工艺研究论文模板(10篇)

时间:2023-03-23 15:23:57

导言:作为写作爱好者,不可错过为您精心挑选的10篇工艺研究论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

工艺研究论文

篇1

2低损耗光纤生产工艺的改进

2.1光纤芯棒折射率的优化

在VAD沉积过程中通过掺杂来改变芯层的折射率,构成光纤所需要的折射率分布及其传输性能。通常光纤都是由纯石英构成包层和掺Ge的高折射率石英构成芯层组成,但是芯层掺Ge破坏了石英作为传导部分的单一成分,加剧了微观结构不均匀性,增加了瑞利散射损耗,不利于降低光纤衰减。图1显示了随着掺Ge量增加,光纤1310nm和1550nm衰减系数呈增加的趋势。因此,对于掺Ge的石英单模光纤,可以通过降低VAD沉积中的芯层掺Ge量来降低光纤瑞利散射系数,但同时需要通过调节其它参数或途径来平衡芯层与包层间的折射率差Δ,例如掺F,否则会引起光纤的光学性能发生变化,诸如衰减、截止波长、模场直径、色散系数等[5-6]。为保证光纤的归一化频率V和光纤光学性能,需要结合相对折射率差来选择合适的芯径a,即Δ和a成为设计关键。图2a)显示了掺F优化后的折射率分布,图2b)显示了折射率优化前后的光纤衰减系数。

2.2光纤掺杂浓度的控制

由于GeO2和F的掺杂,使得不同掺杂部分的石英具有不同的黏度,其关系式如下:lgη=lgηSi+KGeΔnGe+KFΔnF(4)式中ηSi为纯石英的黏度;KGe,KF分别为掺Ge和参F石英的黏度灵敏度系数;ΔnGe,ΔnF分别为掺Ge和掺F后的折射率变化。虽然掺F和GeO2都会在一定程度上降低石英的黏度,但在等同的石英折射率变化下,掺F的石英黏度是掺GeO2的三倍[7]。在光纤芯层和包层中掺入Ge、F的浓度差别越大,则相应石英黏度差别也越大,在高温拉丝时容易引起芯层和包层的界面发生相对黏滞流动,产生缺陷和断键,这类缺陷会随着拉丝速度的增加而增多,影响光纤的衰减。因此,必须控制光纤中的GeO2和F的掺入浓度,使得光纤的芯层和包层具有相近的黏度。

2.3光纤拉丝张力和温度的控制

在光纤拉丝过程中,影响光纤材料密度的三个主要因素是拉丝张力F、拉丝温度T和拉丝速度v,其关系式如下:v∝F/[3Sη(T)](5)lgη=-6.24+(2.69×104)/T(6)式中S为光纤截面积,η(T)为相应温度下的石英黏度。由此可见,在一定条件下,三者是相互关联的。在高速拉丝中,光纤内部的残余应力σ随着拉丝张力F的增加而增大,其关系式如下:σ=S2E2F/[S1(S1E1+S2E2)(1+η2S2/η1S1)](7)式中E为弹性模量,下标1、2分别为芯层和包层。图3显示了拉丝速度v=1500m/min时,不同拉丝张力F下,所制得光纤在1550nm波长的衰减系数。可见,拉丝张力越大,光纤在1550nm波长的衰减也随之增加。因此,拉丝张力不能过高,否则将引起光纤衰减的增加;但张力也不能过低,否则同样会因拉丝张力过小而引起光纤直径波动以及光纤的芯径和模场直径的不稳定,增加光纤的散射损耗。在拉丝高温下,光纤中的Ge和F粒子会发生扩散[8]以及存在GeO2GeO的热分解,从而影响光纤原有折射率的分布。因此,应针对不同的拉丝速度控制拉丝炉温度及温度场分布,改善拉丝温度T对光纤衰减的影响。扩散系数D的表达式为:D=D0exp[-Eact/(RT)](8)式中D0为扩散常数,Eact为活化能,R为理想气体常数。通常在相同温度下F的扩散相比Ge更快,扩散系数随掺杂浓度而变化。

2.4光纤拉丝热历史的控制

预制棒熔融成丝后,从2000℃高温快速冷却至常温(通常为25℃),此时石英黏度在短时间内会发生剧烈变化。由于在冷却过程中温差较大,光纤内部应力无法得到充分释放,内部结构仍处于无序的非晶状态,这增加了光纤的密度不均匀性。这种结构变化与光纤冷却固化时间有关,换言之,石英的无序性取决于冷却速率(或拉丝速度),相应的凝固转化温度即为假想温度Tf。由式(2)可知,Tf越低,光纤的退火效果越显著,光纤内部的应力释放越充分,光纤的瑞利散射系数就越小。图4示出了不同冷却方式对光纤性能的影响。图5示出了光纤出炉后,热处理优化过程,可见在一定时间内进行保温退火,延长了光纤内部应力释放的时间。图6示出了光纤在1550nm波长的衰减系数随拉丝速度加快呈增大的趋势,经热处理退火后,相同拉丝速度下的光纤衰减系数均有明显的下降。这表明,延长冷却速度(石英的假想温度Tf降低),有利于释放光纤骤冷过程中引起的内应力。因此,选择合理的拉丝速度和热处理工艺,对改善光纤材料密度均匀性和降低光纤衰减尤为重要。

2.5光纤拉丝锥形的控制

预制棒在拉丝炉中熔融拉丝,其锥形受拉丝炉结构、拉丝张力和拉丝速度等影响,拉丝炉热区越大、拉丝速度越快或拉丝张力越高,锥形会越短。锥形的变化对光纤衰减有明显的影响,锥形较长有利于降低光纤的衰减,这是因为延长锥形,可降低光纤的温度和张力,有利于降低Tf,改善光纤材料密度均匀性。但锥形也不能过长,否则,光纤成形的最终位置将超出热区范围;并且下炉口温度和气流的均匀性相对较差,也会造成光纤直径波动,从而影响光纤性能。

2.6光纤衰减优化结果

通过VAD工艺的优化设计、拉丝工艺的改善以及热处理等优化后,采用OTDR对其制备的光纤进行测试,结果如图7所示,优化后的光纤1550nm衰减系数中位值可降低0.006dB/km。

篇2

(1)上岩组斑点状碳质绢云千枚岩、碳质绢云千枚岩层理发育,岩石倾角大,硬度低,其构造破碎带岩石酥松破碎,且有长度不均的黑色泥质岩段。在这种岩体中形成钻孔后,岩体原始的力学平衡状态被破坏,若钻孔倾角大,受重力作用,以及泥浆冲刷、提下钻的抽吸作用,钻进过程中易出现坍塌掉块、缩径现象,成孔困难,岩心堵塞现象十分严重,取心难度大、采取率低。(2)下岩组白云石大理岩和条带状白云石大理岩硅化严重,岩石坚硬完整致密,研磨性低,可钻性级别高,钻效低。

钻探工程要求

全孔岩心采取率不低于95%;终孔直径不小于96mm(HQ);钻孔设计顶角30~40°,每30m及终孔测斜一次。顶角每百米允许误差为3°,方位角每百米允许误差为5°。

主要施工工艺

1钻探设备

使用宝长年公司生产的LF70全液压动力头钻机,配备额定压力7.0Mpa的全液压泥浆泵。LF70钻机使用96mm(HQ)口径,施工时理论钻进能力为542m,钻机可钻进顶角范围0~45°内的任意钻孔,非常适合矿区大角度钻孔的钻探施工。为了弥补钻机处理事故强力起拔能力低的弱点,现场配备了液压千斤顶,起拔能力75t。

2孔身结构

全孔绳索取心钻进。使用122mm(PQ)口径开孔,下108mm套管隔住第四系,以96mm口径终孔。下套管过程中,在108mm套管入岩部分的外壁上涂抹黄油,并密封好孔口,为便于终孔后起拔套管。

