物理理论论文模板(10篇)

时间:2023-03-28 15:07:44

导言:作为写作爱好者,不可错过为您精心挑选的10篇物理理论论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

物理理论论文

篇1

我们十多年来的课堂教学经验可以总结成三句话:追根寻源真一点,实验研究多一点,能力要求高一点,简称“三点”教学法,因此我们称自己的教材为“三点”法教材.

我们的“三点”法教学完全是根据国家教委颁布的高中物理教学大纲编写的.因为我们面对的是全班学生,不可能而且也不应该把课堂教学变成物理竞赛辅导,我们确确实实通过课堂教学明显提高了学生的素质和能力,为学生在高考和物理竞赛中取得优异成绩打下了扎实的基础.

一、追根寻源真一点

一个学生学习物理,首先接触到的就是物理定律.因此,怎样搞好物理定律教学,必然是每个物理教师首先要考虑的问题.

在进行某一物理定律教学时,我们有意识补充了大量的与这一定律的建立过程有关的内容,这就是所谓的“溯源”教学.任何一个重要物理定律的建立,都有一个艰辛而漫长的过程.探索定律的工作只所以能成功,这个定律最后只所以能够确立起来,其中一定有很多科学的研究方法和正确的推理思维方式,这些内容毫无疑问是属于物理学科中最重要的东西,是人类一笔宝贵的知识财富,也是我们物理教学的宝贵财富.

在讲授牛顿万有引力定律时,我们从第谷对行星进行几十年的观测积累的大量第一手资料讲起,然后是开普勒在拥有这些数据的基础上,通过大量计算总结出描写天体运动的经验规律(开普勒三定律),最后才是牛顿用定量的动力学原理对这些规律予以解释,终于发现了对天上、地上的物体具有普遍意义的万有引力定律.在学习牛顿万有引力定律的过程中,我们还着重向学生介绍了“归纳法”、“理想化”和“间接验证”三种科学研究的重要方法.

在学习库仑定律的过程中,我们纠正了学生由于大多数教科书叙述笼统而形成的错误观念,使他们明白:1.库仑当年只用扭秤做了两个同种电荷互相排斥的实验,而未做两个异种电荷互相吸引的实验,因为在后一实验中的平衡有可能是不稳定的.库仑是用电摆来完成后一实验的;2.无论是扭秤还是电摆,精确度都是很有限的,根本无法确定两电荷之间的作用力与距离的平方成反比,更不是和距离的1.98次方或2.02次方成反比.当年的库仑(实际上还有更早的卡文迪许),以及后来的麦克斯韦、普林普顿等人都是用另一种实验方法将指数的精度逐渐提高,直至今天的2±3×10-16,终于使库仑定律成为当今物理学中最精确的定律之一.结合库仑定律的建立过程,我们还向学生介绍了“类比”和“演绎验证”的方法.

在学习欧姆定律的过程中,学生一开始都以为研究通过导体的电流和导体两端的电压之间的关系是不困难的,只要用电流表、电压表再加电源和可变电阻器等组成电路即可.可是我告诉他们,在欧姆那个年代,非但没有电流表、电压表等仪器,连电压、电流和电阻的定义和单位都没有,欧姆所面临的困难之大是可想而知的.他到底是怎样得到这个电学中最重要的定律的呢?学生顿时产生了浓厚的兴趣.在学习欧姆定律诞生过程的同时,我们还结合欧姆的实践,介绍了用图线探究新规律的方法.

此外,我们还结合牛顿运动定律介绍了“理想实验”、“推理”、“实验研究”等方法,结合气体定律介绍了“分析法”,结合能量的转化和守恒定律介绍了“综合法”.使学生比较系统地掌握了一些重要的科学研究方法.有的同学深有体会地说:物理定律是宝贵的,但研究物理定律的科学方法更宝贵.谁掌握了这些方法,谁就能不断地去探索大自然层出不穷的奥秘.

在物理定律的教学中,我们在课堂上经常采用设问的方法,不是直接告诉学生某个定律是怎样建立起来的,而是不断地提出问题让学生去思考,摆出困难让学生去克服,提出任务让学生去完成,制定目标让学生去实现.这样可以有效地发展学生的创造性思维和解决问题的能力.

我们要求学生在课外进行大量自学.早在公元前4世纪,古希腊苏格拉底明确强调过:“好的、正确的教学不是传递,而是对学生的自学辅导”.我一贯强调学生要学会自学、讨论、研究.我教的优秀学生,学得的物理知识,最多只有一半是在课堂上听我讲的,其它一概由他们自学.到一定阶段,我开始指定几个学得比较好的学生轮流给其他学生上课.每次课分两部分,前半部分由主讲同学讲,后半部分由全体同学提问、讨论.像王泰然和任宇翔在高二阶段就给其他同学作过二十几次讲座,杨亮、谢小林、陈汇钢等同学也不例外.

我们这种自学讨论式教学还延续到学生毕业以后.获金牌或学有所成的学生进了大学甚至出国留学后,有机会还回来给小同学谈自己的体会.例如1994年暑假任宇翔从美国回国探亲一个月,来学校给95、96届学生讲了10次课.他向小学友介绍物理学中一些新进展、中美物理教学中的差异以及他们当年学习过程中曾激烈争论过的问题,使听课的学生大受裨益.1996年暑假,谢小林和陈汇钢两位金牌获得者又为97、98届同学讲了十多天课.他们既讲物理知识,又讲国家集训队队员奋发学习的感人事迹,使小同学们大开眼界.

这样的训练方法也得到了权威人士的肯定.1992年10月,在上海召开的全国物理特级教师会议上,原中国物理学会副理事长、现全国中学物理竞赛委员会主任、北京大学沈克琦教授在他的题为“国际物理奥林匹克竞赛与中学物理教学”的报告中说:“我听到两名得金牌的上海学生讲他们的老师如何培养他们的情况,我认为这个经验倒很值得推广.他们说他们的老师不是采取灌输的办法,而是启发引导,要求他们给同学讲课,这对他们搞清概念原理和科学地进行表达都非常有帮助.我想这可能是提高优秀学生能力的有效方法之一.”

那么自学为什么会对提高学生的能力起这么大的作用呢?从心理学角度来看,自学与听课可能有以下两点不同:

(1)人类的思维活动表现为分析、综合、比较、抽象、概括等过程.一个学生在自学某一个新的物理内容时,少不了理解、思考、建立正确的物理模型等工作,这里面充满了分析、综合、比较等过程.因此相对听课而言,自学对学生的思维活动提出了更高的要求,从而使他们得到更大的锻炼.

(2)人们的注意可分为无意注意、有意注意和有意后注意三种.事先没有预定的目标,也不需要作意志努力的注意叫做无意注意;有预定的目标,在必要时还需作一定的意志努力的注意叫做有意注意.一个学生在自学的时候,他的目的一定是十分明确的,而且需要一定的意志努力(否则难以坚持),因此学生在自学时,可保证在绝大多时间内都处于有意注意的状态,这一点对提高学习效率和学习能力都是很有好处的.有的学生在自学中往往会十分投入,进入一种旁若无人的境地,而相对来说,这种情况在听课时就比较少.一个学生坚持自学一段时间之后,便能渐渐地从有意注意转化到有意后注意,即不需要意志努力也能够将自己的注意力长期保持在这项工作上.有意后注意是一种高级类型的注意,它既有明确的目的,又不需要用意志努力来维持,是人类从事创造性活动的必需条件.学生一旦进入这种状态,他们的物理学习效率就会大大提高,学习成绩就会有明显进步.

二、实验研究多一点

物理学是一门实验科学,物理学中的每一个概念、规律的发现和确立主要依赖于实验.因此,在高中物理教学中加强学生实验方面的训练,无疑是提高物理教学质量的一条必由之路.

目前中学物理教学大纲中安排了相对数量的学生实验和演示实验,不难发现,这些实验存在着某些不足,主要表现在下面几个方面:

第一,教材中几乎所有实验是为配合所学内容而安排的,目的是帮助学生加深对所学内容的理解,因此学生不易通过这些实验掌握一些重要的实验方法.

第二,课本中每个实验的实验原理及操作步骤都讲得十分清楚,学生只需按部就班地完成实验操作即可.这样的实验只能增加学生的感性认识,锻炼学生的动手操作能力,而对学生创造性思维的训练是不够的,也无法培养学生解决问题的能力.

第三,目前课本中的实验大多是验证性实验,学生只要学懂了书上的定律,一般都能轻而易举地完成实验.这种安排违反了教育应该走在学生智力发展前面的原则,对培养学生的能力是不利的.

针对以上不足,我们对实验教学内容和教学方法进行了改革,使实验教学为发展内容的改革方面,我们主要采取了以下三条措施:

(1)增加实验数量.

不论是在课堂演示实验,还是在学生实验或小实验方面,平均增加了60%的实验.其中有一部分新实验,学校没有现成的仪器,安排学生自己制作,对学生有较高的要求.

(2)重视实验误差讨论.

物理实验离不开测量,测量是实验科学最本质的东西.从某种意义上讲,结果准确的实验就是成功的实验,反之就是不成功的实验.因此在培养优秀学生的过程中,应该让他们掌握一些必要的实验误差的基本知识.在设计实验方案时,要求学生们尽量消除实验的系统误差;在选择实验器材时要考虑它的精确程度;在处理实验数据时,要采用尽量科学的方法.

(3)加强重要实验方法教学.

在实验领域中有一些重要的方法,比如减小实验系统误差的方法、减小实验偶然误差的方法、实验探究规律的方法、迂回测量的方法等,这些方法不是在个别实验中,而是在许多实验中都有应用,因此具有一定的普遍意义,这些方法一定要让学生很好地掌握.在必要时,我们甚至根据实验方法来安排实验内容,集中安排几个某种方法体现比较典型的实验,这样便于学生深刻领会和熟练掌握某一种实验方法.

在实验教学方法改革方面,我们做了以下尝试:

(1)在课堂上创设一些实验问题让学生研究.

在高中阶段,每周至少有4节物理课,充分利用物理课中碰到的各种各样问题,可设计一些供学生讨论的实验题目,并引导他们一步一步地探索、解决.

我在讲功率一节时,设计了这样一个实验题目:要求测定一个人骑自行车的功率.在自行车由静止启动的过程中,人做的功除了增加人和车的动能之外,还要克服空气阻力和地面的摩擦力,其中哪些因素是主要的,哪些因素是次要的?学生根据自己骑自行车的经验,认为空气阻力是很明显的,不能忽略,而地面和车轮之间的滚动摩擦一般比较小,可以忽略.接下来的问题是怎样测量人克服空气阻力做的功?学生都有这样的体会:顶风骑车时,骑得越快风的阻力越大,因此可以设风的阻力和车的速度成正比.车的速度怎样测?风的阻力和车速成正比的比例因数是多少?问题一个接着一个地出现,被大家一个又一个地解决,终于找到了一个大家都比较满意的实验方案.接着全班同学兴高采烈地到操场上去做实验,最后再回到教室里,师生一起处理实验数据,作出图象,得出实验结果.在整个实验过程中,除了实验题目是由老师提出的外,实验方案和解决问题的途径都是由学生讨论研究出来的,因此他们都觉得很有意思,收获很大.

(2)对课本中一些重要实验进行深入研究.

物理课本中有大量现成的实验,有时可以对这些实验进行一些讨论和改进.

在做直流电路的实验时,我们让学生对伏安法测量导体的电阻这个实验进行了深入的研究.用简单的伏安法电路,不论是采用电流表内接还是电流表外接,都有系统误差.结合这个问题,我给学生介绍了补偿的思想,然后由学生自己设计了电流补偿和电压补偿两种线路.补偿法解决了由于实验电路不完善带来的系统误差,但这个矛盾解决了,电流表和电压表不够准确的问题上升为主要矛盾.怎么办?经过进一步研究改进,大家认为可以用准确度高得多的电阻箱来取代电压表和电流表,再辅以灵敏度很高的电流表,便可以明显提高实验结果的准确度,这就是常用的惠斯通电桥.接下来学生分别用简单伏安法、补偿伏安法和惠斯通电桥测量了同一个标准电阻,比较测量结果,可以证实先前的想法.在历史上,从伏安法到惠斯通电桥是有一个很长的过程的,而在我们这堂实验课中,学生经历了这么一个碰到问题、分析问题、解决问题的完整过程.这样的实验课对增强学生的能力是很有帮助的.(1)和(2)实际上都是不断地给学生提出新的目标,诱导他们提高实验水平,我们有时称之为“目的诱导法”.(3)给特优学生安排一些特殊实验.

我校有一批进口物理仪器,性能比较好,涉及的实验内容面也比较广.这批仪器的说明书是英文或日文的,我指定一名学生准备某一个实验,要求他先翻译好说明书,准备好器材,然后带领其他同学做实验.这个主讲的学生还要准备好一些讨论题,在实验后供同学们讨论.学生对这样的实验非常感兴趣.此类实验虽然有时和高考、竞赛没有直接的关系,但是这种带有研究性的实验对优秀学生很有好处.

三、能力要求高一点

物理习题教学是物理教学的重要组成部分.不论是教师还是学生,都在解习题上花费了大量的时间,因此,习题教学的改革是一个很重要的问题.就本质来说,物理习题是人们编制的一些假想物理场景.毫无疑问,物理学家是不会去做物理习题的,而他们是在研究那些真实的、尚未发现的物理规律.同样,发明家也是不会去做物理习题的,他们是在力图应用已有的物理规律去解决一系列实际问题,那么我们为什么要让学生做那么多人为假想的物理习题?目的无非是要培养学生的理解、分析、推理等能力.所以物理习题教学应该围绕这个目标来进行.

我们常用以下两种方法来进行习题教学:

(1)按照解题方法组织习题教学

篇2

2要求知其所以然必须开物理课

科学知识可分为理论知识和经验知识两大类。生物物理学也不例外。常说对事物不仅要知其然,还要知其所以然。其实前者就是只要求掌握其经验知识,而后者则要求掌握其理论知识,从理论上把握事物。亦即不仅能认识其表象,还能阐明产生表象的内在实质,揭示表象运动、变化规律的机理。要求医生能从理论上把握临床医学中常涉及的生物物理问题,就必须开设物理课,否则是不可能的。要求医生从理论上解决医学中涉及物理的问题越多越深,所需具备的物理相关知识越广越深,自然物理课学时应越多。一直以来只讲授纯物理知识,不结合讲授在医学中的应用,即不结合阐明医学中的生物物理问题,要学生自学解决是很困难的。应该既讲授物理理论也讲授必要的生物物理知识,才能做到学以致用。学生掌握临床医学常涉及的生物物理知识能适应如下四个方面的需要。其一,行医需要。有了相关生物物理知识才能从理论上全面、准确、深刻分析、理解、掌握行医过程中涉及物理问题的医学理论、技能和方法,才能高屋建瓴,在理论指导下,以清晰的思路,全面思考,准确诊断、有效治疗。其二,科研需要。临床各学科多有涉及生物物理的课题。没有相应的生物物理知识只能望而兴叹。反之则如虎添翼,可以在更宽的知识领域开展科研,为医学科学发展作更多贡献,提升人生价值。例如秦任甲教授就发现长期以来人们只从血流动力学角度分析和利用超声多普勒血流频谱图,这里存在个缺陷。可能是有关人员不具备血液流变学知识所致。他率先提出,应该加上血液流变学才能全面、准确分析和充分利用频谱图的丰富内涵,可以把频谱图作为有效手段来研究在体血管红细胞向轴集中的规律,并指导同行开展合作研究取得成果。其三,提高需要。工作中必然会遇到许多尚未掌握的涉及物理的医学问题。这就得靠自学更宽更深的物理、生物物理知识才能解决这些问题,提高自己的理论水平和技能。在校所学将成为自学习提高的基础。其四,思维需要。人的思维不外乎逻辑(抽象)思维和形象思维,都是人在各成长阶段学习积累起来的。大学是人的思维知识和能力形成的十分重要的阶段。在学习、运用物理学、生物物理学过程中,在知识拓展的同时使物理的形象思维和数理逻辑思维得到尤其强的培养提高。数理逻辑思维是逻辑思维的十分重要的组成部分。物理的这些思维能力的增强,使之在学医、行医和医学研究中终身受益。一流名校能安排物理课近百学时,甚至还结合讲授生物物理知识就是认同上述观点的佐证。其决策者和努力学习物理的学生都是有远见的。这正是一流名校要求学生从理论上掌握物理、生物物理,培养高水平医学人才的体现。

