时间:2023-03-23 15:24:47
导言:作为写作爱好者,不可错过为您精心挑选的10篇数学思想论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
第一,在学习新内容时要渗透数学思想。在设计教案时教师要有意识地增加数学思想的启发,将数学思想与新的数学知识结合起来,避免只讲知识表面不讲数学原理,只讲习题不讲思想。在讲授新内容时,不能直接将相关概念和定理告诉学生,而是通过一定的方法引导和启发学生逐步探索、猜测,慢慢接近,掌握知识形成过程中的相关思想,锻炼学生的数学思维。这样学生可以发挥数学思维能力去推理,对所学知识理解得更加透彻,记忆也更加深刻。
第二,在解题中渗透数学思想。数学离不开解题,但是解题的方法不止一种,多一种方法就可能多一种数学思想。如苏教版的练习册中有这样一道题:1998×3.14+199.8×31.4+19.98×314。先让学生观察数字的关联性,学生会很容易看出数值1998小数点在往左移动,3.14的小数点在往右移动,两个数值相乘,根据小数点移动的知识,学生能够推断出三个乘积是相等的,无论它们怎么变动,小数点后面一共是两位,只要算出1998×3.14再乘以3就可以了。这个解题思路实际上渗透了划归的数学思想。教师要在解题之前就开始向学生渗透,解题之后还要进行深化点睛,久而久之,学生就掌握了这种方法。
第三,经常讲,反复讲。数学思想渗透是需要潜移默化的,教师要坚持这一过程,在讲课时不断举一反三,帮助学生深刻领会。
第四,要引导学生从生活中发现数学思想,鼓励学生将课堂中学到的思想运用到生活中,将生活中的问题带到课堂上。
二、用辩证唯物主义观点对学生进行教育
在数学中到处充满着辩证的方法和思维,中学数学的教学大纲指出:“要用辩证唯物主义观点来阐明教学的内容,这样学生既有利于学习基础知识,学生又有利于形成唯物主义世界观。”在数学的教学中可用以下几点来渗透辩证唯物主义的观点。
1.科学是在不断发展的,任何事物都不是一成不变的,人们的认识水平也是在不断提高的。数的扩充、代数与几何的结合,某些定理、推论的推广,发展的观点由此得到体现。
2.物质的根本属性是运动。在数学当中,面可以看成点线运动的轨迹,旋转体也是平面图形运动的结果,直线是向两边无限延伸的,在教学的过程当中强调这些,使同学们在潜移默化中,接受到辩证法中运动的观点。
3.在数学教学过程中,正数与负数、有理数与无理数、实数与虚数等,这些不同的概念是对立的,同时又是统一的。加与减的转化,乘与除的统一,乘方与开方的互逆,在教学中强调这些数学规律,让学生从中接受到矛盾与对立统一及相互转化观点。
4.将辩证唯物主义观点渗透于教学中,数学来源于实践又反过来作用与实践,同时在数学教学中,也要加强对学生数学精神的培养,加强德育的渗透,让学生领悟到数学中的辩证关系,从而初步形成辩证唯物主义的观点。
数学思想数学论文参考文献:
[1]范璐璐.解析数学思想、数学活动与小学数学教学[J].中国教育学刊,2014,(06).
[2]姜嫦君,刘静霞.小学数学教学中数学思想方法的渗透[J].延边教育学院学报,2010,(02).
[3]邹益群.试论数学思想、数学活动与小学数学教学[J].才智,2015,(15).
[4]俞元苗.论数学思想、数学活动与小学数学教学[J].才智,2013,(36):104-104.
[5]范璐璐.解析数学思想、数学活动与小学数学教学[J].才智,2014,(6):47-47.
[6]曾国栋.数学思想、数学活动与小学数学教学[J].现代教育科学(普教研究),2014,(6):154-154,116.
[7]邹益群.试论数学思想、数学活动与小学数学教学[J].才智,2015,(15):169-169.
数学思想数学论文参考文献:
[1]于芳.小学数学课堂教学的现实性研究[D].湖南师范大学,2012.
[2]朱黎生.指向理解的小学“数与运算”内容的教材编写策略研究[D].西南大学,2013.
[3]刘勋达.小学数学模型思想及培养策略研究[D].华中师范大学,2013.
[4]张桂芳.小学数学解决问题方法多样化的研究[D].西南大学,2013.
[5]俞祥龙.分类思想在中职数学中的渗透[J].数学学习与研究,2015(13):16-17.
[6]李祎.高水平数学教学到底该教什么[J].数学教育学报,2014(6).
[7]雷会荣.浅谈数学思想在极限教学中的渗透[J].教育探索,2011(12):58-59.
