时间:2023-03-28 15:07:09
导言:作为写作爱好者,不可错过为您精心挑选的10篇电网系统论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
1.1心电网络建设情况
心电网络系统的建设,其本质就是一套完善的心电检查的整体解决方案,包括心电检查开单、患者就诊、数据存储、数据读取和展示等功能模块,我院网络系统心电检查流程。首先从HIS获取患者申请信息,连接进入PACS、EMR,然后使用电子签章、电子记费、网络查询等共享患者信息,实现院内所有临床科室的床旁心电图采集传输,建立心脏病患者资料库,为心电图检查建立全新的集中式工作模式。在门急诊建立诊断中心,安装门诊预约登记系统、电子叫号系统、医生报告诊断系统、主任审核系统、夜间值班诊断系统,心电图机采集设备联网,统计检索管理系统。心电图检查包括预约登记、电子叫号、记费、检查、报告、集中存储、临床共享、统计检索等全流程的信息化管理平台。病房配备手持移动式心电图机,建立床旁心电图采集模式;同时通过WEB浏览系统或HIS医生工作站进行全院临床信息共享。信息化建设方面,需要安装心电图数据服务器、存储服务器,与HIS、EMR、门诊一卡通等系统进行集成对接[4]。
1.2建设效果
1.2.1简化患者检查和报告流程我院现有心电网络自2010年开始建设至今,已经顺利突破了心电信息的网络化、集成化、数据集中存储等难点。现在,医生只需要在医生站开具相应医嘱之后,患者即可凭借手腕上的腕带至心电中心进行心电检测。检测完毕后,检测结果经相关心电医生分析后,分析与检测结果一并上传至心电网络,医生只需在自己的医生站即可查看检测结果及心电医生的检测分析。通过系统建设,在各个科室现有常用软件上(如EMR系统)添加心电信息管理平台的相应接口,使门诊、病区等整体区域心电图检查流程化,专家在线诊断,提高诊断精确度与标准。检查后的结果由专业的医生集中处理,通过WEB方式将报告在全院医生工作站上,实现心电图信息图像全院并共享。临床医生可以获得专业的图文诊断报告,可以看到心电图原始数据以及保存的心电图资料。临床医生可以在区域内任意电脑上浏览电子心电图报告,随时打印,方便会诊[5]。
1.2.2心电网络数据库建设心电网络的建设,解决了心电图数据集中存储的问题。通过建立区域的心电图数据库,为将来患者再次就医提供历史资料,也为医院各种心脏病统计学提供数据基础。其优点主要表现在以下几个方面:①积累临床资料,资源共享,广泛讨论;②从个案的心电图资料中发现共性的特征,总结经验,有助于这类疾病的早期诊断和正确合理治疗;③随时观察、对比,改善预后,提高诊疗质量;④为青年医师、基层医生提供临床心电图信息资料,指导临床研究方向,促进学科诊疗水平的提高。
2发展方向
2.1检查部分对于心电检查部分来说,其发展的趋势是逐渐向临床靠近,目标是通过移动心电检查设备的使用以及对科室医生的培训,让患者在床边就能及时完成心电图的检测,同时将检查数据实时传送到诊断中心,通过网络将结果展现在医生的电脑上。我院对无法移动或行动不便的患者,由科室专人负责使用手提式移动心电检测设备对其进行心电检测。但检测结果无法上传至心电检测中心。下一步建设的目标就是选用带有无线网络连接功能的心电检测一体化设备,通过现有的医护无线网络,实时上传检测结果,避免后期数据与系统分离,也减轻医生的工作强度,提高工作效率[6]。
2.2诊断部分建立统一的心电检查诊断中心。当各个检查点完成检查后,由系统自动将数据传至心电诊断中心,采用国际通用的诊断用语库编写报告,提供丰富的报告诊断库,避免过多的键盘输入,快速的报告输入,支持心电图原始报告多次对比功能。建立报告网络系统,将临床送达的心电图进行诊断报告网络,缩短医生获得诊断报告时间。诊断医生可以将接收到的心电图进行自动报告录入、给出标准报告,经WEB系统给临床医生,临床医生可以在医生工作站或护士工作站上获得心电图诊断报告。并支持心电图、测量分析参数、心电图特征描述、心电图诊断等报告输出[7]。
3存在的问题
心电网络的建设给患者、医生带来便捷和高效的就医过程,但同时也不可避免地存在一些无法回避的问题,如网络传输不稳定、临床医生技能不熟练等问题。所以,随着心电网络的逐步建立和完善,为了保证其日常的正常运转,需要投入大量的维护工作,如:系统与硬件供应商的售后服务;信息中心的网络保障和应急方案;临床科室正确使用设备,严格按照规范进行操作,尽量减少和避免无效心电图的产生;心电图室在保证日常工作正常开展的同时,还需要对以上工作进行协调、支持与帮助。
网络系统故障一般有电源系统引起的故障、节点故障和线路故障[5];通信线路的故障形式主要有CAN线短路、CAN线断路、CAN高低线短路、CAN线以及线路物理性质引起的通讯信号衰减或失真,这些都会引起控制单元无法工作或电控系统错误动作[6]。控制单元的正常工作电压一般在10.5V~14.5V范围内,如果提供的电压低于该值就会造成一些对工作电压要求高的控制单元出现停止工作,从而使整个网络系统无法通信。所以诊断前应先保证电源供电正常,再使用专用诊断仪或解码器对整个电控系统进行故障诊断,若诊断结果为控制单元通讯故障、失去通讯、通讯总线故障时,一定要弄清控制单元之间的通信关系,选取合适的检测点测量信息传输线路波形,最后查明故障原因。
2供电企业试验测量
2.2试验结果与分析
2.2.1CAN线断路波形机理分析
1供电企业计算机网络系统安全保障的必要性
首先,供电企业的计算机网络具有分布十分分散、网络节点多的特点,管理起来较为困难。供电企业需要对整个城市的供电进行管理和控制,那么必然会使用大量的网络节点。由于这些网络节点较为分散,出现问题不易查找出源头进行处理,势必会影响正常的供电工作。其次,供电企业本身担负着用电安全的重要责任。供电企业跟普通企业不同,它担负的责任更重,普通企业的网络安全出现问题,仅对企业自身造成不良影响,很少会对社会或者是大范围的人群造成生活上的影响。而供电企业计算机网络系统一旦出现问题,很可能会对人民的正常生产生活造成损失。最后,当前影响计算机网络系统安全的因素太多,严重影响其稳定性。计算机网络系统安全问题不容小觑,各种主观和客观的因素共同制约着其安全稳定地运行,所以我们想要确保其安全和稳定,就必须站在宏观的角度去看问题,全盘考虑,找出对策。
2影响供电企业计算机网络系统安全的因素
