时间:2023-03-29 09:27:32
导言:作为写作爱好者,不可错过为您精心挑选的10篇纳米化学论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
研究论文
(1)多壁纳米碳管对磷酸铁锂正极材料热稳定性及表面形貌的影响 mária filkusová andrea fedorková renáta
oriňáková andrej oriňák2 zuzana nováková lenka kantárová
动态
(7)第十一届全国新型炭材料学术研讨会征文通知 无
研究论文
(8)氧化硅包覆单壁碳纳米管纳米电缆的制备 张艳丽 侯鹏翔 刘畅
动态
(13)thc系列耐高温阻燃热固性酚醛树脂 无
研究论文
(14)多壁碳纳米管的对氨基苯磺酸钠修饰及对cu^2+的吸附性能 郑净植 胡建 杜飞鹏
动态
(19)《新型炭材料》2011年sci影响因子0.914 无
研究论文
(20)磁场处理对ldpe及其碳纳米管复合材料电导特性的影响 韩宝忠 马凤莲 郭文敏 王艳洁 蒋慧
动态
(25)西安诚瑞科技发展有限公司 高低温炭化炉、液相(气相)沉积炉、石墨化炉 无
研究论文
(26)碳纳米管/铁氰化镍/聚苯胺杂化膜对抗坏血酸的电催化氧化 马旭莉 孙守斌 王忠德 杨宇娇 郝晓刚 臧杨 张忠林 刘世斌
(33)水辅助化学气相沉积制备定向碳纳米管 刘庭芝 刘勇 多树旺 孙晓刚 黎静
(39)通过高温裂解酚醛树脂制备气体分离用炭膜——裂解温度及臭氧后处理的作用分析 mohammad mahdyarfar toraj
mohammadi ali mohajeri
动态
(46)纳米植物炭黑 无
研究论文
(47)中孔炭负载二氧化钛光催化剂的制备及降解甲基橙 因博 王际童 徐伟 龙东辉 乔文明 凌立成
(55)co2捕集用具有多级孔结构纳米孔炭的制备 唐志红 韩卓 杨光智 赵斌 沈淑玲 杨俊和
研究简报
(61)高分散性氧化石墨烯基杂化体的制备及其热稳定性增强 张树鹏 宋海欧
(66)相互连接的碳微米球的制备与磁性 文剑锋 庄叶 汤怒江 吕丽娅 钟伟 都有为
(71)碳化物衍生碳涂层的表面划痕织构能降低摩擦 眭剑 吕晋军
动态
由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。
(1)发达国家和地区雄心勃勃
为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。
日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。
欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。
(2)新兴工业化经济体瞄准先机
意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。
中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。
(3)发展中大国奋力赶超
综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。
2、纳米科技研发投入一路攀升
纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。
美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。
日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。
在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。
中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。
就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。
另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。
3、世界各国纳米科技发展各有千秋
各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。
(1)在纳米科技论文方面日、德、中三国不相上下
根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。
2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。
在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。
另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。(2)在申请纳米技术发明专利方面美国独占鳌头
据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。
专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。
(3)就整体而言纳米科技大国各有所长
美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。
虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。
日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。
在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。
日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。
日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。
欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。
中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。
4、纳米技术产业化步伐加快
目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。
美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。
美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。
日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。
由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。
(1)发达国家和地区雄心勃勃
为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。
日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。
欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。
(2)新兴工业化经济体瞄准先机
意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。
中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。
(3)发展中大国奋力赶超
综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。
2、纳米科技研发投入一路攀升
纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。
美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。
日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。
在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。
中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。
就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。
另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。
3、世界各国纳米科技发展各有千秋
各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。
(1)在纳米科技论文方面日、德、中三国不相上下
根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。
2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。
在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。
另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。
(2)在申请纳米技术发明专利方面美国独占鳌头
据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。
专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。
(3)就整体而言纳米科技大国各有所长
美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。
虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。
日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。
在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。
日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。
日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。
欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。
中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。
4、纳米技术产业化步伐加快
目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。
美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。
美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。
日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。
由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。
(1)发达国家和地区雄心勃勃
为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。
日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。
欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。
(2)新兴工业化经济体瞄准先机
意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。
中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。
(3)发展中大国奋力赶超
综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。
2、纳米科技研发投入一路攀升
纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。
美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。
日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。
在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。
中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。
就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。
另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。
3、世界各国纳米科技发展各有千秋
各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。
(1)在纳米科技论文方面日、德、中三国不相上下
根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。
2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。
在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。
另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。
(2)在申请纳米技术发明专利方面美国独占鳌头
据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。
专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。
(3)就整体而言纳米科技大国各有所长
美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。
虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。
日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。
在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。
日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。
日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。
欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。
中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。
4、纳米技术产业化步伐加快
目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。
美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。
美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。
日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。
主管单位:教育部
主办单位:天津大学
出版周期:双月刊
出版地址:天津市
语
种:中文
开
本:大16开
国际刊号:1672-6030
国内刊号:12-1351/O3
邮发代号:6-177
发行范围:国内外统一发行
创刊时间:2003
期刊收录:
CA 化学文摘(美)(2009)
Pж(AJ) 文摘杂志(俄)(2009)
EI 工程索引(美)(2009)
中国科学引文数据库(CSCD―2008)
核心期刊:
期刊荣誉:
联系方式
纳米贵不贵?好不好吃?