3钻进参数选择

钻压:孕镶金刚石绳索取心钻头压力的确定,按照单位压力40~80kg/cm2计算。宝长年LF70钻机孔底压力的确定需要读到钻压表上的两个数值。开始钻进时,将油缸慢速给进控制阀至于钻进位置,钻具缓慢回转向孔底接近但未接触孔底时(悬吊状态),钻压表显示的值为孔内钻具总重量与油缸下行给进力之和。当钻头完全接触孔底时,由于存在地层反作用力,钻压表显示的数值会减小为另一个值,这两个数值的差值称为失压值,失压值乘以油缸有效面积(45cm2)即为孔底钻压。一般来说,在一定范围内钻速是随着钻压的增大而增加的,但与此同时,单位进尺金刚石的耗量也随钻压的增大而增大[1]。过大的钻压会使金刚石耗量急剧增大,导致钻头使用寿命降低,影响绳索取心工艺优势的发挥。转速:金刚石钻进是以高切削频率表面疲劳破碎和小体积量体积破碎为主要碎岩机理,所以转速是金刚石钻进工艺中保证钻进效率的重要因素。对于转速的确定,按普通金刚石钻头钻进的圆周速度(孕镶钻头1.5~3.0m/s)计算转速。根据地层情况,岩石完整时,可适当开较高的转速,当地层复杂时,要将转速控制在一定的范围内。泵量:绳索取心钻进时钻柱与孔壁之间的环空间隙小,冲洗液上返流速快,加之孕镶金刚石钻头所切削出的岩屑粒径极小,所以一般而言,泵量的大小只要保证钻头冷却、能够排出岩屑即可,过大的泵量除了会抵消一定的钻压以外,还极易冲垮松散破碎地层,导致岩心缺失,不利于钻进。钻进参数的具体选择可参见表1。

4冲洗液的配制及维护

根据钻孔在不同孔段岩层变化及孔壁的完整程度,及时、灵活、有效地选用和调配使用不同类型和性能的冲洗液,并适时做好冲洗液的净化、监控及维护管理工作,是保证顺利钻进的首要条件[2]。开孔钻进第四系覆盖层时,冲洗液配方为1m3水+2%磺化沥青(DLSAS)+2‰PAM。通过现场使用发现,DLSAS在覆盖层岩心表面形成一层薄而韧的泥皮,岩心自内管取出时几乎为一个整体,证明DLSAS具有极佳的防塌护壁护心效果。钻进完整地层时,使用无固相冲洗液,配方为1m3水+1‰~2‰PAM。使用无固相冲洗液时,常由于岩屑沉淀不佳而导致沉淀箱中的冲洗液变成岩粉浆,从而导致泵压高、孔内岩粉无法排出,甚至发生烧钻事故,影响正常钻进。现场解决这个问题的方法除了合理布置地面循环系统外,还应要求班组勤换冲洗液,勤加清理沉淀箱以保证正常钻进。钻进酥松破碎、胶结性差、缩径等遇水不稳定地层时,对冲洗液的要求更高。要保证冲洗液失水量低、一定的粘度、良好的抑制性和剪切稀释性。现场使用腐植酸钾(KHm)-磺化沥青(DLSAS)-高效植物胶复合低固相泥浆作为复杂地层冲洗液,配方为4%钠土+1‰HV-CMC+4‰KHm+1%DLSAS+2‰植物胶。在配置时,按照先无机、后有机的顺序加入,并保证有充足的搅拌时间。该配方在钻进酥松破碎的碳质绢云千枚岩时取得了理想的应用效果。此外,钻进时,将转速控制在400r∕min之内,将有效消除钻杆内固相颗粒挂壁结垢问题。设置冲洗液循环系统时,要保证循环槽的长度、坡度及档板数量。防止冲洗液在循环槽中流速过高、冲洗液所携带的岩粉无法通过降速与结构破坏作用而顺利的净化沉除[3]。

5钻孔漏失治理

在勘探区上下两岩组的钻进过程中,均出现了不同程度的漏失情况,我们以“预防为主,随钻堵漏”作为解决钻孔漏失的主导思想,以801堵漏剂作为主要堵漏材料,根据经验,提前判断漏失层位,在冲洗液中加入一定量的801随钻堵漏剂预防漏失。当出现钻孔漏失时,视漏失量的大小,加入1%~4%的801随钻堵漏剂,1%的磺化沥青粉,并增加PAM的含量,配置成高粘浆液随钻堵漏。在勘探区使用该方法进行钻孔漏失的治理,实用性与经济性俱佳。

6钻头的使用

根据在矿区地层岩石硬度、研磨性及完整度,并结合实际使用经验,基本以8#Q系列绳索取心半合管底喷钻头作为主打钻头。在厚度较大、完整、硅化严重的白云质大理岩及白云质条带状大理岩时,则选用胎体硬度较低的10#钻头,底唇面均为尖齿环形。使用新金刚石钻头时要进行初磨,一般先轻压(正常钻压的1/3以内)、慢转(200r/min左右)5~10min,再采用正常钻进参数进行钻进。在每个回次钻进开始时,也要对钻头进行磨锐。

7测斜与岩心定向技术

使用单点照相测斜仪,仪器罗盘技术参数:斜孔方位角0~360°,倾角0~90°,直孔方位角0~360°,倾角0~90°。该仪器具有结构简单、使用方便、测量精确度高等特点。为便于测斜,在测斜仪外保护管上焊接了可以直接与打捞器钢丝绳接头连接的母扣,有效减少了测斜辅助时间。为了适合在斜孔内测量,在测斜仪外保护管上部加工了扶正器,使测斜仪可以探出钻头并悬吊在钻头内台阶处进行测量,保证了测量数据的准确性。2011年,使用HQ\HQ3ActⅡ型随钻岩心定向仪,共完成钻孔60个,在其中57个钻孔共3848个回次进行了岩心定向,有3472个回次定向操作成功,岩心定向成功率达到了90%。该仪器是设计与HQ\HQ3绳索取心钻具配合在斜孔中使用的岩心定向仪器,当HQ3口径钻进时可以通过连接在内管总成上的ACT测量仪器(定向工作仪)进行岩心定向测量工作,回次钻进结束后将内管打捞起来,使用地表控制仪器与ACT测量仪器对接,经过数据对比后可确定出岩心管内岩心在孔内原始状态下重力低边的位置,从而完成对岩心实际空间产状的测量。每套仪器可配备两套HQ3内管总成使用,除增加一定的操作辅助时间外,对钻进深度和纯进尺速度没有任何影响。

8上岩组酥松破碎、断层泥岩段施工工艺

使用HQ3半合管+底喷钻头钻进工艺。在使用时,内管与钻头台阶的距离要小于普通绳索取心内管与钻头台阶的距离,在1mm以内,保证足够的冲洗液由钻头底面喷嘴流出,不会冲刷岩心导致岩心缺失;在取心率低的地层采用短回次(0.5~1.0m)、低参数钻进(钻压≯10kN,转速≯400r∕min,泵量≯70L∕min),以保证采取率;发生岩心堵塞要立即打捞内管,保证岩心不磨损、不烧钻;起下钻速度要均匀,不可猛起猛放,下钻时,应先下外管,再下内管,以防止抽吸压力过大从而增加孔壁失稳的可能性,保证孔壁稳定;使用腐植酸钾(KHm)-磺化沥青(DLSAS)–高效植物胶、复合低固相泥浆为冲洗液,并保证冲洗液的性能,严禁与PAM无固相冲洗液在裸眼状态下频繁更替使用;及时回灌冲洗液,保证液柱压力能够平衡孔壁应力;

9下岩组硬岩层施工工艺

篇3

1.较高的焊接温度。大多数的无铅焊料合金的熔点都较传统锡铅焊料合金高。业界有少部份溶点低的合金,但由于其中采用如铟之类的昂贵金属而成本高。熔点高自然需要更高的温度来处理,这就需要较高的焊接温度。

2.较差的润湿性。无铅合金也被发现具有较不良的润湿性能。这不利于焊点的形成,并对锡膏印刷工艺有较高的要求。由于润湿效果可以通过较高的温度来提高,这又加强了无铅对较高温度的需求。熔化的金属,一般在其熔点温度上的润湿性是很差的,所以实际焊接中我们都需要在熔点温度上加上20度或以上的温度以确保能有足够的润湿。

3.较长的焊接时间。由于温度提高了,为了避免器件或材料经受热冲击和确保足够的恒温以及预热,焊接的时间一般也需要增长。

以上这些不理想的地方带给用户什么呢?总的来说就是器件或材料的热损坏、焊点的外形和形成不良、以及因氧化造成的可焊性问题等工艺故障。这些问题,在锡铅技术中都属于相对较好处理的。所以到了无铅技术时,我们面对的焊接技术挑战更大。