影响供电企业计算机网络系统安全的因素较多,主、客观的因素都有,其中可以分为两类,一类是供电企业自身的问题造成的安全隐患,一类是外部的因素对其供电企业计算机网络系统的安全保障研究曹凡国网湖北省十堰供电公司湖北十堰442000安全性的影响。供电企业自身的问题完全是可以通过管理手段杜绝的。这些因素大致上分为下面几种:第一,计算机本身的硬件故障和软件问题。计算机网络系统是由很多硬件组成的,其输入输出、存储、电源、主板等原件较为复杂,任何一个原件出现问题,都会对整个计算机网络系统产生影响,一旦出现信息的错误接收或者发出,又或者存储的数据丢失,都会造成难以想象的损失。另外,只有计算机硬件无法实现其具体功能,整个计算机网络的运行是依托于各种软件,这些软件本身可能是有缺陷或者漏洞的,又或者软件开发者故意留有“后门”,都将直接影响系统安全。第二,员工个人操作时常会因为不按规范进行而出现安全隐患。计算机即便再便捷、迅速,它也需要人的操控。人总是会因为疏忽大意或者是不重视操作规范而造成问题,特别是当前供电企业某些工作人员具备供电常识,但计算机操作能力较差,当今电力企业的发展又要求必须要使用计算机,这些工作人员在操作时候很可能会造成网络设备的损坏或者留下安全隐患。特别地,员工操作计算机最易出现安全隐患的阶段就是数据的传输阶段,在数据传输时没有做好安全保障常会造成重要数据的泄漏或者被窃取,严重时候还可能被破坏。第三,管理不善导致的安全问题出现。管理方面主要体现在机房的门禁制度不健全,无法阻止不相干人员进出机房,这样任何人都会对计算机系统造成威胁。
而影响计算机网络系统安全的外部因素大致上分为两类,首先是不可抗力的作用。这里的不可抗力主要是指自然灾害。因为计算机需要线路去传输,而计算机线路最怕遇到暴雨、火灾、雷电或者其他自然灾害导致的线路中断。一旦线路被外力中断,其系统安全就无从保证。其次是病毒和木马的感染,这项因素严格来说是由工作人员操作不当和黑客刻意操作两方面的原因构成的。无论是哪种情况,都会使网络安全无从谈起,而会出现这种情况,无非是自身管理的漏洞等原因,都需要企业从自身入手进行解决。
3供电企业计算机网络系统安全保障措施探析
针对上述的影响因素,我们需要从多个层面共同保障。首先,从管理层面来说,要建立健全完善的管理手段,不仅是在计算机网络安全领域,还要从整体入手,做好整个企业的宏观管理,制定出相关的操作规范和管理规范,设立专门的计算机网络系统管理部门,由专业的技术人员对整个系统进行实时的监测和控制,使其安全有最基础的保障。
其次,应当注意相关工作人员的素质提升。供电企业工作人员往往是电力知识较为稳固,对计算机的使用并不能尽如人意。而仅靠专门的计算机专业人才是远远不够的,需要对工作人员进行必要的计算机培训,培养复合型人才。另外,还要提升工作人员的安全责任意识和对故障的敏感性,在操作计算机时一定注意各种风险和隐患。
再次是从技术层面来说,要进行多个领域技术的研究和应用。一是要做好抵御外部攻击的准备。要进行防火墙以及入侵检测系统的设置。必须在企业网络系统内安装防火墙,并且运用IP伪装等技术,保护内部网络的安全。同时,安装入侵检测系统,与高等级防火墙配合使用,共同抵御外部的网络攻击。另外,还要运用一些成熟的技术来抵御黑客的袭击。例如运用应用技术和PacketFiltering技术。前者是一项较为稳定的监测系统,对于这项技术来说,整个防火墙的线路近乎于透明,可以很清晰地对外界数据进行监控和排查,确保外来数据的安全。而PacketFiltering则是指包过滤技术,它是使用较为广泛的一种技术,主要是为各种基于TCP/IP协议数据报文出进的通道。现代多数情况下使用的是动态过滤,区别于以往的静态过滤,它现对信息进行分析,然后运用防火墙预设的规则进行效验,确保有问题的某个数据包能够及时被发现并阻止;二是做好企业内部计算机网络的日常管理。我们知道,来自计算机网络内部的问题要远大于外部的问题,要想内部不出问题,就需要从内部多个方面入手。技术人员应当定期地进行病毒和木马的查杀并且不定期地进行抽查,将可能出现的问题扼杀在萌芽阶段。要进行必要的身份设置,根据工作人员工作权限和工作内容的不同设置不同的身份口令,建立不同权限的身份账号,设定访问和修改的权限,并且对这些身份资料进行定期的核查。最后是做好各种补救措施。安全隐患的预防措施再完备也无法保证不会出现问题,企业应当做好各种准备,将重要数据进行备份,确保在出现问题时能够及时解决,将损失降低到最低范围内。
(1)同轴电缆传输系统主要包含同轴电缆网、干线系统放大器间隔配置、放大器级连等;附属设备包括用于干线分路的过电型分支器、分配器等。同轴电缆由内是用介质使内外导体绝缘并且保持轴心重合的电缆,由内导体、绝缘体、外导体和护套四部分组成。通过结构可以分为封闭竹节型、藕芯型以及物理发泡聚乙烯绝缘型三种类型。同轴电缆开始为实芯聚乙烯绝缘同轴电缆,后来发展为化学发泡聚乙烯绝缘同轴电缆,纵孔聚乙烯同轴电缆,现在多采用物理发泡聚乙烯型绝缘电缆。同轴电缆特性阻抗一般为75Ω,电缆衰减特性与信号的频率、电缆粗细、长度有关,低频信号、细芯的电缆衰减量大,因为衰减量与电缆的长度成正比,用干线放大器来补偿电缆对信号电平进行补偿,使干线能够远距离传输。温度升高,衰减量升高,温度系数约为0.2%/℃。同轴电缆信号传输距离越远,级连越大,系统指标下降越多,系统维护就比较困难,服务水平就会下降。
(2)光缆传输系统是由光缆、光源发射机、光线放大器、和光线接收器组成。从切面看,光缆包括导电线芯、光纤、加强的构件、还有保护层四部分。光纤按电磁场分布可分为单模光纤和多模光纤,单模光纤的工作带宽较宽,有线电视多采用单模光纤。1970年,在美国首先发明出来20dB/km光纤;1989年在美国开始出现有线电视光纤传输;1992年我国开始出现电视信号光纤传输。光缆传输技术具有损耗小(1310nm:0.4dB/km,1550nm:0.25dB/km),可以实现电视信号的长距离传送,保证电视信号质量完好。光纤频带比较宽,在最低损耗区的频带宽度数值为30000GHz,由于单个光源占用的带宽比较小,采用相干光通信技术,可以在30000GHz范围内容纳上百万个频道,使有线电视信号能够均匀地传输到各个节点。光纤传输只传输光,不导电,不受电磁场影响,所以抗干扰能力强。
(3)微波传输系统是由微波发射系统和微波接收系统组成,微波发射系统有微波发射机、电缆、合成器、还有发射天线等,接收系统有微波接收天线、供电器、变频器等。微波传输场合有国家微波干线的大微波、卫星、单路与多路FM(调频)微波、AM(调幅)微波、多路微波分配系统MMDS。微波传输优点有:频带宽,空间传输2500-2700MHz,接收分配111-750MHz;传输质量高,稳定性强,适应性和灵活性强。微波传输缺点是发射与接收应在视距范围内进行,信号怕遮挡,易受干扰,反射出重影等。