数学思想数学论文参考文献:
[1]林雪.关于转化思想方法在高中数学解题中的应用探讨[J].中国校外教育,2016,23(13)
[2]韩云霞,马旭.浅谈函数思想在高中数学解题中的应用[J].宁夏师范学院学报,2016,22(3)
分类应该按同一标准进行,也就是每次分类不能使用几个不同的分类根据。例如:把三角形分为等边三角形和不等边三角形是按边分类的。但是直角三角形、钝角三角形、锐角三角形、等腰三角形、等边三角形,这种分类就不正确,此种分类既是按边分类也按角分类。
2.相斥性原则
分类后的每一个子项应具备互不相容的原则,也就是不能出现有一项既属于这一类又属于那一类。例如学校举行运动会,规定每个学生只能参加一项比赛,初一三班的6名同学报名参加200和400米的赛跑,其中有4人参加200米比赛,3人参加400米比赛,那么就有1人既参加200米又参加400米比赛,这道题目的分类就违背了相斥性原则。
3.完善性原则
分类应当完善,即划分后子项的总和应当与母项相等。如:有人把实数分为正实数和负实数两类,这个分类是不完善的,因为子项的总和小于母项。事实上实数中还包括零。
4.递进性原则
分类后的子项还可以继续再进一步分类,直到不能再分为止,层次分明。例如实数可以分为无理数和有理数,有理数还可以分为整数和分数,整数又可以分为正整数,零和负整数。我们在运用分类讨论的思想解决问题时,首先要审清题意,认真分析可能产生的不同因素,进行讨论时要确定分类的标准,每一次分类只能按照一个标准来分,不能重复也不能遗漏,另外还要逐一认真解答。
二、分类思想在初中数学教学中的应用
1.概念分类
例如在学习完负数、有理数的概念后,针对于不同的标准,有理数有多种的分类方法,若按定义来分类有理数可以分为分数和整数,分数又可以分为正分数和负分数,整数又可以分为正整数、负整数和零;若按正负来分类有理数可以分为正有理数、负有理数和零,正有理数又分为正整数、正分数,负有理数又分为负整数、负分数。
2.在解题方法上分类讨论
例如:解方程∣x+3∣+∣4-x∣=7解析:对于绝对值问题,往往要对绝对值符号内的内容分为正数、负数、零三种,在此方程中出现两个数的绝对值;∣x+3∣和∣4-x∣,∣x+3∣应分为x=-3,x<-3,x>-3;∣4-x∣应分为x=4,x<4,x>4,在数轴上可见该题应划分为三种情形:①x<-3,②-3≤x≤4,③x>4。解:①若x<-3,化简-(x+3)+4-x=7得x=-3,与x<-3矛盾,所以x<-3时方程无解。②若-3≤x≤4,原方程x+3+4-x=7恒成立,满足-3≤x≤4的一切实数x都是方程的解。③若x>4,化为x+3-(4-x)=7,得x=4,与x>4矛盾,所以x>4时无解。综上所述,原方程的解为满足-3≤x≤4。3.在几何中图形位置关系不确定的分类:例如:已知a的绝对值是b绝对值的3倍,且在数轴上a、b位于原点的同侧,两点之间的距离为16,求这两个数;若数轴上表示这两数的点位于原点两侧呢?分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的同侧”意味着甲乙两数符号相同。那么究竟是正数还是负数,我们应该用分类讨论的数学思想解决这一问题。解:由题意得:∣a∣=3∣b∣,∣a-b∣=16
小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育的目标。
在认知心理学里,思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。
数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。未来社会将需要大量具有较强数学意识和数学素质的人才。21世纪国际数学教育的根本目标就是“问题解决”。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和国际数学教育发展的必然结果。
小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。
二、小学数学教学中应渗透哪些数学思想方法
古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由于小学生的年龄特点决定有些数学思想方法他们不易接受,二则要想把那么多的数学思想方法渗透给小学生也是不大现实的。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。
1.化归思想
化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。
例1狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳41/2米,黄鼠狼每次可向前跳23/4米。它们每秒种都只跳一次。比赛途中,从起点开始,每隔123/8米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?
这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离41/2(或23/4)米的整倍数,又是陷阱间隔123/8米的整倍数,也就是41/2和123/8的“最小公倍数”(或23/4和123/8的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。
