语言,但由于不同的MCU厂家其C语言编译系统是有所差别的,特别是在一些特殊功能模块的操作上。所以如果对这些特性不了解,那么调试起来问题就会很多,反而导致执行效率低于汇编语言。
3、如何解决单片机的抗干扰性问题。防止干扰最有效的方法是去除干扰源、隔断干扰路径,但往往很难做到,所以只能看单片机抗干扰能力够不够强了。在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。单片机干扰最常见的现象就是复位;至于程序跑飞,其实也可以用软件陷阱和看门狗将程序拉回到复位状态;所以单片机软件抗干扰最重要的是处理好复位状态。一般单片机都会有一些标志寄存器,可以用来判断复位原因;另外你也可以自己在RAM中埋一些标志。在每次程序复位时,通过判断这些标志,可以判断出不同的复位原因;还可以根据不同的标志直接跳到相应的程序。这样可以使程序运行有连续性,用户在使用时也不会察觉到程序被重新复位过。
4、如何测试单片机系统的可靠性。当一个单片机系统设计完成,对于不同的单片机系统产品会有不同的测试项目和方法,但是有一些是必须测试的:测试单片机软件功能的完善性;上电、掉电测试;老化测试;ESD和EFT等测试。有时候,我们还可以模拟人为使用中,可能发生的破坏情况。例如用人体或者衣服织物故意摩擦单片机系统的接触端口,由此测试抗静电的能力。用大功率电钻靠近单片机系统工作,由此测试抗电磁干扰能力等。
综上所述,单片机已成为计算机发展和应用的一个重要方面,单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命。此外在开发和应用过程中我们更要掌握技巧,提高效率,以便于发挥它更加广阔的用途。
参考文献:
[1]何立民.MCS-51系列单片机应用系统设计系统配置与接口技术.北京:北京航空航天大学出版社,1990
[2]蔡美琴等.MCS-51单片机系统及其应用.北京:高等教育出版社,1992
随着自动化技术、计算机技术和网络通信技术的飞速发展和广泛应用,论文工业过程的智能化、自动化监测与控制系统的应用日益广泛.单片机系统由于其抗干扰性能较好被大量应用到工业过程控制的各个领域。因为工业现场环境较恶劣,单片机系统在使用过程中通常会出现一些设计时想不到的新情况、新问题,这就需要进一步修改和完善.因此,有必要设计一套单片机综合实验系统,根据工业现场反馈的各种问题,随时对系统中的功能模块进行实验研究和分析,解决工程实际问题.本文设计的这套单片机综合实验系统具有自动采集多路模拟量、对采集的数据进行处理和显示、根据设定的参数自动调节和控制输出、与计算机进行远距离数据通信等功能.
1系统组成及工作原理
综合实验系统主要由以下几部分组成:89C51单片机及其仿真系统,温度、压力等模拟量传感器及其接口电路,A/D转换模块,数据存储模块,按键控制模块,日历时钟模块,看门狗电路模块,FP—GA模块,液晶显示模块,通信模块及上位计算机,其组成框图如图1所示.系统采用89C51单片机作为主控芯片,A/D转换模块将多路模拟信号转换为数字信号;外部数据存储模块为该系统采集的数据提供存储空间;按键控制模块向CPU传回键值,用来设置和调节系统参数;日历时钟芯片不仅可以给系统提供准确的时间,而且为系统提供掉电保护功能;看门狗电路模块为系统提供了精确复位和低电压监控功能,一旦系统出现故障或程序跑飞,它就可以在超时周期之后使CPU复位,提高系统的整体可靠性和抗干扰能力.FPGA模块是现场可编程逻辑门阵列,通过编程可将它作为多种数字逻辑器件使用;LCD液晶显示模块可以同时显示多行字符及自造图形,主要用来显示采集到的数据、系统时间等;兼容RS485和RS232两种协议的全双工串行通信接口,可以与上位计算机进行远(约1200m)近(约15m)距离的数据通信[1];上位计算机将接收的数据进行存储、显示、绘制模拟曲线、打印曲线和数据文件,按照用户的具体要求作进一步的数据分析和处理,同时发送控制参数,对被测对象的温度、压力等进行控制和调节.