(4)混合传输比如光纤同轴混合网-HFC,它是由光纤作为干线、同轴电缆作为分配网,构成光纤同轴混合网(HFC)。HFC具有光纤和电缆共同的优良特性,它们通过有效的结合,使有信号能够高效高质的传输、分配。在双向有线电视中,由前端向用户终端传送的信号叫下行信号或正向通路信号;信号从用户端向前端传送的通路成为反向通路或上行通路。HFC采用频分复用的技术,将5-1000MHz的频段分为上行通道和下行通道:5-65MHz为上行通道,可作为非广播业务,为了提高抗干扰能力,采用QPSK(或16QAM)调制。87-1000MHz为下行通道87-550MHz,全部用于模拟电视广播;550-750MHz为下行数字通信信道。
2用户分配系统
2调整变压器的安全运行状态
在电力系统中,变压器是最为常用的电气设备之一,但是变压器在具体的运行中出现的了比较大的损耗情况,因此,降低变压器的能量耗损情况,优化变化器安全运行的方式对电网的安全运行有着重大意义。然而就目前的变压器运行状态来看,由于受到各种因素的影响,我国电网中变压器的运行还没有严格的管理和规定,而是任其自然运行,导致其运行有时会超出安全运行的范围和标准,因此有必要通过相关的技术措施,确保变压器在运行过程中消耗能源的情况得到降低。控制变压器开关操作的频率由于变压器在启动和关闭的瞬间会使电压出现较大的改变,增加了能源的损耗。因此,操作人员应该根据电网运行的主要规律,让负载运行的操作保持较长的维持时间,另外还可以按照电网安全运行的要求控制开关操作的频率,减少开关的使用次数,尽量在少数有需要的情况下切换开关,这样有利于减少能量的消耗,进而达到变压器安全运行的根本目的。确定变压器安全运行方式在工作进行的过程中,不少电网系统的工作人员对变压器的运行操作存在一定的误解:变压器的使用台数是越少越好,只要确保变压器能承受住网络负载,变压器的台数多,它的负载量就越大,所以大多数工作人员都是用一台变压器保持运行;同样的,电压器运行选择时,更侧重于选用容量小的变压器。这样的作法,他们认为可以减少能量的损耗或容量损失,其实这样的运行方式,会在一定程度上增加变压器的运行负担,进而造成更大的能源损失,使变压器的安全运行受到影响。所以,在确定变压器的运行方式时,应该全面分析计算变压器的参数、运行特性和负载情况,确保变压器找到合适的运行方式,实现最优化的运行效果。全方位考虑各种相关因素要想保障变压器的安全运行,就应该依据电力企业的运行要求,对变压器运行的重点进行选择。如果系统对功率因数的提高比较重视,那么重点就是调整变压器的有功功率;如果电力系统设定的要求是在节能省电等方面,那么重点就是调整变压器的无功功率;如果电力系统无特殊要求,那么要综合考虑调整变压器的有功功率和无功功率。
3选择合理的电网运行方式
经过计算和分析,合理、适当的调整电网运行时产生的电压,可以促进能源的消耗和内部功率损耗在一定程度得到降低,达到电网内部能源的最优化。由于电力网络的能量损耗状况与用户用电产生的负荷有着一定的联系,据观察可知,如果用户负荷的曲线处在较为平整状态,那么电网的损耗就会降低,能源消耗现象会有所好转。因此,应该将曲线高的地方来填补低的位置,有效控制电网的损耗的情况。此外,制定合理的检修设备的计划,由于电网的功率和能量的损耗要比实际运行时大得多,所以工作人员在对电力系统进行维修时,尽可能的通过带电检修或者检修时间减少等方式,从根本上将因为检修设备导致电网损耗的情况减少。
局域网络骨干及承载能力的要求:局域网的网络骨干是指局域网内中心交换机与接入交换机之间的骨干连接,地区和市级税务局局域网主干应能够满足1000M的连接,县局基层单位局域网的主干应能够满足100M的连接要求。
网络核心及处理能力的要求:地区和市级税务局局域网中心交换机系是整个网络的核心,除承载本地局域网数据交换外,还要承载不同接入交换机间、不同VLAN间的数据传输与交换,应具有很高的交换容量和处理能力。另外,核心汇聚设备,中心交换机还应具有较高的千兆端口密度,大容量交换处理能力,中心交换机无阻塞交换容量应≥64Gbps,第三/第四层处理包能力应达到线性速率,在启用QoS和ACL安全过滤功能的情况下,IP/IPX包处理性能容量应≥48Mpps。中心交换机应具有与地区和市级税务局原有中心交换机组成双核心冗余系统的能力,除了双机热备份功能外,还应具有双机之间的第二层和第三层负载均衡功能。
路由交换机性能及要求:各接入节点的路由交换机同时承担路由接入和本地路由交换的功能,应支持(或提供)千兆/百兆光纤上联,应具有24个10/100M端口和一个以上扩展插槽,支持线速成路由交换。24端换机全双工下的无阻塞交换容量应≥8.8Gbps,第三层包转发速率≥6.6Mpps,路由器交换机还应具有VLAN、组播、QOS及网络安全控制功能。
可靠性和高可用性要求
网络的总体可靠性应达到99.999%以上(通过冗余方式),中心交换机应采用模块化机箱式设计。支持电源及主要部件的冗余,支持在线插拔、在线操作系统升级的功能。网络设备的平均无故障时间应≥60000小时。网络应具备设备、关键部件、链路和路由的冗余,并能够实现第二层和第三层流量的负载均衡。主备部件、主备设备、主备链路的自动切换时间应≤5秒。
服务质量保障的要求
网络应具备IP数据分类、接入速率控制、多种队列机制、先期拥塞控制、带宽保证等QoS功能,以保证税收征收管理业务得以优先服务,并能支持视频会议、视频点播、语音的实时多媒体应用。业务分类。网络操作系统应支持数据包的业务分类(CoS)、网络设备的硬件应相应地支持多硬件队列。网络设备应能根据用户所在网段、应用类型、流量大小自动对业务进行分类。分类的实施应符合Ethernet802.1p、IPToS、IPDSCP国标标准。
接入速率控制。网络应能提供接入速率控制功能,接入网络的业务应遵守其接入速率承诺,对超过承诺速率的数据将被丢弃或标以最低的优先级。
队列机制。网络设备应具有先进的队列机制和拥塞控制机制,对不同等级的业务进行不同的处理,包括时延的不同和丢包率的不同。
先期拥塞控制。网络设备应具备先进的技术,在网路出现拥塞前就自动采取适当的措施,进行先期拥塞控制,避免瞬间大量的丢包现象。带宽保证。对重要的关键应用,应可通过带宽保证的方式提供QoS服务。
组播功能的要求
网络系统应具有组播功能,组播的支持不仅能在三层实现IP组播,还要能在第二层(以太网层)对组播流量进行控制。网络系统(或设备)应支持IGMP、IGMPSnoo-ping、PIM-DM、PIM-SM等相关的组播协议,并能够支持PIM与DVMRP协议的互通。
协议与标准的支持
以支持TCP/IP协议为主,兼支持IPX、DEC-NET、Apple-Talk等协议。支持RIP、RIPv2、OSPF、IS-IS等多种国际标准的路由协议。
网络系统设计
1地区和市级税务局中心机房交换机扩容
1.1网络结构与主干