2.数形结合思想
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。
例2一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?
附图{图}
此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求,这里不但向学生渗透了数形结合思想,还向学生渗透了类比的思想。
3.变换思想
变换思想是由一种形式转变为另一种形式的思想。如解方程中的同解变换,定律、公式中的命题等价变换,几何形体中的等积变换,理解数学问题中的逆向变换等等。
例3求1/2+1/6+1/12+1/20+……+1/380的和。
仔细观察这些分母,不难发现:2=1×2,6=2×3,12=3×4,20=4×5……380=19×20,再用拆分的方法,考虑和式中的一般项
a[,n]=1/n×(n+1)=1/n-1/n+1
于是,问题转换为如下求和形式:
原式=1/1×2+1/2×3+1/3×4+1/4×5+……+1/19×20
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+……+(1/19-1/20)
=1-1/20
=19/20
4.组合思想
组合思想是把所研究的对象进行合理的分组,并对可能出现的各种情况既不重复又不遗漏地一一求解。
例4在下面的乘法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求这个算式。
从小爱数学
×4
──────
学数爱小从
分析:由于五位数乘以4的积还是五位数,所以被乘数的首位数字“从”只能是1或2,但如果“从”=1,“学”×4的积的个位应是1,“学”无解。所以“从”=2。
在个位上,“学”×4的积的个位是2,“学”=3或8。但由于“学”又是积的首位数字,必须大于或等于8,所以“学”=8。
在千位上,由于“小”×4不能再向万位进位,所以“小”=1或0。若“小”=0,则十位上“数”×4+3(进位)的个位是0,这不可能,所以“小”=1。
在十位上,“数”×4+3(进位)的个位是1,推出“数”=7。
在百位上,“爱”×4+3(进位)的个位还是“爱”,且百位必须向千位进3,所以“爱”=9。
故欲求乘法算式为
21978
×4
──────
87912
上面这种分类求解方法既不重复,又不遗漏,体现了组合思想。
此外,还有符号思想、对应思想、极限思想、集合思想等,在小学数学教学中都应注意有目的、有选择、适时地进行渗透。
三、小学数学教学应如何加强数学思想方法的渗透
1.提高渗透的自觉性
数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。
2.把握渗透的可行性
大学数学是大学本科阶段必修的重要的基础理论课程,对于非数学专业来说,大学数学主要是指高等数学、线性代数和概率论三门课程,当然也包括其他一些工程数学如复变函数、数学物理方程以及计算方法等。长期以来,大学数学的教学一直面临着内容多、负担重、枯燥泛味、学生积极性较低等问题。如今我国的高等教育已变成大众化教育,高校生源质量明显下降,大学生学习的自觉性、积极性以及努力程度等均在下降,这在一般的本科院校中尤为突出。这也使得大学数学的不及格率急剧上升,有的专业有些班级的不及格率高达50%,20-30%的不及格率更是普遍,补考重修的大军可谓浩浩荡荡,有的甚至毕业了还要回校补考高等数学。教师也是叫苦不迭,一次又一次出题改卷录分数,工作量一下子就增大不少。很多学生表示自己不是不想学,是没兴趣学,觉得学了又没什么用,而学习过程又是枯燥的,于是便不想学了。偶然看到一位工科学生学习数学的感言:数学像是一个无底洞,小学时老师给了我一盏煤油灯,领着我进去;中学时煤油灯换成了一盏桐油灯,老师赶着我自己摸索进去;上了大学,我怀抱着工程师、设计师的梦想,满以为可以领略到数学的用武之地,然而老师告诉我,你现在学的还是基础,要用没到时候呢;每天似音乐符的积分号充塞我的头脑,我没能谱写好美妙动听的交响曲,却渐渐变成了老油条,梦想就此也远去了。这虽然只是大学生的只言片语,但从中也能窥视到当代大学生的内心世界。他们渴望学好数学,将数学应用到专业技术中,使他们成为专业技术能手。但是大学数学的教学不能满足他们的愿望,使得他们在学习的过程中逐渐失去了学习数学的兴趣,失去了动力和信心。因此,培养大学生学习数学的兴趣至关重要。
一、兴趣在大学数学学习中所起的作用