1983年,刘忠范大学本科毕业后便赴日留学。他先后在日本横滨国立大学、东京大学取得了硕士和博士学位,并在东京大学和分子科学研究所做博士后。
攻读博士期间,刘忠范师从国际著名光电化学家藤岛昭先生做研究,他很为老师的工作精神所感动,年过半百仍扑在事业上。
自幼养成的勤奋习惯和藤岛昭先生的表率,使刘忠范在日学习期间取得很大成功,获得了日本政府奖学金并在《Nature》杂志上发表了学术论文。与中国不同的社会环境,也让埋头读书不问世事的刘忠范更加开朗起来。这时,北京大学化学系的教授蔡生民找到了他,不止一次地邀请刘忠范回国,并且用真诚的话语
打动了他。
他选择了北大。十几年后回忆起来,刘忠范仍觉得,“北大是最适合我的”。
在研究领域,刘忠范选择了纳米。
人们接受纳米有一个过程。1997年9月27日,北京大学成立了纳米科技中心,这是中国高校的第一个跨院系、跨学科从事纳米交叉学科研究的综合性研究中心。刘忠范接到很多电话,有人问:“听说你们搞出一种纳米,贵不贵?好不好吃?”刘忠范只好幽默地回答他,“纳米太小了,既不好吃,恐怕也吃不饱。”
近年来,纳米技术掀起了阵阵热潮,也渐渐出现在人们生活中。纳米技术将为目前许多技术难题提供新的解决方案和思路,也会进一步提高人们的生活水平并有可能在很大程度上改变人们的生活方式。1986年诺贝尔物理奖得主罗雷尔说,曾重视微米科技的国家,今天都已成为发达国家,而纳米科技则为人们提供了新的发展机遇,今天重视纳米科技的国家必将在未来的高科技竞争中独领。
科技部最年轻首席科学家
1994年,刘忠范申请了科技部攀登计划项目,经费500万元。刘忠范成为这个项目的首席科学家,也是当时科技部最年轻的首席科学家。他从此开始了纳米攀登之旅。
“当时,我们是做纳米级的信息存储技术,相当于超级光盘。”刘忠范说,这个项目共有三个承担单位,还包括当时的北大电子学系——现在的信息科学技术学院的吴全德院士、薛增泉教授以及吉林大学化学系的李铁津教授。吴先生尽管年事已高,但对‘纳米’非常敏感。吴老先生和薛教授都是做信息技术的,尤其有感于我国微电子技术发展的曲折和落后现状,而纳米技术应该是一个难得的机会。因此,“我们之间产生了强烈共鸣,觉得应该酝酿一个计划,大张旗鼓地在纳米领域开拓——这就是北京大学纳米科技中心成立的初衷”。
1993年,刘忠范回国后,他亲手建立起光电智能材料研究室。起初什么都没有,完全从零开始做。有几间空房子,每一个插头在什么地方,都要刘忠范自己设计后找人安装,桌椅板凳都是他自己一件件买来的。搞前沿研究需要先进设备,为了购买这些设备,他省吃俭用,甚至到了抠门的程度。刘忠范花50多万元买了一台用于看原子和分子的STM仪器,这差不多是国内最早进口的洋玩意。仪器需要配置防震台,由于资金紧张,刘忠范只能带着学生亲自动手。
创业是艰辛的。当年的刘忠范人称“拼命三郎”,每天最早进楼的是他,最晚一个走出实验室的还是他。由于总是工作到深夜,楼门早已关闭,因此他经常翻越化学楼的铁门,“因此练就了一副好身手”,他自嘲道。
科研工作很辛苦,但也充满了快乐。在刘忠范眼里,研究的一大乐趣就是和学生一道创造故事。学生一个错误的实验设计带来了热化学烧孔存储技术;一位女同学的顽固不化和他的坚持加包容收获了石墨烯的偏析生长方法,进而开启了石墨烯生长过程工程学研究之门。回忆起这些往事,刘忠范的脸上洋溢着成就感。
“要向两头进军”
十几年来,中国纳米科技发展得飞快。从数量上看,已经与美国并驾齐驱,论文的档次也越来越高,尽管原创性和影响力尚有待提高。刘忠范为中国纳米的发展简单勾勒了三部曲:科学、技术和工程。
谈起与自己一同成长的北大纳米科技中心,刘忠范说,北大的纳米研究,总体上还处于纳米科学的层面。经过十几年的努力,已经取得了长足进步,在国内外拥有了一定的学术影响和地位,化学学院、信息学院和物理学院的纳米团队功不可没。当然,我们还缺少重大突破,需要从高原到高峰的飞跃。
刘忠范特别推崇团队精神和团队文化建设。说起他的研究团队,他总是强调,他所取得的些许成绩,都是团队成员共同拼搏、共同奋斗的结果。他的研究团队,从最初的几个人、十几个人,发展到今天的几十个人,不断地壮大着,也形成了独具一格的团队文化。正是这样的团队文化,带来了一个又一个的学术研究成果,也使北大成为国际知名的低维碳材料研究基地。他的信条是:人才决定潜力,机制决定效率,文化决定高度。
刘忠范最自豪的不是他发表的300多篇学术论文,而是培养了一批热爱科学、热爱纳米的弟子。他的弟子绝大多数都在国内外知名学术机构从事科研工作。他更希望将来有一天他被称为教育家,而不仅仅是一名科学家。
“ 责任是通向伟大的代价”,这是丘吉尔的一句名言。刘忠范深深地感受到越来越多的社会责任。儿时刻骨铭心的贫穷经历使他对农村教育和失学儿童问题极为关注,并力所能及地为此做些事情。他设立的奖学金拯救了不少濒临失学的儿童。人生是永不停息的马拉松。前人在指引着我们,后人在追赶着我们,我们始终处在激烈的竞争中。刘忠范正不断翻山越岭,向科学高峰攀登。(来源:科技日报,本刊有删节)
Development of resonance rayleigh scattering spectrum method of application
LV Zhao-xia,LI Tai-shan,LI Mao-jing
(1Qinggong College, Heibei United University ,Tangshan 063009 ,China;
2、Tangshan Environmental Monitoring Central station,Tangshan 063000,China))
Abstract:Resonance rayleigh scattering spectrum method is a new method with developmental future. In this article, the application of resonance rayleigh scattering spectrum method can be divided into three parts:nanocrystal and we have been presented and reviewed about them, And proposed the development trends about synthetic methods.