2系统硬件设计
2.1单片机仿真系统
单片机仿真系统可以模拟CPU在仿真机上运行用户程序(程序和数据存储器借用仿真机的),也可以连接外部电路来实现动态监测与控制功能.仿真机一般都具有单片机的基本功能部件,如CPU、RAM、用户程序存储区、键盘等;具有单步、设置断点(以便随时观察内部各RAM、特殊功能寄存器的数据变化)、连续运行用户程序的功能[2].
监控程序放置在仿真机内,要仿真的CPU器件位于仿真机外仿真线的端头,毕业论文更换不同的仿真头和CPU,该机可以仿真8031、89C2051、89C51等类型的单片机,该机的调试软件可以直接编辑汇编源程序.通过仿真机进行编程和调试减少了对芯片的频繁写人、擦除和修改操作,只有当程序调试顺利通过才将程序写入芯片,编程方便且节省时间.
2.2传感器的选择及信号变送电路的设计
传感器作为系统的感知器件,直接影响着系统的精度和稳定性.本实验系统中,温度传感器选用精度高,线性度好,使用方便的LM335传感器;压力传感器选用标准应变式压力传感器,它具有精度高、响应速度快、分辨率高等特点.传感器接El电路的设计采用了模块化设计方法,设计了温度、压力等专门接口电路,直接与上述各种传感器相连.由于从传感器输出的模拟电信号非常微弱,需对这些模拟信号进行放大,同时为了确保信号不失真,选用了线性度好、抗干扰能力强的高精度运放OP07,其特点是输入失调电压较高、温漂较小、开环电压增益较高、共模抑制比较大,它输出的模拟信号经10位A/D转换器TLC1543转换成数字信号后,送人89C51进行处理.
2.3通信模块的设计
计算机(PC)串行通信端口是RS232负逻辑电平,该实验系统上既有RS232接El,又有RS485接口,可以通过RS232总线进行点对点通信,也可以通过RS485总线进行多机通信_3],RS485总线上最多可挂接32个综合实验系统,总体布局如图2所示.所以实现计算机和该实验系统之间的近距离通信,通过RS232接口即可;若要实现计算机和该实验系统之间的远距离通信,则必须将RS232电平转换为RS485电平后,才可将实验系统挂接在RS485总线上.RS232-RS485电平转换原理如图3所示,通过MAX485的差动输入(A、B)与RS485总线相连进行信号的收/发,由于RS485总线上只能进行半双工通信,所以MAX232和MAX485之间除了接收和发送线外,还有一个信号线来控制MAX485的接收使能(RE)和发送使能(DE),在PC与RS232相连的这一侧,通过PC的请求发送(RTS)来控制.
2.4串行总线I*2C
I*2C总线是PHILIPS公司开发的一种简单、双向二线制串行总线[4].它只需两根线(串行时钟线SCL和串行数据线SDA)就能完成挂接在总线上的若干个IC器件与微处理器之问的数据交换.该实验系统采用具有IC总线接口的看门狗芯片CATll61和可编程实时时钟芯片PCF8563,由于单片机89C51自身没有IC总线接口,所以采用软件合成IC总线与它们相接.
IC串行总线与并行总线的最大区别在于:并行总线有地址总线,CPU通过地址总线访问从器件;而IC总线利用数据传送中的前几个字节传送地址信息,所以占用CPU的口线大大减少[5].随着智能化测控仪器日趋小型化和集成化,IC串行总线正在逐步取代传统的并行总线..5抗干扰设计
工业监控现场工作环境一般较差,干扰较严重,为了保证系统可靠工作,必须解决抗干扰问题.针对工业监控现场可能产生的干扰、干扰来源、传播途径等,采用了软硬件方法对系统进行抗干扰设计.硬件抗干扰设计主要包括:对电源噪声进行滤波、大功率驱动电路接口进行光电隔离、集成电路芯片的VCC与地之间并连电容、优化电路板的布线、看门狗监控等;软件抗干扰设计主要包括:软件陷阱、软件自恢复、数字滤波、求平均值等.