孔子曰“:知之者不如好之者,好之者不如乐之者”。兴趣可以让人从平淡中发现瑰丽,从困顿中崛起。强烈的兴趣往往可以像聚焦镜一样,将人们的注意力专注于所爱好的事物,吸引人们反复揣摩、钻研和思考,像一盏指明灯引导人们寻找自己的航向。没有兴趣,就会失去动力。只有学生对数学发生浓厚的兴趣,他才会积极主动地去学习它、钻研它并且应用它。只有这样,师生的教学活动才会轻松、愉快,并能够保证良好的教学质量。学习过程中,一旦有了兴趣,很多学生就能够发挥主动性,乐于去思考问题,喜欢提出问题,进而去探究问题的解决方法,也就有了数学思维,有利于培养学生的创新能力。学生是教学过程的主体,只有主体发挥自身主观能动性,教学活动才能有效地完成,教学质量才会提高。现在的大学生多是独生子女,家庭生活条件较优越,个性大都特立独行,缺乏自我约束能力,一遇到挫折就会退缩,做事但凭着自己的喜好和兴趣。对自己感兴趣的事情执着追求,但是不感兴趣的东西,哪怕家长老师天天追着说很重要,他也不会理睬。有些学生第一学期高等数学不及格,问其原因,答曰:不感兴趣,逼着我学也没用。做思想工作的时候,甚至还有学生说:不感兴趣,老师你别管我。然后依旧我行我素,其他数学课程的学习也可想而知。任凭辅导员、任课教师以及家长苦口婆心,学生本身没有兴趣,说什么也是无用。学生学习数学的兴趣的激发和培养离不开教师的引导,尤其是在大学数学学习上。很多学生对大学数学的作用认识不清,觉得学来无用,何必费力去学。此外,大学数学中复杂枯燥的符号运算、繁琐的公式推导、一些概念的高度抽象性以及证明过程的严密逻辑性也令学生对大学数学望而生畏,从而影响了学习的兴趣。这也给广大的大学数学教师带来了严峻的考验及挑战,如何在教学过程中激发和培养学生学习数学的兴趣,如何让学生对大学数学有一个正确的认识,使之能够主动去学,乐于去学,并能够乐在其中,这值得好好思考和探究。
二、数学建模可激发大学生学习数学的兴趣
现今,数学建模竞赛风靡全球高校,数学建模的作用已被大家所认同,特别是对培养学生学习数学的兴趣起到重要作用。很多高校的数学教学也逐渐引入数学建模思想进行教学改革创新,激发学生学习数学的兴趣,培养学生自主解决问题的能力以及创新能力[1-3]。数学建模是用数学语言来描述和解决实际问题的过程,将实际问题抽象成为数学问题,并应用合理的数学方法进行求解,进而转化为对现实问题的求解、诠释和预测等[4,5]。在数学建模培训过程中,发现有的学生为了解决一个问题,可以抱着数学类参考书津津有味地看上大半天也不会走神。但是,对比高等数学课堂,哪怕是最认真的学生,偶尔还是会走神,不是还会有厌烦的情绪。探究其原因,无非还是一个兴趣问题。建模过程,针对一般是实际问题,学生对这个问题感兴趣,就会有探究到底的心理,进而就有原动力去寻找解决问题的思路和方法。而课堂学习,大多因为课时原因,教师无法在有限的时间里去详细介绍每一个知识点的实际应用背景。更确切的说很难与学生所学专业结合,给出数学概念的实际应用背景以及概念的来由,这必将导致课堂教学枯燥乏味,学生自然没有欲望去学,更不愿主动去学。在课堂教学中,如果能够充分结合数学建模的思想,将其融入课堂,给枯燥乏味的数学公式、推理过程赋予生命般的活力,特别是能够结合学生专业背景进行教学,必定能够激发学生的学习数学的兴趣,进而主动探究知识,教师也能够避免传统教学中一味注入式“概念———定理———证明———例题———作业———考试”的教学方式。学生能够从学习中寻找乐趣,获得成就感,教师也能够在教学中与学生共同成长进步。数学建模不仅仅培养学生综合应用数学知识及方法分析、解决问题的能力,也培养了学生的团队协作能力、交流能力以及语言和文字表达能力,同时也培养了学生的竞争意识。建模时,学生会对实际问题感兴趣,当把问题抽象成数学模型时,会有一定的成就感,而成就感会引发更浓的兴趣,使得学生在学习过程中能够充分享受乐趣,自信心也得到加强。
三、数学建模融入教学中的改革思路
数学建模犹如一道数学知识通向实际问题的桥梁,使学生的数学知识与应用能力能够有效的结合起来。学生参与数学建模活动,感受数学的生命力和魅力,从而激发他们学习数学的兴趣,有助于其创新能力的培养。为了将数学建模的思想融入大学数学教学,这里给出几点改革思路:
(一)大学数学课程每部分内容中安排相关的数学建模教学内容
相关的数学建模教学内容可以是案例式,也可以是实际问题,要充分考虑学生专业背景。教师课前把问题告知学生,课上通过启发和组织学生讨论,引导学生将所学知识运用到解决问题中。例如教学利用积分求不规则物体的体积或质量时,可以在课前给出具体物件(可以根据不同专业来选择具体物件),让学生课后自己去寻找解决办法。教学时可先组织讨论学生想出解决办法,活跃课堂气氛的同时能够激发学生学习兴趣。
(二)数学建模教学内容引入大学数学教材
目前大部分教材基本上以概念、定理、推证、例题、习题的逻辑顺序出现,给出的应用背景多数限于物理应用,同样缺乏活力和生命力。很多学生往往在预习时,看教材的应用背景时就已经对学习这部分内容失去兴趣,有了这样的心理暗示,课堂上教师很难将其注意力吸引住。所以,大学数学的教材编写上,必须重视内容的更新和拓展,引入一些建模实例,通过实例激发学习兴趣,进而增强学生对数学重要性的认识。
(三)根据学生实际情况,分层次进行教学活动
数学基础课程一般都是大班级授课,教学过程中教师不可能监控到每个学生的学习状态。通过数学建模活动,可以有效地考查学生的学习状态,有助于区分学生的学习层次,教师才能真正做到有的放矢,帮助学生发掘自身潜力,培养学生学习成就感,激发学生学习兴趣。
四、结束语
将数学建模思想融入大学数学教学中,给从事数学课程教学的教师带来了新的挑战。尽管面临较大的压力,但如果能够积极发挥自身作用进行改革,在教学过程中逐渐融入数学建模思想,必定会使得我们的大学数学教学工作做得更好,学生更有兴趣学习数学。
参考文献
[1]王芬,夏建业,赵梅春,等.金融类高校高等数学课程融入数学建模思想初探[J].教育教学论坛,2016(1).
[2]吴金枚.数学建模的三大作用[J].当代教育发展学刊,2010:5-6.
[3]沈文选,欧阳新龙.简析中学数学建模的教育性质[J].ForumonCurrentEducation,2002(2):91-92.