Keywords:Resonance rayleigh scattering; nanostructured material; synthetic methods; reviewed;development trends
共振瑞利散射(RRS)作为一种新分析技术始于二十世纪九十年代初,Pasternack[1]等首次用共振散射技术研究卟啉类化合物在核酸分子上的J型堆积,显示出该方法在研究生物大分子的识别、组装、超分子排列[2]以及多个分析领域[3]的应用前景。刘绍璞等则率先研究小分子之间借静电引力、疏水作用和电荷转移作用而形成离子缔合物产生强烈的RRS信号,从另一角度丰富和拓展了研究内容。目前,共振瑞利散射光谱法在生物大分子的测定、药物分析、纳米微粒和痕量无机物离子的研究和分析中得到越来越多的应用,已发展成为一种高灵敏度、操作简便、仪器价廉和应用广泛的新方法。本文归纳出共振瑞利散射法的三大主要应用:纳米微粒、纳米反应、非纳米反应。并提出了它的发展方向。
1、共振瑞利散射光谱法的应用领域
1.1 纳米微粒
纳米微粒是纳米微粒本身具有共振瑞利散射特性。近来,从纳米微粒和界面形成这一观点出发,通过对一些无机纳米粒子的RRS光谱研究发现,(1)一些金属纳米粒子具有量子呈色效应和RRS效应,并产生RRS峰;(2)根据物理学共振原理,结合金属纳米微粒体系的光谱研究,认为RRS系纳米微粒界面超分子能带中的电子与入射光子相互作用导致瑞利散射光信号急剧增大的现象;(3)较大粒径纳米粒子和界面的形成是导致散射光信号增强的根本原因;(4)纳米粒子的RRS效应、光源发射光谱和检测器光谱响应曲线、光吸收是产生RRS峰的三个重要因素等。
研究结果表明,RRS光谱是研究无机纳米粒子的一种灵敏的光谱技术。金、银、碘化亚汞、硫化镉、碲化镉等液相纳米粒子均显示出RRS效应,产生特征RRS峰[4~8]。
1.2 纳米反应
共振瑞利散射纳米反应是纳米微粒与蛋白质、核酸、多糖、染料、生物碱、药物等发生反应引起的纳米颗粒的共振瑞利散射光谱峰值的改变。
1.2.1 无机离子分析
周贤杰等[9]用银纳米微粒与酚藏花红相互作用的共振瑞利散射光谱可为研究和检测银纳米微粒提供一种简便、灵敏的新方法。张庆甫等[10]研究了金纳米棒与EDTA-Cu2+相互作用的共振光散射特征,建立了一种测定水中痕量铜离子的新方法[10]。
1.2.2 药物分析
鲁群岷等[11]利用金纳米微粒作探针,建立共振瑞利散射光谱法可测定血液中一定范围内亚甲蓝的含量。何佑秋[12]用金纳米微粒作探针,提出共振瑞利散射光谱法测定痕量卡那霉素的新方法,还可以测定盐酸雷洛昔芬的含量。李太山等[7]制备出性能优异的碲化镉纳米晶与氨基糖苷类抗生素相互作用,建立了硫酸阿米卡星和硫酸小诺毒素的测定方法,王齐研究了硫化镉纳米晶与氨基糖苷类抗生素相互作用。王齐等[13]还利用硫化镉纳米微粒作探针共振瑞利散射测定了某些蒽环类抗癌药物,而鲁群岷用金纳米微粒作探针共振瑞利散射同样测定了某些蒽环类抗癌药物。胡蓉研发小组[14]用CdSe量子点作探针共振瑞利散射法测定血样中的阿米卡星含量。闫曙光等[15]用CdTe 量子点作探针共振瑞利散射法测定临床上的抗凝剂物质肝素钠含量。利用金纳米的特殊的物理化学性质,以未经化学修饰的金纳米直接作为探针,RRS法测定某些生物碱(如盐酸小檗碱,硫酸奎宁)。
1.2.3 生物大分子分析
闫炜等[16]研究小组建立了一种用CdTe/CdS量子点共振瑞利散射光谱法快速检测细胞色素C的方法。王齐等[17]研究了铜纳米微粒与维生素B1相互作用的共振瑞利散射光谱。刘丹等[18]用CdSe量子点作探针共振瑞利散射法测定葡聚糖硫酸钠的含量。王文星等[19]以没食子酸为还原剂和稳定剂制备出的Ag/Au核壳纳米粒子为探针,共振瑞利散射光谱测定人血清总蛋白。范小青在硕士论文中开发了CdTe量子点与卵清白蛋白、牛血清白蛋白的相互作用。刘正文的硕士论文用CdTe量子点作探针共振瑞利散射测定了γ-球蛋白含量。
1.2.4 其它分析
RRS光谱技术还可用金纳米微粒作探针测定牛奶中的三聚氰胺的含量[20]。陈启凡等[21]利用共振瑞利散射技术研究了金纳米微粒与溶菌酶的相互作用,将纳米金作为测定溶菌酶的探针。
1.3 非纳米反应
共振瑞利散射非纳米反应是非纳米微粒与蛋白质、核酸、多糖、染料、生物碱、药物等发生反应引起的纳米颗粒的共振瑞利散射光谱峰值的改变。
1.3.1 无机离子分析