二、工艺窗口

简单来说,无铅的工艺挑战或工艺难处,在于其工艺窗口相对锡铅技术来说是缩小了。例如器件的耐热性,在锡铅技术中一般为240℃,到了无铅技术,IPC和JEDEC标准中建议必须能够承受260℃的峰值温度。这提高只是20℃。但在合金熔点上,从锡铅(Sn37Pb)的183℃到SAC305的217℃却是提高了34℃!这就使工艺窗口明显缩小。使工艺的设置、调整和控制都更加困难。

如果不采用较高成本的低温无铅合金,你的最低温度(约235℃),几乎已经是锡铅技术中的最高焊接温度了。而如果你采用美国NEMI的建议,也就是使用SAC305和焊接温度在245到255℃时,你的热-冷点温度窗口只有10℃,而在锡铅技术中这温度窗口有30℃之多。

无铅器件的耐热标准,目前多认同确保在260℃最高温度上,这距离推荐的SAC305合金的最高焊接温度只有5℃。如果我们考虑测量设置的系统误差(注二)的需要保留6℃,以及业界许多回流的波动性时,我们根本无法使用高达255℃的温度。

三、工艺设置

回流焊接的工艺设置,就是通过炉子的各温区温度,以及传送链速度的设置来取得最适当的“回流温度曲线”的工作。最适当的意思,表示没有单一的曲线是可以供所有用户使用的,而必须配合用户的材料选择、板的设计、锡膏的选择来决定。不论是锡铅技术还是无铅技术,其实工艺设置的方法都是一样的。所不同的是其最终的参数值。基本上,无铅由于前面提到的工艺窗口缩小的问题,使得工艺设置的工作难度较高。这需要更高的工艺能力,以及对技术的了解和掌握上做得更完整更细化。

工艺设置的首要条件,是用户必须知道所要焊接产品的温度时间要求。对于大多数用户来说,这就是回流曲线规范。为了方便技术管理,一般只制定了一个规范,规范中清楚地指出了各参数的调整极限。在锡铅技术中,绝大多数用户的这个规范曲线都来自锡膏供应商的推荐。在工艺窗口较大的锡铅技术中,人们遇到的问题似乎不大(但绝非没有问题)。但进入无铅后,这种法未必可靠。原因是锡膏并非决定焊接温度曲线的唯一因素,以及供应商提供的曲线并不精确。在掌握工艺技术较好的企业中,选择锡膏前都必须对锡膏等进行测试评估。

器件焊端镀层是另外一项没有被仔细了解和控制的材料参数。镀层的材料(例如NiPd或Sn等等)、镀层的工艺(例如无极电镀,浸镀等等)、以及镀层的厚度,将决定用户的库存能力,可焊性以及质量问题或故障模式。而这些也会因为无铅技术到来而有所变化。以往不太需要注意的,现在也许会成为不得不给予关注的。PCB焊盘的镀层也一样,材料、工艺和厚度都必须了解和给予适当的控制。总之,要有良好的工艺设置,用户必须首先知道自己的材料和设计需求。从需求上制定应该有的温度曲线标准。

四、工艺管制和监控

以上所谈的内容,如果掌握得好,就能协助用户设置出一个较好的回流焊接工艺。而在整个产品产业化过程中,以上的内容要点可以协助用户进行试制和试生产的工艺阶段。当以上工作处理好后,接下来的就是面对批量生产了。批量生产的重点,在与推动快速生产的同时,确保每一个产品都是完好地被制造出来。所以我们就有所谓的质量管理工作和责任部门。

时至今日,大多数工厂的质量管理,还是较依赖传统的一些检验和返修的做法。例如采用MVI(目检)、AOI(自动检验)等手段,配合以一些量化统计做法如SPC等。但在今天的先进生产技术中,这些都属于较落后的手段方法。以下指出几个常遇到的缺点。

1.对故障的改正成本高;

2.属于事后更正的概念,无法取得零缺陷成绩;

3.目前的检查技术无法检出所有问题(一些故障的可检性还不好);

4.目前检查技术在速度和精度上都还跟不上组装技术;

5.太多和滥用检查技术,反会对它形成不良的依赖性,而忽略了从工艺着手;

6.SPC不适合于小批量和高质量的生产模式。这情况下其能力非常低。

较好的做法是检查设备和工艺能力,控制过程,而不是检查加工的结果(也就是产出品的检查)。厂内的所有炉子的性能必须给予测量和量化。在保养管理中确保Cm和Cmk的受控。这是良好质量的前提条件之一。这方面的讨论不在本文的范围之内。而工艺能力以及加工过程的控制,在生产现场又如何进行呢?

我们不可能对每一个产品都焊上热耦。有一种技术可以做到,就是非接触式测量的红外测温技术。曾有炉子供应商在炉子内部设计这样的温度监控,但由于技术不成熟,效果不理想而最终没有大量推广。过后就没有见到有开发这类技术的。

这类系统通过以下的途径提供用户很好的质量控制方法:

1.100%不间断的检查;

2.实时测量和监督;

3.提供预警;

4.完整的纪录方便质量跟踪;

5.完整的报告可以提高客户的信心。

除了以上功能之外,其实这类系统还可以协助监控炉子的表现,提高炉子的维护保养管理,以及将来的采购工作。是个先进数据管理系统中重要的一个工具。

篇4

展望

篇5

一、概述

邱村金矿位于德化县葛坑镇交通便利,自1998年6月建成投产以来,开采+647m-+882m矿体,经调试及改造,目前实际采选生产能力200吨/日,最终产品金精矿全部供应福建省德化县冶炼厂。

二、采矿工程外包

(一)外包的概念

所谓外包(Outsourcing),英文直译为“外部资源”,指企业整合利用其外部最优秀的专业化资源,从而达到降低成本、提高效率、充分发挥自身核心竞争力和增强企业对环境的迅速应变能力的一种管理模式[1]。外包的方式有:生产外包、后勤外包、销售外包、采选设计外包、财务外包、人力资源外包等。

(二)外包的意义

其意义在于根据实际生产需要,企业将自己做不好或者别人能做得更好更便宜的事,把一项或几项工作外包出去,交由其它企业进行经营管理,达到降低本企业的经营成本和风险,这样本企业可集中精力去做企业的核心业务,以减少资金投入,达到企业效率最大化。

(三)井下采矿工程外包的方式

井下采矿工程外包的方式一般有3种。

1.按作业类型分包。即采矿和掘进承包。优点是:便于生产管理;缺点是:存在相互影响,岩石混入管理难度增加,不利于降低损失率和贫化率。

2.按作业区域分包[2]。即按不同中段进行分包。优点是:可以根据实际采掘情况进行调整。缺点是:不能实现专业化,每个中段各自为一个生产系统,不利于统一管理。

3.按工序分包。即按打眼、爆破、装车运输等分包。优点是:可以实现专业化作业。缺点是:成本较高,不利于生产管理。

(四)邱村金矿的采矿工程外包方式

邱村金矿采矿工程采用作业类型承包和按工序分包结合的外包方式,即采矿工程用作业类型承包,部分矿石运输采用单独分包。

三、采矿工程外包的管理

邱村金矿外包管理经历了一个逐步完善的过程,目前已基本确定,管理走向科学化,但是随着市场变化,今后工作仍然需进一步完善。邱村金矿除+873中段矿石运输承包给一家运输公司,主要采矿工程承包给一家施工单位。

(一)价格管理

1.采用外包方式的矿山企业与承包单位是甲乙的合同关系,双方考虑的是外包的价格,外包的价格越低,企业的利润越高,当然在市场经济条件下,企业不仅要尽量降低成本,也要考虑承包方的接受能力,邱村金矿每年7月份从新签定合同,根据上一年的采掘成本和本年度物价涨落情况,确定本年度的外包单价,按采矿、掘进分别确定,同时核算出价格涨落和主要材料涨落比率,保证双方制定出一个合理的价格。

2.采矿和掘进价格的确定是按作业成本计算。矿石分采矿矿石与副产矿石(凡井巷掘进中回收的矿石),不同矿石制定出合理的价格。

3.掘进单价确定,矿山802m中段以上部分,平巷、天井、溜井、漏斗、硐室、旧巷道扩邦、旧巷道抬底、清理旧矿碴、水仓按施工立方分别制定出合理的价格。斜井开拓部分,一、二次提升斜井及各种附属工程制定出一个价格,802中段(含802中段)至712中段(含712中段)之间各中段掘进工程,其价格在802以上中段相应单价的基础上增加5元/m3,经二次提升巷道掘进工程其价格在802以上中段相应价格的基础上增加10元/m3,硐室、旧巷道扩帮、抬底、清理旧矿碴等工程在各中段价格相同。上述单价包含直接费、管理费及各种税费。