3只求知其然则可开可不开物理课

3.1可凭生物物理经验知识行医

大量事实表明,一般医生都是凭借物理、生物物理经验知识而非理论知识来理解、阐明、处置医学中涉及物理的问题。其在三类生物物理知识上的表现为:其一,对医学中涉及物理的现象即生物物理现象不理解,无从解释或者粗略地,含糊地理解或解释。也有以打比方的方式来认识或阐明。例如用粥的浓稀来说明血液黏度大小,流阻大小,而导致血压高低,极少见有医生能用泊肃叶定律等相关知识做出理论解释。其二,当用生物物理检测进行诊断时:对他人的检测,一般只凭检测医生的文字结论做出诊断,有时查看检测图象也只机械地与自己记忆中的正常图象对比而作诊断,并不理解图象是怎样形成的,甚至不理解结论是怎样依据图象分析而获得的;对自己的检测,一般都凭借自己对检测到的生物物理信息与记忆中的正常信息对比而作诊断,至于为什么能产生这样的信息未必明了。其三,利用物理因素进行治疗时,一般只知道某种因素或方法有疗效或只会治疗操作,对其疗效产生的物理机理或不知或不全知。这些表明:一般临床医生的物理知识还只是经验性的,并未上升到理论。但一直以来临床医生就依赖这样的经验知识不也诊治好许许多多疾病?其中许许多多不也成为专家、主任和教授等高级医生?这只能说要求不高时,医生不一定非要多么宽深扎实的物理和生物物理理论功底才能行医。事实上临床教师,甚至生理学教师课堂讲授和相关医学书籍对许多涉及物理的问题也只讲现象,并未从物理、生物物理理论上把产生现象的缘由阐明清楚,仍然只停留在经验知识层面上。学生也只能承认如此,达不到理论认识的高度。这样行医必然缺乏物理、生物物理理论指导,对诊治涉及物理问题的疾病往往思维明晰不起来,只能凭经验了。按以上所述,医生所需物理、生物物理知识的宽深程度伸缩性很大,高则要求具有较宽深扎实的功底,能适应前面提及的四个需要,成为物理理论型医生;低则只要求具备中学物理基础,对行医过程中遇到涉及物理的问题能有所了解,成为物理经验型医生。

3.2对学生的物理要求依培养目标而定

就原则而言,对物理课的要求和学时安排都是由决策者根据各自专业培养目标的需要而确定的。但实际决定时必然受到决策者对物理、生物物理在专业中的作用和地位;医生所需物理、生物物理宽窄深浅的认识程度的影响。鉴于各院校决策者的这种认识难免差异,医生应具备的物理、生物物理的宽深程度伸缩性又很大,不同档次院校培养目标显然不同,导致其物理课学时明显不同。一流名校为八九十学时以上。二流省(市区)属医科大学为六七十学时。三四十学时以下的出自三流学院,除去10来学时的实验课,还能比高中物理加深拓宽多少内容呢?据悉,还有学院把这门课改为任意选修课,选修者不到5%,等同于取消。不排除有些院校对物理、生物物理在专业中到底能发挥怎样的作用,需要安排多少学时为宜,并未作深入的调查研究,其学时数是随意或参照同档次院校而确定的,带有一定盲目性。巧的是各院校安排学时多少与其在人们心目中的地位高低是相吻合的。总之,鉴于医生所需物理、生物物理的宽深程度伸缩性很大,对各院校的学时安排不必厚非。

4改革临床医学专业物理教学内容

4.1改革目标

无论培养物理理论型还是物理经验型医生,只要开设物理课就应该改革纯物理的教学内容。一直以来绝大多数院校都只开物理课,讲授纯物理知识,丝毫不结合讲授医学所涉及的物理问题———医学物理学问题。其结果必然导致:无的放矢,所学纯物理知识不会应用,学而用不上等于不学;不仅使学生得不到把物理知识应用于阐明医学物理学问题的训练,还会造成医学物理学知识断层,很难适应前面提及的四个需要;使学生看不到所学知识的应用情境,使历届学生产生“物理无用论”,求知欲望低,学习不使劲,所学知识似懂非懂,很难用于理解学医和行医过程中遇到的物理问题。改革目的:必须破除思想上长期形成的只讲授纯物理知识,丝毫不与医学中的应用相结合,改革也只增删纯物理知识,丝毫不纳入最为实用的医学物理内容的定势思维,克服过去教学内容脱离医学实际的现象。安排适当的学时数,以临床常涉及的医学物理学内容为主,辅以必要的物理学基础,形成新的教学内容体系,以适应临床医学较高要求的需要,较好发挥物理、医学物理在临床医学中应有的作用。

4.2改革途径之一

没有医学物理学解决不了医学中涉及物理的问题。不开这门课就如同过河断了桥或知识断了层,物理学很难跨越断桥或断层直接阐明医学中涉及物理 的问题。开物理课主要为学习、运用医学物理学打基础。只开前者而不开后者就是无的放矢。物理学与化学,医学物理学与生物化学在医学中的作用与地位十分相似。设想只讲授化学知识而不讲授生物化学知识,学生能掌握医学中涉及化学的知识吗?有条件的应该开设物理和医学物理两门课,实现基础知识与应用知识较完美的结合。这应该是物理教学内容改革的首选途径。

4.3改革途径之二

对于不便把物理课和医学物理课分开开设的院校可以把两者合拼开出。以临床常涉及的医学物理知识为主,辅以相关物理基础。这门教材也可称为医学物理学[2]。学时多少都可以开。这样就把基础理论与医学应用有机结合起来,做到有的放矢,学以致用,使学生学习积极性增强,学习效果提高,知识结构改善,增进其解决实际问题的能力。

5改革困难所在

5.1缺乏阐明医学物理问题的知识

要把临床医学常涉及的物理问题纳入教材并非易事。这些问题许多尚未能从理论上获得阐明或者透彻阐明,还有待研究解决,构建起这些问题的较完整的理论知识,否则无多少临床常涉及的物理问题可讲授。不信,可从三个方面考察:其一,查阅生理学、心血管内科学等医学基础和临床书籍;其二,听听医学基础和临床教师讲课。书中所写,教师所讲,涉及物理的许多问题都只陈述现象,或借实验数据、图表阐明,或笼统、粗略交代,或打比喻解释,甚至含糊讲授。这些充其量说也不过是医学物理学的经验层面上的知识,未能从本质上,机理上,亦即理论层面上阐明问题,回答不了为什么?其三,查阅期刊论文,可发现生物物理学的研究火热得很,很多,但属于临床医学常涉及的物理问题却很少。总不能教材所写,课堂所授结合医学的内容尽是经验知识吧?这就必须对寓于人体各脏器的临床医学常涉及的物理问题逐个加以研究,构建起阐明逐个问题的一系列理论,形成丰富的临床医学常涉及的医学物理学知识体系,可供选择讲授。要达到如此,要经历很长时间,付出许多艰辛劳作。秦任甲自上世纪80年代就开始这方面的研究,取得一系列论著成果。这还不够,得依靠同行广泛参与才能构建起这个知识体系。

5.2医学物理问题如何通俗化

科研构建起的医学物理的一系列论文形式的理论知识,还只是具备了课堂讲授的素材。必须按照教材而非一般参考书的要求,使复杂、繁琐、深奥、数学表达太深、医学基础要求太多等等而造成教师难以讲授,学生难以理解的内容尽可能通俗、简明、浅显、形象、直观,做到教师好教,学生好学。这些讲起来容易,面对一个个具体问题要加以处理好时一定会遇到不少具体困难的。只要充分发挥群体的智慧,不断深入探索,总有一天人们会造就一本内容丰富,基础和应用知识恰当结合,适用的开创性教材。

篇3

1.2教师教学模式固定化教师上课大部分还是采用老式的教学法,以教师讲授为主,照本宣科,致使学生觉得课上枯燥无味.另外,教师教学中教学大纲统一化,不同专业采用同一教学大纲,没有专业特色,与学生专业课课程结合不够紧密和充实,因此学生对大学物理课程兴趣不够.

1.3考评方式单一本校大学物理的考评方式基本是采用期末成绩为主,平时出勤和作业为辅的的方式.学生学部分还是以应试为向导,学习被动,没有深入领会到物理的奥妙.

2改革方向

为了解决教学中遇到的这些问题,针对独立学院特色,大学物理改革可以从以下几方面入手.

2.1不同专业区分对待,应制定不同的教学大纲大学物理涵盖的内容是非常广泛的,包括力学、热学、电磁学、波动光学和近代物理等五篇,如果要全部授予学生,学时往往不够,而且只授予学生点滴皮毛知识而已.教师应该深入各系进行调研,了解不同专业的需求.教学中做到心中有数,有针对性的授课.让学生深刻认识到大学物理有本专业的特色,为他以后的专业课学习以及之后的工作有所准备.比如对于机械类专业,跟物理紧密相关的专业课程有“理论力学”“结构力学”“工程力学”等,对于他们大学物理教授时应重点放在力学和热学篇章,如质点运动学、牛顿运动定律、功和能、动量、刚体定轴转动、机械振动、热学等.教师在授课时就应该多注重力学的分析和计算,并且多举一些跟专业相关的例子,如飞轮、皮带轮、滑轮的转动问题,桥梁结构的承重、钢架的频率和周期等.而对于电子信息类专业,后续的专业课程里“电路分析”“电子技术”跟物理关联较大,对于他们大学物理教授时应重点放在电磁学篇章,并多介绍相关的科研新进展,以增强学生对大学物理的兴趣.同时,增设电磁波的知识点并将其作为重点介绍,为后续专业课程电磁场与电磁波做好准备.

2.2物理理论与实验教学结合大学物理是一门实验性的科学,很多物理定律都是实验总结得到的.但是很多学校的大学物理理论课和实验课是分开设置的两门课,由不同的教研室不同的老师教授.这样的教学就有可能使得理论和实验相脱节.应该加强理论课和实验课的统一,或者直接由同一部门来授课.有些比较复杂的实验在实验室操作,而有些仪器比较简单的实验可以直接搬到教室穿插在理论课上进行演示.建议可以学习麻省理工学院的WalterLewin教授在公开课《电和磁》课上的的授课方式,用直观的实验来演示复杂深刻的物理原理,使得课程具有启发性和趣味性.比如,静电屏蔽、光的偏振、驻波等都可以穿插在理论课上进行演示.这样不仅可以化抽象为具体,学生亲眼看到,甚至亲自参与验证,对定理的理解会更加深刻,同时可以提高学生的学习兴趣,激发他们的科研兴趣,培养创新意识.

2.3将物理理论和现实生活和社会实际结合起来物理学并不是一堆枯燥的定理和公式堆砌起来的学科,它反映的是自然界万物的规律,是一门和生活息息相关的学科.物理课程改革要强调“从生活走向物理,从物理走向社会”,即注重与社会实际和生活实际相联系.而物理教师就可以起到这个桥梁的作用,教师在上课时,要特别注意将物理内容和实际生活的应用联系起来介绍,激发学生学习兴趣.比如,讲到涡流时,就可以举电磁炉、涡流探伤、探测金属(安检、扫雷)等例子;讲到角动量守恒定律的应用时,就可以举跳水运动员空中翻转、花样滑冰运动员旋转、舞蹈演员旋转等例子;讲到热学循环时,就可以介绍冰箱、空调的工作原理等.把物理理论知识跟生活社会实际结合起来,学生能够深切体会到物理是一门很有用的学科,变被动接受知识为主动学习.

2.4考评多样化,注重素质教育对学生大学物理课程的考评单纯采用平时作业和期末考试的形式的话,不能完全反映学生对物理知识的掌握和应用程度,这种考核方法不适应素质教育的要求.比较全面而科学的评价标准应该包括对知识的理解、应用和创新.教师可在传统考核方式的基础上增设其他比较开放、灵活的考核方式,比如李元杰推荐的数字物理教学方法。可根据学生专业特点在开学初开设一些小课题或者小应用公布给学生选做,学生可以自由组队选题,也可以个人单独选题.让学生自己检索资料、分析原理,并以科技论文或课件的形式在课上跟大家回报分享和讨论,有些模型还可以做成动画的形式演示出来给大家看.这样不仅可以开阔学生的视野和思路,也能培养学生自学能力、科研能力和创新能力.这样的考核方式还可以让师生很好的互动起来,并让学生充分参与到课堂教学上来,同时锻炼了他们的团队协作精神和社会实践能力.课题的成果最终计入本门课程总成绩中,教师评价的话也可以灵活一点,直接让全班学生现场评分.

2.5成立物理兴趣小组大学物理作为一门公共课,一般都是大班授课,很多学生有问题也很难全部在课上反应给老师,师生互动也会受到限制.为了解决这个问题,可以在班里或者整个学校内成立物理兴趣小组,也可以建立相关的物理网站和论坛,大家可以聚在一起或者在论坛上讨论问题,各抒己见.老师可以定期参与到兴趣小组的讨论中,并随时到物理论坛上跟同学交流讨论.同时还可以把课件、题库、演示实验、上课视频、物理学史介绍等资料上传到网上,还可以设置网上辅导、在线提问等模块,以弥补课上教学课时的限制,同时扩充大家的视野,拉近师生距离.只有当学生和老师之间建立起个人的直接联系的情况下———这时学生可以讨论概念、思考问题和讨论问题———才能达到最好的教学效果.

2.6承上启下大学物理教学要做到承上启下.所谓的承上,指的是要结合中学物理和高等数学的基础.首先要让学生理解大学物理不是中学物理的简单重复,大学物理比中学物理要更加广博,内容也更加深奥.教师在授课过程中,要与已经学过的中学物理内容联系起来,进行比较和区别,引导学生应用新的思维,采用新的方法来解决大学物理问题.其次要让学生明白高等数学与大学物理的密切联系,在大学物理授课之前,都要先了解学生的高等数学基础,对于高数基础比较薄弱的,还要适当的给他们补习高数的知识,特别是矢量代数和微积分运算.大学物理教学也要做到启下,即为学生后续的专业学习和工作服务,让学生认识到大学物理的意义所在.

篇4

管理学中的理论丛林

从第二次世界大战至今,世界一直都处于相对平稳的发展时期,虽然局部战争常有,但相对和平的世界环境却给人们带来了休养生息、增长与发展的机会。科学技术的快速发展大大加速了全球经济的增长,与此同时,各类组织迅速发展,社会的进步对诸如企业、政府、各类非营利组织等的管理提出了更高的要求,各类组织对管理人才的需求也相应扩大,培养管理人才的各类管理学院也纷纷成立,并扩大了培养人才的规模。面对着巨大的需求,特别是面对着不同行业、不同需求层次的需要,过去相对简单的管理理论似乎就有些力不从心了。管理理论再次受到重大的挑战,于是新的一轮发展又开始到来,现代管理理论出现了。

人们一般认为,现代管理理论是继科学管理理论、行为科学管理理论出现之后,西方管理理论和思想发展的第三个阶段,特指第二次世界大战以后出现的一系列学派。与前两个阶段相比,这一阶段的最大特点是,学派林立,新的管理理论、思想、方法不断涌现。在这个阶段,心理学家、社会学家、人类学家、社会测量学家、经济学家、数学家、物理学家、生物学家、政治科学家、企业管理学者、实践操作的经理人员都加入了管理理论研究这个领域,从而形成了管理学的空前繁荣的景象。美国著名的管理学专家孔茨(Harold Koontz)是最早认识到“管理丛林”给人们带来了巨大的分歧与混乱的人,并主张清理管理理论丛林,在丛林中开辟出一条道路来。为此,他在1961年发表了著名的论文《管理理论的丛林》,将这种现象称为“管理理论的丛林”。

在孔茨的论文中,根据他的观察,依据基础理论的差异,他将上世纪60年代的管理理论分为了6大管理理论学派。1980年,孔茨再次发表了论文《再论管理理论的丛林》,而在该论文中,孔茨把当时发展更为纷繁众多的重要管理学派分为了11个。孔茨对于管理理论出现丛林现象,彼此滋蔓、相互缠绕的现象并不满意,因此,他分析了造成此种“丛林”现象产生的主要原因和走出管理学丛林的方法:一是澄清管理学的语意的丛林;二是对知识主体的定义;三是管理与其他学科的整合;四是对管理学中的许多的基本原理进行提炼与验证。应该说,孔茨开创性的工作引起了人们对管理学主线研究的普遍兴趣与重视,其学派划分的方法也已成为归纳现代管理理论的样本。可是我们按照孔茨所说的走出管理学丛林的方法,却至今都没有走出管理学理论的丛林。

应该承认,孔茨综合现代管理理论的做法与努力,自有其积极的意义。世界是一个统一的整体,尽管当前对世界的统一性有人持极端怀疑的观点,但获得对世界的统一性认识毕竟是人类永恒的追求。哲学的观点也认为,即世界的各个不同领域都受同样的基本法则和原理所支配。对于这一点,爱因斯坦毕生所追求与坚信的“万有理论”便是最好的证明。所以,站在今天的视角,从各个学科发展与演化的角度,到底应该怎样看待管理学发展的丛林问题呢?