黄亚励等[22]利用I3-与硫酸耐而蓝生成稳定的离子缔合物,碘能定量氧化As3+,且散射强度的改变值ΔIRRS与As3+浓度呈线性关系而建立了一种测定尿中痕量砷的共振瑞利散射新方法,还有人用此法测定了环境水样中痕量砷(Ⅲ)。罗道成等[23]研究出铅-碘化钾-罗丹明6G离子缔合物在315nm波长处产生强烈的共振瑞利散射光谱,其光强度I与Pb2+的质量浓度在一定范围内成线性关系,可用于测定环境水样中的痕量铅。韩志辉等[24]人在银-邻菲罗啉-茜素红体系中,开发出共振瑞利散射法测定痕量银的一种新方法。倪欣等[25]也报道了痕量银的共振瑞利散射法测定。刘运美等[26]在钴(1I)-PAN-SDBS体系中用共振瑞利散射法测定了钴的含量。Long X F等用RRS光谱技术测定天然水和生物样品中的Al(III)。
1.3.2 药物分析
邢高娃等[27]在一定条件下,以甲基蓝-铕稀土配合物为光散射探针,建立了灵敏的测定美他环素的共振瑞利散射分析测定新方法。郭思斌[28]应用固绿与硫酸软骨素作用形成结合产物时,在一定范围内溶液的RRS强度与硫酸软骨素浓度成正比,建立可测定其含量的方法。胡小莉等使用共振瑞利散射法测定氨基糖苷类和四环素类抗生素类药物.王芬等[29]同样采用共振瑞利散射光谱研究了某些蒽环类抗癌药物与刚果红的相互作用。许东坡等[30]用12-钨磷酸共振瑞利散射光谱法测定盐酸苯海拉明。王媚的论文中开发了共振瑞利散射光谱法在氟喹诺酮类抗生素药物分析中的应用,如铽-氟喹诺酮类抗生素-茜素红、铕-氟喹诺酮类抗生素-铬天青S、钴-氟喹诺酮类抗生素-刚果红等相互作用的反应体系。某论文以溴甲酚绿、溴酚蓝、硅钼酸为探针建立了简便、快速测定奈替米星的共振瑞利散射的新方法。胡庆红还用丽春红S共振瑞利散射法测定硫酸小诺霉素。
1.3.3 生物大分子分析
肖锡林等[31]建立了共振瑞利散射法测定尿中微量白蛋白的检测新方法。刘绍璞教授及学生研究发现利用RRS光谱可研究蛋白质和杂多化合物的反应继而测定蛋白质,同时也利用RRS光谱研究了核酸和劳氏紫的反应,发现RRS信号的增强和核酸的浓度在一定范围内成比例,该法有很宽的线性范围和很高的灵敏度,可用于核酸的测定。田丽的论文建立了中性红与透明质酸钠、透明质酸钠-溴化十六烷基吡啶缔合物、三氨基三苯甲烷染料与硫酸皮肤素和健那绿与硫酸软骨素体系相互作用的共振瑞利散射光谱及其分析应用等。刘俊铁则利用茜素红-铕光谱探针用于蛋白质分子的分光光度研究与检测,还利用甲基蓝与血红蛋白相互作用的共振瑞利散射光谱研究及小分子的影响。
1.3.4 其它分析
西南大学研究小组用共振瑞利散射法测定了盐浸中的亚铁氰化钾,还研究了乙基紫共振瑞利散射法测定碘酸钾、羧甲基纤维素钠含量,卤离子与阳离子表面活性剂相互作用的共振瑞利散射光谱,溴酚蓝共振瑞利散射光谱法测定痕量阳离子表面活性剂。RRS光谱技术还可用来测定β-环糊精的包结常数。
2、展望
综述所述,目前可用共振瑞利散射光谱法在纳米与非纳米反应体系中测定无机离子、药物分析、生物大分子等多种物质含量。相比较而言,纳米反应体系测定物质的含量相对较少。随着社会进步,纳米科学技术不断发展,可制备出更多种类且具有共振瑞利散射特性的纳米晶,来测定更多品种、更痕量的物质含量,是以后共振瑞利散射法的发展方向。
参考文献:
[1] Pasternack R F, Bustamante C, Collings P J,et al. J Am Chem Soc,1993, 115: 5393
[2] Huang C Z, Li Y F, Shi Y D, Shu R L, Bull Chem Soc Jpn,1999, 72: 1501
[3] 李原芳,黄承志,胡小莉,分析化学,1998, 26(12): 1508
[4] 刘庆业,覃爱苗,蒋治良等. 聚乙二醇光化学法制备金纳米微粒及共振散射光谱研究[J].光谱学与光谱分析,2005年 第11期
[5] 蒋治良,何佑秋,胡小莉等. 液相碘化亚汞纳米离子的共振光散射和荧光光谱[J].广西师范大学学报,自然科学版,(特刊) 2003, 21(2): 165~166
[6] 蒋治良,何佑秋,蒙冕武,刘绍璞,液相硫化镉纳米粒子的共振散射和荧光光谱[J].
广西师范大学学报,自然科学版,(特刊)2003,21(2):163~164
[7] 李太山,刘绍璞,刘忠芳. 碲化镉纳米晶溶液的荧光和共振瑞利散射特性及碲化镉纳米晶与氨基糖苷类抗生素相互作用[J]. 中国科学(B辑:化学),2008,38(9):798~807.
[8] 刘绍璞,周贤杰,孔玲等. 银纳米微粒的光谱研究[J]. 西南师范大学学报,2005,30(4):690~694.
[9] 周贤杰,刘绍璞. 银纳米微粒与酚藏花红相互作用的共振瑞利散射光谱研究[J]. 西南师范大学学报,2003,28(2):267~271.