(二)生产技术管理

1.工程采用外包后,邱村金矿生产科工程技术人员对采掘工程是间接管理,所以只能通过经济手段来保证承包方按设计要求进行施工。

2.采掘计划由生产科根据矿山实际,承包方设备、人员的实际生产能力制定出年月采掘计划,由于井下工作有时会发生相应变化,所以在执行采掘施工过程中会有一定的调整。井下设备管理和生产组织由承包方管理,生产科属于间接管理,为了保证采掘计划的执行,检查和调整工作较多,经常要与承包方协调沟通。

3.采矿地质管理工作是矿山的重要工作之一,邱村金矿矿体沿走向、倾向具有波皱起伏、膨胀收缩、分叉复合及尖灭再现等特征,其厚度、品位变化系数大,矿体与围岩界线不明显,矿石的损失率、贫化率等技术经济指标,根据实际生产情况,确定矿石损失率为7%,贫化率为10%。

4.年供矿量:根据我矿生产组织安排,承包方应均衡稳定供矿,保证全年选厂的生产需要,其产量、质量指标执行按生产科月度计划要求。

5.矿石质量:矿石要求块度不少于250*250mm。为防止人为贫化,承包方应严格按生产科的要求合理进行配矿,承包方不能把废石、废渣倒入矿井或倒入矿仓。

6.矿石计量:以承包方每天的出矿车数计量为准,矿车的容矿体积不低于0.75m3,少于0.75m3的出矿车不参与矿石计算,满矿车(矿石必须超出矿车顶水平面)为1吨湿矿量,不满1矿车的按0.5吨湿矿量计算,不满半矿车的不予计量,邱村金矿每天派人管理,计量当天的出矿车数,以全月统计的湿矿量扣除4%的水分作为干矿量计价,

7.工程验收以生产科设计要求为依据。若工程质量不符合设计要求的,承包方应按生产科要求返工,维修。

四、安全管理

1.邱村金矿在确定承包单位时,对承包单位进行安全资质进行全面审查。在采矿工程承包合同书中,明确双方责任义务。

2.邱村金矿制定了安全管理制度,监督承包方执行。在爆破管理上,制定明确的爆破材料管理制度,从进库、领出、运输、装药、连线、起爆、剩余清退,安全员进行严格监督。

3.每月支付工程结余款项的95%,其余5%作为保证金,合同期满后一次性支付给承包方。

4.承包方自配取得特种作业资格证书的特种作人员(包括空压机工、电焊工、绞车工、爆破工等工种)。

5.承包方必须遵守《国家安全生产法》的有关规定及邱村金矿制定的井下安全生产制度。

五、效益

1.矿山建设投资减少。邱村金矿主要投资选矿厂,道路建设、电力外网、主扇风机生活设施等,而其它设备及维护设施,由承包单位承担,减少了建设投资。

2.降低采掘成本。生产科的有效管理,承包方的选进设备、技术、管理人员,提高了工作效率,使采掘成本大幅度降低。

3.材料采购、储备及流动资金的占用减少,因此产生的费用大为降低。

4.人员的安全和技术培训工作总量减少。承包单位具有矿山生产和建设的管理人员,有一定的基础,培训时安全技术的理解能力较强,容易接受。

5.减少安全风险。承包方要保证安全文明生产、承担工伤事故责任及所发生的一切费用。

六、结语

邱村金矿通过几年来的采矿工程外包,采矿工程成本得到有效的控制,企业效益较好,通过几年的实践,外包形式比较成功。外包已经作为一种新的经营管理模式,已经被许多企业所接受。邱村金矿外包形式在今后发展当中定继续改进和完善,通过科学管来降低成本,使企业利润最大化。

篇6

牡丹皮为毛茛科植物牡丹(PaeoniasuffruticosaAndr.)的干燥根皮,具有清热凉血,活血化瘀的功效。牡丹根皮中含芍药苷、氧化芍药苷、苯甲酰芍药苷、丹皮酚、丹皮酚苷、丹皮酚原苷和丹皮酚新苷等成分。药理实验表明,芍药苷体内、体外均能抑制ADP或胶原诱导的血小板聚集[1],应属牡丹皮抗缺血性中风的主要有效成分之一。本文采用正交实验法,以HPLC法测定的芍药苷的提取量为指标,对牡丹皮乙醇提取工艺进行优选,为牡丹皮的开发应用提供了实验依据。

1仪器和试药

高效液相色谱仪:日本岛津10Avp高效液相色谱仪(LC10Atvp双泵,SPDM10Avp二极管阵列检测器,SIL10Advp自动进样器,CTO10Avp柱温箱);HypersilODS填料色谱柱(ID4.6×250mm)(大连依利特化学仪器有限公司);分析天平:LIBRORL16ODTP分析天平(日本岛津)、AE240分析天平(瑞士METTLER);芍药苷对照品(07369710):中国药品生物制品检定所(为含量测定用)。牡丹皮药材(购自四川省电江药材基地,经鉴定为牡丹皮正品),所用乙腈为色谱纯,其余试剂为分析纯。

2提取工艺研究

2.1方法本文采用乙醇加热回流法对牡丹皮进行提取,选择回流次数、乙醇浓度、回流时间和乙醇用量等4个主要影响因素,每个因素选取3个水平。选用L9(34)正交实验法进行实验,选定的因素水平表见表1。

表1因素水平表(略)

2.1.1色谱条件经试验,确定流动相为乙腈水(20:80),流速1ml/min,柱温40℃,测定波长为230nm进样量4μl。

2.1.2对照品溶液的制备精密称取芍药苷对照品2.40mg,置25ml量瓶中,用甲醇溶解并稀释至刻度,摇匀,即得(每1ml中含芍药苷96μg)。

2.2供试样品溶液的制备精密称取9份牡丹皮药材粗粉50g,按L9(34)表各试验号规定方法进行实验,提取液分别浓缩并转移至100ml容量瓶,用适量乙醇稀释至刻度,摇匀,静置,即得样品溶液。精密吸取上述样品溶液各1ml,分别置25ml容量瓶中,用乙醇稀释至刻度,摇匀,滤过,即得供试样品溶液。

2.3供试样品溶液测定及结果精密吸取供试样品溶液与对照品溶液各4μl,注入液相色谱仪,测定,计算出供试样品溶液中芍药苷的浓度,结果见表2;方差分析见表3。

表2正交试验设计及结果(略)

由以上结果可知,牡丹皮乙醇提取的最佳工艺条件确定为A3B2C1D1,即5倍量75%乙醇提取3次,每次1h。

表3方差分析(略)

3小结

3.1芍药苷为牡丹皮中主要活性成分之一,其含量测定方法较多,如毛细管区带电泳法[2],薄层扫描法[3],高效液相色谱法[4-5]等。笔者采用HPLC法进行实验,并进行了相应的方法学试验。结果表明本法各方面符合中华人民共和国药典(2005版)和中药新药研制的有关规定。在试验中,根据牡丹皮含量测定结果,制定了牡丹皮中芍药苷的含量限度,为控制实验用牡丹皮药材的质量提供了依据。本文所选含量测定方法操作简单,结果准确,重现性好。

3.2关于芍药苷含量测定方法中流动相的选择,曾选用乙腈水(10:90、20:80、30:70)和甲醇水(20:80、30:70、40:60)等依次进行实验,结果显示乙腈水(20:80)作流动相时,牡丹皮供试品色谱中芍药苷与杂质峰可达基线分离,峰形对称,且保留时间适宜,故采用乙腈水(20:80)作为流动相。

3.3有文献记载以水提醇沉法提取丹皮中芍药苷[6],但考虑到芍药苷醇溶性优于水溶性,在前期实验中经比较,水提醇沉提取物中芍药苷得率低于乙醇提取物,且其操作较繁,故本文直接采用乙醇提取法,正交实验得出最佳提取工艺条件为乙醇浓度75%,乙醇用量为药材量的5倍,加热回流时间为1h,回流次数为3次。

致谢;河南省驻马店市药品检验所

【参考文献】

[1]洪涛,张家勋,李嘉珏,等.中国野生牡丹研究(一)[J].中草药,1994,(4):16.

[2]沈保安.药材牡丹皮的原植物·芍药属一新种[J].植物分类学报,1997,35(4):360.

[3]洪德元,潘开玉,谢中稳.银屏牡丹·花王牡丹的野生近亲[J].植物分类学报,1998,36(6):515.