根据各地区和市级税务局的实际需求,地区和市级税务局局域网中心交换机必须与原有交换机组成双核心冗余系统。因此,升级改造后局域网将呈双星形拓扑结构,即以双中心机房为星形结构的中心节点,局域网各接入层交换机都有两条链路(千兆或百兆)分别连接至中心机房的两台中心交换机。网络的主干连接为千兆或百兆以太网,主干带宽为1GB或100M。双星型网络拓扑设计可带来以下好处:中心节点完全冗余,系统核心层不存在单点故障。每个接入交换机与中心交换机都能够获得单独带宽,不存在带宽共享和带宽竞争的问题。网络可靠性增强,各接入交换机各自独立,任何接入交换机的网络故障不会影响到其它节点。
拓扑简单,网络效率高,在双星型网络结构下,每个二级节点都只与中心节点互连,任一分支节点对另一分支节点的访问只需经过中心节点即可,减少了数据传输的迂回和网络延迟。
1.2中心交换机的性能与配置
地区和市级税务局LAN升级改造的网络核心层由两台企业级骨干多层交换机构成,一台为原有的Catalyst5505,一台为新交换机,两台中心交换机间通过多链路捆绑(GE或FEC)构成一个主干通道。核心层任务是为整个网络提供数据交换、骨干路由,完成各个楼层交换机数据流的中央汇聚及分流。新增加的中心交换机采用Cisco多层交换机Catalyst4506,4506配置了第四代引擎模块,互为冗余的2个1000WAC电源,48个10/100M以太网端口,24个10/100/1000自适应以太网电口和6个1000SX光纤千兆以太网端口。Catalyst4506的第四代引擎比第三代引擎采用了更高频率的CPU和更高频率的内存(333MHzCPU/133MHzMEM),内存配置也增加了一倍(512MB)。第四代引擎能提供64GB的交换容量和48Mpps第二/第三/第四层线速数据包交换能力及线速的QOS和ACL网络安全控制。
1.3双核心冗余系统的实现
地区和市级税务局LAN中心交换机的双核心冗余系统由新、旧中心交换机组成,双核心冗余系统不仅要实现互为热备份,还要实现第二、第三层的冗余和流量负载。
(1)第二层的冗余和负载
地区和市级税务局局域网主干由核心层两台中心交换机构成,每台接入层交换机都通过两条(百兆或千兆)链路上联核心层,其中,一条链路连接主中心交换机,另一条连接备中心交换机。为避免网络循环的存在,必须在接入层交换机的上联接口上启用“生成树”协议,同时,将主核心交换机设置成“根网桥”,备核心交换机设置成“备份根网桥”。这样,楼层交换机与“根网桥”的链路成为主链路,与“备份根网桥”的链路成为备份链路
。为实现第二层(以太网层)的流量负载,可利用基于每一VLAN的生成树协议(PVST)来实现,如图1所示。通过适当的配置,可将中心交换机1设置成奇数号VLAN的根网桥,同时兼做偶数号VLAN的备份根网桥;而将中心交换机2设置成偶数号VLAN的根网桥,同时兼做奇数号VLAN的备份根网桥。这样,正常情况下奇数号VLAN的流量通过与中心交换机1连接的链路转发出去并交换;偶数号VLAN的流量通过与中心交换机2连接的链路转发出去并交换。当其中一条链路出现故障时,所有流量自动切换到另一条路径。
(2)第三层的冗余和流量负载
第三层的冗余与负载通过HSRP(热备份路由协议)技术实现。HSRP是Cisco基于第三层(网络层)的高可用性解决方案,采用HSRP即可实现路由(器)双机冗余,也可实现流量负载均衡。HSRP可应用在配置有双路由器和双广域网链路的网络环境,也适合于应用在配置有路由引擎第三层交换机的园区局域网环境。HSRP的工作原理如图2所示,主机A与B位于不同的网络(或VLAN),从A到B有两条可选路径:一条经过路由器(或是三层交换机的路由引擎)A,一条经过路由器(或是三层交换机的路由引擎)B。可将路由器A设置成Active状态,而把路由器B设置成Standby状态,在正常工作时,主机A到B间的通信流量从路由器A走,只有当Active路由或其连接的链路出现故障时,系统才会激活Standby路由,路由器B承担主机A、B间的通信流量。在HSRP协议规则下,Active路由和Standby路由的角色是由优先级手工来配置确定的,缺省时,每个路由器的priority值为100,优先级最高的将扮演Active角色。运用HSRP时,对于用户主机来讲是完全透明的,主机A并不需要知道自己是与路由器A通信还是与路由器B通信,而是与假想的虚拟路由器(Virtualrouter)通信。在图2中,RouterA的E0地址是1.0.0.1优先级是110,是Active路由;RouterB的E0地址是10.0.0.2,优先级是100,是Standby路由;而VirtualRouter的IP地址是1.0.0.3,主机的网关只要指向VirtualRouter的IP地址是1.0.0.3即可。在地区和市级税务局LAN中,两台中心交换机三层路由引擎卡是用来处理不同VLAN间的数据流量的,为了实现三层的流量负载均衡,可将主中心交换机的路由引擎设置成:奇数号VLAN为Active角色、偶数号VLAN为Standby角色;相反,备交换机的路由引擎设置成:偶数号VLAN为Active角色、奇数号VLAN为Standby角色。这样,三层的网络流量就可以在两台中心交换机之间均衡负载并互为备份。
2基层单位网络扩充和改造
2.1网络结构与组网方式
税务网络扩充与升级后,地区和市级税务局采用2M帧中继线路连接省税务局;地区和市级税务局以下网络部分地区采用市———县(区)———分局(所)三级网组网模式;部分地区采用市———县(区)、分局、所二级网组网模式。大部分基层单位节点均通过交换机方式采用光纤2M线路上联(利用G703/10Base-T转换器),部分没有2M光纤的基层单位节点通过路由器采用N*64k帧中继线路上联。税务基层单位网络扩充改造后,根据不同地市的具体情况,网络结构分为两种模式:
(1)市———县(区)———分局(所)三级模式:这种模式下,所有分局、税务所等基层单位先汇聚到县局,再由县局连接到地区和市级税务局。
(2)市———县(区)、分局、所二级模式:这种模式下,无论县局还是分局或税务所,直接与地市连接。税务基层单位网络扩充改造后,根据不同节点线路资源的具体情况,组网方式也分两种模式:(1)交换机组网模式:对有条件采用2M光纤线路的节点,其节点间的广域网互联全部采用交换或路由交换模式,即节点与节点间通过交换机或路由交换机直接互连,并通过G703/10BASE-T实现线路间的接口和协议转换。
2电力通信光传输网发展的现状
2.1电力通信光输网现存问题