[10] 张庆甫,曹志林,金维平. 金纳米棒共振散射法测定铜离子浓度[J]. 中原工学院学报,2008,19(3).44~46,54.
[11] 鲁群岷,何佑秋,刘绍璞等. 金纳米微粒作探针共振瑞利散射光谱法测定亚甲蓝[J]. 高等学校化学学报,2006,27(5):849~852.
[12] 何佑秋,刘绍璞,刘忠芳等. 金纳米微粒作探针共振瑞利散射光谱法测定卡那霉素[J]. 化学学报,2005,63(ll):997~1002
[13] 王齐,刘忠芳,刘绍璞. 硫化镉纳米微粒作探针共振瑞利散射测定某些蒽环类抗癌药物[J]. 高等学校化学学报,2007,28(5):837~842.
[14] 胡蓉,彭娟娟,范小青等. CdSe量子点作探针共振瑞利散射法测定阿米卡星[J]. 西南民族大学学报.自然科学版,2009,35(1):119~123.
[15] 闫曙光, 何佑秋, 彭娟娟等. CdTe 量子点作探针共振瑞利散射法测定肝素钠[J]. 西南大学学报,2010,32(3):67~71.
[16] 闫炜,张爱梅,王怀生. CdTe/CdS量子点共振瑞利散射光谱法测定细胞色素C[J]. 理化检验-化学分册,2008,44:107~110,122.
[17] 王齐,刘忠芳,孔玲等. 铜纳米微粒与维生素B1相互作用的吸收光谱和共振瑞利散射光谱研究[J]. 分析化学研究报告,2007,35(3):365~369.
[18] 刘丹. CdSe量子点作探针共振瑞利散射法测定葡聚糖硫酸钠[J]. 四川文理学院学报,2010,21(2):51~54
[19] 王文星,黄玉萍,徐淑坤. Ag/ Au 纳米粒子的没食子酸还原制备及其共振瑞利散射光谱测定人血清总蛋白[J]. 分析化学研究报告,2011,39(3):356~360.
[20] 曾国平,向东山,李丽等. 金纳米粒子作探针共振瑞利散射光谱法测定牛奶中三聚氰胺[J]. 化学学报,2011,69(23):2859~2864.
[21] 陈启凡,孙世安,王岩等. 金纳米探针瑞利共振散射法测定溶菌酶[J]. 激光生物学报,2008,17(5):679~683.
[22] 黄亚励,徐红,刘红. 共振瑞利散射法测定尿中痕量砷[J]. 应用化工,2010,39(1):124~126.
[23] 罗道成,刘俊峰. 铅-碘化钾-罗丹明6G共振瑞利散射法测定环境水样中微量铅[J]. 化学试剂,2007,29(9):547~548;568.
[24]韩志辉,高寿泉,肖锡林. 银-邻菲罗啉-茜素红体系共振瑞利散射法测定痕量银[J]. 中国卫生检验杂志,2005,15(12):1424~1426.
[25] 倪欣,高俊杰,孙凤. 共振瑞利散射法测定痕量银的研究[J]. 广东微量元素科学,2009,16(7):59~63.
[26] 刘运美,杨静,高治平. 钴(1I)-PAN-SDBS共振瑞利散射法测定钴[J]. 应用化学,2007,24(12):1467~1469.
[27] 邢高娃,敖登高娃,刘俊轶. 甲基蓝-铕为光散射探针测定美他环素的共振瑞利散射及共振非线性散射法研究[J]. 中国稀土学报,2010,28(6):766~770.
[28] 郭思斌,肖佩玉,舒永全等. 固绿共振瑞利散射光谱法测定硫酸软骨素[J]. 四川生理科学杂志,2007,29(3):112~114.
【论文摘要】:无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。
当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。
根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述:
一、无机合成与制备化学研究进展
无机合成与制备在固体化学和材料化学研究中占有重要的地位,是化学和材料科学的基础学科。发展现代无机合成与制备化学,不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法,不断地创造与开发新的物种,将为研究材料结构、性能(或功能)与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面:
(一)极端条件合成
在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成,并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。
(二)软化学合成
与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化,即温和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性,减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”,正是具有对实验设备要求简单和化学上的易控性和可操作性特点,因而在无机材料合成化学的研究领域中占有一席之地。
(三)缺陷与价态控制
缺陷与特定价态的控制是固体化学和固体物理重要的研究对象,也是决定和优化材料性能的主要因素。材料的许多性质如发光、导电、催化等都和缺陷与价态有关。晶体生长行为和材料的反应性与缺陷关系密切,因此,缺陷与价态在合成中的控制显然成为重要的科学题。缺陷与特定价态的生成和变化与材料最初生成条件有关,因此,可通过控制材料生成条件来控制材料中的缺陷和元素的价态。