篇7

现在电子元器件的封装更新换代越来越快,电路板上的元件越来越少,越来越密,管脚越来越细,电路板越来越小。而且电路板上大量使用表面贴装元件,倒装芯片等元件,这无一例外的说明了电子工业已朝向小型化、微型化方面发展,手工焊接难度也随之增加,在焊接当中稍有不慎就会损伤元器件,或引起焊接不良,所以工作人员必须对焊接原理,焊接过程,焊接方法,焊接质量的评定,及电子基础有一定的了解。

电烙铁是焊接中最常用的工具,作用是把电能转换成热能对焊接点部位进行加热焊接是否成功很大一部分是看对它的操控怎么样了。一般来说,电烙铁的功率越大,热量越大,烙铁头的温度也越高。像我们对硬件改造选用20W的内热式(30-40W外热式)电烙铁足够了,使用功率过大容易烧坏元件,一般二极管、三极管结点温度超过200℃就会损坏。一般最恰当的必须在1.5~4s内完成一个元件的焊接。

现在常用的电烙铁有外热式和内热式两种,外热式电烙铁热效率高,加热速度快。内热式电烙铁功率较高,使用方法相同,但据笔者经验发现在市场上内热式电烙铁的配件较多(主要是不同种类,不同价格的内热式烙铁头在市场采购容易),所以建议使用内热式电烙铁。在许多文献中都有阐述,如果电烙铁尖被氧化后,要用小刀等刮除前端氧化层。笔者认为现在市场上普通价格的烙铁尖(外层有电镀层)都有防氧化层,在使用时不能刮,否则影响使用寿命,如果烙铁尖上有氧化层,要用湿透的吸锡海绵擦拭干净,后马上镀锡防止再次氧化。

助焊剂能使焊锡和元件更好的焊接到一起,一般采用得最多的是松香和酒精的混合物。现在使用的焊锡丝中,有一部分焊锡丝中心是空芯的内有助焊剂,使用这种焊丝作业时不用再另外使用助焊剂了,但如果是要焊接或修理的电路板焊点管脚表面已经变乌氧化,最好使用少量的助焊剂来加强焊接质量。

另外还有一些必不可少辅助工具,烙铁架,吸锡器,镊子,偏口钳,毛刷等,烙铁架应该是在其底座部分有一个或二个槽(用于放吸锡海绵)的专用架子,而并不是随便的架子,这样可以随时擦拭烙铁尖,方便使用。吸焊器可以帮你把电路板上多余的焊锡处理掉。

现在的电路板上主要有两大类元器件,一类是直插式引脚式元件,另一类是贴片类元件。以下就按这两大类,元件来具体的说一说每类元件的焊接方法。

1.直插引脚式元件焊接方法:

1.1烙铁头与两个被焊件的接触方式。

接触位置:烙铁头应同时接触到相互连接的2个被焊接件(如焊脚与焊盘),烙铁一般倾斜30-45度,应避免只与其中一个被焊接件接触。当两个被焊接元件受热面积相差悬殊时,应适当调整烙铁倾斜角度,使烙铁与焊接面积大的被焊接元件倾斜角减小,使焊接面积较大的被焊件与烙铁的接触面积增大,热传导能力加强。如LCD拉焊时倾斜角在30度左右,焊麦克风、马达、喇叭等倾斜角可在40度左右。两个被焊件能在相同的时间里达到相同的温度,被视为加热理想状态。

接触压力:烙铁头与被焊件接触时应略施压力,热传导强弱与施加压力大小成正比,但以对被焊件表面不造成损伤为原则。

1.2焊锡丝的供给方法

焊锡丝的供给应掌握3个要领,既供给时间,位置和数量。

供给时间:原则上是被焊件升温达到焊料的熔化温度是立即送上焊锡丝。

供给位置:应是在烙铁与被焊件之间并尽量靠近焊盘。

供给数量:应看被焊件与焊盘的大小,焊锡盖住焊盘后焊锡高于焊盘直径的1/3既可,焊点应呈圆锥形。

1.3焊接时间及温度设置

1.3.1温度由实际使用决定,以焊接一个锡点1-4秒最为合适,最大不超过8秒,平时观察烙铁头,当其发紫时候,温度设置过高。

1.3.2一般直插电子料,将烙铁头的实际温度设置为(350~370度);表面贴装物料(SMT),将烙铁头的实际温度设置为(330~350度),一般为焊锡熔点加上100度。

1.3.3特殊物料,需要特别设置烙铁温度。LCD连接器等要用含银锡线,温度一般在290度到310度之间。

1.3.4焊接大的元件脚,温度不要超过380度,但可以增大烙铁功率。

1.4焊接注意事项

1.4.1焊接前应观察各个焊点(铜皮)是否光洁、氧化等,如果有杂物要用毛刷清理干净在进行焊接,如有氧化现象要加适量的助焊剂,以增加焊接强度。

1.4.2在焊接物品时,要看准焊接点,以免线路焊接不良引起的短路。

1.4.3如果需要焊接的元件是塑壳等不耐热封装,可以在元件本体上涂无水酒精后进行焊接,以防止热损伤。

1.4.4在焊接后要认真检查元件焊接状态,周围焊点是否有残锡,锡珠、锡渣。2.贴片式元件焊接方法:

2.1在焊接之前先在焊盘上涂上助焊剂,用烙铁处理一遍,以免焊盘镀锡不良或被氧化,造成不好焊,芯片则一般不需处理。

2.2用镊子小心地将QFP芯片放到PCB板上,注意不要损坏引脚。使其与焊盘对齐,要保证芯片的放置方向正确。把烙铁的温度调到300多摄氏度,将烙铁头尖沾上少量的焊锡,用工具向下按住已对准位置的芯片,在两个对角位置的引脚上加少量的焊锡,仍然向下按住芯片,焊接两个对角位置上的引脚,使芯片固定而不能移动。在焊完对角后重新检查芯片的位置是否对准。如有必要可进行调整或拆除并重新在PCB板上对准位置。

2.3开始焊接所有的引脚时,应在烙铁尖上加上焊锡,将所有的引脚涂上焊锡使引脚保持湿润。用烙铁尖接触芯片每个引脚的末端,直到看见焊锡流入引脚。在焊接时要保持烙铁尖与被焊引脚并行,防止因焊锡过量发生搭接。

2.4焊完所有的引脚后,用助焊剂浸湿所有引脚以便清洗焊锡。在需要的地方吸掉多余的焊锡,以消除任何可能的短路和搭接。最后用镊子检查是否有虚焊,检查完成后,从电路板上清除助焊剂,将硬毛刷浸上酒精沿引脚方向仔细擦拭,直到焊剂消失为止。

2.5贴片阻容元件则相对容易焊一些,可以先在一个焊点上点上锡,然后放上元件的一头,用镊子夹住元件,焊上一头之后,再看看是否放正了;如果已放正,就再焊上另外一头。如果管脚很细在第2步时可以先对芯片管脚加锡,然后用镊子夹好芯,在桌边轻磕,墩除多余焊锡,第3步电烙铁不用上锡,用烙铁直接焊接。当我们完成一块电路板的焊接工作后,就要对电路板上的焊点质量的检查,修理,补焊。符合下面标准的焊点我们认为是合格的焊点:

(1)焊点成内弧形(圆锥形)。

(2)焊点整体要圆满、光滑、无针孔、无松香渍。

(3)如果有引线,引脚,它们的露出引脚长度要在1-1.2MM之间。

(4)零件脚外形可见锡的流散性好。

(5)焊锡将整个上锡位置及零件脚包围。

不符合上面标准的焊点我们认为是不合格的焊点,需要进行二次修理。

(1)虚焊:看似焊住其实没有焊住,主要原因是焊盘和引脚脏,助焊剂不足或加热时间不够。

(2)短路:有脚零件在脚与脚之间被多余的焊锡所连接短路,亦包括残余锡渣使脚与脚短路。

(3)偏位:由于器件在焊前定位不准,或在焊接时造成失误导致引脚不在规定的焊盘区域内。

(4)少锡:少锡是指锡点太薄,不能将零件铜皮充分覆盖,影响连接固定作用。

(5)多锡:零件脚完全被锡覆盖,即形成外弧形,使零件外形及焊盘位不能见到,不能确定零件及焊盘是否上锡良好.。

(6)锡球、锡渣:PCB板表面附着多余的焊锡球、锡渣,会导致细小管脚短路。

篇8

Abstract:Thetectnicalflowprocess,equipmenttipeandsituactionofuseareintroduced.Andsomeequipmentsinthemudpoolareimprovedintechnology.