由物理学中万有理论而引发的思考

在谈论管理学丛林问题之前,先来了解一下物理学领域对“万有理论”、“大一统观点”、“超弦理论”的发展与认识历程。看是否能从中得到点关于怎样理解管理学丛林问题的思考与启示。

自从爱因斯坦建立了令世人瞩目的相对论理论以后,他自己本人却并没有停止向物理学更高领域前进的步伐。他想把当时已知的两种相互作用――万有引力和电磁力在一个数学框架中统一起来,建立宇宙的总公式――万有理论。因为爱因斯坦坚信同一个宇宙中两个不同的作用力应该有着它们相同的起源。在物理学的发展过程中,也经历过数次历史性的统一,如牛顿发现天体的运行和地球上运动的物体遵从相同的运动力学原理和引力定律;爱因斯坦则建立起了时空、运动和引力之间的联系,并统一了质量和能量,建立了质能互换公式。按理说,万有引力和电磁力应该可以联系在一起,它们应该是同一个原理下的两个不同的方面,就像电和磁、能量和质量一样。但从实际看来,要把这两种相距甚远的力统一起来,谈何容易。引力是两个大质量物体之间的相互吸引,大质量物体造成空间弯曲而产生的;而电磁力则是由粒子的电荷产生的,显然,把这样两种力联系起来是不可思议的事。因此,引力和电磁力之间似乎毫无联系可言。所以,当时除了爱因斯坦也没有哪个物理学家敢于在这个超级难题上空耗精力。当然,最终的结果历史也早已向我们讲述,在爱因斯坦一次又一次努力归于失败以后,直至他生命的最后一刻,他都在无望地寻找着引力场和电磁场统一的理论,最终抱憾离开人世。

回顾历史,爱因斯坦的失败也许就可以理解,似乎是注定的。实际上自然界还存在另外两种相互作用力―弱力和强力,而在当时的物理学界对这两种力却尚不知晓。强力即存在于原子核内的把原子核内的中子和带正电荷的质子结合在一起的力(如果没有强力,它们因同性相斥的原理而相互弹开);而弱力则是改变粒子而不是吸引或分开粒子(如引起原子核的放射性衰变等)。所以,当有四种相互作用力被人们认知后,寻找这四种力新的大统一的任务就摆在了现代物理学家面前。

美国物理学家斯蒂芬・温伯格和阿布杜斯・萨拉姆在1967年首次将这人类一直所追求的“大统一理论”目标向前推进了一大步。他们从量子理论入手,成功的使电磁力与弱力的数学表达结合到一个统一的数学表达中。此后不久,物理学家便发现在更小的尺度上10-17厘米左右,电磁力、弱力和强力将得到统一,这意味着“大统一理论”又向前迈了一大步。现在我们可以知道,自然界中总共四种相互作用力除万有引力之外的三种都可由量子理论来描述和统一。那么引力呢?在空间尺度继续减小时,物理学家们又发现了转折点:我们试想把一个粒子的运动控制在一个更小的空间内时,那么根据量子力学法则,粒子的运动将加剧,动能将增加,也就是说,越小的距离就有越高的能量,也就有越大的质量,此时引力又回来了!并且逐渐增加到与其它力一样大。

前面所说的,电磁力和弱力在较高的能量上实现统一,其实这较高能量也是在较小空间中实现的;然后强力又和电-弱力在一个更小空间中的更高能量上实现了统一。以此推论的设想,最弱的引力应该会在最小的空间中与其它三种力实现统一。空间的最小尺度结构是普朗克长度(10-33厘米)。在普朗克长度下,所有的力归于统一。电磁力-弱力统一所需的能量是现在可及的范围,因此这个理论得到了证实。而除引力外其它三种力统一所需的能量目前就无法达到了,目前人类所造的最大的粒子加速器似乎也达不到那么大的能量;在普朗克长度下,超高能量使空间的性质也不可思议地改变了!相对论和量子理论这两大现代物理学支柱在这个尺度下全部失效!在这里,物理学家认为新的理论将把相对论和量子理论统一起来。

这个新的理论就是目前物理学领域最流行的“超弦理论”。该理论认为在普朗克长度大小的空间里有一根细细的超弦在振动,它的振动产生了数百种基本粒子和四种力的相互作用力。该理论也是目前唯一能将20世纪两大物理支柱量子力学和广义相对论有机结合起来,从理论上实现了包括引力在内的四种相互作用力的统一。超弦理论的提出无疑是了不起的思想火花,但同时也向人们提出了更大的挑战。超弦理论如果成功,它一定会导致一场人类对时空本质、时空维数、相互作用本质、暗能量本质等革命性的认识,其深刻程度不亚于上个世纪的两场物理学革命:量子力学和广义相对论。

如何看待管理学中的理论丛林问题

首先,从物理学的发展历程来看,物理学中的万有引力,电磁力,强力、弱力等物理学分支领域的发展都是为了解决人们在日常生活中所碰到的实际问题而产生和发展的。所以,我们今天看待管理学丛林问题也应该认识到其存在有其合理性的一面,从人类解决问题的思维方式与思维惯性的角度去看待管理学丛林中的各个学派林立的问题。其实,我们是否可以把这个问题理解为管理学丛林理论中的各个学派的产生和发展都是人类在其发展与进步的各个不同历史时期为解决管理中的实际问题,从不同学科和角度所发展起来的理论学派。它们都是管理学理论发展历程中的必然结果。

其次,从不同理论学派的比较研究我们也可以发现,虽然不同的理论学派之间视角不同、观点各异,但针对某些问题,大部分理论学派依然存在着一定的共同点。例如,企业的生存取决于对外部需求和对期望的回应,企业必须适应环境的需要;企业与环境存在紧密的联系;企业寻求外部环境的稳定和可预测性;企业是利益驱动的等等。因此,这样就说明了前面的观点,即各个理论学派都是为了解决人们在管理实践中遇到的实际问题而产生和发展起来的。为了解决同一个实践中遇到的管理问题,各个学派从各自的学科背景出发给出了不同的解释,但目的都是为了解决问题。所以,是否可以认为,管理学的丛林问题,就像是一个物体前围着的许多面镜子,从镜子中看到的都是同一个物体,但由于视觉角度的不同,我们发现每一面镜子中的物体却又都不相同。也就是说,管理学丛林是“同一个物体的不同表现形式”。因此,它们都应该是合理的,这里也印证了前面的观点,即存在自有其合理性的问题。所以,是否这种思维认识也可以为我们进一步的寻求管理学丛林的融合提供一个视角与方向?

理论丛林的发展与未来

谈到管理学理论丛林的发展与未来来看,笔者还是比较同意融合的观点。从理论发展的一般规律来看,管理学理论中的丛林融合问题势在必行,也有其的必要性和合理性,这一点从物理学的万有理论可以很明显的看出。但从现在理论界所普遍认为可行的融合途径来看,可归结为两种途径。第一,不同理论的解构与融合。第二,不同理论比较和整理。而这两种融合的方式都是在理论本身层面的融合,有其局限性。不能做到完全的融合。

再次回到物理学领域来看,从物理学领域的发展历程研究可以发现,电磁力、引力、弱力、强力有可能在最小的空间普朗克长度(10-33厘米)得到统一,这也标志着物理学的两大支柱理论量子力学和广义相对论的融合和新理论超弦理论的诞生。所以是否可以得到一点理论融合的启示,看待管理学丛林问题,能否回归到最本质与根源的角度考虑各个理论学派的融合问题,即从“环境”本身入手考虑管理学各个学派的融合问题?如国内学者赵锡斌教授所著的《企业环境分析与调适―理论与方法》,就把环境作为一个整体研究企业与环境关系的问题等。

所以,如何看待管理学丛林的融合问题,我们能否借鉴物理学理论中的两大支柱理论(广义相对论和量子理论)的融合假设与经验,换个方向向后看,从本质与最原始的根源出发,从环境这个最大、最本质的要素出发,把环境作为内生变量研究企业问题,也许是解决管理学丛林问题的又一出路。

参考文献:

1.赵锡斌著.企业环境分析与调适―理论与方法.中国社会科学出版社,2007

2.费显政.企业与环境互动关系研究.武汉大学博士学位论文,2005

3.宁波.超弦M理论中一些非微扰性质的研究.中国科技大学博士学位论文,2009

篇5

1.星系光谱红移原因

20世纪初,当人们用望远镜观测银河系以外的星系时,发现绝大多数星系光谱都有红移现象,并且越远的星系其光谱红移值越大。有人认为星系光谱红移是因为星系正在离我们远去,从而得出这样的结论:所有的星系都是以我们银河系为中心向外爆炸后形成的,越远的星系离开我们的速度也越大;宇宙中所有的星系都在彼此分离,并且越远的星系相互分离的速度越大。值得一提的是,我们银河系正处在爆炸中心,足以值得我们自豪的是:银河系是宇宙中独一无二的星系—因为它是宇宙的中心。更让我们惊奇的是,银河系自身也在不断运动着,然而无论它运动到哪里,它始终是银河系的中心。我们解释不了银河系为什么是宇宙的中心,因为银河系也和其它星系一样,并沒有什么特别之处。有人以为,银河系处于宇宙的中心是一个巧合,虽然银河系从上个世纪至今一直在不断运动,但它走过的距离和整个宇宙空间的尺寸比起来是微不足道的,所以银河系目前仍然处在宇宙的中心,这种看法未免有些牵强。因为人们在观测近处的星系时,发现近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系正在以某一个中心为起点向外膨胀。因此“银河中心说”颇值得怀疑。还有的人虽然承认宇宙大爆炸假说,但不承认“银河中心说”,他们不认为银河系是宇宙的中心。这种观点同样也是站不住脚的。我们可以这样分析:如果宇宙大爆炸假说是正确的,那么宇宙中所有的星系必定在以某一个中心为起点向外膨胀,星系之间彼此互相分离。目前我们观测到近处的星系并没有相互分离的趋势,并且也没有证据表明近处的星系在以某一个中心为起点向外膨胀。倘若我们不是在宇宙的中心而是处于偏离宇宙中心的任一点处,因为在我们周围的星系都没有相互分离的趋势,也没有以某一个中心为起点向外膨胀,这样一来,倘若宇宙中任一点处的星系都没有相互分离的趋势,那么整个宇宙也不可能在膨胀,即宇宙大爆炸假说是错误的。

前事不忘,后事之师。人类文明发展到今天,“地心说”和“日心说”都被证明是为科学,难道我们还要重蹈覆辙提出“银河中心说”吗?愚以为,我们应当承认这样一个假设,那就是:银河系按目前的速度运动下去,100万年,100亿年以后,我们仍然会发现自己处在宇宙的“中心”,无论我们处在宇宙的任何地方,中心也好,边缘也好,我们都会发现宇宙中越远的星系光谱红移值也越大,就好象我们处在宇宙的“中心”一样。事实上,这个“中心”是光子在宇宙空间中的传播特性引起我们视觉上的错误,“眼见”未必“为实”,我们不能过分相信“眼见”的东西。

红移现象是否由观测者自身的运动引起的呢?不是的!如果红移现象是由观测者自身的运动引起的,那么我们将观测到与我们相向运动的星系光谱将发生蓝移而与我们相背运动的星系光谱将发生红移,然而事实并非如此。再者,虽然我们“坐地日行八万里”,但这个速度和光速比起来实在算不了什么,不至于影响观测结果。换句话说,我们在观测星系红移值时,观测者自身运动速度的影响可以忽略不计。红移现象说明光子与观察者之间的相对速度变小了。产生这种情况有两种可能:第一是星系正离我们远去,第二是光子在穿越宇宙空间时速度变小了。这两种情况都可能导致星系光谱红移。我们认为导致星系光谱红移的原因是后者。光子在穿越宇宙空间时会与各种粒子(比如引力子)相互作用从而使其速度逐渐减小。当然单个粒子与光子作用时间极短,引起光子速度的改变量也是极其微小的,以致于我们观测不到。随着光子穿越宇宙空间距离的增大,与光子作用的粒子数目也逐渐增多,光子速度的减小量也越明显。可以推测:光子在穿越一定的宇宙空间距离后速度将减小到零。由于光子速度为零故相对我们的能量也为零,这样的光子当然不会被我们观测到。可见用光学法观测宇宙空间尺度时有一个极限:150亿光年(也有人认为是200亿光年)。在这个尺度以外的星系发出的光子由于在没有到达地球时速度已经降低到零,所以这样的星系不可能被我们观测到,至少目前还没有办法观测到。也有人认为,红移现象是由光子频率减小引起的,即认同第一种可能:认为星系正离我们远去。这种观点听起来很有道理,却经不起分析。我们知道,星系离我们远去时会引起光子频率减小,但各种不同频率光子的频率减小量应该相同,反应在星系光谱上,各种不同频率光子的红移量应该相同。因此,不论星系离我们多远,星系光谱虽然发生红移但不应该变宽,但事实上远处星系光谱却被拉宽了(星系光谱不会变宽是指星系光谱中任意两条谱线的距离恒定,虽然它们都发生了红移,但它们移动的距离相等,因此各谱线之间的距离不变)。而且能量越小的光子红移值越大,能量越大的光子红移值越小。不同频率光子的频率减小量不同,说明红移现象不是由光子频率减小引起的。即第一种可能站不住脚。假设宇宙中所有的星系都是静止的,宇宙空间中的物质是均匀分布的,那么光子穿越宇宙空间时的速度衰减量仅与其通过的空间距离有关。光子穿越的宇宙空间越长,其速度衰减量也越大。这样星系光谱的红移值仅与其离我们的距离有关,离我们越远的星系红移值也越大,就好象越远的星系正在以越快的速度离开我们一样。这也正是哈勃定律所揭示的:星系远离银河系的速度ν与距离成正比,ν=H*D,其中H为哈勃常数。实际上宇宙中各星系都在不断运动着,宇宙空间中的物质也并非均匀分布的,造成星系光谱红移的原因也很多,所以光谱的实际红移值要考虑许多情况。

2.谱线红移与光子速度衰减

光子与宇宙空间中的粒子是如何作用的呢?可以设想,宇宙空间中存在许多比光子质量小得多的粒子(比如引力子)。由于光子在与粒子作用后仍然是光子,可以认为光子仅与粒子发生了弹性碰撞。既然是弹性碰撞,我们知道,二者质量越接近光子损失的能量越大。由于光子的质量远远大于引力子的质量,所以在不同频率(质量)的光子中,频率(质量)较小的光子损失的能量较大。于是经过同一段宇宙空间以后,在不同频率(质量)的光子中,频率(质量)较大的光子损失的能量较少,频率(质量)较小的光子损失的能量较大,例如红光损失的能量比紫光损失的能量多。由于不同频率(质量)的光子在宇宙空间运动时都损失了能量,这样整个星系的光谱将向红端移动,但由于红光损失的能量多向红端移动的距离大,而紫光损失的能量少向红端移动的距离小,于是整个光谱被“拉宽”了。如果不同频率(质量)光子的能量损失率相同,虽然它们都产生红移,但是它们红移的距离相等,这样星系光谱虽存在红移但不会被“拉宽”,星系光谱存在红移而且被“拉宽”说明两点:第一光子在穿越宇宙空间时速度会衰减,第二不同频率(质量)的光子速度衰减率不同。显然,由于不同频率(质量)光子的能量损失率不同,各种光子的速度衰减量差异将随着空间距离的增加而增大,这样星系光谱被“拉宽”的程度与其离我们的距离有关,离我们越远的星系其光谱被拉宽的程度也越大。另外,星系光谱被拉宽时还有一个特点,那就是能量大的光子被拉宽的程度小,能量小的光子被拉宽的程度大。也就是说,越靠近红端光谱被拉宽的程度越大,越靠近紫端光谱被拉宽的程度越小。考虑到星系引力场的影响,实际情况还要复杂一些。

上面我们谈到光子在宇宙空间运动时速度会逐渐减小,这和人们熟悉的“真空中光速不变”的看法相矛盾。实际上宇宙空间并非真空,即使宇宙空间是绝对真空它还存在引力场。换句话说,光子在真空中速度变不变的问题,实际上是光子受不受引力作用的问题。如果光子不受引力作用,那么真空中光速不变,但这样一来不论星体的引力再强,对光子都没有影响,从而宇宙中也不可能产生“黑洞”了,而现在的黑洞理论基础将不复存在;假如光子受引力作用,则就不应该有“真空中光速不变”的结论。有人对此这样解释:宇宙空间中各星体的引力分布在不同的方向上,它们的作用力相互抵消,因此光子在宇宙空间中的速度不变。这种解释也是站不住脚的。我们知道在太阳系内,引力的方向是指向太阳的;在银河系里引力的方向是指向银河系中心的,所以局部的宇宙空间引力总是有一定的方向的。我们认为光子作为一种物质实体,它的速度并非一成不变的。无论在真空中还是在介质中,它的运动速度都会越来越小。所以,光速不变只是一个神话,光年也不能作为距离单位,因为光子在前一年中走过的路程总比后一年中走过的路程长。

3.光子在引力场中的运动

星光在通过太阳附近时会受到太阳引力的作用而发生弯曲,说明光子也会受到引力的作用。其实光子也有质量,当然会受到引力作用了。通常我们认为:引力场中物质的加速度仅与引力场的强弱有关,而与物质的质量无关。如在地球表面不管是1吨的物体还是1千克的物体,其每秒获得的速度增量都是9.8米/秒。但引力场中光子的加速度与其质量有关:质量越小的光子加速度越大,质量越大的光子加速度越小。既然光子也受引力作用,那么很自然,光子在离开引力场时必然会被减速,在进入引力场时必然会被加速,在垂直于引力方向(或其它方向)运动时受引力影响其运动轨迹也会发生变化。既然光子在离开引力场时会被减速,而且质量越小的光子速度衰减量也越大,那么星体发出的不同频率的光子就有不同的速度。一般而言,星体引力越强,其发出的光速度也越小;当星体引力足够强时甚至可能使一部分光子摆脱不了星体引力的束缚,产生黑洞现象。对同一星体而言,在它发出的光中,质量大的光子速度大,到达地球的时间也越早;质量小的光子速度小,到达地球的时间也越晚。我们通常认为不同频率的光同时到达地球,这其实是错误的。关于这一点我们可以用实验来证实。当星体发生爆发或其它异常时,总是能量较大的X射线或γ射线先被我们观测到,其次才是可见光,然后才是红外线。虽然理论上如此,但在实际观测中总有这样或那样的因素及别的解释使大部分人不相信这一点。如果条件允许的话,我们可以用一个实验来证实我们的观点。在离我们很远的宇宙飞船上以两种不同能量的光子同时发出一种信号,这两种光子的能量差异越大它们到达地球的时间差异也越大。实际上考虑到不同能量的光子在同一介质中的传播速度不同,我们应该想到不同频率的光子在真空中的传播速度也不相同。由于光子在穿越宇宙空间时速度逐渐减小,并且质量小的光子速度衰减得快,可以想象,在经过一段相当长的距离以后,质量小的光子速度已经衰减到零而质量大的光子速度不为零,这样我们就只能观测到质量大的光子。若星体离我们更远一些,则我们只能观测到质量更大的光子……,随着空间距离的增大,最终我们将看不到远处星体发出的光,这个距离就是我们现在认为的宇宙极限--150亿光年。人们在观测宇宙时总有一个错误想法:由于真空中光速不变,所以不管离我们多远的星系,只要足够亮就可以被我们发现。事实上宇宙空间并非真空,光子在其中穿行时速度会逐渐减小,所以任何星系发出的光只能传播一定的距离,也正因为如此,不管我们在宇宙中任何地方,始终只能看到有限的宇宙空间。换句话说,目前我们能够观测到的宇宙空间的尺度实际上是光子在宇宙空间中传播的最远距离。