对于数据输入通道的干扰,采用软硬件结合的方法进行滤波.当存在随机干扰而使被测信号中混入了无用成分时,硕士论文首先经过一个时间连续的RC滤波电路,再经A/D变换成二进制数字量后,进行数字滤波.因为硬件滤波能很好地抑制高频干扰,而对低频干扰的滤波效果却较差;而软件数字滤波算法对低频干扰具有较好的抑制能力.
在控制强电设备的开关量输出通道中,为防止现场强电磁干扰或工频电压通过输出通道反串到监控系统,采用了光电隔离技术.因为光信号的传输不受电场、磁场的干扰,可有效地防止干扰信号因耦合而进入系统,达到电气隔离的效果.
3系统软件设计
系统软件包括单片机软件和PC机软件.单片机软件采用模块化结构,利用MCS一51汇编语言编写.根据要实现的功能,该软件由主程序以及数据采集、A/D转换、数据通信、日历时钟编程、键盘中断调控、液晶显示、D/A转换、数码管显示等程序模块组成.下面以加热炉的炉温控制为例,给出系统程序流程图如图4所示.
PC机软件的主要功能是对单片机系统采集的数据进行存储、处理、动态模拟显示、报表绘制、打印输出等.PC机软件采用VisualBasic6.0编写,医学论文PC机与单片机之间的实时通信程序主要是通过计算机的串行通讯口进行数据的实时采集和双向通信,此外,PC机程序还将单片机采集过来的数据按照用户的具体要求进行动态显示、数据统计、生成报表和数据文件等,并对不同情况下得到的数据进行对比分析,总结出变化规律.
4实验结果与分析
为了测试该系统的实时性,将5台综合实验系统与工业计算机组成分布式多机通信系统,单片机串口工作方式1(传送一帧信息10位),波特率2400bps,一帧数据采用5个字节(其中数据占2个字节是因为A/D转换结果是10位)的格式,如表1所示.5台实验系统各采集一次数据给PC机传送时,理论上连续发送速率为2400/(10*5*5)===9.6次/s.经过测试发现,计算机在120ms后收到了5台综合实验系统发送的共250位数据,实际发送速率约为8次/s,这是因为有状态转换和等待时间;为了测试系统的可靠性和稳定性,将调试好的程序写入单片机芯片,使系统连续运行,120h后观察系统仍然在按设定的流程工作,没有出现死机现象.该系统经过多次改进和实验验证后,据此设计了工业加热炉炉温控制系统并在工业现场安装使用,结果系统能连续正常工作(工业计算机故障除外),测量随机误差为±0.01℃,控制结果满
足了实际要求.
5结论
该综合实验系统不仅能为以单片机为核心的系统前期探索研究提供一种方便的实验装置,而且能在远离工业现场的实验室解决工业应用中的实际问题.实验结果表明该系统可以将许多分散的实验项目整合在一起进行研究和分析,节约资源,降低成本;实验数据正确率高,通信实时性强,系统工作可靠;单片机串行网络构成的分布式通讯系统灵活性强,易于扩充,其基本原理适用于工业现场的分布式数据采集、检测及控制系统,具有很大的实用价值.
参考文献:
[1]李朝青.PC机及单片机数据通信技术[M].北京:北京航空航天大学出版,2001.
LIChao-qing.DataCommunicationTechnologyofPCandSCM[M].Beijing:BeijingUniversityofAero—nauticsandSpaceflightPress,2001.(inChinese)
[2]杨文龙.单片机原理及应用[M].西安:西安电子科技大学出版社,1993.