我国的科学技术在新形势下,得到了很大的提高,出现了许多的先进的设备、系统、管理手段等。基于新形势的大背景下,人们对光缆和设备也进行了深入的研究,采用诸多先进的技术和管理方式来进行优化,因此我国电力通信光传输网发展到现阶段中,存在有诸多的问题需要进行改进。首先,在电力通信光传输网中,光缆设备是其必不可少的部分,我国在电力通信光传输网中较多的采用的是ADSS光缆。而这类型的光缆若使用时间较长,再加上容易受到周边环境的干扰,就这致使其存在有腐蚀隐患。这样的隐患在很大程度上是落后于我国电网建设的,阻碍着我国的电力通信光传输网的进一步发展。其次,电力通信光传输网中,除去光缆设备这一基础设施外,光传输网络也是重中之重的。但是在现今这个社会中,我国的光传输网络的可靠性和安全性不高。另一方面,在光传输网中,网络资源并没有得到充分的利用,致使网络资源受到了很大的浪费。再加上光传输网络中的设备在建成后也在逐渐的老化,因此设备的各个性能不能满足电力通信光传输网络的发展。
2.2电力通信光输网优化的必要性
在以上的陈述中,可以看出我国的电力通信光传输网存在有设备以及光传输网这两方面的问题,而这两类问题还仅仅是显著存在的,在很多的细微之外任留有别的漏洞。基于此,就要求对电力通信光传输网进行优化,既就通信资源管理系统的引入。只有将通信资源管理系统应用到我国的电力光传输网中,才能够进一步使得电力通信优化,获得到相应的效益,还能够促使我国的电力通信水平得到较大的进步。从另一角度来讲,随着社会的不断发展,人们对于生活品质的要求更高,通信水平的提高也就成为了人们追求的一项。因此对电力光传输网进行不断的优化,并且将通信资源管理系统引用到电力通信中,才能够进一步满足人们对通信业务的要求。因此,对于电力通信光传输网的优化已经成为了一项势在必行的任务,如何将通信资源管理系统应用到电力通信光传输网中也就成为了电力通信界的重中之重。
3如何将通信资源管理系统应用到电力通信光传输网中
3.1通信资源管理系统构成
要深入探究如何将通信资源管理系统应用到电力通信光传输网中,就首先要对通信资源管理系统的构成进行简要的分析。电力光传输网中存在有可靠性和安全性不高的缺陷,而电力通信资源管理系统的引进,能够为电力通信信息增加其可靠性、安全性以及精准性。这样的优势是因为:电力通信资源管理系统是采用了典型的客户端加服务器的形式,这样就能够将系统中的数据统一的储存在数据库的服务器中,而用户端计算机则进行资源管理软件的安装。通信资源管理系统由一下几块模板构成:(1)数据库设计:客户端/服务器的模式。(2)GIS系统,既地理信息系统。(3)系统软件体系结构。(4)硬件组成。
3.2设备管理
在通信资源管理系统中,除去结构构成外,还需要有硬件设备,这样才能够引入到电力通信光传输网中。硬件设备的设置,主要是为了将电信通信系统进行硬件配置,进而对电力通信光传输网进行修改等的操作。与此同时,还能够为其统计和分析光传输网中重大数据。而硬件设备的管理是以地理信息系统为基础的,并且在此基础上,分为传输设备、PCM设备、交换机设备等。只有将设备管理引进到电力通信光传输网中,才能够为电力通信光传输网的整体系统提供其自身的硬件设备的配置、查询以及维护信息的数据,到达统一化管理。
3.3资源管理
在通信资源管理系统中,除去对电力通信光传输网进行设备管理外,还能够对其内部以及周边的资源进行一个有效的整合管理。这也就是指:通信资源管理系统中,存在有一个报表管理模块。这一部分,能够促进电力通信光传输网的工作人员对整个网络系统中的运行日志以及通信动态进行查询,进而对通信网络中的数据进行统计和分析,最终促使工作人员根据资料和数据得出最好的传输线路的方案。在形成方案之后,就能够对电力通信光传输网中的各项可用资源进行一个合理并且精准的调度,使得传输网中的资源都能够获得到很好的利用,减少电力通信光传输网中诸多资源的浪费。通过对资源的合理调度,这样才足以满足每个用户的电力通信业务的要求,客户得到了满意服务,才能够为电力通信光传输网络带来更多的经济效益。最终促进我国的电力通信光传输网获得更大的发展空间。
3.4线路管理
在电力通信光传输网中,最为关键的部分就是传输网中所用的线路了。线路遍布整个网络中,每一项线路都代表着很多的电力通信业务,牵涉到很多用户的电力通信的使用。因此对于线路的管理也就成为了最为关键的一项任务。在对线路进行管理时,通信资源管理能够达到传输电路调度一起传输线路的管理。通信资源在对电路进行管理中,是要求其建立在整个局站之间的,并且还要求在对电力通信光传输网进行操作时,要按照现有的手工业生产的各种业务流程来展开,这样就能够促使在整个电力通信光传输网的管理中,自动地形成电路的开通方式调度单。
2电网系统中对继电保护自动化技术的具体运用分析
2.1继电保护自动化技术对线路的接地保护
对于电力系统自动化保护装置,从线路接地的不同设置上来说,有两种不同的方式。第一种是要保证电路出现问题时,第一时间将电源切断,从而保障电路整体的安全性,这种是在大电流情况下实施的保护措施,因此被称为大电流型接地保护电路。而另一种则是要保证在电路出现小问题时,及时发出预警信号,使相关人员能够尽快维修,这种电路主要针对小电流经过情况下实施的保护措施,也被成为小电流型接地保护电路。当电力系统电路粗线出现问题时,采取一定的措施,可以在短时间内,促使电路恢复正常运转。以下三种为比较常见的情形:(1)零序电压。在正常的电路系统中不存在零序电压情况,电力系统的三个电压属于对称关系,且每一个系统都相互独立。但当电路出现问题时,零序电压会在电路中出现,保护装置将在这种情况下,则会对系统发出预警信号,并自动完成电压降低工作,使得维修人员能够及时根据电压情况确定故障来源。(2)零序电流。电路出现问题时,零序电压的产生,会引发零序电流的升高。此时,保护装置会自动断开电源,最大限度的保护整个电路。(3)零序功率。零序电流的升高范围,随着故障的出现而保持相对稳定性,此时的零序功率会自动改变方向,这样就能够确保装置,有效预测整个电路的故障,并给予相应的保护。
2.2继电保护自动化技术对变压器的保护
变电器在电力系统中扮演着重要角色,其能够改善电力系统的运行状态,达到稳定运行的目的,同时强化电力系统的运行安全性,防止电力事故的发生。
2.3技术是影响变压器的关键性因素
(1)变压器接地保护。电压器的种类有两种,分别为接地和不接地。对于第一种可以通过零序电流对其进行保护。而第二种则通过零序电压进行保护。(2)变压器瓦斯保护。变压器在应用的过程中存在一定的危险性,尤其是绝缘材料、油料等易被分解的物质,在具体应用过程中一旦受到电弧影响,就会产生危害人体健康的气体。所以需要建立预警系统一旦油箱受到危害,产生毒气,就应立即断电,同时发出预警信号。(3)变压器短路保护。短路是变压器常见问题之一,在实际工作过程中,一旦出现短路现象,就会造成变压器工作停滞,进而影响整个电力系统。因此变压器应提前做好应对工作,采用电流继电器保护变压器不受短路的影响。在对变压器进行阻抗保护时,主要依靠阻抗元件的作用,在运转到达限制时间后,变压器就可以自动断电,避免发生短路现象。