4.光子在宇宙空间中的运动

实际上光子在宇宙空间运动时并不总是做减速运动。在光子离开星体时它要挣脱引力的束缚而作减速运动,当它脱离星体的引力场在空间自由运动时,也作减速运动;如果它进入另一个星体的引力场向着该星体运动时,就会在该星体的引力作用下作加速运动。光子就这样减速--加速--减速--加速……不停地穿越宇宙空间,直到其速度为零。倘若星体离我们很近而引力又很小,从该星体发出的光速度衰减量不大,但进入银河系时光子的速度增加量有可能很大,当光子的速度增加量大于其速度衰减量,或者说大于刚离开星体表面时的速度,在我们看来该星体光谱就发生了蓝移。忽略距离因素,由于星体自身在不断运动,这样它相对银河系引力场的强弱也可能发生变化,所以其光谱也可能有规律的发生红移或蓝移。通常情况下,宇宙空间对光子的减速作用总大于加速作用,所以星系的光谱以红移的居多。

光子在引力场中速度变化的问题许多人恐怕不相信也不能理解。一些人认为光子没有静质量,况且光子是一种波,在引力场中的运动规律和宏观物质不同。其实持这种观点的人把光子神话了,弄的不可捉摸了。现在大多数人都接受了“黑洞”的概念,认为当一个星体的引力足够强时甚至连光子也逃脱不了,因而是漆黑的一团。这里实际上指出了光子也会受到引力作用。既然光子也受引力作用,那么它在引力场中的加速与减速自然就可以理解了。稍后我们将看到,引力作用是造成衍射现象的重要因素之一。

5.类星体

一个很明显的事实是:宇宙中离我们越远的星体能量越大,通常类星体离我们的距离都在10亿光年以上,并且远处星体发出的光中能量较大的光子占有很大的成分。有人把这作为支持宇宙大爆炸的依据,认为:若宇宙中物质是均匀分布的话,则在我们银河系或其周围就应该有象类星体这样的高能星体存在。为什么我们在近处发现不了类星体呢?一些人看见远处的星体发出的光中含有大量的X射线或γ射线成分,就推测此类星体存在着目前尚不为我们知道的能量源。这种观点未免有些片面。实际上宇宙中大部分恒星的能量都差不多,能量特别大的和能量特别小的只是极少数,恒星的能量呈中间多、两头少的分布态势。从远处的恒星发出的光,在经过漫长的宇宙空间以后,能量小的光子由于速度衰减率大而停了下来,不被我们观测到;只有X射线和γ射线才能到达地球。所以我们观测到该星体的光子中,X射线和γ射线占有很大的成分,以致于我们误认为这类星体只向外发出X射线和γ射线。实际上这类星体也向外发射可见光和红外线,但是可见光和红外线由于速度衰减到零故我们观测不到。这就导致我们观测到极远处的星体,其颜色通常是蓝色或紫色,事实上可能和该星体的真实颜色相差极大。这说明我们看到的星体的颜色未必就是星体的真实颜色,星体的颜色是由其自身能量状况和离我们的距离决定的,星体离我们的距离越大往往使其颜色中的蓝色和紫色成分增加。另外,我们认为类星体离我们非常远,是因为类星体的红移值很大。也就是说我们没有直接证据表明类星体真的离我们很远。考虑到光子在引力场中的运动,我们知道:当星体的引力足够大时,其发出的光子速度衰减量也较大,因而该星体的光谱也将发生较大的红移。这就是说,引力因素也可以使星系光谱产生红移。倘若星体引力足够大又离我们很近,由于星体红移值较大,往往导致我们认为该星体离我们很远。举例来说,假设有一个引力较大的星体处于银河系的中心,由于该星体引力很强,导致它发出的光子速度衰减量极大,我们在观测其光谱时就会观测到很大的红移值,根据该星体很大的红移值我们就会认为它离我们非常遥远,绝不会想到它就在银河系中心。

如何解释类星体离我们那么远而其发射的X射线和γ射线又是如此强烈呢?只有两种可能。第一,类星体的能量非常大,向外发出的X射线和γ射线非常强;第二,类星体离我们并没有原先认为的那么远,类星体光谱的红移是由类星体的引力造成而并非由距离因素造成的。我们认为两种因素都有。因为如果类星体离我们非常远,那么我们观测到其向外发出的X射线或γ射线就不可能很强;倘若类星体的能量不是很大,它的引力场也不可能很强,不足以使其光谱产生较大的红移。这说明:星系光谱发生红移可能是距离因素造成的,也可能是引力因素造成的,红移值大的星体未必就离我们远。那么,如何区别星体的引力红移和距离红移呢?对观测者而言,由距离因素造成红移的星体发出的光不可能很强,而由引力因素造成红移的星体发出的光往往很强,特别是X射线或γ射线的成分多。类星体的发射光谱和吸收光谱的宽度不同,通常吸收光谱的宽度比发射光谱窄,为什么呢?我们知道,吸收光谱是由于光子经过大气后产生的,这说明类星体周围也存在气体。光子从高温星体内部发出以后,总会有一部分光子没有被气体吸收而直接射向宇宙空间,这些光子形成发射光谱;还有一部分光子在与气体作用后,频率(质量)大的光子损失的能量大,频率(质量)小的光子损失的能量小;光子离开类星体在宇宙空间中运动时,则是频率(质量)大的光子损失的能量小而频率(质量)小的光子损失的能量大,总的看来各种不同频率的光子速度差异减小,所以其光谱红移值也较发射光谱小。实际上类星体的吸收光谱还可能有几种不同的宽度。

6.黑洞与星体引力

最初在人们考虑黑洞时,认为它的引力强到连光子也逃脱不了,因而是漆黑的一团,黑洞是宇宙中物质的坟墓。后来人们认为黑洞可以向外发出X射线和γ射线。同样是光子,能量大的可以逃脱,能量小的逃脱不了,说明(黑洞的)引力对光子的作用是不一样的。事实上我们知道当星体的引力逐渐增强时,总是质量较小的光子逃脱不了,质量较大的光子则可以摆脱星体的引力,并不是所有的光子全部被吸入星体中。所以从这个意义上来说,狭义上的黑洞仅指引力强到可见光不能脱离的星体,即在可见光波段观测不到的星体;广义上的黑洞指引力强到使一部分光子不能脱离的星体,即在某一能量较小的波段观测不到的星体,这里广义上的黑洞甚至可能非常亮,可以被我们肉眼看到,但在红外线波段或能量更小的波段却观测不到。从理论上讲,“黑洞”并不黑,至少它可以向外发射X射线和γ射线或能量更高的光子,完全不向外抛射粒子的黑洞是不存在的。那么宇宙中黑洞存在吗?当然存在了。当星体离我们足够远,以致于该星体发出的红外线速度衰减为零而不被我们观测到时,它就像一个“黑洞”;若星体离我们再远一些,可见光不再为我们观测到,只能观测到X射线和γ射线,这时它就是漆黑的一团,成为名副其实的黑洞;而宇宙中150亿光年以外的星体对我们来说是完全彻底的黑洞,因为我们完全观测不到它们。除了因空间距离造成“黑洞”现象以外,星体的引力也可以造成黑洞现象。黑洞现象并不是我们原先想象的那样:“当星体的引力足够大时,所有的光子都被吸入星体中,整个星体变成黑暗的一团”。当星体的引力逐渐增大时,它对光子的束缚作用也逐渐增强。星体的引力足够大时,红外线光子将摆脱不了星体引力的束缚,而可见光、紫外线则可以摆脱星体引力的束缚;星体的引力再增大时,可见光将摆脱不了星体引力的束缚,而紫外线则可以摆脱星体引力的束缚;若星体的引力再增大,可能只有γ射线放出。应该明确指出:黑洞现象是与星系光谱的红移紧密相连的。若某一星体的光谱不存在红移现象,则它一定不是黑洞;若某一星体的光谱存在红移现象,则它可能是黑洞也可能是距离因素造成的。

总的来说,我们对黑洞的认识经历了三个阶段:第一阶段认为黑洞的引力足够强,所有的光子都不能摆脱黑洞的引力,因而整个星体是黑暗的一团;第二阶段认为黑洞可以向外发出强烈的X射线或γ射线,人们认识到黑洞的引力对不同能量光子的作用不同;第三阶段也就是现在正在探索的阶段。应该明确指出:与黑洞现象紧密联系的因素有两个,引力因素和距离因素。以往我们在考虑黑洞现象时往往只考虑引力因素而忽略了距离因素,这就导致我们认为整个宇宙空间仅有150亿光年,对150亿光年以外的宇宙空间,认为看不见的就是不存在的。

7.恒态宇宙

也许有人会问,既然光子的速度能够降低到零,那么宇宙中会不会堆积越来越多的光子呢?不会的!光子作为物质的一种存在方式,它不是永恒的,在一定条件下光子可以转化为别的物质,也就是说光子是有一定寿命的。任何一个光子不可能永远存在下去,它必将转化为别的物质形式。宇宙中的物质无时无刻不在运动,所以宇宙中不会堆积越来越多的光子。虽然我们目前并不知道光子是如何转化为别的物质的,但我们依然相信整个宇宙是稳定的、恒态的,而局部宇宙则可能是不稳定的,处于演化过程中的。同样的道理,整个宇宙也不会被光子均匀照亮。由于光子在宇宙空间中运动时速度逐渐减小,所以任何星体发出的光只能传播到有限远处。也正因为如此,我们所观测到的宇宙始终是有限的。如果想观测更远的宇宙空间,一个方法是派出宇宙飞船,另一个办法是在宇宙空间中建立许多中转站,在光信号速度未衰减到零以前接受、放大、转播它。理论上讲,只要中转站的数量足够多,我们就可以看见任意远处的宇宙空间。

8.浩瀚宇宙

假设我们能够乘座一艘高速飞行的宇宙飞船遨游太空,在刚离开地球时,我们可以观测到150亿光年的宇宙,离我们越远的星体其红移值也越大,远处的星体放出强烈的X射线或γ射线。随着我们飞行距离的增大,我们会发现银河系的红移值越来越大,并且其颜色逐渐偏蓝,而原先我们观测到呈蓝色或紫色的星体颜色逐渐偏红,最终银河系将消失在我们的视野之外。当我们飞到离银河系150亿光年的地方,我们发现展现在我们面前的宇宙范围仍然有150亿光年;而原先我们认为正在以很大速度分离的星体或膨胀的宇宙空间并没有膨胀。无论我们飞到哪里,始终只能看见150亿光年的宇宙空间,也始终能够看见150亿光年的宇宙空间,宇宙是无限的;并且我们始终是宇宙的“中心”,因为所有的星体看起来所有的星体都好象以我们为中心向外爆炸形成的一样,越远的星系(红移值越大)离开我们的速度也越大。我们认为,宇宙是无始无终的,物质的存在是永恒的,对某一特定的物质形态有其产生和消亡的过程,但整个宇宙不存在产生和消亡的过程,它是自始至终存在并且不会消亡的。同时也应该看到,宇宙是无限的,不会仅仅只有150亿光年的空间。

从上个世纪以来,人们已经探索到了上百亿光年的宇宙空间,然而这只不过是苍海一粟。也许还要几十年甚至上百年人类才能认识到宇宙的无限性,但只要天下有志之士携手合作,这一天定会早日到来。

二、浅谈光的衍射

通常情况下光总是直线传播。但当光线经过足够窄的窄缝时将形成明暗相间的衍射条纹。由于光子不带电,在电磁场中不偏转,所以光子的衍射不是电磁力作用的结果,而是引力子与光子作用产生的。光子与引力子作用不是一个简单的碰撞过程,而是一个极为复杂的过程。在光子与引力子相遇的一瞬间它们形成一个混合体,这就打破了结合前光子内部各部分的平衡,混合体内部存在着排斥力和凝聚力两种作用。若排斥力占主导作用,则混合体将在极短的时间内“裂变”放出引力子;若凝聚力占主导作用,则混合体将形成一个新的光子。那么满足什么条件的混合体(光子)才是稳定的呢?经典电磁理论指出:所有光子的能量均为某个最小能量的整数倍。也即所有光子的质量均为某个最小质量的正整数倍,只有这样的光子才能稳定存在。当然这并不表明能量为某个最小能量的非整数倍的光子就不存在,只不过由于它们极不稳定,在形成后瞬间就“裂变”生成能够稳定存在的光子,目前我们还没有观测到或注意到这类光子罢了。从这里我们可以看出,与原子核一样,所有光子的质量均为某个最小质量的正整数倍,说明光子也有一定的内部结构,某些质量的光子由于极不稳定,在其形成后瞬间就“裂变”生成能够稳定存在的光子,这就造成稳定存在的光子质量的不连续。言归正传,由于引力子质量远远小于光子的质量,所以光子不可能吸收一个引力子形成新的光子(因为这样的光子是不稳定的)。但是若在同一时刻,光子与许多引力子相互作用,而这些引力子质量之和又大于最小光子的质量,光子就有可能吸收质量和等于最小光子质量的引力子数目而形成新的光子。举例来说,若最小光子的质量是引力子质量的10万倍,那么当同一瞬间有15万个引力子作用于光子时,光子只可能吸收10万个引力子,另外5万个引力子不被光子吸收,仅对光子产生微小的冲量。倘若在同一瞬间有9万个引力子作用于光子,那么这9万个引力子都不会被光子吸收,它们仅对光子产生微小的冲量。光子可能吸收的引力子数目只可能是10万的正整数倍。只有光子吸收引力子形成新的光子才能全部吸收引力子的冲量,否则的话,光子仅受到极小的冲量。

现有一个宽度为α的窄缝,绝大多数光子经过窄缝时虽然与许多引力子作用,但大多不会形成新的光子,这样大部分光子仅以极其微小的发散角投射到屏幕上,形成宽度略大于α的中央亮纹。由于衍射条纹是对称分布的,所以我们只讨论一半。拿中央亮纹以上的条纹来说,这些条纹是由缝中心到缝顶部经过的光子偏转形成的。从缝中心到缝顶部经过的光子,若吸收10万个引力子则形成稳定的新光子,而新光子由于全部吸收了引力子的冲量因而向上发生较大的偏移,从而在屏幕上形成宽度为0.5α的第一条亮纹。从缝中心到缝顶部经过的光子,若吸收20万个引力子则它向上的偏移量是第一条亮纹偏移量的两倍,形成第二条亮纹。同样形成第3条、第4条、第5条……第n条亮纹。中央亮纹以下的亮纹也是这样形成的,并且中央亮纹的宽度约为其它亮纹宽度的两倍。由于从缝中心到缝顶部引力逐渐增大,所以与光子作用的引力子数目也可能逐渐增多。假设在离开缝中心向上的极小位移处,在该处最多只可能有10万个引力子与光子发生作用,那么经过该处的光子最多只可能偏移到第一条亮纹处。换句话说它最多只可能对第一条亮纹的形成做贡献,对第2条、第3条、第4条……第n条亮纹都没有贡献。由此在向上某处经过的光子最多只可能吸收20万个引力子,但也可能吸收10万个引力子,故经过该处的光子对第1条、第2条亮纹的形成做出贡献而对第3条至第n条亮纹都没有贡献……;从缝顶部经过的光子可能吸收10万*1、10万*2、10万*3……10万*n个引力子,所以从该处经过的光子对第1条、第2条、第3条至第n条亮纹的形成都有贡献。这样形成的亮纹亮度依次为第一条>第二条>第三条>……>第n条。若缝变窄,则在离开缝中心向上的极小位移处,光子最多可能有20万个引力子,经过该处的光子对第1条、第2条亮纹的形成都有贡献,这样就减小了第1条、第2条亮纹亮度的差异。也就是说,缝越窄条纹亮度越向两边分散,缝越宽条纹亮度越向中央集中。当缝很宽时,条纹亮度几乎全部集中在中央区域,两边的光子数几乎为零。这就是我们看到的光的直线传播现象。由于光子并不是一种波,其偏离直线传播(衍射)现象是由引力子引起的,所以光的衍射现象与缝的宽度无关。物体在阳光下的阴影边缘常常较模糊,这说明光子在经过物体表面时受到引力作用而偏离了直线传播。理论上来说只要光子的运动方向和引力方向不在一条直线上,光子就会偏离原来的运动轨迹,并且引力场越强光子弯曲的程度也越大。星光在经过恒星以后通常会发生弯曲,有时我们甚至能够看到星体后面的其它星体发出的光。