YANGWen—long.PrincipleandApplicationofSCM[M].Xi’an:Xi’anUniversityofElectronicsTechnol-ogyPress,1993.(inChinese)
中图分类号:TP212 文献标识码:A 文章编号:1007-9416(2015)05-0000-00
1 引言
压力传感器在电子产品中的应用比较广泛,其信号调理电路通过对信号的调节变换,使信号达到后续电路的接收要求。电路的误差控制、抗干扰技术对电路的设计至关重要,电路的稳定性直接关系到单片机数据采集系统的准确性和产品的实用性。
本论文的信号调理电路主要用于电子称等衡器的前端信号处理,量程0―5Kg,其最大允许误差±1.5e(分度值e=2g)。本论文从误差分析,力传感器的选定和放大电路的设计三个方面阐述该电路设计思路。
2硬件设计中误差解决方法
降低电路元器件产生的噪声、设置稳压电流源作传感器专用电源,可保证传感器输出信号精度高,纹波小,稳定可靠,选择合适的传感器。
由于组成电路的元件内部会产生一些噪声,并且实验中发现,噪声的功率与输入的电压有直接的关系,而且会对实验的参数产生较大的影响。在试验中对电阻等噪声较大的原件通过元件的噪声参数建立模型来进行系统分析。综合考虑成本及噪声性能,选择噪声较小的NE5532放大器电路,其相对噪声比优于同等价格的其他运算放大器。
传感器采用了N430-5kg应变式压力传感器,量程0~5kg,灵敏度为1.0mV/N,体积小,易携带;额定输出1.0±0.15mV/V,能够满足实验精度要求;并能够使产品具有便携性,力传感器后接电桥的以减少温漂,即电桥压力传感器的电桥电阻设为R1=R2=R3=R4=100Ω,差动工作,应变片使得电桥保持了平衡,使得电桥的输出电压与电阻变化有关,保持了一个即R1=R-R,R2=R+R,R3=R-R,R4=R+R,则电桥输出为
3放大电路的分析与设计
整体电路设计如图3-1所示,包含两级放大电路,通过反馈设计提高了输出的准确性。第一级放大电路采用双运算放大器,此放大器小信号带宽10MHZ,功率带宽140KHZ,转换速率9V/us,符合一般控制电路的设计要求。第二级放大电路采用二阶低通滤波运算放大电路。
通过使用Multisim 12.0仿真软件中的函数发生器模拟在f0=10Hz下的滤波波形,其通带最大衰减为4.165518dB,阻带最大衰减为14.403186dB,其中R9和R11=R10//R12,由R12来确定放大倍数,算得Q=0.5,满足实验设计要求。
由于在 Multisim12.0仿真软件中,没有直接的电荷源信号,考虑到电阻应变式传感器输出为电压信号,改变传感器的应变重量,在形式上是以电压的形式输出的。在电路分析时可以把传感器看作一个电压源,其输出电压在其电电路中将信号传递给放大电路。所以在模拟仿真中,采用了TL431ACD 保证模拟信号输入端的稳定性。
4 软件设计中的误差补偿
采用延迟法进行误差补偿,在系统中, 存在控制开关的抖动干扰。抑制这种噪声方法就是通过延时, 让接通或断开信号稳定后系统再工作, 就可以避免抖动干扰。
5 结语
本设计的放大电路的带宽在890mHZ~123HZ,测得输入为2.756mv时,输出为217.177mv,放大倍数约100倍。整体上对各种误差来源给以充分的估计,并针对不同的情况采取不同的技术措施,以提高系统的抗干扰能力,保证了系统的准确、可靠。
参考文献
[1]庄严.《电子秤与智能仪器的设计》.仪表技术,2002.2.
[2]刘同娟,马向国.《Multisim在电力电子电路仿真中的应-用》.电力电子,2006.2.
论文摘要:扩频通信是现代通信系统中新的通信方式,它具有较强的抗干扰、抗衰落和抗多径性能,频谱利用率高。本文介绍了扩频通信的工作原理、特点、及其发展应用。
一、扩频通信的工作原理
在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。
二、扩频通信技术的特点
扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。
1.抗干扰性强
扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。
2.低截获性
扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。
3.抗多路径干扰性能好
多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。
4.保密性好
在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。
5.易于实现码分多址
在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。
三、扩频技术的发展与应用
在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.
扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。
四、结语
扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。
参考文献:
[1]曾兴雯等.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社,2004.