一个供电企业想要正常的运营下去就需要使用大量的信息,通过收集信息、处理信息、传送信息、执行信息来实现对整个供电企业的有效控制。但是,随着信息化程度的不断提高,信通部门人员配置跟不上快速增长的业务需求。这些供电企业只是将信息作为一种口头形式,在实际执行上,无法贯彻落实。所以,供电企业需要设置相应的管理机构,并且通过这些管理机构来完善信息化系统建设。
1.2网络病毒威胁着网络信息的安全管理
计算机网络系统网络病毒直接影响到所有的网络用户信息的安全,也影响着供电企业的网络信息安全。
1.3供电企业安全意识较为薄弱
供电企业一般将自己的关注点聚集在网络的利用效率上,同时,在使用计算机网络进行日常工作学习的过程中,也只关注其运行效率的高低,而对其信息的安全性的保护管理却缺乏足够的重视。在网络运行的过程中,如果出现问题,也没有足够的实力以及专业的人员去处理,造成网络信息系统的安全性受到很大的威胁。
1.4供电企业的网络信息安全面临着非常多的风险
(1)供电企业内部的影响。在供电企业的发展中,计算机网络技术已经受到了广泛的使用,使供电企业内部重要数据大部分需要在网络上进行传输。这样一来就为非法用户窃取供电企业信息提供了温床,导致供电企业内部信息出现混乱现象,使其难以维持一个正常的经营秩序。(2)网络安全结构设置不科学。网络安全结构设置不科学,主要表现如下:核心交换系统安排不科学,没有分级处理网络用户,导致全部用户具有相同的信息处理地位,这样一来,不管是何人都可以对供电企业形成相应的威胁和影响。
1.5缺乏上网行为管理监控
网络用户通过Internet访问娱乐网站、浏览购物网站、过度使用聊天工具、滥用p2p下载工具,引发不明的网络攻击、带来网络病毒、频频收到垃圾邮件、造成网络堵塞等。没有设置防火墙的电网会和容易收到病毒以及其他恶性软件的破坏,造成数据的损失。目前大部分电网还没有很好的设置防火墙,没有做好网络应用控制故纵以及带宽流量管理工作,存在很大的隐患,时刻威胁着网络的正常运行。
2电力系统网络安全的相关维护技术
2.1防病毒侵入技术
供电企业设置防病毒侵入系统可以有效的阻止病毒的进入,防止病毒破坏电力系统的信息资料。防病毒侵入技术具体是从计算机上下载相应的杀毒软件,同时需要按照相应的服务器,定期的维护防病毒系统,为其有效正常地运行提供切实的保障。除此之外,在供电企业的网关处还要安装网关防病毒系统,指的是在电力系统的所有信息系统中去安装一种全面防护的防病毒软件,通过这个软件去管理和处理各个环节,与此同时,建立科学合理的安全管理制度。借此有效的防御、检测、治理计算机病毒的侵入。并且还要做好防病毒系统的升级工作,有利于及时的检测和处理即将侵入信息管理系统的病毒。
2.2防火墙系统技术
防火墙系统指的是准许那些被信任的网络信息顺利通过,阻止那些非信任网络信息通过。防火墙系统技术通过固定的信息集合的检查点,在这个固定的检查点来统一的、强制的检查和拦截网络信息。限制非法指令,保护自身存储的信息。电力系统是在不同的环节实现管理、生产、计算以及销售的,所以,整合全部的信息需要使用两段不一致的信息渠道。之后通过筛选以及过滤,对信息的出入进行有效的控制,组织具有破坏作用的信息,使被信任的网络信息顺利通过,同时还要设置相应的访问权限,为信息资源的安全提供切实的保障。
2.3信息备份技术
在传输电力系统的所有信息之前,需要进行相应的等级备份工作。等级划分需要按照数据的重要程度来排列。并且统一管理备份信息,定期的检查备份信息,为备份信息的准确性以及可用性提供切实的保障。借此避免当电力系统信息出现故障时,因为数据丢失给供电企业造成巨大的损失。
2.4虚拟局域网网络安全技术
虚拟局域网技术就是指将局域网技术分成几个不同的方面,使各个虚拟局域网技术都可以有效的满足计算机实际工作的需要。因为在每个工作站上都存在局域网技术网段,每一个虚拟局域网网络安全技术中的的信息不能很好的实现跟其他虚拟局域网网络安全技术的顺利交换。虚拟局域网网络安全技术可以有效地控制信息的流动,有利于网络控制更加的简单化,为网络信息的安全性提供切实的保障。
3维护电力系统网络安全的管理工作
3.1强调安全制度建设的重要性
如果一个供电企业不具备完善的制度,就没有办法准确的确定信息安全,也就无法正确的衡量信息的合法性以及安全性,同时也无法形成针对性强的安全防护系统。所以,供电企业需要全面分析实际情况,在充分分析相关的网络信息安全制度的前提下,按照供电企业的实际情况,为供电企业制定健全的、完善的、具有很强指导意义的安全制度。与此同时,要不断的具体化、形象化安全制度,使其得到最大程度的贯彻落实。供电企业需要颁布相应的条文,连接供电企业的网络信息安全管理和法律两个主体,有效的惩治危害供电企业网络信息安全的因素,保证供电企业网络信息的安全性。
3.2设置专门的安全管理
部门设置专门的安全管理部门,通过这个部门来管理供电企业的信息安全,并且研究分析供电企业的相关资料,结合实际情况,设置适合供电企业实际情况的网络安全管理系统,同时还要不断升级和完善网络安全管理系统。除此之外,还要设置特定的岗位,分级任务。按照不同等级来划分系统的任务,并将任务下达到相关人员的手中。对这些人员进行垂直管理,不断协调和配合部门内所有人员,为网络安全管理系统安全有序地开展下去。
3.3网络信息安全的意识和相应的措施
人类的意识决定着人类的行动,如果供电企业想要提升网络信息的安全性,具体的做法如下,供电企业需要经过有效的学习以及培训工作,使供电企业的信息管理部门形成正确的、科学的网络信息安全意识。让供电企业的员工熟练的掌握安全防护意识,提升挖掘问题的能力,提升工作的积极性以及创新性。第二步,通过对供电企业的人员进行网络信息安全技能培训。让他们熟练掌握操作统计网络信息的设备的正确使用,在这个前提下有效的管理供电企业内部网系统的网络信息的安全性。
以实际地理位置为背景的电力设备分布图,不仅能在设备管理上为用户增加设备空间位置的信息,而且通过实时信息能准确地反映配电网的实时工作状况。因此,GIS已成为配电网自动化不可缺少的组成部分。
一、数据组织
地理空间数据是指以空间位置为参考的数据,地图是空间数据的一种表达方式,空间位置通常是用空间实体与某中参数坐标系统的关系来表达。
各种地理空间实体,如居民区、街道、市政管线、电话亭、电力线路等,在计算机中的表达一般抽象为点、线、面这3种最基本的实体,任何空间实体都可以用点、线、面,再加上说明和记号来表示。