三、论电子结构与原子光谱现象

1.电子发光

原子是如何发光的?要弄清这个问题首先必须明白光子是由原子的哪一部分发出的。我们知道,原子是由原子核和核外的电子组成的,原子核的结合能很大,不可能发出光子,所以光子只可能是电子发出的。在化学反应中伴随着电子的得失,常常有能量(光子)放出,光电效应、激光现象及其它一些实验也证明了光子是由电子发出的,所以可以肯定原子发光其实是电子发出光子。既然电子可以放出光子,那么光子必然是电子的组成部分,或者说电子有一定的内部结构,光子是其组成部分之一;由于光子不带电,说明电子内部电荷的分布是不均匀的,因为如果电子内部电荷是均匀分布的,则光子就应该带电。原子中原子核和电子之间的距离很小,它们之间的静电力很强,因为电子内部电荷分布不均匀,所以在原子核强大的静电力作用下电子内部电荷将重新分布,甚至可能发生裂变,这就为电子放出光子创造了条件。当电子裂变放出光子后,它的各个组成部分结合的更加紧密,在适当的时候可能吸收一个光子,这就为电子吸收光子储存能量创造了条件。而电子正是通过不停地吸收、放出光子来和外界交换能量的。稍后我们将看到,原子正是通过电子不断吸收、放出光子来和外界完成能量交换的。一般来说,电子质量越大其内部各部分结合的越松散,在静电力作用下越容易发生裂变;电子质量越小其内部各部分结合的越紧密,在静电力作用下越不容易发生裂变。与原子核“幻数”相似,总有特定质量的电子的结合力相当大,比其它质量电子的结合力大许多,这些特定质量的电子往往对应于某些稳定的轨道。

有人认为物质发光是由于物质中的原子或分子受到扰动的结果,认为光子是由原子或分子发出的。其实这是一种错误的看法。我们知道,原子是由原子核和核外电子组成的,光子是一种物质实体,或者是由原子核发出的,或者是由电子发出的,除此以外再没有别的选择。说光子是由原子发出的,这是一种不确切的说法。

2.原子核和电子之间的磁力作用

两个相距一定距离的异种点电荷在静电力作用下必然会吸引在一起,因为静电力作用在两点电荷连线上。而原子核和电子不会吸引在一起。这就启示我们在原子核和电子中必然存在一种其它作用力。这个力就是原子核和电子之间的磁力。我们知道,在通以相同方向电流的两条平行导线间会产生磁力作用,在磁力作用下它们将彼此吸引,原子核和电子的相向运动正相当于通以相同方向电流的两条平行导线,在它们之间也将产生磁力作用。静电力的作用总是使电子获得指向原子核的向心速度,而原子核和电子之间的磁力则使电子获得切向速度,并且原子核和电子之间的相对速度越大,它们之间的磁力也越大。当原子核和电子之间彼此相对静止在一定远处时,在静电力和磁力的共同作用下,它们并不会吸引在一起。因为静电力使电子获得向心速度,磁力使电子获得切向速度,电子并不是沿着直线靠近原子核,而是沿着螺旋线靠近原子核。开始时螺旋线的半径为无穷大,电子作直线运动;一旦电子相对原子核的速度不为零,磁力开始起作用,电子的运动轨迹开始发生弯曲;当电子与原子核靠近到一定的距离时,电子和原子核之间的静电力恰好等于电子作圆周运动所需的向心力,此时电子处于平衡状态,螺旋线变成了圆。同样在电子离开原子核时也是沿着螺旋线运动的。在静电力作用下,电子总要尽量靠近原子核,在磁力作用下,电子有远离原子核的离心趋势,正是在这两种力作用下,电子处于稳定的平衡状态中。电子在原子核中处于稳定状态时,它的轨迹是圆。因为当电子的轨迹不是圆时,它总要受到磁力的作用,这个力使电子的切向速度增加、运动轨迹向圆靠近。而电子受磁力作用时它的运动轨迹就要发生变化,就不是稳定的,只有当电子的轨迹是圆时才不受磁力的作用,所以说电子在原子核中的稳定轨迹是圆。太阳系中的行星在太阳引力作用下,其运动轨迹可以是圆或椭圆,但在原子系统中,电子在原子核静电力作用下,其稳定轨迹只可能是圆而不可能是椭圆。

3.基态电子的稳定性

处于基态的电子为什么是稳定的?为什么不会被原子核吸收?人们通常认为:做加速运动的电荷会向外辐射能量.如果电子在原子核中做圆周运动,则它就有加速度,必然会不断地向外辐射电磁波,随着电子能量的减小它将沿着螺旋线落入原子核中,这样整个原子就是不稳定的,然而事实并非如此。于是人们推测电子在原子核中不可能做圆周运动。我们认为以上推断是错误的,电子的确在原子核中做圆周运动,其理由如下:第一,电子辐射电磁波并不是一个只出不进的过程。电子时刻不停地向外辐射能量,也在时刻不停地吸收光子,这是一个动态平衡过程。如果电子吸收的能量大于其辐射的能量则原子的温度升高,如果电子吸收的能量小于其辐射的能量则原子的温度降低,倘若没有外界能量输入,原子总会由于向外辐射能量而降低温度,只要物体的温度在绝对零度以上就会向外辐射电磁波。第二,电子在原子中的质量并非一成不变的。一般而言,电子离核越近质量越小,离核越远质量越大(这一点我们稍后证明)。第三,电子和原子核之间并非只有静电力作用,还存在磁力作用。正因为磁力作用的存在使电子在靠近原子核时切线速度不断增大,从而使其离心力逐渐增大,以致于可以与静电力抗衡维持电子在原子核中的稳定。

这里需要我们证明随着电子离核距离的减小,离心力的增加速度大于静电力的增加速度。设电子稳定时质量为M,速度为V,与原子核相距R,原子核电量为Q,此时静电力F正好等于电子作圆周运动的向心力,

离心力大于静电力,所以此时电子作离心运动,将回到距核R的轨道上。同样当电子受到远离原子核的扰动后,静电力F大于电子作圆周运动的向心力,电子将向原子核运动,最终要回到距核R的轨道上,这里不再证明。

另外我们认为,做加速运动的电荷会向外辐射电磁波这个提法不够确切,应该说做加速运动的自由电荷会向外辐射电磁波,而电子在原子核中做圆周运动时不会向外辐射电磁波。两者有什么区别呢?我们知道,在原子核和电子结合成原子的过程中要向外放出能量,即自由电子要在原子核静电力作用下裂变放出光子才能够成为原子中的电子,原子中的电子和自由电子是有区别的。自由电子的质量大于原子中的电子的质量,自由电子各部分结合得较为松散,受到外界扰动(有加速度)时会向外辐射电磁波;而原子中的电子质量小,各部分结合得较为紧密,受到外界扰动(有加速度)时未必会向外辐射电磁波,只有当外界扰动(加速度)足够大时才会裂变辐射电磁波,所以电子可以在原子中做圆周运动而并不向外辐射电磁波。

4.稳定轨道的形成

对于处于基态的电子来说,每秒会有许多光子与其作用。这些作用有指向原子核的,也有指向核外的。电子在吸收一个或几个光子以后质量增加,形成新的电子。我们先考虑指向核外的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R+Δr,我们知道,一定质量的电子总有与一条特定轨道与之对应,比如电子的质量为M时其轨道半径为R,那么当电子质量为M+Δm时就可能停留在半径为R+Δr的轨道。但这里我们少考虑了一个条件,那就是质量为M+Δm的电子的结合能。我们知道电子在每秒内会受到许多光子的扰动,假设质量为M+Δm的电子运行在半径为R+Δr的轨道上,若它受到一个指向原子核的扰动,离核距离变为R+Δr-r,此时原子核静电力对它的作用增强,若它的结合能小的话则电子立即裂变放出光子重新回到其原来的轨道R上;如果质量为M+Δm的电子内部的结合能非常小,以至于受到微小的扰动时立即裂变放出光子,那么它在半径为R+Δr的轨道上停留的时间也趋近于零,换句话说半径为R+Δr的轨道根本不存在;如果质量为M+Δm的电子内部的结合能非常大,以致于受到很大的扰动时它才裂变放出光子,那么电子就能够在半径为R+Δr的轨道上停留一段时间,这段时间就是原子的平均寿命。假设有一群电子处于同一激发态,由于每个电子受到的扰动情况不一样,有的电子受到的扰动大有的电子受到的扰动小,而只有电子受到足够大的扰动并运动到离核足够近的地方才会裂变放出光子,所以电子裂变回到基态的时间也不一样。处于同一激发态的原子的平均寿命和两个因素有关:一是电子的结合能,二是电子受到的扰动。电子内部的结合能与原子核“幻数”相似,只有特定质量的电子的结合能才是很大的,所以电子的轨道也是特定的、不连续的,其它质量的电子由于结合能很小,裂变时间极短,所以它们不可能稳定停留在原子中,也形成不了稳定轨道甚至根本就没有轨道。我们再来考虑指向原子核的扰动。设电子在吸收一个或几个光子以后质量增加为M+Δm,与原子核相距R-Δr,此时原子核对电子的静电力增强,电子立即裂变放出质量为Δm的光子,由前面的证明我们知道,此时电子的速度增大,离心力大于静电力,电子最终将停留在半径为R的稳定轨道上。也许有人会怀疑,这样看来电子可能存在的稳定轨道岂不是唯一的了?实际上由于电子在原子核外有几个不同的稳定质量,所以它也有几条稳定轨道,一定的质量总是与某一条特定轨道相对应。从这里我们可以看出,电子在原子核中的稳定轨道往往对应于电子结合能极大的质量,结合能小的质量由于在原子中不稳定因而不会形成稳定轨道。

5.电子结构与不同跃迁轨道

对于处于同一激发态的一群电子而言,设电子的质量为M+Δm,它们可能会有不同的跃迁轨道,放出的光子的能量(质量)也不同,但总是跃迁到离核近的电子放出的光子的能量(质量)大。电子从激发态回到基态的过程并不是先放出光子再回到基态,而是先回到比基态更近的地方放出光子然后才回到基态。当电子回到离核R-Δr处时,在静电力作用下电子裂变放出质量为Δm的光子,此时离心力大于静电力,电子将回到半径为R的稳定轨道上。那么电子为什么会有多条跃迁轨道呢?这说明处于同一激发态的电子内部结构(结合力)不同,有的结合力大,有的结合力小,结合力小的光子在离核较远的地方裂变,放出的光子能量也较小;结合力大的光子在离核较近的地方裂变,放出的光子能量也较大,电子的跃迁方式是由其内部结构决定的。同一质量的电子可能有多种裂变方式,再次向我们说明电子具有内部结构,在考虑原子光谱时一定要考虑电子的内部结构。处于激发态的电子在向基态跃迁时会发出光子;把原子的内层电子打掉以后外层电子会放出光子并向离核更近的轨道跃迁。这些现象启示我们:电子离核越近质量越小,电子离核越远质量越大。从这里也可以看出,电子质量越小其内部结合力越大。因为离核越近电子受到的静电力越大,而电子能够稳定存在说明其内部结合力越大。在同一个原子中,内层电子的质量小于外层电子的质量;同一个电子离核越近质量越小。

人们发射的人造卫星可以设定轨道,其轨道变化可以是连续的,但对原子核中的电子来说,其轨道变化则是不连续的。怎样理解这一点呢?让我们做一个假想实验。把两个带异种电荷的点电荷放置在一定远处,并且假定它们之间除了静电力以外不在受到其它力的作用,则最终它们将互相吸引在一起。无论怎样改变这两个电荷的质量、电量,结果都是相同的。这说明:用宏观电荷不可能模拟原子核和电子之间的作用力。说到这里,好事者马上就会解释,因为宏观电荷物质波的波长极短而电子物质波的波长较大,所以用宏观电荷不可能模拟原子核和电子之间的作用力。换一个角度来说,宏观物质和微观物质是有区别的,用宏观物质不能模拟微观物质。但区别究竟在哪里?一个是宏观物质而另一个是微观物质,这个解释近乎无聊了。还是让我们来仔细分析为什么用宏观电荷不可能模拟原子核和电子之间的作用力。我们知道,在静电力作用下,电子和原子核开始时相向运动,而后在磁力作用下沿着螺旋线相互靠近,正是由于原子核和电子之间的磁力使电子获得了绕原子核运动的切向加速度,并使整个原子处于稳定状态。那么,两个宏观点电荷之间的运动轨迹为什么是一条直线呢?这是因为宏观电荷的荷质比远远小于原子核和电子的荷质比,在静电力作用下宏观点电荷获得的最终速度也小得可怜,因此宏观点电荷之间因相对运动而产生的磁力也微乎其微,近似于零。所以宏观点电荷在静电力作用下表现为相向运动,其运动轨迹接近直线。从这里我们可以得出这样一个结论:虽然静电力作用在两个电荷的连心线上,但是仅在静电力作用下,电荷的运动轨迹不一定就是直线,两个电荷的荷质比越小,其运动轨迹越接近直线,反之则越接近曲线。那么,如果宏观点电荷的荷质比足够大甚至可以与原子核或电子相比时,是否可以用宏观点电荷模拟原子核和电子相之间的作用呢?也不能!如果宏观点电荷的荷质比足够大,甚至可以与原子核或电子相比,那么这样的两个异种电荷在静电力作用下会沿着螺旋线相互接近,最终会处于稳定状态,但由于宏观点电荷的质量不会发生变化,因此最多只能形成一条稳定轨道,而不可能象电子那样在原子核中有多条稳定轨道。

在多电子原子中,各电子间有什么主要区别呢?有人认为离核越近的电子能量越低,越不容易失去;离核越远电子能量越高越容易失去,但这还不是最主要的区别。多电子原子中各电子间最主要的区别在于它们的质量不同。离核越近的电子质量越小,离核越远的电子质量越大,同一个原子中没有两个质量相同的电子存在。在氢原子中也是电子离核越近质量越小,离核越远质量越大。

6.原子的吸收光谱和明线光谱

在原子的吸收光谱中,只有特定能量的光子才被电子吸收;在原子的明线光谱中,同样也只能发出特定能量的光子。于是人们认为电子只能吸收或发出特定能量的光子。我们知道,只要物体的温度在绝对零度以上,就会向外发射电磁波,物质的发射光谱是连续光谱。那么其它能量的光子是由哪一部分发出又是如何发出的呢?显然还是由电子发出的,因为原子核不可能发出光子。当我们用电子束轰击汞原子蒸汽时,可以发现当电子的能量为某些特定值时,汞原子强烈地吸收其能量;对于其它能量的电子汞原子只吸收其一部分能量。汞原子只吸收电子束的能量实际是汞原子中的电子吸收电子束的能量。可见,原子中的电子可以吸收各种能量(质量),但对特定的能量(质量)吸收能力十分强。在原子的吸收光谱中,电子可以吸收各种能量的光子,只不过大部分光子被电子吸收后与电子的结合能并不大,受到微小的扰动后立即放出光子,由于该过程极短,所以当连续光通过原子蒸汽时,大部分光子被吸收后又很快放出,看起来似乎没有与原子作用,只有极少数具有特定能量的光子与电子的结合力极大,这类光子被吸收后要保持一段时间才可能放出,故吸收光谱会出现几条暗线。至于原子的明线光谱,与其说是明线光谱还不如说原子的发射光谱中有几条线特别亮。这是因为处于激发态的电子比别的能量状态的电子稳定,停留的时间较长,所以在一群原子中处于激发态的电子数目总比别的状态的电子数目多,因而它们发出的光也更亮一些。事实上原子的发射光谱不仅仅是明线光谱,明线光谱只是原子发射光谱中极个别的具有代表性的光子,原子几乎可以发出小于一定能量的任何光子。电子在原子中时刻不停地吸收各种能量的光子,由于电子与绝大部分光子的结合力都不大,所以电子也在时刻不停地放出各种能量的光子,因此物质的发射光谱往往是连续光谱。

许多人都认为原子只能吸收特定能量的光子,原子也只能放出几种特定能量的光子,因为他们看到原子的吸收光谱中仅有几条特定频率的暗线,而子的发射光谱也仅仅是几条特定频率的明线而已。其实这种看法是错误的。我们不妨这样分析,若原子只能吸收特定能量的光子,则只有特定能量的几种光子对物体具有明显的热效应,并且每种物质的敏感光子不同。实际上并非如此。我们知道,红外线具有显著的热效应,对任何物质都是如此。此外,物质的发射光谱是连续光谱,这也说明原子或分子的吸收(或发射)出的光子是广谱性的。为了充分理解这个问题,需要作进一步的说明。现代物理学指出:氢原子吸收的光子能量只能是13.6/n*n电子伏(这里n取自然数),也就是13.6、3.4、1.5……电子伏,并且认为对于10电子伏、3电子伏这样的其它能量的光子不会被电子吸收。我们认为:电子吸收的光子能量是连续的,对于10电子伏、3电子伏这样的其它能量的光子同样会被电子吸收,只不过电子吸收这些光子后,电子和光子的结合能不够大形不成稳定的轨道,所以电子又很快放出该光子,由于作用时间极短,以致于我们误认为电子没有吸收光子。换一个角度来考虑,当大量的原子吸收了能量连续的光子时,由于大部分电子与光子的结合力都不大,所以这些电子在极短的时间内(设为t)就会裂变放出光子,而能量为13.6、3.4、1.5……电子伏的光子与电子的结合力很大,所以电子裂变放出光子的时间也很长,如果这个时间是100t,则电子放出相应的光子也比其它光子亮100倍;如果这个时间是1000t,则电子放出相应的光子也比其它光子亮1000倍……,这样,在原子的明线光谱中自然就形成几条特殊的亮线了。由此我们得出一个结论:在原子的发射光谱中,任意一条谱线的亮度与处于相应激发态的原子的平均寿命成正比,原子的平均寿命越长,谱线的亮度越大;原子的平均寿命越短,线的亮度越小。当然这有个前提,那就是被原子吸收的连续光谱中各种能量的光子是平均分布的。