(四)计算机辅助合成
计算机辅助合成是在对反应机理有了了解的基础上进行的理论模拟过程。国际上一般为建立与完善合成反应与结构的原始数据库,再在系统研究其合成反应与机理的基础上,应用神经网络系统并结合基因算法、退火、Monte2Carlo优化计算等建立有关的合成反应数学模型与能量分布模型,并进一步建立定向合成的专家决策系统。
(五)组合化学
组合化学是利用组合论的思想和理论,将构建单元通过有机/无机合成或化学法修饰,产生分子多样性的群体(库),并进行优化选择的科学。组合化学用于合成肽组合库,也称组合合成、组合库和自动合成法。组合方法同时用n个单元与另外一组n′个单元反应,得到所有组合的混合物,即n+n′个构建单元产生n×n′批产物。
(六)理想合成
理想合成是从易得的起始物开始,经过一步简单、安全、环境友好、反应快速、100%产率获得目标产物。趋近理想合成策略之一是开发一步合成反应,如富勒烯及相关高级结构的合成,从易得的石墨出发,只需一步反应即得到目标产物,产率44%。趋近理想合成策略之二为单元操作。相对复杂的分子,如药物、天然产物的合成,需要多步反应完成。在自然界里,生物采取多级合成的策略,在众多酶的作用下,用前一步催化反应的产物作为后续反应的起始物,直至目的产物的生成。
(七)仿生合成
仿生合成无论从理论还是从应用上都将具有非常诱人的前景。无机合成与制备化学在生物矿化、有机/无机纳米复合、无机分子向生物分子转化等研究领域发挥重要作用。用一般常规方法难于进行的非常复杂的合成如何利用生物合成将其变为高效、有序、自动进行的合成。例如生物体对血红素的合成可以从最简单的酪氨酸经过一系列酶的作用很容易地合成出结构极为复杂的血红素。因此,仿生合成将成为21世纪合成化学中的前沿领域。
二、我国无机化学研究最新进展
近几年我国无机化学基础研究取得突出进展,成果累累,主要在以下几个方面取得了令人瞩目的成绩:
(1)中科大钱逸泰、谢毅研究小组在水热合成工作的基础上,在有机体系中设计和实现了新的无机化学反应,在相对低的温度下制备了一序列非氧化物纳米材料。溶剂热合成原理与水热合成类似,以有机溶剂代替水,在密封体系中实现化学反应。他们在苯中280度下将GaCl3和Li3N反应制得纳米GaN的工作发表在Science上。
(2)吉林大学冯守华、徐如人研究组应用水热合成技术,从简单的反应原料出发成功地合成出具有螺旋结构的无机-有机纳米复合材料,M(4,4''''-bipy)2(VO2)2(HPO4)4(M=Co;Ni)。在这两个化合物中,PO4四面体和VO4三角双锥通过共用氧原子交替排列形成新颖的V/P/O无机螺旋链。
(3)南京大学熊仁根、游效曾等在光学活性类沸石的组装及其手性拆分功能研究方面设计和合成具有手性与催化功能的无机有机杂化多维结构,他们改性了光学活性的天然有机药物(奎宁),以它作为配体同金属离子自组装构成了一个能进行光学拆分消旋2-丁醇和3-甲基-2-丁醇,拆分率达98﹪以上的三维多孔类沸石。
(4)中国科学院福建物质结构研究所洪茂椿,吴新涛等在纳米材料和无机聚合物方面的工作引起国内外同行的广泛重视。他们成功地合成纳米金属分子笼(nanometer-sizedmetallomolecularcage),还成功的构筑了一个新型的具有纳米级孔洞的类分子筛[{Zn4(OH)2(bdc)3}.4(dmso)2H2O]n,其中孔洞的大小近一纳米。在金属纳米线和金属-有机纳米板的合成和结构的研究成果斐然。设计合成了一些金属纳米线,金属-非金属纳米线和金属有机纳米板。
(5)北京大学高松研究小组在磁分子材料的研究方面取得了突出成果。在水溶液中以1:1:1的摩尔比缓慢扩散K3[M(CN)6](M=Fe3+,Co3+),bpym(2,2''''-bipyrimidine)和Nd(NO3)3,合成了第一例氰根桥联的4f-3d二维配位高分子[NdM(bpym)(H2O)4(CN)6]。3H2O,24个原子形成的二维拓扑结构。
(6)清华大学李亚栋研究组在新型一维纳米结构的制备、组装方面取得了突出的进展。李亚栋课题组首次发现了由具有准层状结构特性的金属铋形成的一种新型的单晶多壁金属纳米管,有关研究成果在美国化学会志上(J.Am.Chem.Soc.123(40),9904-9905,2001)报道。这是国际上首例由金属形成的单晶纳米管,铋纳米管的发现为无机纳米管的形成机理和应用研究提供了新的对象和课题。
面对生命科学、材料科学、信息科学等其他学科迅速发展的挑战和人类对认识和改造自然提出的新要求,化学在不断地创造出新的物质和品种来满足人民的物质文化生活,造福国家,造福人类。当前,资源的有效开发利用、环境保护与治理、社会和经济的可持续发展、人口与健康和人类安全、高新材料的开发和应用等向我国的科学工作者提出一系列重大的挑战性难题,迫切需要化学家在更高层次上进行化学的基础研究和应用研究,发现和创造出新的理论、方法和手段,并从学科自身发展和为国家目标服务两个方面不断提出新的思路和战略设想,以适应21世纪科学发展的需求。
参考文献
[1]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社.2001.