用字母表示数是由特殊到一般的抽象,是中学数学中重要的代数方法。初一教材第一章代数初步知识的引言中,就蕴涵用字母表示数的思想,先让学生在引言实例中计算一些具体的数值,启发学生归纳出用字母表示数的思想,认识到字母表示数具有问题的一般性,也便于问题的研究和解决,由此产生从算术到代数的认识飞跃。
学生领会了用字母表示数的思想,就可顺利地进行以下内容的教学:(1)用字母表示问题(代数式概念,列代数式);(2)用字母表示规律(运算定律,计算公式,认识数式通性的思想);(3)用字母表示数来解题(适应字母式问题的能力)。因此,用字母表示数的思想,对指导学生学好代数入门知识能起关键作用,并为后续代数学习奠定了基矗
2分类思想
数学问题的研究中,常常根据问题的特点,把它分为若干种情形,有利问题的研究和解决,这就是数学分类的思想。初一教材中的分类思想主要体现在:(1)有理数的分类;(2)绝对值的分类;(3)整式分类。教学中,要向学生讲请分类的要求(不重、不漏),分类的方法(相对什么属性为类),使学生认识分类思想的意义和作用,只有通过分类思想的教学,才能使学生真正明确:一个字母,在没有指明取值范围时,可以表示大于零、等于零、小于零的三种情形。这是学生首次认识一个有理数的取值讨论的飞跃,不要出现认为一个字母就是正数、一个字母的相反数就是个负数的片面认识。这样,学生做一些有关分类讨论的题也就不易出错,使学生养成运用分类思想解题的习惯,培养严谨分析问题的能力。
3.数形结合的思想
将一个代数问题用图形来表示,或把一个几何问题记为代数的形式,通过数与形的结合,可使问题转化为易于解决的情形,常称为数形结合的思想。初一教材第二章的数轴就体现数形结合的思想。教学时,要讲清数轴的意义和作用(使学生明确数轴建立数与形之间的联系的合理性)。任意一个有理数可用数轴上的一个点来表示,从这个数形结合的观点出发,利用数轴表示数的点的位置关系,使有理数的大小,有理数的分类,有理数的加法运算、乘法运算都能直观地反映出来,也就是借助数轴的思想,使抽象的数及其运算方法,让人们易于理解和接受。所以,这样充分运用数形结合的思想,就可突破有理数及其运算方法的教学困难。
4方程思想
所谓方程的思想,就是一些求解未知的问题,通过设未知数建立方程,从而化未知为已知(此种思想有时又称代数解法)。初一代数开头和结尾一章,都蕴含了方程思想。教学中,要向学生讲清算术解法与代数解法的重要区别,明确代数解法的优越性。代数解法从一开始就抓住既包括已知数、也包括未知数的整体,在这个整体中未知数与已知数的地位是平等的,通过等式变形,改变未知数与已知数的关系,最后使未知数成为一个已知数。而算术解法,往往是从已知数开始,一步步向前探索,到解题基本结束,才找出所求未知数与已知数的关系,这样的解法是从把未知数排斥在外的局部出发的,因此未知数对已知数来说其地位是特殊的。与算术解法相比,代数解法显得居高临下,省时省力。通过方程思想的教学,学生对用字母表示数及代数解法的优越性得到深刻的认识,激发他们学好方程知识,运用方程思想去解决问题。由此,学生用代数方法解决问题和建立数学模型的能力得到了培养。
5化归思想
化归思想是把一个新的(或较复杂的)问题转化为已经解决过的问题上来。它是数学最重要、最基本的思想之一。初一数学中的化归思想主要体现在:
(1)用绝对值将两个负数大小比较化归为两个算术数(即小学学的数)的大小比较。
(2)用绝对值将有理数加法、乘法化归为两个算术数的加法、乘法。
通过这样的化归,学生既对绝对值的作用、有理数的大小比较和运算有清晰的认识,而且对知识的发展与解决的方法也有一定的认识。
(3)用相反数将有理数的减法化归为有理数的加法。
2.丰富教学方法
由于实用经济数学教学的目的和特点,就决定了运用传统的,比较单一的授课模式,即讲授式,是不可能达到理想的教学目标的。所以,在教学的过程中,要多种教学方法并用,尤其是能够促进学生思考,激起学生兴趣的教学方式,如讨论式教学法、启发式教学法等等,对于实用经济数学教学中融入建模思想都是非常有益的。
3.改革学生成绩评价机制,为社会输送应用型专门人才
由于当下的教育中,对于考试成绩的重视程度极高。然而,在实用经济数学的考试中,却在很大程度上侧重于推理以及推理过程中的计算。这就使得教师以及学生在教学以及学习的过程中都过度的重视推理与计算。所以要想提高数学建模思想的在课堂中的渗透,必须要改变学生的成绩评价机制,从而为我国培养更多的具有高强度思维能力的人才。
4.加强师资队伍建设,培养应用型专门数学教师
由于现在的经济数学教师在大学时接受的都是传统的数学教育,依据他们现有的教育观念和知识结构,很难真正实现上述三条措施,因此应大力加强经济数学师资队伍的建设。要加强教师的数学教育哲学、现代教育理论的学习,从根本上转变教师的数学教学观,要专门培养一批精通数学建模方法和数学软件的使用、掌握经济学基本知识、了解经济问题。要想将数学建模思想很好的应用在实用经济数学中,需要从教学的多个方面进行考虑。然而,以上也仅仅是实用经济数学建模思想的几个方面的探索,且这些研究都还比较浅显。而仅仅凭借这些研究来提高实用经济数学的教学质量,并且将数学建模思想很好的应用在实用经济数学中,显然是远远不够的。所以,对于实用经济数学中融入数学建模思想的研究还需要数学教育领域的研究人士进行进一步的研究和思考。
小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育的目标。
在认知心理学里,思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。
数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。未来社会将需要大量具有较强数学意识和数学素质的人才。21世纪国际数学教育的根本目标就是“问题解决”。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和国际数学教育发展的必然结果。
小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。
二、小学数学教学中应渗透哪些数学思想方法
古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由于小学生的年龄特点决定有些数学思想方法他们不易接受,二则要想把那么多的数学思想方法渗透给小学生也是不大现实的。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。
1.化归思想
化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。
例1狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳41/2米,黄鼠狼每次可向前跳23/4米。它们每秒种都只跳一次。比赛途中,从起点开始,每隔123/8米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?