7.热现象的本质

由于电子时刻不停地受到光子的扰动,不断地吸收各种能量的光子,也不停地放出各种能量的光子,所以电子在原子核中并不是处于稳定状态,它的运动轨迹也不是正圆。一般来说,温度越高,电子受到的扰动越大,其运动轨迹偏离圆形的趋势越明显;温度越低,电子受到的扰动越小,电子的运动轨迹越接近圆(只有在绝对零度时,电子的运动轨迹才可能是正圆)。从这个意义上来说,原子模型可以看作是卢瑟福的行星模型和电子云模型的结合:温度越高,原子模型越接近行星模型;温度越低,原子模型越接近电子云模型(但在某一瞬间,电子在原子核中有确切的位置)。温度的高低反映了电子偏离稳定轨道程度的大小,单个原子(分子)也有温度。电子偏离圆形轨道的程度越大,表明该原子的温度越高,电子裂变后放出的能量也越大。所以温度升高时物体发出的电磁辐射向短波方向移动。对于温度一定的物体来说,它内部包含了大量的原子,这些原子中的电子由于受到的扰动大小不同,它们裂变放出光子的质量也不同,但大致满足正态分布,即发出的光子中能量特别大的和能量特别小的都是极少数。由前面的论述我们知道,电子在原子核中的能量大小并非定值:电子离核越远电势能越大,离核越近电势能越小。与宏观电荷一样,电子的电势能是其与原子核距离的函数,电子和原子核间的作用力服从库仑定律。温度越高,电子离核越远,电势能也越大,因而也越容易失去;温度越低,电子离核越近,电势能也越小,也越不容易失去。

什么是热现象呢?这似乎是不是问题的问题。人们通常认为:热现象是大量分子无规则运动的反映,温度越高分子的平均速率越大,温度越低分子的平均速率越小。果真如此吗?我们知道,太阳时刻不停地向外抛射高能粒子,这些粒子的速度接近光速,宇宙中其它恒星也在不停地向外抛射高能粒子,所以在宇宙空间任何地方,都有许多高能粒子正在做杂乱无章的运动,这些粒子的速度通常都接近光速或亚光速。这样看来宇宙空间的温度应该很高(至少比恒星内部高),宇宙空间应该是很明亮的。但事实上,宇宙空间是漆黑的一团,温度只超过绝对零度一点。这说明粒子运动速度大未必温度就很高,物体的温度不是由组成它的原子(分子)的平均运动速度决定的。温度升高,原子(分子)的平均速度增大。但反过来,原子(分子)的平均速度增大并不意味着温度升高。我们知道,只要物体的温度在绝对零度以上就会向外辐射电磁波,而物质向外辐射电磁波的原因是电子受到扰动后在静电力作用下放出光子,并且光子受到的扰动越大放出的光子能量也越大,相应的物体的温度也越高。从这个意义上来说,原子是储存热量的最小单位,单个原子也有温度,因为它可以储存热能。但单个的带电粒子如质子、电子在不受外界任何扰动时,即便速度再大也不会向外界释放能量,因此它们都不能储存热能,因而也没有温度。应该看到,原子(分子)的高速运动所具有的能量仅仅是动能而不是热能,和宏观物体一样,速度大未必温度高。宏观物体的速度与其温度无关,原子(分子)也是如此。一个原子(分子)的速度比其它原子(分子)的速度大,只能说明它的动能大,储存的热能未必就多。热能仅储存于原子核和电子形成的原子体系中,两者中缺少任何一个都不能储存热能。在日常生活中我们用红外线(微波)加热而不用紫外线,紫外线的热效应远远小于红外线(微波)。这是因为红外线(微波)光子的质量小,和原子中电子的结合力大(包括内层电子),而紫外线和原子中电子的结合力小(它几乎不与内层电子作用),所以红外线往往容易被物体吸收,其热效应当然比紫外线强。

再进一步考虑,什么是热现象呢?热现象和温度之间有什么关系呢?我们认为:对一个物体而言,倘若它储存了热能它就有温度,并且它储存的热能越多它的温度就越高,反之则温度越低;倘若物体没有储存热能则它就没有温度或者说它的温度是绝对零度;倘若物体不能储存热能,则用温度来衡量该物体是没有意义的。我们知道,原子是储存热能的最基本单位,原子的热能实际上是储存在电子中的。单独的原子核、单独的电子都不能储存热能,所以单独的原子核、单独的电子都没有温度。同样的道理,光子也不能储存热能,它仅仅是热能的载体,因为单独的原子可以储存热能,所以单独的原子有温度,但由于单独的光子不能储存热能,所以单独的光子没有温度,不同能量的光子之间只有能量的差异而没有温度的差异,用温度来衡量光子是毫无意义的。倘若光子也有温度,则在太阳系中离太阳越近的空间温度就应该越高,离太阳越远的空间温度就应该越低,事实上完全不是这么回事。

篇6

我们十多年来的课堂教学经验可以总结成三句话:追根寻源真一点,实验研究多一点,能力要求高一点,简称“三点”教学法,因此我们称自己的教材为“三点”法教材.

我们的“三点”法教学完全是根据国家教委颁布的高中物理教学大纲编写的.因为我们面对的是全班学生,不可能而且也不应该把课堂教学变成物理竞赛辅导,我们确确实实通过课堂教学明显提高了学生的素质和能力,为学生在高考和物理竞赛中取得优异成绩打下了扎实的基础.

一、追根寻源真一点

一个学生学习物理,首先接触到的就是物理定律.因此,怎样搞好物理定律教学,必然是每个物理教师首先要考虑的问题.

在进行某一物理定律教学时,我们有意识补充了大量的与这一定律的建立过程有关的内容,这就是所谓的“溯源”教学.任何一个重要物理定律的建立,都有一个艰辛而漫长的过程.探索定律的工作只所以能成功,这个定律最后只所以能够确立起来,其中一定有很多科学的研究方法和正确的推理思维方式,这些内容毫无疑问是属于物理学科中最重要的东西,是人类一笔宝贵的知识财富,也是我们物理教学的宝贵财富.

在讲授牛顿万有引力定律时,我们从第谷对行星进行几十年的观测积累的大量第一手资料讲起,然后是开普勒在拥有这些数据的基础上,通过大量计算总结出描写天体运动的经验规律(开普勒三定律),最后才是牛顿用定量的动力学原理对这些规律予以解释,终于发现了对天上、地上的物体具有普遍意义的万有引力定律.在学习牛顿万有引力定律的过程中,我们还着重向学生介绍了“归纳法”、“理想化”和“间接验证”三种科学研究的重要方法.

在学习库仑定律的过程中,我们纠正了学生由于大多数教科书叙述笼统而形成的错误观念,使他们明白:1.库仑当年只用扭秤做了两个同种电荷互相排斥的实验,而未做两个异种电荷互相吸引的实验,因为在后一实验中的平衡有可能是不稳定的.库仑是用电摆来完成后一实验的;2.无论是扭秤还是电摆,精确度都是很有限的,根本无法确定两电荷之间的作用力与距离的平方成反比,更不是和距离的1.98次方或2.02次方成反比.当年的库仑(实际上还有更早的卡文迪许),以及后来的麦克斯韦、普林普顿等人都是用另一种实验方法将指数的精度逐渐提高,直至今天的2±3×10-16,终于使库仑定律成为当今物理学中最精确的定律之一.结合库仑定律的建立过程,我们还向学生介绍了“类比”和“演绎验证”的方法.

在学习欧姆定律的过程中,学生一开始都以为研究通过导体的电流和导体两端的电压之间的关系是不困难的,只要用电流表、电压表再加电源和可变电阻器等组成电路即可.可是我告诉他们,在欧姆那个年代,非但没有电流表、电压表等仪器,连电压、电流和电阻的定义和单位都没有,欧姆所面临的困难之大是可想而知的.他到底是怎样得到这个电学中最重要的定律的呢?学生顿时产生了浓厚的兴趣.在学习欧姆定律诞生过程的同时,我们还结合欧姆的实践,介绍了用图线探究新规律的方法.

此外,我们还结合牛顿运动定律介绍了“理想实验”、“推理”、“实验研究”等方法,结合气体定律介绍了“分析法”,结合能量的转化和守恒定律介绍了“综合法”.使学生比较系统地掌握了一些重要的科学研究方法.有的同学深有体会地说:物理定律是宝贵的,但研究物理定律的科学方法更宝贵.谁掌握了这些方法,谁就能不断地去探索大自然层出不穷的奥秘.

在物理定律的教学中,我们在课堂上经常采用设问的方法,不是直接告诉学生某个定律是怎样建立起来的,而是不断地提出问题让学生去思考,摆出困难让学生去克服,提出任务让学生去完成,制定目标让学生去实现.这样可以有效地发展学生的创造性思维和解决问题的能力.

我们要求学生在课外进行大量自学.早在公元前4世纪,古希腊苏格拉底明确强调过:“好的、正确的教学不是传递,而是对学生的自学辅导”.我一贯强调学生要学会自学、讨论、研究.我教的优秀学生,学得的物理知识,最多只有一半是在课堂上听我讲的,其它一概由他们自学.到一定阶段,我开始指定几个学得比较好的学生轮流给其他学生上课.每次课分两部分,前半部分由主讲同学讲,后半部分由全体同学提问、讨论.像王泰然和任宇翔在高二阶段就给其他同学作过二十几次讲座,杨亮、谢小林、陈汇钢等同学也不例外.

我们这种自学讨论式教学还延续到学生毕业以后.获金牌或学有所成的学生进了大学甚至出国留学后,有机会还回来给小同学谈自己的体会.例如1994年暑假任宇翔从美国回国探亲一个月,来学校给95、96届学生讲了10次课.他向小学友介绍物理学中一些新进展、中美物理教学中的差异以及他们当年学习过程中曾激烈争论过的问题,使听课的学生大受裨益.1996年暑假,谢小林和陈汇钢两位金牌获得者又为97、98届同学讲了十多天课.他们既讲物理知识,又讲国家集训队队员奋发学习的感人事迹,使小同学们大开眼界.

这样的训练方法也得到了权威人士的肯定.1992年10月,在上海召开的全国物理特级教师会议上,原中国物理学会副理事长、现全国中学物理竞赛委员会主任、北京大学沈克琦教授在他的题为“国际物理奥林匹克竞赛与中学物理教学”的报告中说:“我听到两名得金牌的上海学生讲他们的老师如何培养他们的情况,我认为这个经验倒很值得推广.他们说他们的老师不是采取灌输的办法,而是启发引导,要求他们给同学讲课,这对他们搞清概念原理和科学地进行表达都非常有帮助.我想这可能是提高优秀学生能力的有效方法之一.”

那么自学为什么会对提高学生的能力起这么大的作用呢?从心理学角度来看,自学与听课可能有以下两点不同:

(1)人类的思维活动表现为分析、综合、比较、抽象、概括等过程.一个学生在自学某一个新的物理内容时,少不了理解、思考、建立正确的物理模型等工作,这里面充满了分析、综合、比较等过程.因此相对听课而言,自学对学生的思维活动提出了更高的要求,从而使他们得到更大的锻炼.

(2)人们的注意可分为无意注意、有意注意和有意后注意三种.事先没有预定的目标,也不需要作意志努力的注意叫做无意注意;有预定的目标,在必要时还需作一定的意志努力的注意叫做有意注意.一个学生在自学的时候,他的目的一定是十分明确的,而且需要一定的意志努力(否则难以坚持),因此学生在自学时,可保证在绝大多时间内都处于有意注意的状态,这一点对提高学习效率和学习能力都是很有好处的.有的学生在自学中往往会十分投入,进入一种旁若无人的境地,而相对来说,这种情况在听课时就比较少.一个学生坚持自学一段时间之后,便能渐渐地从有意注意转化到有意后注意,即不需要意志努力也能够将自己的注意力长期保持在这项工作上.有意后注意是一种高级类型的注意,它既有明确的目的,又不需要用意志努力来维持,是人类从事创造性活动的必需条件.学生一旦进入这种状态,他们的物理学习效率就会大大提高,学习成绩就会有明显进步.

二、实验研究多一点

物理学是一门实验科学,物理学中的每一个概念、规律的发现和确立主要依赖于实验.因此,在高中物理教学中加强学生实验方面的训练,无疑是提高物理教学质量的一条必由之路.

目前中学物理教学大纲中安排了相对数量的学生实验和演示实验,不难发现,这些实验存在着某些不足,主要表现在下面几个方面:

第一,教材中几乎所有实验是为配合所学内容而安排的,目的是帮助学生加深对所学内容的理解,因此学生不易通过这些实验掌握一些重要的实验方法.

第二,课本中每个实验的实验原理及操作步骤都讲得十分清楚,学生只需按部就班地完成实验操作即可.这样的实验只能增加学生的感性认识,锻炼学生的动手操作能力,而对学生创造性思维的训练是不够的,也无法培养学生解决问题的能力.

第三,目前课本中的实验大多是验证性实验,学生只要学懂了书上的定律,一般都能轻而易举地完成实验.这种安排违反了教育应该走在学生智力发展前面的原则,对培养学生的能力是不利的.

针对以上不足,我们对实验教学内容和教学方法进行了改革,使实验教学为发展学生的智力,提高学生的素质服务.在实验内容的改革方面,我们主要采取了以下三条措施:

(1)增加实验数量.

不论是在课堂演示实验,还是在学生实验或小实验方面,平均增加了60%的实验.其中有一部分新实验,学校没有现成的仪器,安排学生自己制作,对学生有较高的要求.

(2)重视实验误差讨论.

物理实验离不开测量,测量是实验科学最本质的东西.从某种意义上讲,结果准确的实验就是成功的实验,反之就是不成功的实验.因此在培养优秀学生的过程中,应该让他们掌握一些必要的实验误差的基本知识.在设计实验方案时,要求学生们尽量消除实验的系统误差;在选择实验器材时要考虑它的精确程度;在处理实验数据时,要采用尽量科学的方法.

(3)加强重要实验方法教学.

在实验领域中有一些重要的方法,比如减小实验系统误差的方法、减小实验偶然误差的方法、实验探究规律的方法、迂回测量的方法等,这些方法不是在个别实验中,而是在许多实验中都有应用,因此具有一定的普遍意义,这些方法一定要让学生很好地掌握.在必要时,我们甚至根据实验方法来安排实验内容,集中安排几个某种方法体现比较典型的实验,这样便于学生深刻领会和熟练掌握某一种实验方法.

在实验教学方法改革方面,我们做了以下尝试:

(1)在课堂上创设一些实验问题让学生研究.

在高中阶段,每周至少有4节物理课,充分利用物理课中碰到的各种各样问题,可设计一些供学生讨论的实验题目,并引导他们一步一步地探索、解决.

我在讲功率一节时,设计了这样一个实验题目:要求测定一个人骑自行车的功率.在自行车由静止启动的过程中,人做的功除了增加人和车的动能之外,还要克服空气阻力和地面的摩擦力,其中哪些因素是主要的,哪些因素是次要的?学生根据自己骑自行车的经验,认为空气阻力是很明显的,不能忽略,而地面和车轮之间的滚动摩擦一般比较小,可以忽略.接下来的问题是怎样测量人克服空气阻力做的功?学生都有这样的体会:顶风骑车时,骑得越快风的阻力越大,因此可以设风的阻力和车的速度成正比.车的速度怎样测?风的阻力和车速成正比的比例因数是多少?问题一个接着一个地出现,被大家一个又一个地解决,终于找到了一个大家都比较满意的实验方案.接着全班同学兴高采烈地到操场上去做实验,最后再回到教室里,师生一起处理实验数据,作出图象,得出实验结果.在整个实验过程中,除了实验题目是由老师提出的外,实验方案和解决问题的途径都是由学生讨论研究出来的,因此他们都觉得很有意思,收获很大.

(2)对课本中一些重要实验进行深入研究.

物理课本中有大量现成的实验,有时可以对这些实验进行一些讨论和改进.

在做直流电路的实验时,我们让学生对伏安法测量导体的电阻这个实验进行了深入的研究.用简单的伏安法电路,不论是采用电流表内接还是电流表外接,都有系统误差.结合这个问题,我给学生介绍了补偿的思想,然后由学生自己设计了电流补偿和电压补偿两种线路.补偿法解决了由于实验电路不完善带来的系统误差,但这个矛盾解决了,电流表和电压表不够准确的问题上升为主要矛盾.怎么办?经过进一步研究改进,大家认为可以用准确度高得多的电阻箱来取代电压表和电流表,再辅以灵敏度很高的电流表,便可以明显提高实验结果的准确度,这就是常用的惠斯通电桥.接下来学生分别用简单伏安法、补偿伏安法和惠斯通电桥测量了同一个标准电阻,比较测量结果,可以证实先前的想法.在历史上,从伏安法到惠斯通电桥是有一个很长的过程的,而在我们这堂实验课中,学生经历了这么一个碰到问题、分析问题、解决问题的完整过程.这样的实验课对增强学生的能力是很有帮助的.

(1)和(2)实际上都是不断地给学生提出新的目标,诱导他们提高实验水平,我们有时称之为“目的诱导法”.

(3)给特优学生安排一些特殊实验.