这种空间数据的组织能满足配电网自动化的要求,根据实际地理位置布置设备、线路,展示配电网的实际分布,采用层的概念组织图形和管理基础数据,自由分层,层次之间又可以灵活的自由组合。
与空间图形数据对应的还有属性数据,既对图形相关要素的描述信息,如配电线路的长度、电缆型号、线路编号、额定电流、配变型号、编号、名称、安装位置、投运时间、检修情况和实验报告等。
这些属性数据的用途为结合图形进行档案资料的查询提供具体信息。对已经在管理信息系统(MIS)中录入和使用的部分属性数据,可通过共享途径直接获取,末录入的则必须在GIS中进行录入和编辑。
属性数据可存于任何关系型数据库中,如:SQLSERVER,SYBASE,ORACLE等传统的关系型数据库不能管理具有地理属性的空间数据,所以大多以文件形式存储。从数据的多用户、访问安全性以及数据操作的高效性来讲,这种储存形式力不从心。各大GIS公司相继推出这类产品。如:ESRI公司的SDE(空间数据库引擎),通过SDE把地理空间数据加到商业关系型数据库:MAPINFO公司的SPATIALWARE上,可以将地理数据存储到RDBMS中,ORACLE81SPATIAL使得ORACLE81数据库具有空间数据的管理能力。
二、配电网GIS的建立
目前开发配电网GIS有两种趋势,一种是把GIS作为整个配电网自动化的基础平台,另一种是把GIS作为其中的组成部分,与SCADA等其他系统共同完成整个配电网自动化的功能。笔者认为第二种方案比较可行。原因是目前大部分地区SCADA系统的功能已经完成,并且投入运行,作为新增加的GIS只要通过数据库的关联,就能实现信息的共享,而且又能保证各个子系统的独立性,使整个系统的可维护性增强。同时减少了开发GIS子系统的工作量,免去了资金的重复投入。
三、配电网自动化中GIS实现的功能及其特点
GIS在配电网自动化中的应用可以分为离线和在线两个方面。
3.1离线应用方面主要包括:
A.图形的操作:在以地理图为背景的配电网分布图上,可以分层显示变电站、线路、变压器、开关到电杆以及到用户的地理位置。由于这些图形均为矢量图,可完成无级放大、缩小和漫游,并且地理的比例尺及视野可以任意设定。
B:空间数据测量:测量两点、多点之间的距离和任意定义区域的面积。通过鼠标定位,既可得出该点的坐标,可完成配电线长度的测量,也可以统计供电区域的面积。
C:设备档案管理:管理所有的配电系统设备档案和用户档案,根据要求进行各种查询统计。主要根据属性数据与空间数据关系,进行双项查询。条件查询(从数据库查询图形,按设备的属性数据库查找设备地理位置,对典型设备可以进行查询、显示、列表、统计)和空间查询(从图形查询属性数据,在图形上对任意设备进行定点查询和多边形小区查询,并且显示、列表和统计)
D:设备检修管理:根据检修管理指标,自动地进行校核,自动列出各项指标的完成情况,提醒工作人员安排设备检修工作,并提出设备检修计划。
E:用户报装辅助决策:通过直接在地图上部设报装用户位置,系统根据报装容量,电流强度等自动的搜索设定范围内(范围值可以在界面上灵活设置)满足要求的变压器,选择不同的变压器系统自动在图上画出最佳的架设路径,并给出具体的长度。
F:开操作票:把开操作票的任务放在GIS界面上完成,直观、简单地在地图上用鼠标电击选取操作对象,就能把操作对象的名称及其当前状态填入相应的操作票表单中,再在标准动作库及术语库中选择操作目标结果,就能方便、准确地开操作票。
G:模拟操作:可以做计划内停电检修前的预演。分为拉开关、停线段、停馈线等不同方式,根据不同的操作自动搜寻停电范围,预演操作结果,确认后打印停电通知单。
3.2在线应用
在线方面应用主要包括:
A:反映配电网的运行状况:读取SCADA系统实时状态量,通过网络拓扑着色,反映配电网实时运行状况。对于模拟量,通过动态图层进行数据的动态更新,确保数据的实时性。对于事故,推出报警画面(含地理信息),显示故障停电的线路及停电区域,做出事故记录。
B:在线操作:在地理接线图上可直接对开关进行遥控,对设备进行各种挂牌和解牌操作。
C:负荷管理:根据地图上负荷控制点的位置,结合独立运行的负荷监控实时系统,以用户的负荷控制终端的基本数据为数据,实现各种查询和分析功能,用图表方式显示结果。根据负荷点的地理分布及其各种实测数据,进行区域负荷密度分析,制定负荷专题图,通过不同时期的对比,辅助电网规划。
D:停电管理:他是配网自动化中管理系统的重要组成部分,利用打来的故障投诉电话弥补配电自动化信息采集的不足,根据用户停电投诉电话中故障地点的数量和位置,进行故障定位,确定隔离程序;并且分析故障停电的范围,排除可能的故障点顺序。根据维修队伍的当前位置,给出到达故障地点的最佳调度路径,可以迅速、准确地找到并隔离故障点,恢复供电。
E:与用户抄表与自动记费系统接口:远方抄表与自动记费系统向GIS传送用户地址、用户的名称以及用电负荷等信息,GIS可以显示抄表区域和区域的负荷情况,使数据更加直观。
四、系统的开发
应根据GIS在配网自动化中的应用功能进行模块划分,由于GIS数据量大,维护工作比一般管理系统复杂,需要一定的专业知识,另一面,根据供电企业部门的职能划分,对GIS也提出了不同的要求。因此对建立整个配网GIS来说,根据功能大致可分为3个自系统。
A:系统编辑,系统自维护,主要完成配电网图形的编辑和数据库的维护。
B:实时运行子系统,能够对配电设备进行各种操作,并实时反映操作结果。
C:浏览,查询子系统,查看当前电网状况,完成各种查询、统计和分析。
随着平台及应用技术的不断发展,GIS的应用越来越来深入,广泛。
二。配电网馈线保护的技术现状
电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。
随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种:
2.1传统的电流保护
过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限,参见式(1)、(2)、(3)和(4)。这类保护整定方便、配合灵活、价格便宜,同时可以包含低电压闭锁或方向闭锁,以提高可靠性;增加重合闸功能、低周减载功能和小电流接地选线功能。
电流保护实现配电网保护的前提是将整条馈线视为一个单元。当馈线故障时,将整条线路切掉,并不考虑对非故障区域的恢复供电,这些不利于提高供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。
2.2重合器方式的馈线保护