这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离41/2(或23/4)米的整倍数,又是陷阱间隔123/8米的整倍数,也就是41/2和123/8的“最小公倍数”(或23/4和123/8的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。
2.数形结合思想
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。
例2一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?
附图{图}
此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求,这里不但向学生渗透了数形结合思想,还向学生渗透了类比的思想。
3.变换思想
变换思想是由一种形式转变为另一种形式的思想。如解方程中的同解变换,定律、公式中的命题等价变换,几何形体中的等积变换,理解数学问题中的逆向变换等等。
例3求1/2+1/6+1/12+1/20+……+1/380的和。
仔细观察这些分母,不难发现:2=1×2,6=2×3,12=3×4,20=4×5……380=19×20,再用拆分的方法,考虑和式中的一般项
a[,n]=1/n×(n+1)=1/n-1/n+1
于是,问题转换为如下求和形式:
原式=1/1×2+1/2×3+1/3×4+1/4×5+……+1/19×20
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+……+(1/19-1/20)
=1-1/20
=19/20
4.组合思想
组合思想是把所研究的对象进行合理的分组,并对可能出现的各种情况既不重复又不遗漏地一一求解。
例4在下面的乘法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求这个算式。
从小爱数学
×4
──────
学数爱小从
分析:由于五位数乘以4的积还是五位数,所以被乘数的首位数字“从”只能是1或2,但如果“从”=1,“学”×4的积的个位应是1,“学”无解。所以“从”=2。
在个位上,“学”×4的积的个位是2,“学”=3或8。但由于“学”又是积的首位数字,必须大于或等于8,所以“学”=8。
在千位上,由于“小”×4不能再向万位进位,所以“小”=1或0。若“小”=0,则十位上“数”×4+3(进位)的个位是0,这不可能,所以“小”=1。
在十位上,“数”×4+3(进位)的个位是1,推出“数”=7。
在百位上,“爱”×4+3(进位)的个位还是“爱”,且百位必须向千位进3,所以“爱”=9。
故欲求乘法算式为
21978
×4
──────
87912
上面这种分类求解方法既不重复,又不遗漏,体现了组合思想。
此外,还有符号思想、对应思想、极限思想、集合思想等,在小学数学教学中都应注意有目的、有选择、适时地进行渗透。
三、小学数学教学应如何加强数学思想方法的渗透
1.提高渗透的自觉性
数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。
2.把握渗透的可行性
一、历史的回顾
我国的中学数学教学大纲,对于数学思想和数学方法的重要性的认识也有一个从低到高的过程。
由中华人民共和国教育部制订、1978年2月第1版的《全日制十年制学校中学数学教学大纲(试行草案)》,在第2页“教学内容的确定”的第(三)条中首次指出:“把集合、对应等思想适当渗透到教材中去,这样,有利于加深理解有关教材,同时也为进一步学习作准备。”这一大纲在1980年5月第2版时维持了上述规定。
由中华人民共和国国家教育委员会制订、1986年12月第1版的《全日制中学数学教学大纲》,在第2页“教学内容的确定”的第(三)条中,把上述大纲的有关文字改成一句话:“适当渗透集合、对应等数学思想”。1990年修订此大纲时,维持了这一规定。
由中华人民共和国国家教育委员会制订、1992年6月第1版的《九年义务教育全日制初级中学数学教学大纲(试用)》,在第1页“教学目的”中规定:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。”这份大纲还第一次把资深的数学工作者们熟知的提法“数学,它的内容、方法和意义”改为数学的“内容、思想、方法和语言已广泛渗入自然科学和社会科学,成为现代文化的重要组成部分”,并把这段话放入总论的第一段。在第9页上又指出,要“使学生掌握消元、降次、配方、换元等常用的数学方法,解决某些数学问题,理解‘特殊棗一般棗特殊’、‘未知棗已知’、用字母表示数、数形结合和把复杂问题转化成简单问题等基本的思想方法”;在第6页上还指出,“要注意充分发挥练习的作用,加强对解题的正确指导,应注意引导学生从解题的思想方法上作必要的概括。”
由国家教育委员会基础教育司编订、1996年5月第1版的《全日制普通高级中学数学教学大纲(供试验用)》,在第2页“教学目的”中也规定:“高中数学的基础知识是指:高中数学中的概念、性质、法则、公式、公理、定理以及由其内容反映出来的数学思想和方法。”在界定“思维能力”一词的四个主要层面时,指出第三层面是“会合乎逻辑地、准确地阐述自己的思想和观点”;第四层面是“能运用数学概念、思想和方法,辨明数学关系,形成良好的思维品质”。这份大纲维持了数学的“内容、思想、方法和语言已成为现代文化的重要组成部分”的提法(第1页);并指出数学规律“包括公理、性质、法则、公式、定理及其联系,数学思想、方法和语言”(第24页);坚持在对解题进行指导时,应该“对解题的思想方法作必要的概括”(第25页)。这是建国以来对数学思想和数学方法关注最多的一份中学数学教学大纲,充分体现了数学教育工作者对于数学课程发展的一些共识。