我校有一批进口物理仪器,性能比较好,涉及的实验内容面也比较广.这批仪器的说明书是英文或日文的,我指定一名学生准备某一个实验,要求他先翻译好说明书,准备好器材,然后带领其他同学做实验.这个主讲的学生还要准备好一些讨论题,在实验后供同学们讨论.学生对这样的实验非常感兴趣.此类实验虽然有时和高考、竞赛没有直接的关系,但是这种带有研究性的实验对优秀学生很有好处.

三、能力要求高一点

物理习题教学是物理教学的重要组成部分.不论是教师还是学生,都在解习题上花费了大量的时间,因此,习题教学的改革是一个很重要的问题.

就本质来说,物理习题是人们编制的一些假想物理场景.毫无疑问,物理学家是不会去做物理习题的,而他们是在研究那些真实的、尚未发现的物理规律.同样,发明家也是不会去做物理习题的,他们是在力图应用已有的物理规律去解决一系列实际问题,那么我们为什么要让学生做那么多人为假想的物理习题?目的无非是要培养学生的理解、分析、推理等能力.所以物理习题教学应该围绕这个目标来进行.

我们常用以下两种方法来进行习题教学:

(1)按照解题方法组织习题教学

篇7

我们十多年来的课堂教学经验可以总结成三句话:追根寻源真一点,实验研究多一点,能力要求高一点,简称“三点”教学法,因此我们称自己的教材为“三点”法教材.

我们的“三点”法教学完全是根据国家教委颁布的高中物理教学大纲编写的.因为我们面对的是全班学生,不可能而且也不应该把课堂教学变成物理竞赛辅导,我们确确实实通过课堂教学明显提高了学生的素质和能力,为学生在高考和物理竞赛中取得优异成绩打下了扎实的基础.

一、追根寻源真一点

一个学生学习物理,首先接触到的就是物理定律.因此,怎样搞好物理定律教学,必然是每个物理教师首先要考虑的问题.

在进行某一物理定律教学时,我们有意识补充了大量的与这一定律的建立过程有关的内容,这就是所谓的“溯源”教学.任何一个重要物理定律的建立,都有一个艰辛而漫长的过程.探索定律的工作只所以能成功,这个定律最后只所以能够确立起来,其中一定有很多科学的研究方法和正确的推理思维方式,这些内容毫无疑问是属于物理学科中最重要的东西,是人类一笔宝贵的知识财富,也是我们物理教学的宝贵财富.

在讲授牛顿万有引力定律时,我们从第谷对行星进行几十年的观测积累的大量第一手资料讲起,然后是开普勒在拥有这些数据的基础上,通过大量计算总结出描写天体运动的经验规律(开普勒三定律),最后才是牛顿用定量的动力学原理对这些规律予以解释,终于发现了对天上、地上的物体具有普遍意义的万有引力定律.在学习牛顿万有引力定律的过程中,我们还着重向学生介绍了“归纳法”、“理想化”和“间接验证”三种科学研究的重要方法.

在学习库仑定律的过程中,我们纠正了学生由于大多数教科书叙述笼统而形成的错误观念,使他们明白:1.库仑当年只用扭秤做了两个同种电荷互相排斥的实验,而未做两个异种电荷互相吸引的实验,因为在后一实验中的平衡有可能是不稳定的.库仑是用电摆来完成后一实验的;2.无论是扭秤还是电摆,精确度都是很有限的,根本无法确定两电荷之间的作用力与距离的平方成反比,更不是和距离的1.98次方或2.02次方成反比.当年的库仑(实际上还有更早的卡文迪许),以及后来的麦克斯韦、普林普顿等人都是用另一种实验方法将指数的精度逐渐提高,直至今天的2±3×10-16,终于使库仑定律成为当今物理学中最精确的定律之一.结合库仑定律的建立过程,我们还向学生介绍了“类比”和“演绎验证”的方法.

在学习欧姆定律的过程中,学生一开始都以为研究通过导体的电流和导体两端的电压之间的关系是不困难的,只要用电流表、电压表再加电源和可变电阻器等组成电路即可.可是我告诉他们,在欧姆那个年代,非但没有电流表、电压表等仪器,连电压、电流和电阻的定义和单位都没有,欧姆所面临的困难之大是可想而知的.他到底是怎样得到这个电学中最重要的定律的呢?学生顿时产生了浓厚的兴趣.在学习欧姆定律诞生过程的同时,我们还结合欧姆的实践,介绍了用图线探究新规律的方法.

此外,我们还结合牛顿运动定律介绍了“理想实验”、“推理”、“实验研究”等方法,结合气体定律介绍了“分析法”,结合能量的转化和守恒定律介绍了“综合法”.使学生比较系统地掌握了一些重要的科学研究方法.有的同学深有体会地说:物理定律是宝贵的,但研究物理定律的科学方法更宝贵.谁掌握了这些方法,谁就能不断地去探索大自然层出不穷的奥秘.

在物理定律的教学中,我们在课堂上经常采用设问的方法,不是直接告诉学生某个定律是怎样建立起来的,而是不断地提出问题让学生去思考,摆出困难让学生去克服,提出任务让学生去完成,制定目标让学生去实现.这样可以有效地发展学生的创造性思维和解决问题的能力.

我们要求学生在课外进行大量自学.早在公元前4世纪,古希腊苏格拉底明确强调过:“好的、正确的教学不是传递,而是对学生的自学辅导”.我一贯强调学生要学会自学、讨论、研究.我教的优秀学生,学得的物理知识,最多只有一半是在课堂上听我讲的,其它一概由他们自学.到一定阶段,我开始指定几个学得比较好的学生轮流给其他学生上课.每次课分两部分,前半部分由主讲同学讲,后半部分由全体同学提问、讨论.像王泰然和任宇翔在高二阶段就给其他同学作过二十几次讲座,杨亮、谢小林、陈汇钢等同学也不例外.

我们这种自学讨论式教学还延续到学生毕业以后.获金牌或学有所成的学生进了大学甚至出国留学后,有机会还回来给小同学谈自己的体会.例如1994年暑假任宇翔从美国回国探亲一个月,来学校给95、96届学生讲了10次课.他向小学友介绍物理学中一些新进展、中美物理教学中的差异以及他们当年学习过程中曾激烈争论过的问题,使听课的学生大受裨益.1996年暑假,谢小林和陈汇钢两位金牌获得者又为97、98届同学讲了十多天课.他们既讲物理知识,又讲国家集训队队员奋发学习的感人事迹,使小同学们大开眼界.

这样的训练方法也得到了权威人士的肯定.1992年10月,在上海召开的全国物理特级教师会议上,原中国物理学会副理事长、现全国中学物理竞赛委员会主任、北京大学沈克琦教授在他的题为“国际物理奥林匹克竞赛与中学物理教学”的报告中说:“我听到两名得金牌的上海学生讲他们的老师如何培养他们的情况,我认为这个经验倒很值得推广.他们说他们的老师不是采取灌输的办法,而是启发引导,要求他们给同学讲课,这对他们搞清概念原理和科学地进行表达都非常有帮助.我想这可能是提高优秀学生能力的有效方法之一.”

那么自学为什么会对提高学生的能力起这么大的作用呢?从心理学角度来看,自学与听课可能有以下两点不同:

(1)人类的思维活动表现为分析、综合、比较、抽象、概括等过程.一个学生在自学某一个新的物理内容时,少不了理解、思考、建立正确的物理模型等工作,这里面充满了分析、综合、比较等过程.因此相对听课而言,自学对学生的思维活动提出了更高的要求,从而使他们得到更大的锻炼.

(2)人们的注意可分为无意注意、有意注意和有意后注意三种.事先没有预定的目标,也不需要作意志努力的注意叫做无意注意;有预定的目标,在必要时还需作一定的意志努力的注意叫做有意注意.一个学生在自学的时候,他的目的一定是十分明确的,而且需要一定的意志努力(否则难以坚持),因此学生在自学时,可保证在绝大多时间内都处于有意注意的状态,这一点对提高学习效率和学习能力都是很有好处的.有的学生在自学中往往会十分投入,进入一种旁若无人的境地,而相对来说,这种情况在听课时就比较少.一个学生坚持自学一段时间之后,便能渐渐地从有意注意转化到有意后注意,即不需要意志努力也能够将自己的注意力长期保持在这项工作上.有意后注意是一种高级类型的注意,它既有明确的目的,又不需要用意志努力来维持,是人类从事创造性活动的必需条件.学生一旦进入这种状态,他们的物理学习效率就会大大提高,学习成绩就会有明显进步.

二、实验研究多一点

物理学是一门实验科学,物理学中的每一个概念、规律的发现和确立主要依赖于实验.因此,在高中物理教学中加强学生实验方面的训练,无疑是提高物理教学质量的一条必由之路.

目前中学物理教学大纲中安排了相对数量的学生实验和演示实验,不难发现,这些实验存在着某些不足,主要表现在下面几个方面:

第一,教材中几乎所有实验是为配合所学内容而安排的,目的是帮助学生加深对所学内容的理解,因此学生不易通过这些实验掌握一些重要的实验方法.

第二,课本中每个实验的实验原理及操作步骤都讲得十分清楚,学生只需按部就班地完成实验操作即可.这样的实验只能增加学生的感性认识,锻炼学生的动手操作能力,而对学生创造性思维的训练是不够的,也无法培养学生解决问题的能力.

第三,目前课本中的实验大多是验证性实验,学生只要学懂了书上的定律,一般都能轻而易举地完成实验.这种安排违反了教育应该走在学生智力发展前面的原则,对培养学生的能力是不利的.

针对以上不足,我们对实验教学内容和教学方法进行了改革,使实验教学为发展学生的智力,提高学生的素质服务.在实验内容的改革方面,我们主要采取了以下三条措施:

(1)增加实验数量.

不论是在课堂演示实验,还是在学生实验或小实验方面,平均增加了60%的实验.其中有一部分新实验,学校没有现成的仪器,安排学生自己制作,对学生有较高的要求.

(2)重视实验误差讨论.

物理实验离不开测量,测量是实验科学最本质的东西.从某种意义上讲,结果准确的实验就是成功的实验,反之就是不成功的实验.因此在培养优秀学生的过程中,应该让他们掌握一些必要的实验误差的基本知识.在设计实验方案时,要求学生们尽量消除实验的系统误差;在选择实验器材时要考虑它的精确程度;在处理实验数据时,要采用尽量科学的方法.

(3)加强重要实验方法教学.

在实验领域中有一些重要的方法,比如减小实验系统误差的方法、减小实验偶然误差的方法、实验探究规律的方法、迂回测量的方法等,这些方法不是在个别实验中,而是在许多实验中都有应用,因此具有一定的普遍意义,这些方法一定要让学生很好地掌握.在必要时,我们甚至根据实验方法来安排实验内容,集中安排几个某种方法体现比较典型的实验,这样便于学生深刻领会和熟练掌握某一种实验方法.

在实验教学方法改革方面,我们做了以下尝试:

(1)在课堂上创设一些实验问题让学生研究.

在高中阶段,每周至少有4节物理课,充分利用物理课中碰到的各种各样问题,可设计一些供学生讨论的实验题目,并引导他们一步一步地探索、解决.

我在讲功率一节时,设计了这样一个实验题目:要求测定一个人骑自行车的功率.在自行车由静止启动的过程中,人做的功除了增加人和车的动能之外,还要克服空气阻力和地面的摩擦力,其中哪些因素是主要的,哪些因素是次要的?学生根据自己骑自行车的经验,认为空气阻力是很明显的,不能忽略,而地面和车轮之间的滚动摩擦一般比较小,可以忽略.接下来的问题是怎样测量人克服空气阻力做的功?学生都有这样的体会:顶风骑车时,骑得越快风的阻力越大,因此可以设风的阻力和车的速度成正比.车的速度怎样测?风的阻力和车速成正比的比例因数是多少?问题一个接着一个地出现,被大家一个又一个地解决,终于找到了一个大家都比较满意的实验方案.接着全班同学兴高采烈地到操场上去做实验,最后再回到教室里,师生一起处理实验数据,作出图象,得出实验结果.在整个实验过程中,除了实验题目是由老师提出的外,实验方案和解决问题的途径都是由学生讨论研究出来的,因此他们都觉得很有意思,收获很大.

(2)对课本中一些重要实验进行深入研究.

物理课本中有大量现成的实验,有时可以对这些实验进行一些讨论和改进.

在做直流电路的实验时,我们让学生对伏安法测量导体的电阻这个实验进行了深入的研究.用简单的伏安法电路,不论是采用电流表内接还是电流表外接,都有系统误差.结合这个问题,我给学生介绍了补偿的思想,然后由学生自己设计了电流补偿和电压补偿两种线路.补偿法解决了由于实验电路不完善带来的系统误差,但这个矛盾解决了,电流表和电压表不够准确的问题上升为主要矛盾.怎么办?经过进一步研究改进,大家认为可以用准确度高得多的电阻箱来取代电压表和电流表,再辅以灵敏度很高的电流表,便可以明显提高实验结果的准确度,这就是常用的惠斯通电桥.接下来学生分别用简单伏安法、补偿伏安法和惠斯通电桥测量了同一个标准电阻,比较测量结果,可以证实先前的想法.在历史上,从伏安法到惠斯通电桥是有一个很长的过程的,而在我们这堂实验课中,学生经历了这么一个碰到问题、分析问题、解决问题的完整过程.这样的实验课对增强学生的能力是很有帮助的.

(1)和(2)实际上都是不断地给学生提出新的目标,诱导他们提高实验水平,我们有时称之为“目的诱导法”.

(3)给特优学生安排一些特殊实验.

我校有一批进口物理仪器,性能比较好,涉及的实验内容面也比较广.这批仪器的说明书是英文或日文的,我指定一名学生准备某一个实验,要求他先翻译好说明书,准备好器材,然后带领其他同学做实验.这个主讲的学生还要准备好一些讨论题,在实验后供同学们讨论.学生对这样的实验非常感兴趣.此类实验虽然有时和高考、竞赛没有直接的关系,但是这种带有研究性的实验对优秀学生很有好处.

三、能力要求高一点

物理习题教学是物理教学的重要组成部分.不论是教师还是学生,都在解习题上花费了大量的时间,因此,习题教学的改革是一个很重要的问题.

就本质来说,物理习题是人们编制的一些假想物理场景.毫无疑问,物理学家是不会去做物理习题的,而他们是在研究那些真实的、尚未发现的物理规律.同样,发明家也是不会去做物理习题的,他们是在力图应用已有的物理规律去解决一系列实际问题,那么我们为什么要让学生做那么多人为假想的物理习题?目的无非是要培养学生的理解、分析、推理等能力.所以物理习题教学应该围绕这个目标来进行.

我们常用以下两种方法来进行习题教学:

(1)按照解题方法组织习题教学

篇8

奥地利社会福利制度非常完善并实行全国社会保险和救济制度, 主要有医疗、失业、退休和事故四大类保险。是欧洲社会福利最好的国家之一。目前人均国民收入2万多美元,平均2人拥有一辆小汽车。

近几年,奥地利与我国的经贸、科技、文化与民间交往不断增加。 据我国海关统计,去年两国贸易额高达6亿多美元,据说,今年的贸易 额有望大幅增加。奥国的主要出口产品有钢铁、机械、交通工具、化 工制品和食品。进口商品多为能源、原材料和消费品。

随着我国与奥国经济往来不断增加,前往奥国访问的商人逐年递增,与奥地利商人接触,必须特别注意各种礼节。因为奥国商人相当 正式、严肃。在从事商务活动时,尤其要注意头衔。比如:外商若把部长误称为处长,那么在以后的商谈中,准会麻烦百出。如果与奥地利人通信更要细心,务必正确无误地冠上他的正式头衔。如果他的名片上同时印有几个官衔,要提前问清楚,哪一个是最重要的。另外还 要加上“博士、教授、工程师、经济学家”等头衔。

篇9

 

物理学从本质上说是一门实验科学,物理规律的发现和物理理论的建立都必须以严格的物理实验为基础,并受到实验的检验。因此,物理实验教学在中学物理中就显的尤为重要。

然而,在过去的物理教学中,往往只是重视理论教学,却忽视了实验教学的作用。即使进行实验教学,也只是侧重于应试,忽视了对学生能力的培养,致使实验教学仅仅是课本的翻版,毫无新意,又令学生束手束脚,无法达到实验本身的目的。

因此,在物理实验教学中,应该注意不断激励学生通过观察、思考等一系列活动,来发展学生的创新意识初中物理论文初中物理论文,从而培养他们的创新能力。

那么,在中学物理实验教学中如何来培养学生的创新能力呢?笔者认为可以从以下几个方面入手:

一、变验证式实验为探究式实验

以前,课堂演示实验大多数是验证性实验。教材已给出结论,只需用实验去验证即可。这种做法,导致学生仅是一名旁观者,而不是参与者。若变演示实验为探究实验,就可以把学生完全调动起来,在学生动口、动手、动脑的过程中,激发学生的创造性思维。

例如,在《电阻定律 电阻率》中,原课本的做法是先给出“导体的电阻与材料、长度、横截面积有关”这一结论,然后再定量实验,这就是一种验证式实验。在实验中,学生往往会产生“为什么只研究这几个物理量”的疑问。若将其改为探究式实验,学生就容易掌握的多。其具体做法为,在实验前,先让学生们去猜想电阻可能与那些因素有关,然后由学生设计实验自行排除无关因素,最后才把决定因素控制在“材料、长度、横截面积”这几个物理量上。在进一步实验之前,还应先指导学生用理论推导具体的关系,再依据学生的设计来完成实验论文开题报告论文下载。