实现馈线分段、增加电源点是提高供电可靠性的基础。重合器保护是将馈线故障自动限制在一个区段内的有效方式「参考文献。参见图1,重合器R位于线路首端,该馈线由A、B、C三个分段器分为四段。当AB区段内发生故障F1,重合器R动作切除故障,此后,A、B、C分段器失压后自动断开,重合器R经延时后重合,分段器A电压恢复后延时合闸。同样,分段器B电压恢复后延时合闸。当B合闸于故障后,重合器R再次跳开,当重合器第二次重合后,分段器A将再次合闸,此后B将自动闭锁在分闸位置,从而实现故障切除、故障隔离及对非故障段的恢复供电。
目前在我国城乡电网改造中仍有大量重合器得到应用,这种简单而有效的方式能够提高供电可靠性,相对于传统的电流保护有较大的优势。该方案的缺点是故障隔离的时间较长,多次重合对相关的负荷有一定影响。
2.3基于馈线自动化的馈线保护
配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。馈线自动化的核心是通信,以通信为基础可以实现配电网全局性的数据采集与控制,从而实现配电SCADA、配电高级应用(PAS)。同时以地理信息系统(GIS)为平台实现了配电网的设备管理、图资管理,而SCADA、GIS和PAS的一体化则促使配电自动化成为提供配电网保护与监控、配电网管理的全方位自动化运行管理系统。参见图2所示系统,这种馈线自动化的基本原理如下:当在开关S1和开关S2之间发生故障(非单相接地),线路出口保护使断路器B1动作,将故障线路切除,装设在S1处的FTU检测到故障电流而装设在开关S2处的FTU没有故障电流流过,此时自动化系统将确认该故障发生在S1与S2之间,遥控跳开S1和S2实现故障隔离并遥控合上线路出口的断路器,最后合上联络开关S3完成向非故障区域的恢复供电。
这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸的多种方式,能够快速切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复供电。该方案是目前配网自动化的主流方案,能够将馈线保护集成于一体化的配电网监控系统中,从故障切除、故障隔离、恢复供电方面都有效地提高了供电可靠性。同时,在整个配电自动化中,可以加装电能质量监测和补偿装置,从而在全局上实现改善电能质量的控制。
三。馈线保护的发展趋势
目前,配电自动化中的馈线自动化较好地实现了馈线保护功能。但是随着配电自动化技术的发展及实践,对配电网保护的目的也要悄然发生变化。最初的配电网保护是以低成本的电流保护切除馈线故障,随着对供电可靠性要求的提高,又出现以低成本的重合器方式实现故障隔离、恢复供电,随着配电自动化的实施,馈线保护体现为基于远方通信的集中控制式的馈线自动化方式。在配电自动化的基础上,配电网通信得到充分重视,成本自动化的核心。目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。建立在光纤通信基础上的馈线保护的实现由以下三部分组成:
1)电流保护切除故障;
2)集中式的配电主站或子站遥控FTU实现故障隔离;
3)集中式的配电主站或子站遥控FTU实现向非故障区域的恢复供电。
这种实现方式实质上是在自动装置无选择性动作后的恢复供电。如果能够解决馈线故障时保护动作的选择性,就可以大大提高馈线保护的性能,从而一次性地实现故障切除与故障隔离。这需要馈线上的多个保护装置利用快速通信协同动作,共同实现有选择性的故障隔离,这就是馈线系统保护的基本思想。
四。馈线系统保护基本原理
4.1基本原理
馈线系统保护实现的前提条件如下:
1)快速通信;
2)控制对象是断路器;
3)终端是保护装置,而非TTU.
在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护,馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。基本原理如下:
参见图3所示典型系统,该系统采用断路器作为分段开关,如图A、B、C、D、E、F.对于变电站M,手拉手的线路为A至D之间的部分。变电站N则对应于C至F之间的部分。N侧的馈线系统保护则控制开关A、B、C、D的保护单元UR1至UR7组成。
当线路故障F1发生在BC区段,开关A、B处将流过故障电流,开关C处无故障电流。但出现低电压。此时系统保护将执行步骤:
Step1:保护起动,UR1、UR2、UR3分别起动;
Step2:保护计算故障区段信息;
Step3:相邻保护之间通信;
Step4:UR2、UR3动作切除故障;
Step5:UR2重合。如重合成功,转至Step9;
Step6:UR2重合于故障,再跳开;
Step7:UR3在T内未测得电压恢复,通知UR4合闸;
Step8:UR4合闸,恢复CD段供电,转至Step10;
Step9:UR3在T时间内测得电压恢复,UR3重合;
Step10:故障隔离,恢复供电结束。
4.2故障区段信息
定义故障区段信息如下:
逻辑1:表示保护单元测量到故障电流,
逻辑0:表示保护单元未测量到故障电流,但测量到低电压。
当故障发生后,系统保护各单元向相邻保护单元交换故障区段,对于一个保护单元,当本身的故障区段信息与收到的故障区段信息的异或为1时,出口跳闸。
为了确保故障区段信息识别的正确性,在进行逻辑1的判断时,可以增加低压闭锁及功率方向闭锁。
4.3系统保护动作速度及其后备保护
为了确保馈线保护的可靠性,在馈线的首端UR1处设限时电流保护,建议整定时间内0.2秒,即要求馈线系统保护在200ms内完成故障隔离。
在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并起动通信。光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。断路器动作时间为40ms~100ms.这样,只要通信环节理想即可实现快速保护。
4.4馈线系统保护的应用前景
馈线系统保护在很大程度上沿续了高压线路纵联保护的基本原则。由于配电网的通信条件很可能十分理想。在此基础之上实现的馈线保护功能的性能大大提高。馈线系统保护利用通信实现了保护的选择性,将故障识别、故障隔离、重合闸、恢复故障一次性完成,具有以下优点:
(1)快速处理故障,不需多次重合;
(2)快速切除故障,提高了电动机类负荷的电能质量;
(3)直接将故障隔离在故障区段,不影响非故障区段;
(4)功能完成下放到馈线保护装置,无需配电主站、子站配合。
四。系统保护展望
继电保护的发展经历了电磁型、晶体管型、集成电路型和微机型。微机保护在拥有很强的计算能力的同时,也具有很强的通信能力。通信技术,尤其是快速通信技术的发展和普及,也推动了继电保护的发展。系统保护就是基于快速通信的由多个位于不同位置的保护装置共同构成的区域行广义保护。