KeyWords:watertreatment;circulatingwater;technicalflowprocess;technologicalimprovement

1、概述

南昌钢铁有限责任公司棒材厂成立投产于2001年1月,是年产60万吨直径为12~32㎜的螺纹钢及直径为18~32㎜的圆钢棒材生产线,该厂自动化程度高、产材产量高,所用的系列冷却水为循环的工业水,并做到全部内部循环、不外排。循环水分为浊水循环、净水循环两个系统,现总用水量2020m3/h,其中浊环水900m3/h,净环水1120m3/h.水处理主要负责冷却水的循环、水质处理、加压、降温等工作。

4、水处理系统概况

4.1浊环水系统

该系统供粗、中、精轧机组、控制水冷装置及冲氧化铁皮等用水。供水量900m3/h.其回水经氧化铁皮沟自流至旋流沉淀池,沉淀后一部分经4M泵加压至车间冲氧化铁皮;另一部分经1-3M泵加压至化学除油器进行除油和二次沉淀处理,除油、沉淀后,进入浊热水池,再用5D泵加压至冷却塔冷却,冷却后自流至浊冷水池,最后用3D、4D泵加压至用户循环使用。

化学除油沉淀器底部污泥用排污阀排出流至污泥池,经污泥泵加压抽至板框压滤机压滤脱水,脱水后泥饼由厂方综合利用。污泥量1300t/a.

4.2净环水系统

该循环系统主要供轧线直流电机、液压、加热炉冷却、进出炉辊道等所需的间接冷却水。经使用后的水只是水温略有升高,经冷却处理后即可使用。净环水量1120m3/h.净环水设施有循环水泵房、吸水井、冷却塔等。

为保证系统水质,系统中设有GSL-22000×7100125t/h自动清洗滤水器进行旁通过滤。

4.3给排水系统设施

4.3.1旋流沉淀池及浊水泵房

漩流池及浊水泵房合建。

浊水泵房内设两组水泵。一组为化学除油器供水泵组,即1、2、3M泵,型号为250LC-32立式长轴泵(Q=480m3/h,75Kw)共三台,两用一备;一组为冲氧化铁皮泵组,即4M泵,型号为200LC2-46立式长轴泵(Q=300m3/h,75Kw)共一台,不设备用泵。并旋流池上部设一抓斗吊钩两用桥式起重机,用于抓取其内的氧化铁皮。

4.3.2化学除油器及污泥脱水间

设有MHCYG-IV型化学除油器3台,设计处理水量Q=400m3/h,N=3Kw.

XMG50/800板框压滤机一台,其中过滤面积S=50㎡,N=5.5Kw.

MY3.2-4-AHA42×3加药装置两条。

4.3.3循环水泵房及水池

循环水泵房及水池呈南北布置,共有四个水池。一个净环水热水池,一个净环水冷水池,一个浊环水冷水池,一个浊环水热水池。泵房内东西布置设有五组共14台水泵。

第一组:净环水热水泵组(1D),将净环水热水池热水抽至净环水冷却塔冷却,再自流至净环水冷水池。泵型号250S-39(Q=485m3/h,N=75Kw)共三台,两用一备。

第二组:净环水供水泵组(2D),将净环水冷水池中的水抽至棒材厂各冷却设备用水点冷却设备后再用管道流至净环热水池。,泵型号250S-65A(Q=468m3/h,N=110KW)共三台,两用一备。

第三组:浊环水供水泵组(3D),将浊环水冷水池的水抽至棒材厂轧机冷却用,再经轧机冲渣沟流至旋流沉淀池。泵型号300S-58A(Q=720m3/h,N=155Kw)共两台,一用一备。

第四组:浊环水穿水冷却供水泵组(4D),将浊环水冷水池的水抽至棒材厂轧机穿水冷却用,再经轧机冲渣沟流至旋流沉淀池。泵型号200S-43×3(Q=288m3/h,N=155Kw)共三台,两用一备。

第五组:浊环水热水泵组(5D),将浊环水热水池热水抽至浊环水冷却塔冷却,再自流至浊环水冷水池。泵型号250S-39(Q=485m3/h,N=75Kw)共三台,两用一备。

泵房屋顶设有两组冷却塔,第一组为净环水冷却塔,型号为MBZ-1共两台,第二组为浊环水冷却塔,型号为MBNW-1共三台。

5、技术改进

从棒材厂投产以来,水处理系统运行正常,水量、水压、水质、水温处理都符合要求,能顺利配合生产需要,满足生产要求。但原设计的污泥池沉积的污泥用污泥泵抽至板框压滤机进行污泥压滤脱水一直是个问题,不能正常进行。原因主要是原设计的抽污泥泵是潜水式的,污泥池没有搅拌设施,排污后污泥沉淀于池底。污泥的主要成分是氧化铁皮,密度大,沉底易结块,很快就将污泥泵头堵死,使得污泥泵不能工作。污泥池的污泥只能靠定期的人工挖掘,既浪费大量的成本,又对环境卫生造成污染,在人工清泥的过程中会影响日常排污工作的开展。

鉴于此,对污泥池进行了改造。将已坏的污泥泵拆除,并安装了一台自控自吸泵于地面作为抽污泥泵,其型号为80NFB-C1(Q=50,N=22Kw)

进水管径DN=80mm,出水管径DN=50mm,吸水管下伸至距污泥池底约0.8米,出水管接至板框压滤机。并在原污泥泵两侧1米处安装两台和污泥泵同样的自控自吸泵用于搅拌污泥,其出水管设计成螺旋式,下伸长至距池底部0.4米,并在螺旋式出水管表面均匀分布直径30mm小孔,以增加出水面积,从而形成螺旋式搅拌。

在操作规程中规定:排污后沉淀30分钟,用清水泵抽掉上部清水,然后开两台搅拌机搅拌30分钟,再开抽污泥泵抽污泥,同时搅拌机泵一直处于搅拌状态,防止污泥沉淀结块,至抽完为止为一操作循环周期。如此循环操作一天进行两次。解决了污泥去除问题。

篇9

随着人们生活水平的日益提高,消费者已从过去的“温饱型”转向“健康型”,他们不再满足喝开水、汽水解渴的传统生活方式,而转向了饮用无任何添加剂、色素、富含对人体健康有益的各种微量元素的天然矿泉水。

饮用天然矿泉水是一种来自地下深部循环的天然露头或人工接露的深部循环的地下水,以含有一定量的矿物盐或微量元素,或二氧化碳气体为特征。国外饮用天然矿泉水的开发历史较长。从30年代开始,一直以高速度发展,平均年增长率达10%,远远超过各国工业增长速度。矿泉水已成为当今世界上最时尚、最畅销的饮料。日本和韩国等一些发达国家,居民日常饮用水全部是矿泉水,甚至做饭也用矿泉水,高档的产品如人参矿泉水、蜂蜜矿泉水或王浆矿泉水等。我国饮用天然矿泉水规模开发始于1985年,据统计,目前全国已勘察评价的饮用天然矿泉水水源地已有3500余处。矿泉水类型齐全,凡世界其他国家有的矿泉水类型,我国均有分布。生产企业中,全部引进法国、意大利、美国等国家的矿泉水生产设备的厂家约占企业总数的10%。由于资金或经验不足,大部分企业走过不少弯路,水处理不过关,导致产品质量差,目前都在寻求改造处理设备、扩大生产规模的方法。

1矿泉水水源地的保护和水源监测

为了确保矿泉水的水质在不发生明显变化的前提下合理开采,必须建立地下水动态监测制度,每年至少二次对水源水质进行全分析,以防水质变化,其结果应与技术评审认可的报告相符。由于源水泉有丰水期和枯水期或中水期的不同,检验结果有些波动,但必须符合GB8537-87界限指标要求。对源水泉的水量、水位、水温做到每天观测一次,并做好记录。

2生产过程中的重要工艺

2.1过滤工艺

矿泉水在灌装前都必须经过过滤,以除去水中的泥渣、悬浮物、藻类、细菌、霉菌等杂质。在水处理工艺中,活性炭处理是必需的。活性炭具有很多微孔和巨大的比表面积,因而吸附能力强,能有效吸附水中的有机污染物,去除水中的藻类并吸附异味和毒素。应根据水的洁净程度选择2-3级粗、细过滤,以减轻终端过滤器的负担。终端过滤器应采用微过滤孔径达到0.2μm。