“尽自己力量努力做事。”沈小平教授这样简单地概括自己的科研工作生涯,给人的印象却是真正的踏踏实实做学问、一心一意搞研究的学者风范。
立足前沿 沉下心来搞创新
长期以来,尽管教学工作繁忙,科研条件有限,但沈小平教授始终要求自己沉下心来,坚持科研工作不动摇。近年来,瞄准本领域国际国内的最新研究进展,他的研究工作一直处于国际前沿领域,先后主持和参与了国家自然科学基金项目六项、省部级科研项目3项、以及国家和省级重点实验室开放课题多项,在化学和材料学领域取得了多项研究进展。
一方面,沈小平教授课题组成功制备了石墨烯与各种金属、合金、氧化物、硫化物、铁酸盐等的复合材料,研究了这类材料在吸附、催化、气体传感、锂离子电池等领域的应用。其中,他们采用简单的低温回流方法制备出了结构和形貌可控的石墨烯(RGO)/Ni纳米复合材料,发现该复合材料对于对硝基苯酚(4-NP)的还原反应具有优异的催化性能。他们首次合成了石墨烯负载的FeNi合金和NiCo合金纳米粒子。在合成RGO-FeNi复合物中,他们首次得到了FeNi合金纳米花,并发现石墨烯作为基底材料对于FeNi合金纳米花的形成起到了关键作用。通过定向流动自组装法,他们将该材料制备成磁性纸片,所得的复合材料显示软铁磁性,使其在磁性存储、生物分离、水处理和电磁波吸收等领域有潜在的应用价值。他们合成的RGO-Nico复合物不仅具有铁磁性质,而且对4-NP的还原具有很好的催化活性,是一种可磁性分离的高效催化剂。他们同时发现了石墨烯对于催化活性和稳定性的促进作用,这使得RGO-NixCo100-x复合材料在催化方面具有潜在的应用价值。
其次,沈小平教授等人首次用一种通用的方法合成了基于石墨烯的各种铁酸盐(MnFe2O4,ZnFe2O4,CoFe2O4和NiFe2O4)复合材料,首次将石墨烯复合材料的磁性,吸附性和光催化性三者结合于一体,将该复合材料设计成高吸附、高催化活性的可磁分离材料。他们发现吸附主要是石墨烯的作用,而光催化性和磁性主要是铁酸盐的贡献。石墨烯的高吸附活性以及MFe2O4纳米粒子的磁学和光催化性能使得该复合材料在环境领域有着潜在的应用。另外,通过微波法他们简便快速地合成了系列化的石墨烯一金属硫化物(ZnS,CdS,Ag2S和Cu2S)的纳米复合材料。该法基于同时生长金属硫化物纳米粒子和还原氧化石墨烯,从而在石墨烯上原位形成无积聚的金属硫化物纳米粒子:并研究了合成参数对硫化物纳米粒子在石墨烯上的尺寸、形貌和分布的影响,这在石墨烯负载的复合材料中尚未被研究。
另外,沈小平教授首次提出了一种通过长链伯胺的非共价键改性将GO从水相转移到各种有机溶剂中的简单而有效的方法,并实现了GO在水相和有机相之间的可逆转移。他们首次通过溶剂热法合成了基于皱褶石墨烯的复合材料――由Fe2O3纳米纺缍体和皱褶的石墨烯纳米片结合而成的新型RGO-Fe2O3纳米复合物。作为锂离子电池负极材料,该纳米复合物与单独的Fe2O3纳米纺缍体和单独RGO纳米片相比,电化学性能得到显著提高。与平整的RGO支撑的纳米复合物相比,皱褶的石墨烯可以对Fe2O3纳米纺缍体起到更多维数的限制,这对于Fe2O3在锂离子嵌入时的体积膨胀起到了更好的限制作用。该研究为基于皱褶的石墨烯材料的合成和应用开辟了新的领域。在此过程中,沈小平教授首次从实验上系统研究了不同皱褶程度的石墨烯材料,发现通过简单的改变溶剂中水、乙二醇的比例可以方便地调控石墨烯的皱褶程度,同时发现不同皱褶程度对于石墨烯的比表面积、吸附和催化性能具有重要的影响。
天道酬勤 踏踏实实做学问
上述中我们看到,沈小平教授在功能纳米材料的可控合成和性质应用方面的许多新发现,他成功开发出利用单源前驱体的模板基CVD法合成各种氧化物、硫化物和有机物的纳米管有序阵列的普适方法,同时在国内外首次对石墨烯无机纳米复合材料作了全面的述评。沈小平教授的研究成果受到了国际同行的关注,产生了良好的社会影响,目前已在Journal of Materials Chemistry,Journal of Physical Chemistry C.Carbon,ACS Applied Materials&Interfaces CrystEngComm,Nanotechnology等国际SCI源期刊发表学术论文110余篇,论文被SCI源期刊引用1600余次,7篇论文入选ESI高被引论文。目前研究成果获授权国家发明专利9项。
采访中,沈小平教授谈到了他对科研工作的热爱和执著。正是充分认识到科研工作对人才培养和建立创新型国家的重要作用,多年来他克服资金、设备、人员等方面的种种困难,坚持不懈地搞科研。沈小平教授在科研工作中始终要求自己做到“恒心、定心、耐心”。“恒心”即持之以恒,几十年如一日,不断学习,提高自己的学术水平:“定心”即甘于坐冷板凳,不为外界各种诱惑所动,甘于寂寞,埋头苦干:“耐心”即科研工作不急于求成,不急功近利,踏踏实实做学问。多年来,沈小平教授为了科研和工作,基本没有节假日和寒暑假,放弃了大量的休息时间:也因为科研工作,经常不能尽到对家庭和孩子的责任。“作为父亲的我时常有一种愧疚感。”从沈小平的言语间,记者体会到的是七分韧劲儿、三分无奈。
一份耕耘一份收获,经过多年的拼搏,近年来沈小平的科研工作进展迅速,逐步走上了快速发展的轨道。针对当前出现的各种学术腐败问题,沈小平教授也有一番自己的观点。他常常告诫自己和学生:做学问要先做人,要树立求真务实的科学态度,自觉抵制各种学术的不端行为。
前言