对比两种方式,探究式实验能更好的发挥学生的主体作用,培养学生的创造性思维。尽管学生的探究,谈不上科研成果之说,但这种方式注重的是培养学生的创造力与创新意识。在学生积极参与研究的过程中,学生不但掌握了基本的实验方法、基本技能,还激发了学生的创造性思维。

二、采用多方法实验,鼓励学生改进实验

在学生分组实验中,教师应在帮助学生掌握实验原理的基础上,鼓励学生用不同的器材、不同的方法来进行实验。在实验中,学生需要在各种因素中进行取舍,对所得信息进行筛选。这就要求学生在实验的过程中初中物理论文初中物理论文,有全局的观点,在不同情况下善于应变。这样,就可以培养学生的应变能力,提高学生的分析、抽象、概括、能力,活跃学生的思维。

例如,在《动量守恒的验证》中,该实验要求大量的空间来操作,且在实验过程中,时间及数据处理又显得太过麻烦。笔者在学生进行该实验后,布置了一道课外思考题,让学生发挥想象改进实验。一位学生参照家中的工艺品,设计了如下方案:将两枚钢球用细线悬起,且中心共线,紧密接触,在钢球后方置一木板,并在竖直方向上标出刻度,以做标志。将其中一小球从某一高处释放,并记下读数,观察碰撞后升起的高度,再次记下读数,也可得出动量守恒定律。经过该同学的设计,将一种简单而又有新意的实验展现给我们,充分调动了学生创新思维的发展。

同样的例子还有很多,在进行《研究平抛物体的运动》时,演示仪器的挡板在停球过程中,总是留下一个“V”型的痕迹。为了使实验减小误差,学生们略加改动,在挡板上塞了些棉花,就使数据变的十分准确。

由上可见,在物理实验中,为了使实验更鲜明生动,更有效的反映问题初中物理论文初中物理论文,通过多方法实验,改进原有的实验,能够充分的调动学生的创新思维,培养学生的创新能力。

三、创设实验问题,提倡学生质疑

没有问题就没有进步,没有问题就没有突破。常言道“小疑则小进,大疑则大进”。孔子在鼓励学生时常道“每事问”。大科学家爱因斯坦在回答他为什么可以做出科学创造时说:“我没有什么特别的才能,不过喜欢寻根刨底的追究问题罢了。”可见,发现问题、提出问题、敢于质疑是创新能力的一个重要方面,而要培养学生的创新能力,就需要提倡学生敢于质疑。

例如,在观察《光的色散》实验中,同学们用三棱镜去观察七色光带。一位学生提出了这样一个问题,“为什么白光通过三棱镜投在屏上时,彩色光带为上红下紫,而透过棱镜直接观察时,彩色光带却是上紫下红?”这个问题提的好,说明他是真的动脑,真的思考了。笔者立即鼓励了他,并借此机会提倡全班学生养成多提问、多质疑的好习惯。从此以后,同学们在实验中都踊跃思考,敢于质疑,极大的调动了学生的创新意识。

在物理实验中,教师应该多培养学生的质疑能力,提倡学生多思考、多提问,敢于挑战权威,勇于探求真理。只有这样才能全面调动学生的主动性,激发学生的创新思维。

四、开设课外实验,激发学生思维

创新教学的构成要素是研究性、引导性、发现性、归纳性等有机的结合起来,这就要求教师在实验中创造性的应用现代教学方法和教学手段,将多种教学方法进行优化组合,用“创造性的教”为学生“创造性的学”创造环境和条件。因此除了演示实验和分组实验之外初中物理论文初中物理论文,也可以在学生的模型制作、游戏、调查小实验活动中激发学生的创新思维。

例如,在一次布置课外实验时,笔者给每位学生发一枚鸡蛋,让学生们展开想象的的翅膀,利用鸡蛋来验证一种物理规律或物理现象论文开题报告论文下载。学生的想法真是五花八门:有的把鸡蛋煮熟后,浸入凉水之中,发现比平常的热鸡蛋好剥的多,从而验证了热胀冷缩现象;有的把含酒精的棉花置入开口瓶中,并把鸡蛋置于瓶口,燃烧后,鸡蛋被吞入瓶中,从而验证了大气压的存在;也有的将鸡蛋从高处释放,落到海绵上时不易碎,进而验证了动量定理;还有的将鸡蛋放于硬纸片上,下方置一杯水,迅速弹出硬纸片,鸡蛋落入杯中,进而验证了惯性定律。

像这样与实际相联系的课外小实验,不仅激发了学生们对实验教学的兴趣,还能提高学生的发散思维,培养学生的创新能力。

五、开放实验室,探索开放式实验教学法

开放式实验教学并不是简单地打开实验室门就可实现的,那只是“实验室的开放”,而非真正的开放式实验教学。要搞好开放式实验教学需要有一整套相应的措施。

北京某校以俞庆森老师为首的前辈们打破了实验课附属于理论课、以验证性实验为主的教学模式。多年来他们一直在探索实验教学的新模式,以适应培养创新型人才的需要。经过近年来不断地探索,他们提出了基础实验教学开放式管理的新模式:教师根据最新科技发展的情况,拟就若干个实验题目,由学生选取后自行查阅资料、自行拟就实验方案、自行备齐所需简易用具、按需要预先约定使用实验室及所需仪器的时间,最后独立或分小组完成实验。教师的作用仅是提供必要的理论引导和“维护型”的实验室指导。

这种实验的开放管理意味着进入实验室的时间完全由学生自由选择。为保证实验的正常开展并获得良好的教学效果,在采用预约实验时间这一常规方法的同时,也尊重了学生意见,同时充分发挥学生的能动性、积极性和创造性。在每一个具体的实验过程中并没有结束时间的规定初中物理论文初中物理论文,允许学生在实验失败后重做,直至成功为止。指导教师也一改以往辅导过细,偏重结果的做法,让学生充分展开想象、创造的翅膀,自由发挥。

上述方案,成功地调动了学生主动探索的积极性,毫无疑问,进行开放式实验教学,是培养学生创新能力的有效方法。虽然在实验过程中需要教师付出了更多的时间、精力和耐心,但对学生整体能力的提高大有裨益。

篇10

Abstract:Inordertoresolvethethreeagriculturalproblemseffectively,itisnecessarytogowithagriculturallogisticsofhealthiness.Thepaperexpatiatesthatagriculturallogisticscouldresolvetheproblemofrightsandinterestswithpeasants,theproblemofruralintegrationdevelopmentandtheproblemofsupplyandcompetitionofagriculturalproducts.Thispaperbringsforwardsomeadviceonhowtodevelopagriculturallogisticsafterenumeratingthefactorsofrestrictionandtheconditionsofexistence.

Keywords:agriculturallogistics;agriculturalproduct;threeagriculturalproblems;logistics

《国民经济和社会发展第十一个五年规划》开篇明确指出“十一五”期间是全面建设小康社会的关键时期,其中的关键是要实现农村的小康,开辟专门章节详细阐述了建设社会主义新农村问题,指出解决“三农”问题的任务相当艰巨。“三农”问题即农民、农村和农业问题,也就是农民权益问题、农村综合发展问题、农产品供给及其国际竞争力问题。

农业物流是从农业生产资料的采购、农业生产的组织到农产品的加工、储运、分销等,从生产地到消费地、生产者到消费者过程中所形成的包括信息传递在内的一系列计划、执行、管理和控制的过程。农业物流在国民经济发展中也具有举足轻重的作用,它涉及到整个国民经济的运行效率和运行质量,关系到农业产业化发展和农民的增收,连接着农产品的生产和消费。如何有效地保证农业生产,为农产品开拓市场、降低流通成本、实现农产品的价值等,已成为提高农产品竞争力、增加农民收入、实现农业现代化的关键问题。发展农业物流是促进农村经济发展的必要条件,改善和发展农业物流是促使“三农”问题得到解决的有效途径。

1发展农业物流对解决农民问题的促进作用

现代物流是以满足消费者的需求为目的,把采购、制造加工、运输、仓储、销售等统一起来考虑的一种战略措施,它涵盖了产品从生产到消费的整个物理性流动的全过程,包括物资的运输、仓储、装卸搬运、包装、流通加工、配送、信息处理等活动。

现代物流除了具有技术密集型、知识密集型和资本密集型等特点以外,还具有劳动密集型的特点。

我国农村有5亿劳动力,相当一部分处于隐性失业的状态,比如失地农民。要从根本上改变农村的状况就需要把大量的农村剩余劳动力从农村中转移出来。因为物流条件的限制,资源优势不能转化为经济优势,特别是农产品运销不畅,是农民增产不增收的一个重要原因。

农业物流在农资、农产品的采购、运输、仓储、保管、装卸搬运、流通加工、销售等各环节需要改造或建立一批诸如国有粮食公司、供销合作社、农业公司、农业合作社、为农民协会服务的第三方物流企业、为农产品物流服务的专业运输公司、专业包装公司、专业仓储公司等物流主体企业,而这些环节都可建立在乡镇一级,对农资和农产品进行货物的疏散和汇集,便于更好地配送和大批量干线运输,可以吸纳很大一部分农村剩余劳动力,并且能够就地消化。这样一来,一方面解决了农村剩余劳动力的就业问题和农民的收入问题;另一方面,减小了大量农民集中涌向大中城市带来的就业等负面影响。配合已经出台的农村医疗卫生、社会保障措施和农村子女上学减免学杂费等措施,应该说,农业物流的良性有序发展能够很好地解决农民问题。

2发展农业物流对解决农村问题的促进作用

依托农村资源优势和劳动力优势,开展种子、农机具、农药、化肥、饲料等农资供应销售连锁经营;建立由流通型龙头企业直接开办的连锁超市或连锁商店;发展加工型企业配合连锁经营,搞好农产品和农资的集中配送;支持农民专业合作组织按照连锁经营的需要,发展规模化、专业化、标准化生产,提高产品质量,形成批量,统一向连锁经营企业直供直销农产品;帮助有条件的批发市场发展农产品配送中心,为其他连锁经营企业搞好配送服务,或依托批发市场发展农产品连锁经营;建立农产品的拣选、分类、包装、保鲜、深加工等,形成农产品的包装和加工制造业;通过建立冷冻、冷藏和仓储保管以及农产品的货代、配送和运输建立农产品储运企业。

规范农产品集贸市场,建立农产品批发市场物流体系,建设农产品经纪人队伍和运输人队伍,加强农村信息化建设,及时收集和农产品的供求信息和价格信息,以市场为导向,积极引导农产品的合理流通。

通过以上非农产业的建立和发展,在农村县乡一级基本具备现代农业物流系统的功能要素,进而可以整合农业物流主体,发展多元化流通渠道。通过体制创新,改造、培育、壮大专业从事农业物流主体,使其在农业物流中发挥重要作用,加快原有农资流通企业资产重组改造,改变目前规模小、服务单调和封闭运行的现状,按照农产品流通产业化的发展方向,重点加大对农产品批发市场、农产品运销企业、进出口企业、物流配送企业和大型食品连锁超市的扶持力度,以市场为依托,组织农产品运销协会,鼓励“生产基地+农户”、“加工企业+农户”、“运销企业+农户”、“配送中心+农户”等模式的发展,逐步建立现代企业制度,向专业化、规模化和综合化方向发展。

配合农村金融制度改革,增强农业物流企业的市场意识和客户服务意识,通过农业物流的发展带动其他产业的协调发展,能够促进县域经济的发展和农村问题的解决,加快农村城镇化建设的步伐,缩小城乡差距。

3发展农业物流对解决农业问题的促进作用

解决农业问题,主要是要解决农产品的供给问题和提升农产品的国际竞争力问题。

由于我国农业生产主要是以一家一户的小农户为基础的分散生产方式,不利于农业科技的推广应用,难以形成规模化、集约化和标准化的生产格局,导致我国农产品长期处于“一类原料、二类加工、三类包装、四等价格”的低效益局面。农产品难以满足远距离大批量运输要求,造成生产和运输中极大的浪费,生产和销售的规模效益不高,市场竞争力弱。

农产品具有生产与消费的空间矛盾,农业物流能够有效地协调农产品生产地域性与消费普遍性的矛盾;农产品生产受自然条件的制约和影响,具有供给与需求的矛盾,特别是一些季节性农产品,通过农业物流起到调剂余缺的作用。通过农业物流,解决我国13亿人口农产品的供给问题。

农产品具有特有的物理特性、生物特性和化学特性。让分散农户生产出来的农产品安全进入物流系统,经市场满足消费者的需求,农业物流起到关键的联接作用。通过农业物流能使具有市场竞争力的绿色农产品满足消费者个性化、多样化和及时化的需求,赢得市场和客户。

要合理解决农业问题,提高农业物流的效率和减少在运输、仓储、装卸搬运中的货差、货损,提高农产品的市场竞争能力,改变农民增产不增收的现状,应积极开展农业物流的增值服务:第一,农产品分类与分类包装增值服务;第二,农产品精加工、深加工后的小包装增值服务;第三,农产品配送增值服务;第四,特种农产品运输增值服务;第五,特种农产品仓储与管理增值服务等。农业物流的专业化、社会化、规模化、信息化优势,对提高我国农业的综合竞争力具有现实的推动作用,没有高效的物流能力,我国农产品很难获得较高的国际竞争力。

4发展农业物流的约束因素和现有条件

现阶段发展农业物流,在体制方面还存在着条块分割、地方保护、行业垄断;政策方面存在着政策体系不清晰、可操作性不强,物流市场存在无序竞争和恶性竞争;在人才方面,存在着物流管理和运作人才相对短缺,管理水平低、现有从业人员业务能力相对较差,现代物流主体企业不发达;农业物流基础设施和设备投入不足,现代化程度不高,物流的专业化和规模化程度不高,标准化建设相对滞后;农产品物流投资结构不够合理;农产品流通中的信息化建设不完善,农产品的加工开发落后,保鲜技术和加工能力制约着农产品的物流质量,导致产品附加值低;物流发展缺乏整体规划。这些因素对于发展我国农业物流具有很大的制约作用。

尽管发展我国农业物流有很多约束因素,但是也应该看到:

随着《物流术语》国家标准的,国家发改委等9个部委联合《关于促进我国现代物流业发展的意见》的实施,《全国物流标准2005年—2010年发展规划》提出的物流标准体系逐步建立,社会物流统计及社会物流总量核算的试算工作的开展,多层次物流专业教育体系和培训、考试与认证的启动,政府对农产品与农资连锁的政策和资金的支持等,从政策层面为农业物流的发展奠定了基础。

“十五”期间95%的行政村通电话的电话村通工程,“十一五”期间将加快推进农村公路建设,县乡公路将增加30多万公里,新改建农村公路将达120万公里,全国所有具备条件的乡镇、建制村都将基本实现通公路,95%的乡镇和80%的建制村通沥青路或水泥路,在基础设施方面为农业物流奠定了坚实的基础。

5发展农业物流的建议

(1)政府提供良好的公共设施,为农业物流发展创造良好的外部条件。交通基础设施建设应纳入国家发展的总体规划,统筹考虑、协调发展,从体制上打破部门分割和地区封锁,发展智能交通保证物流的高效率;充分利用现代信息技术,建立健全电子商务认证体系、网上支付系统和物流配送管理系统,促进信息资源共享,不断提高物流企业的信息化水平,推动企业内部流程改造,积极探索物流一体化管理,大力推进公共信息平台建设。

(2)政府应重视软环境建设。政府的作用主要在于制定物流发展战略、规划及产业政策,清除地区和行业壁垒,创造并维护公开、公平、公正的市场环境。根据现代物流发展的需要和我国国情,建立市场配置资源、政府营造环境、行业协调自律的运行管理机制和相应的法律法规体系,为农业物流企业发展提供公平的自由竞争的外部环境,为物流业的发展提供必要的条件。

(3)提倡农资、农产品加工制造企业和涉农商贸企业引入现代物流理念,积极进行企业内部流程再造和资源整合,提高自身物流管理水平。

(4)发展基于供应链管理理论的农业物流。供应链管理从系统角度出发,通过供应链各节点企业的无缝衔接和协同运作,可以有效减少各环节的成本,提高服务水平,最大限度地降低企业成本。加强农业企业间的物流合作,逐步建立供应链管理的合作伙伴关系,形成农业企业核心竞争力。改善农产品供给能力,提高农业物流服务水平,培育社会化物流的需求基础,发展第三方物流企业。

(5)加强科技投入,加速科技成果的转化,应用先进的技术和方法,采用新材料和新工艺,使物流规划和决策科学化,物流组织和管理民主化,优化资源配置,提高农业物流运作效率和效益。

6结论

以科学的发展观指导现代物流的发展,根据现代物流发展的规律,结合我国国情,发展农业物流,对改变农业产业结构,加强农民进入市场的组织化程度,增加农民收入,提高农产品的市场竞争力必将起到十分重要的作用;对促进“三农”问题的解决,加快社会主义新农村建设和构建和谐社会具有积极作用。

参考文献:

[1]丁俊发.大力发展农产品物流[J].中国供销合作经济,2002(2):19.

[2]丁俊发.解决“三农”问题物流大有可为[J].中国物流与采购,2004(12):8-9.

[3]何明珂,郑媛.农业物流促进农村经济[J].中国供销商情,2004(4):21-22.

[4]陈淑祥.简论我国农产品现代物流发展[J].农村经济,2005(2):19-21.

[5]韩美贵,张兆同.改善和发展农产品物流的思考[J].农村经济,2005(2):22-24.