2.2水的消毒

矿泉水的灭菌工艺采用紫外线杀菌、臭氧杀菌二者结合使用。利用紫外线灭菌时,必须考虑水质、水深、流速及吸收率等来决定杀菌必须的照射量。再经过臭氧灭菌,臭氧具有极强的氧化能力,反映较快,杀菌效率高,能迅速破坏微生物的细胞膜、细胞质、酶系统和核酸,从而使微生物迅速灭活,而且可以杀灭芽胞菌。臭氧处理矿泉水的基本原理是臭氧与水混合,并使其最终在水中的浓度达到0.5m/l来满足杀菌要求。采用臭氧工艺时必须结合矿泉水的类型、特点,选用适合的臭氧发生器和有效的水-臭氧混合器,并通过试验找出本企业矿泉水的臭氧添加量的最佳工艺。

2.3空瓶、盖的消毒及灌装工艺

我们通过大量的检测发现,灌装车间空气、瓶内壁、盖子内壁和操作人员的衣物等均有霉菌的存在,由此可见霉菌的传播是通过空气完成的。灌装车间空气致菌是矿泉水霉菌污染的主要途径,切断该途径对矿泉水防止霉菌污染十分重要。灌装间应有良好的卫生环境,建成无菌室,空气应净化处理,灌装设备和管路必须在灌装前用消毒液浸泡消毒。定期用消毒液对灌装车间进行空气熏蒸。重视瓶、盖的消毒。瓶装水的空瓶需要循环使用,空瓶的清洗、消毒是否彻底,直接关系到产品的质量。一般首先应预洗,清除外表的污迹,消毒处理一般用250ppm的ClO2溶液浸泡后冲洗。需要特别强调的是,由于用户使用环境较差或存放时间较长,在光和热的作用下,藻类在水中繁殖,产生“绿澡”。因此,回收到有类似情况出现的空瓶,须采用0.02%CuSO4溶液浸泡20~24h以上,再进行常规消毒处理。

2.4天然矿泉水的沉淀问题及解决方法

矿泉水因含有铁、锰离子而产生沉淀,呈红色、黄色、褐色等。可能因开采过量或地下裂缝出现变化、周围水源保护不好而造成沉淀。因此对水源应做好预防工作,每年定期三次(枯水期、平水期、丰水期)对水源进行水质分析检验并记录,及时掌握水中矿化度及铁、锰含量的变化,及时改善工艺;管路清洗不净或锈蚀极易造成铁沉淀。故应对管路每天开机之前清洗20-30min。矿泉水中的白色絮状物沉淀一是生产过程中受到污染的桶、盖,或是环境空气卫生质量太差造成霉菌的生长和繁殖,形成可见絮状物;二是生产中滤蕊被氧化,或更换新滤蕊时清洗不净,造成白色絮状沉淀。因此切实加强生产过程中的卫生管理,重视桶、盖的清洗、消毒。做好车间内外环境(空间)和灌装设备的卫生工作,杜绝污染。3矿泉水生产新工艺——滤纳技术

目前,矿泉水的生产普遍采用曝气、沉淀和锰砂过滤等

传统工艺,其优点是可以去除矿泉水中的铁、锰、悬浮物和大部分细菌;其缺点是工艺复杂,控制参数多,且除铁、锰效果不稳定,沉淀时间长;对各种溶解性化学物质的脱除作用低;不能有效去除矿泉水中的藻类或青苔孢子。

纳滤技术是反渗透技术不断发展的结果,它的截留性能独特,产水量较高、过膜压差较小。纳滤膜的孔径一般在1~5nm,截留分子量在200~1000道尔顿,膜表面带负电,对无机离子的去除率小于90%,其通透性介于反渗透与超滤之间,因其孔径在纳米级范围而得名。与反渗透膜几乎对所有的溶质都有很高的去除率不同的是,纳滤膜对不同的离子有不同的去除率,具有离子选择性:在小于1MPa压力下,一价离子可以大量通过纳滤膜,去除率小于20%,二价和多价离子则多数被去除,截留率可达90%~99%。由于纳滤膜表面带负电,多价阴离子被排斥在膜外,只有在很高的浓度下才能通过。一般来说,随着水中离子浓度的增加,膜的截留率下降;随着过膜差压的增加,膜的截留率增加。

纳滤膜比反渗透膜操作压力低,运行费用也较低,而且可以截留一部分有机物和高价态的无机离子,还可以去除水中大部分Ca2+、Mg2+、Fe3+、Mn2+等硬度离子,三卤甲烷中间体THM(加氯消毒时的副产物,致癌物质),低分子有机物、农药、异味物质、硝酸盐、硫酸盐、氟、硼、砷等有害物质。纳滤技术应用在矿泉水生产中的最大优点是经过纳滤技术处理后的矿泉水,其中的大部分偏硅酸被保留。实验表明,纳滤膜对矿泉水偏硅酸的去除率为10%~20%。因此,对水源偏硅酸含量不太低的矿泉水,都可以考虑运用纳滤膜生产技术。

纳滤膜分离过程不发生相变化,在常温下进行,是纯粹的物理过滤,因此能耗低。处理效果不受原水水质及操作工艺的影响,处理结果稳定可靠,出水水质可以较长时间维持在一个较好的水平。而且纳滤膜以组件的形式构成,可以满足不同生产能力的需要。因此,纳滤膜技术必将是矿泉水生产工艺的理想选择。

通过实验室检测发现,在原水中含有大量青苔孢子的矿泉水,在经过纳滤技术处理后,那怕用专用藻类培养基培养,也检测不到含有青苔孢子。实验表明,纳滤技术对矿泉水青苔孢子的去除率达到100%。纳滤技术的运用,成功解决了长期困扰矿泉水生产企业长青苔的这一质量问题。

参考文献

[1]郑敬东等.广东省饮用天然矿泉水工业生产与管理办法.

篇10

Abstract:[Objective]TofilterandoptimizeextractivetechnologyofQianlieninggranules.[Methods]TheoptimizationextractivetechnologyofQianlieninggranuleswasinvestigatedusingorthogonaldesignwiththeavailabilitycomponentextractingfromthedrugastheindex.[Results]TheoptimalconditionfortheextractionofRadixAstragaligroupwas10foldsamountofwater,3times,1.5hourseachtime.TheoptimalconditionfortheextractionofRheumofficinalBaill.groupwas6foldsamountof60%alcohol,2times,twohoursand1.5hourseachtime.[Conclusion]Theoptimizedextractivetechnologyisscientificandefficient.

Keywords:QianlieningGranules;Rhein;AstragalosideIV;extractivetechnology;orthogonaldesign

前列宁颗粒由酒大黄、黄芪、牛膝、菟丝子等多味中药组成,为我院中西医结合系洪振丰教授的经验方,具有清热解毒、活血化瘀、益气补肾之功效,用于治疗慢性前列腺增生及前列腺炎等症,疗效显著[1]。为方便临床用药和患者携带,实验对组方成分进行分析,根据各味药材所含成分的理化性质,拟分水溶和醇溶两组提取。其中黄芪、菟丝子等药采用水煎煮提取,酒大黄、牛膝等药采用醇提,对其提取工艺采用正交实验法进行研究,以确定最佳提取工艺,使制剂工艺更加合理。

1仪器与试药

美国Waters600E高效液相色谱仪,包括二极管阵列检测器,四元泵,在线真空脱气机,Millennium32色谱工作站;SartoiousBT25S型电子分析天平(北京赛多利斯仪器有限公司);恒温干燥箱(北京市朝阳区来广营医疗器械厂);DKS24型电热恒温水浴锅(上海精宏试验设备有限公司)。

酒大黄、黄芪等实验药材均购自福建同业有限公司,经我院药学系鉴定符合2005版中国药典(一部)有关规定;大黄酸对照品(批号0757-200206,购自中国药品生物制品检定所);黄芪甲苷对照品(中国药品生物制品检定所,批号:110781-200512);甲醇、乙腈为色谱纯,水为超纯水,其余试剂为分析纯。

2方法与结果

2.1水煎煮组正交试验设计

采用正交试验法对黄芪、菟丝子等药组水煎液提取工艺进行优选。根据文献报道[2],以提取次数(A)、提取时间(B)、加水量(C)为试验因素,每个因素3个水平进行优选,以浸膏得率和黄芪甲苷含量作为考察指标进行试验。因素水平见表1。表1水煎煮组的因素水平表(略)