中国文化最高深意之所在,在于“中国人所谓通天人合内外,亦可谓即是自然与人文之会合”[1]。中国儒家好言人道,即人文,缘于儒家经典《周易》之“观乎人文,以化成天下”。现在我国所提倡的“以人为本”的科学发展观,可谓与我国传统学说是一脉相承的。教学必须以人为本,对于自然科学及工程技术领域的教学,在强调理论的同时,除了要与实践相结合外,还要与人文会合。作者从事高校教学和科研工作二十多年,恰逢盛世,有幸参与学样的教改研究及“大学生创新性实验”。现以曾讲授过的石油工程专业课《油田化学》、《钻井液工艺原理》及其专业基础课《胶体与表面化学》等课程为例,结合相关课程以及目前已完成的“大学生创新性实验”以及教学改革项目,探索高校专业课及专业基础课的教改思路。
一、专业及专业基础课程
《油田化学》是石油工程的专业课程之一,是研究油田钻井、完井、采油、注水、提高采收率及原油集输等过程中的化学问题的科学。油田化学其实由钻井化学、采油化学和集输化学三部分组成,以无机化学、有机化学、物理化学、胶体化学、表面化学、高分子化学等基础化学为理论基础,通过各种类型的油田化学剂来解决油气钻进过程中遇到的复杂问题,改造油层及油水井,改善原油在管道中流动状况,以及分离油气水,提供高品质原油,减少油田采出水对环境的污染。虽然这三个部分是不同的体系和过程,十分复杂,并且有各自的发展方向,但是它们又是相互关联的,绝大多数体系属于或涉及到胶体分散体系(属于纳米技术的范畴)。
《大学》八条目,以格物致知为先。朱子《大学格物补传》有,因其已知之理而益穷之。虽然石油工程本科生开设了《胶体与表面化学》等基础课,但实际使用的教材中,胶体理论知识部分中所讲述纳米材料较少,内容较少,且与实际结合得不够,讲授时安排的学时也很少。其实自从进入21世纪以来,纳米技术日新月异,已经影响到我们日常生活的方方面面。因此,我们追踪了相关学科在纳米技术方面的研究热点及其发展方向,补充讲稿,完善教案。尽量做到理论联系实际,培养学生们的学习兴趣,提高他们的学习积极性。
二、纳米技术
纳米是长度计量单位,1纳米是1米的十亿分之一,相当于10个氢原子一个挨一个排列起来的长度。纳米材料涉及凝聚态物理、化学、材料和生物等领域,被公认为21世纪重点发展的新型材料之一。纳米材料现已发展到人工组装合成有纳米结构的材料。
纳米技术在油田化学中经常用于钻井液完井液的暂堵剂以保护油气层,在油田采出水处理中可以利用纳米材料的光催化作用,将采油污水中的油和高分子进行光催化和光降解,使其达到回注地层及外排的水质要求。利用纳米技术甚至可以从水和空气中清除细微污染物,从而提供更清洁的环境和更高质量的水。
三、教改探索
(一)教学探索
作者将自己平时积累的学习及科研经验,应用到不同层次的教学中。在本科教学中,先侧重基础知识讲解,然后再讲授胶体的各种性质。在给硕士生讲授《现代钻井液技术》以及给博士生讲授《高等胶体化学》时,作者也将纳米技术等先进技术引入进来。针对学生们将来的工作,要求学生了解各油田的情况,使每一位学生能更快更好地了解未来的工作。
在本科生教学过程,针对纳米材料的特性引入学生感兴趣的话题,从而提高学生们的学习兴趣。例如,金红石型纳米二氧化钛可用作涂料,涂层粗糙度小,表面光滑细腻;而锐钛矿型纳米二氧化钛可以防紫外线,可用在遮阳伞的防紫辐射。女生们比较感兴趣的话题是引入纳米材料的化妆品,有同学提到互联网上的天价纳米金护肤品的广告。作者在讲解到《胶体化学》中溶胶的光学性质时,以多媒体的形式向学生进行展示金溶胶的颜色。金溶胶粒子逐渐减小时所对应的颜色从红色到蓝色,其实可以呈现出不同的颜色;而金属银在50~60纳米时,也可以呈现黄色。学生们看了PPT后一目了然,除了不会再受不实广告宣传影响外,对本课程的学习更加投入了。此后提问的学生多了,学习的积极性得到普遍提高,学生们的期末考试成绩普遍好于往届。对硕士生及博士生的要求则要求更高一些,除了要求他们对日常生活中所涉及的纳米技术有所了解外,还要求他们能够结合专业知识,研制出可用于石油工程专业领域的纳米材料。
在针对来自现场的学生进行培训时,作者则是与学生多互动,既了解了各油田的研究现状,又针对一些具体问题提供参考意见。例如,在讲解部分黏土矿物对采油工程的影响时,特别提到在深部地层的油层有时会存在绿泥石,而绿泥石中可能有一定含量的铁元素,在进行强化采油时,不适宜采用酸化作业来提高原油采收率。一些培训的同学曾在某油田承担过两项酸化作业,但在施工后却发现油井产量非但没有上升,反而下降了。经学习后发现,就是由于未进行黏土矿物的组成分析。
(二)创新探索
在“大学生创新性实验”中,作者与本科生一起完成了“钻井液用超细颗粒的研制”。在近一年的研究过程中,本着“学不厌,教不倦”的精神,不以师自居,鼓励学生多动手进行实际操作的同时检索文献。用孔子的五步学习法启发学生:博学之,审问之,慎思之,明辨之,笃行之[2]。与研究生们一起研制出了多种钻井液用超细颗粒,并获得黑龙江省石油学会优秀论文三等奖。在学校的教改项目中,作者还与其他师生一起共同学习和共同实践,圆满完成了工作任务。
四、结论
钱穆先生曾说:教与学平等,共一业。师与弟子亦平等,共一生命。教者学者在其全人生中交融为一,始得谓之是教育[1]。作者一直认同钱穆先生的“能于教者中得一学者,则成为一不寻常之师。终其身惟有一大事业斯曰学”。孔子也说过:后生可畏,焉知来者之不如今。我等虽是教者,但应以学生为本,同时也以学习为终生职业。
[参考文献]