二、数学思想方法
(一)思想、科学思想和数学思想
思想是客观存在反映在人的意识中经过思维活动而产生的结果。它是从大量的思维活动中获得的产物,经过反复提炼和实践,如果一再被证明为正确,就可以反复被应用到新的思维活动中,并产生出新的结果。本文所指的思想,都是那些颠扑不破、屡试不爽的思维产物。因此,对于学习者来说,思想就成为他们进行思维活动的细胞和基础;思想和下面述及的方法都是他们的思维活动的载体。每门科学都逐渐形成了它自己的思想,而科学法则概括出各门科学共同遵循和运用的一些科学思想。
所谓数学思想,是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识。首先,数学思想比一般说的数学概念具有更高的抽象和概括水平,后者比前者更具体、更丰富,而前者比后者更本质、更深刻。其次,数学思想、数学观点、数学方法三者密不可分:如果人们站在某个位置、从某个角度并运用数学去观察和思考问题,那么数学思想也就成了一种观点。而对于数学方法来说,思想是其相应的方法的精神实质和理论基础,方法则是实施有关思想的技术手段。中学数学中出现的数学观点(例如方程观点、函数观点、统计观点、向量观点、几何变换观点等)和各种数学方法,都体现着一定的数学思想。
数学思想是一类科学思想,但科学思想未必就单单是数学思想。例如,分类思想是各门科学都要运用的思想(比方语文分为文学、语言和写作,外语分为听、说、读、写和译,物理学分为力学、热学、声学、电学、光学和原子核物理学,化学分为无机化学和有机化学,生物学分为植物学、动物学和人类学等;中学生见到的最漂亮的分类应该是在学习哺乳纲动物时所出现的门(亚门)、纲(亚纲)、目(亚目)、属、科、种的分类表,它不是单由数学给予的。只有将分类思想应用于空间形式和数量关系时,才能成为数学思想。如果用一个词语“逻辑划分”作为标准,那么,当该逻辑划分与数理有关时(可称之为“数理逻辑划分”),可以说是运用数学思想;当该逻辑划分与数理无直接关系时(例如把社会中的各行各业分为工、农、兵、学、商等),不应该说是运用数学思想。同样地,当且仅当哲学思想(例如一分为二的思想、量质互变的思想和肯定否定的思想)在数学中予以大量运用并且被“数学化”了时,它们也可以称之为数学思想。
(二)数学思想中的基本数学思想
在数学思想中,有一类思想是体现或应该体现于基础数学中的具有奠基性和总结性的思维成果,这些思想可以称之为基本数学思想。基本数学思想含有传统数学思想的精华和近现代数学思想的基本特征,并且也是历史地形成和发展着的。
基本数学思想包括:符号与变元表示的思想,集合思想,对应思想,公理化与结构思想,数形结合的思想,化归的思想,对立统一的思想,整体思想,函数与方程的思想,抽样统计思想,极限思想(或说无限逼近思想)等。它有两大“基石”棗符号与变元表示的思想和集合思想,又有两大“支柱”棗对应思想和公理化与结构思想。有些基本数学思想是从“基石”和“支柱”衍生出来的,例如“函数与方程的思想”衍生于符号与变元表示的思想(函数式或方程式)、集合思想(函数的定义域或方程中字母的取值范围)和对应思想(函数的对应法则或方程中已知数、未知数的值的对应关系)。所以我们说基本数学思想是体现或应该体现于“基础数学”(而不是说“初等数学”)的具有奠基性和总结性的思维成果。基本数学思想及其衍生的数学思想,形成了一个结构性很强的网络。中学数学教育、教学中传授的数学思想,应该都是基本数学思想。
非科学思想当然也是大量存在的。例如,“崇洋”的思想就是一种非科学思想。
中学数学教科书中处处渗透着基本数学思想。如果能使它落实到学生学习和运用数学的思维活动上,它就能在发展学生的数学能力方面发挥出一种方法论的功能。
(三)思路、思绪和思考
我们在中学数学教育、教学中,还经常使用着“思路”和“思绪”这两个词语。一般说来,“思路”是指思维活动的线索,可视为以串联、并联或网络形状出现的思想和方法的载体,而“思绪”是指思想的头绪。“思路”和“思绪”实际上是同义词,并且它们都是名词。
那么,另一个词语“思考”又是什么意思呢?“思考”就是进行比较深刻、周到的思维活动。作为动词,它反映了主体把思想、方法、串联、并联或用网络组织起来以解决问题的思维过程。由此可见,“思考”所产生的有效途径就是“思路”或“思绪”;“思路”或“思绪”是“思考”的结果,是思想、方法的某种选择和组织,且明显带有程序性。对思路及其所含思想、方法的选择和组织的水平,反映了学习者能力的差异。(四)方法和数学方法
所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式。人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序。同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,便成为数学方法。数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算和分析,以形成解释、判断和预言的方法。
数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是精确性,即逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性。