浸膏得率测定:精密吸取母液20ml,置干燥恒重的蒸发皿中,水浴蒸干,于105℃下干燥3h,迅速取出,放入干燥器中,冷却30min,迅速精密称定,计算出膏率。

2.2水煎液中黄芪甲苷的测定[3]

2.2.1色谱条件与系统适用性试验

以十八烷基硅烷键合硅胶为填充剂;以乙腈-水(38:62)为流动相;流速为1.0ml/min。蒸发光散射检测器检测。此色谱条件下,理论塔板数按黄芪甲苷峰计算,应不得低于4000。

2.2.2对照品溶液的制备

精密称取黄芪甲苷对照品4.0mg,置于10ml容量瓶中,加入甲醇定容,制成0.4mg/ml的溶液,即得。

2.2.3供试品溶液的制备

按正交表条件提取,合并提取液,滤过,滤液浓缩至1:1(g/ml),加乙醇使醇浓度达75%,低温静置24h,取上清液减压回收乙醇,浓缩定容于100ml量瓶,摇匀。分别精密量取20.0ml,用水饱和的正丁醇振摇提取3次,每次25ml,合并正丁醇提取液,用氨试液洗涤3次,每次20ml,正丁醇提取液回收溶剂至干,残渣加甲醇溶液并转移至10ml量瓶中,加甲醇至刻度,摇匀,离心,取上清液,即得。

2.2.4标准曲线绘制

精密吸取对照品溶液2,4,6,8,10μL,分别注人高效液相色谱仪,依法测定。回归方程为Y=7985.56X+1457.24,r=0.9998。结果表明,黄芪甲苷进样量线性范围为2.014~10.070μg。

2.2.5精密度试验

取同一份供试品溶液,按上述色谱条件重复测定5次,计算精密度,结果黄芪甲苷峰面积的RSD为0.23%(n=5)。

2.2.6重复性试验

取同一批号样品,配制3种浓度,照含量测定项下方法每个浓度测定3次,结果RSD为1.07%、1.58%、1.91%,表明重现性较好。

2.2.7稳定性试验

取同一份供试品溶液,在0,4,16,24,48h分别进样5次,依法分别测定黄芪甲苷蜂面积值。结果RSD<2.0%,表明本品在48h内测定结果稳定。

2.2.8加样回收率试验

精密称取已知含量的同一批样品,各精密加入黄芪甲苷对照品适量,按2.2.3项下方法制备供试液,依法测定并计算加样回收率,得平均回收率为98.21%,RSD=1.41%。

2.3水煎煮组最佳工艺确定

正交试验结果见表2,方差分析结果见表3。按下列公式计算综合评分值:出膏率加权评分(y1)=(出膏率-12)/(25-12)×100;黄芪甲苷含量加权评分(y2)=(测定量-0.2)/(0.4-0.2)×100。综合评分=(yl+y2)/2。表2水煎煮组正交试验结果(略)表3水提工艺方差分析表(略)中国

由表2可见,3个因素的级差大小顺序为A>C>B,提取次数对提取工艺的影响最大,加水量影响较大,提取时间影响最小。由表4可见,因素A(提取次数)、因素C(加水量)有显著性,因素B(提取时间)无显著性。故最佳工艺为A3B1C3,即用10倍量水,提取3次,每次1.5h。按优选的最佳工艺提取3批样品进行验证实验,可知,三批样品出膏率分别为24.14%、24.09%、23.97%;黄芪甲苷含量分别为0.397、0.384、0.391mg/g。验证结果表明工艺基本稳定可行。

2.4醇提组正交试验设计

根据文献和预实验结果[4],采用正交试验法。以浸膏得率和大黄酸的含量为考察指标,对乙醇浓度(A)、醇用量(B)、提取时间(C)3个试验因素,每个因素3个水平进行优选,并以浸膏得率和大黄酸含量作为考察指标进行试验。因素水平见表4。表4醇提组的因素水平表(略)

2.5大黄酸含量测定

2.5.1色谱条件

填充剂为十八烷基硅烷键合硅胶,色谱柱为SHIMADZUC18色谱柱(4.6mm×250mm,5μm),流动相为甲醇-0.1%磷酸溶液(85∶15),检测波长为254nm,流速为1.0ml/min。理论塔板数按大黄酸峰计算应不低于3000。

2.5.2对照品溶液的制备

精密称取干燥2h后的大黄酸对照品0.038g,置于25ml量瓶中,加甲醇至刻度,得含大黄酸0.152mg/ml的对照品溶液,备用。

2.5.3线性关系考察

分别精密量取大黄酸对照品溶液1.0、2.0、3.0、4.0、5.0ml,置于10ml量瓶中,加甲醇至刻度,分别进样5μl。以进样量(X)为横坐标,峰面积积分值(Y)为纵坐标,进行线性回归,得回归方程:Y=7867.756X+1.6727(r=0.9998)。结果表明,大黄酸进样量在0.076~0.380μg范围内与峰面积积分值呈良好的线性关系。

2.5.4供试品溶液的制备

用L9(34)正交表安排试验,称取处方量的药材,按设定方案进行回流,收集回流提取液,定容至200ml,精密量取50ml,置已干燥至恒重的蒸发皿中,水浴蒸干,于105℃干燥3h,置干燥器中冷却0.5h,迅速称量。精密量取已定容样品液50ml,水浴蒸干,加5mol/L。硫酸溶液20mL,置水浴加热1h,立即冷却,加氯仿提取3次(30、30、20ml),合并氯仿液,加水洗涤2次(20、20ml),弃去水层,氯仿液水浴蒸干,残留物加甲醇定容至5ml,即得。

2.5.5含量测定

分别精密吸取对照品溶液5μl、供试品溶液10μl,分别注入液相色谱仪,按“2.5.1”项下色谱条件测定。高效液相色谱见图1。

2.5.6精密度试验

精密量取“2.5.2”项下大黄酸对照品溶液5μl,重复进样6次测定峰面积。结果,峰面积RSD=1.3%,表明仪器精密度良好。

2.5.7稳定性试验

取“2.5.4”项下的供试品溶液。分别于0,4,16,24,48h时按“2.5.1”项下色谱条件进样测定5次。结果:峰面积RSD=1.18%。表明供试品溶液在48h内稳定性较好。

2.6醇提组最佳工艺确定

正交试验结果见表5,方差分析结果见表6。按下列公式计算评分值:出膏率加权评分(y1)=(出膏率-13)/(20.5-13)×100;黄芪甲苷含量加权评分(y2)=(测定量-5)/(9.4-5)×100。综合评分=(yl+y2)/2。表5醇提组的正交试验结果(略)表6方差分析结果(略)

由表5可见,3个因素的级差大小顺序为C>A>B,提取时间对提取工艺的影响最大,醇浓度影响较大,醇用量影响最小,实验结果最佳工艺为A2B2C3。由表6可见,提取时间有显著性,醇浓度、醇用量无显著性。考虑生产成本,确定A1B1C3为最佳工艺,即用6倍量60%醇溶液,提取2次,分别为2.0、1.5h。按优选的最佳工艺提取3批样品进行验证实验,可知,三批样品出膏率分别为20.24%、20.32%、19.97%;大黄酸含量分别为9.41、9.37、9.31mg/g。验证结果表明工艺基本稳定可行。

3讨论

验方中大黄取其解毒泄下之功,以清体内热毒,使湿热由下而去;取其活血祛瘀之功,使血行通畅,瘀血得解;一药两用,为君药。而其中大黄酸具有抗菌抗炎作用,故醇提组选择以大黄酸作为含量测定指标。黄芪取其补气之功而治前列腺增生日久气虚之候,而其利水之功又可助它药以泄湿,故水提组以黄芪甲苷作为指标成分。黄芪等药味中的活性成分在水中有较好的溶解度,故考虑用传统的水煎煮提取。大黄、牛膝等醇提组药物中有效成分在醇溶液中溶解度较大。

前列宁颗粒为复方制剂,成分复杂。试验选择以浸膏得率和相应的含量测定为指标,可综合评价工艺的合理性。采用正交设计的试验方法对提取工艺进行优化筛选,确定的提取工艺简便、科学,符合生产要求。

【参考文献】

[1]周建衡,洪振丰,林久茂,等.前列宁颗粒对前列腺增生的影响[J].福建中医学院学报,2008,18(5):4547.