数学方法在科学技术研究中具有举足轻重的地位和作用:一是提供简洁精确的形式化语言,二是提供数量分析及计算的方法,三是提供逻辑推理的工具。现代科学技术特别是电脑的发展,与数学方法的地位和作用的强化正好是相辅相成。
宏观的数学方法包括:模型方法,变换方法,对称方法,无穷小方法,公理化方法,结构方法,实验方法。微观的且在中学数学中常用的基本数学方法大致可以分为以下三类:
(1)逻辑学中的方法。例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等。这些方法既要遵从逻辑学中的基本规律和法则,又因运用于数学之中而具有数学的特色。
(2)数学中的一般方法。例如建模法、消元法、降次法、代入法、图象法(也称坐标法。代数中常用图象法,解析几何中常用坐标法)、向量法、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法、同一法、数学归纳法(这与逻辑学中的不完全归纳法不同)等。这些方法极为重要,应用也很广泛。
(3)数学中的特殊方法。例如配方法、待定系数法、加减法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等。这些方法在解决某些数学问题时起着重要作用,不可等闲视之。
(五)方法和招术
如上所述,方法是解决思想、行为等问题的门路和程序,是思想的产物,是包含或体现着思想的一套程序,它既可操作又可仿效。在选择并实施方法的前期过程中,反映了学习者的能力和技能的高低;而在后期过程中,只反映了学习者的技能的差异。
所谓“招术”“招”字应正为“着”字,本文仍用传统的“一招一式”的说法。是指解决特殊问题的专用计策或手段,纯属于技能而不属于能力。“招”的教育价值远低于“法”(这里的“法”指“通法”)的价值。“法”的可仿效性带有较为“普适”的意义,而“招”的“普适”要差得多;实施“招”要以能实施管着它的“法”为前提。
例如,待定系数法是一种特别有用的“法”。求二次函数的解析式时,用待定系数法根据图象上三个点的坐标求出解析式可看作第一“招”;根据顶点和另一点的坐标求出解析式可看作第二“招”;根据与x轴交点和另一点的坐标求出解析式可看作第三“招”。这三“招”各有奇妙之处。哪一“招”更好使用,要看条件和管着它们的“法”而定。教师授予学生“用待定系数法求二次函数的解析式”,最根本、最要紧的“法旨”就在于让学生明确二次函数的解析式中自变量、函数值和图象上点的横、纵坐标的对应关系;对于一般的点和特殊的点(例如顶点及与x轴的交点),解析式可以有什么不同的反映。而这样的“法旨”,恰恰体现了对应思想和数形结合的思想。由此看来,我国古代传说中经常提到的某些师傅对待弟子“给‘招’不给‘法’”的现象,在现代的数学教育、教学中应该尽量避免。
三、中学数学教科书中应该传授的基本数学思想和方法
(一)中学数学教科书中应该传授的基本数学思想中学数学教科书担负着向学生传授基本数学思想的责任,在程度上有“渗透”、“介绍”和“突出”之分。1.渗透。“渗透”就是把某些抽象的数学思想逐渐“融进”具体的、实在的数学知识中,使学生对这些思想有一些初步的感知或直觉,但还没有从理性上开始认识它们。要渗透的有集合思想、对应思想、公理化与结构思想、抽样统计思想、极限思想等。前三种基本数学思想从初中一年级就开始渗透了,并贯彻于整个中学阶段;抽样统计思想可从初中三年级开始渗透,极限思想也可从初中三年级的教科书中安排类似于“关于圆周率π”这样的阅读材料开始渗透。至于公理化与结构思想,要注意根据人类的认识规律,一开始就采取扩大的公理体系。例如,教科书既可以把“同位角相等,两直线平行”和它的逆命题都当作公理,也可以把判定两个三角形全等的三个命题“边角边”、“角边角”和“边边边”都当作公理。
这种渗透是随年级逐步深入的。例如集合思想,初中是用文氏图或列举法来表示集合,不等式(组)的解集可以用数轴表示或用不等式(组)表示;高中则是列举法、描述法、文氏图三者并举,并同时允许用不等式(组)、区间或集合的描述法来表示实数集的某些子集。又如对应思想,初中只用文字、数轴或平面直角坐标系来讲对应;高中则在此基础上引入了使用符号语言的对应法则。至于公理化与结构思想、抽样统计思想和极限思想在初、高中阶段的不同渗透水平,则是众所周知的。“渗透”到一定程度,就是“介绍”的前奏了。
2.介绍。“介绍”就是把某些数学思想在适当时候明确“引进”到数学知识中,使学生对这些思想有初步理解,这是理性认识的开始。要介绍的有符号与变元表示的思想、数形结合的思想、化归的思想、函数与方程的思想、抽样统计思想、极限思想等。这种介绍也是随年级逐步增加的。有的思想从初中一年级起就开始介绍(例如前四种基本数学思想),有的则是先渗透后介绍(例如后两种基本数学思想)。“介绍”与“渗透”的基本区别在于:“渗透”只要求学生知道有什么思想和是什么思想,而“介绍”则要求学生在此基础上进而知道为什么叫做思想(含思想的要素和特征)、用什么思想(含思想的用途)并学会运用。作为补充,也可以就问题适时地向学生介绍如何运用一分为二的思想和整体思想。
3.突出。“突出”就是把某些数学思想经常性地予以强调,并通过大量的综合训练而达到灵活运用。它是在介绍的基础上进行的,目的在于最大限度地发挥这些数学思想的功能。要突出的有数形结合的思想、化归的思想、函数与方程的思想等。这些基本数学思想贯穿于整个中学阶段,最重要、最常用,是中学数学的精髓,也最能长久保存在人一生的记忆之中。“介绍”与“突出”的基本区别在于:“介绍”只要求学生知道用什么和会用,而“突出”则要求学生在此基础上进而知道选用和善用。作为补充,也可以就数学问题经常向学生突出分类思想的运用。