数学建模论文模板(10篇)

时间:2023-03-29 09:27:44

导言:作为写作爱好者,不可错过为您精心挑选的10篇数学建模论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

数学建模论文

篇1

1数学建模融入数学课程能够培养和提高学生的学习兴趣

学习兴趣对学生的学习效果有着决定性的作用,只有让学生培养对数学的学习兴趣,才能从根本上解决高职数学教学中存在的问题。数学建模是一个将实际问题用数学的语言、方法,去近似刻画、建立相应模型并加以解决的过程。数学建模的过程符合学生认知问题、处理问题、反思问题的全过程,能极大提高学生的学习主动性和数学的趣味性,学生能够从实践中体会到数学的作用,从而增加对数学学习的兴趣。

2数学建模思想融入数学课程能够加快高职学校素质教育的步伐

高等职业教育的培养目标是培养高素质技能型人才。要求既要能动脑又要能动手。因此高职教育的培养目标决定了数学教学应该以培养技能型人才为目的,理论知识服务于实际应用。高职学生毕业后将成为国家各行业的生力军,如果他们能够运用已有的数学知识与方法不断革新工艺、改进方法、提高效率、增强产品竞争力,必将会为我国的建设与发展做出巨大贡献。清华大学姜启源教授曾说:相对于本科院校而言,以培养技能型、应用型人才为目标的高职院校,将数学建模作为数学教学的重要组成部分,更有其必要性和可行性。

3数学建模思想融入数学课程能够提升学生各方面的能力

学生在学习过程中,通过对数学建模这种科学的前沿的教学方式的反复实践,能够有效地提高自己的各方面能力。由于建模对计算机的应用较多,所以能够加强学生对计算机功能的掌握,数学建模需要将数学与其他知识相结合,需要极大的信息量和知识面,计算机能有效的扩大学生的知识面,使得学生能够更全面科学的进行数学建模;同时,数学建模能培养学生的团队意识和协作能力,学生也能通过建模来找到自己在团队的合适位置。

二、数学建模教学实践及学生创新能力的提高

近年来,我院在把数学建模的思想方法融入高等数学课程方面进行了深入的探索与实践,许多教学与实践相结合的教学方法与手段以及新颖的教学内容正逐步进入高等数学课堂,对提高学生学习数学、应用数学的积极性,提高学生分析问题、解决问题的能力起到了非常大的作用。

1融入数学建模思想精心设计教学内容

按照“知识导入、案例展开、由浅入深、拓展思考”的思路精心设计课堂教学内容。由贴近生活.与实际联系密切的趣味问题导入,在教学中创设问题情境,发散学生的思维,吸引学生积极动脑,主动地参与学习。同时鼓励学生用已有的知识和经验去推理、观察、比较、分析、综合、概括、归纳等寻求解决问题的方法,实现快乐学习的理念。在建模案例的挑选上,尽量从问题背景简单,容易入手的题目开始,让学生了解建模的一般过程,然后再由浅入深。每个案例之后设置拓展思考,培养探索精神,通过典型案例分析基本知识讲解触类旁通举一反三,归纳总结掌握一类问题的处理方法的过程,达到应用数学能力的全面提升。实施情景案例、项目驱动、任务导向教学,在建立实际问题的模型过程中,穿插介绍必要的理论知识点,让学生带着问题学知识,并在实践中运用知识、提升能力,理论教学与实践教学相互渗透。

2灵活多样的教学方法与现代教学手段相结合

在数学建模教学中主要采用案例驱动教学法,以基础案例引入相关知识,解决问题过程中介绍相应建模方法及软件使用技能,有效的提高学生的学习兴趣。同时,在案例分析时教师与学生互换角色交流分析思路,角色互换法使学生在角色体验中既能加深对建模方法的理解,又能提高相应的逻辑思维与表达能力。另外,采用项目研究过程法,学生自行组队,通过项目申报、研究、解题汇报并提交论文等环节,全面培养学生的创新与动手能力。在教学手段方面,充分运用多媒体教学设备,如电子课件、数学软件演示、计算机辅助教学、案例视频材料等,充分展示丰富的教学内容,化抽象为直观,化复杂计算为简单程序求解。有效利用网络资源,建立师生之间密切联系,为学生自主学习提供便利条件,提高学习效率。

3形成“课内、课外”互动的良好氛围,“教学、实践、竞赛”一体化的有效机制

根据高职院校数学课时较少学生基础较差的特点,设计课内课外互动的教学模式,课内教学环节系统培养学生建模思想方法,课外环节为学生创建进行建模实践的平台,两种教学模式结合实现综合能力的提高。融“教、学、做”为一体,理论与实践教学相互渗透。以建模课程推动建模竞赛,以建模竞赛带动校园数学文化,实现学生综合素养的提高。2010年以来,《数学建模与数学试验》作为公共选修课程,面向全院所有专业学生开设,每学期的选修人数均在200人以上,大大拓宽了学生的知识面,提高了学生数学建模的能力。由数学建模爱好者组成的院数学建模协会,以“基于学术、用于生活”为主要目标,以“导师指点、同学互促”为活动形式,着力培养学生创新精神和创新能力。活跃校园文化气息,促进学生全面发展。

4数学实验室初具规模,数学问题软件解决

为培养学生的创新能力,加强实践性教学,学院创建了数学建模实验室。数学建模实验室有32台计算机,实验室面积100余平方米,投入经费约20余万元。每台机器都安装了与数学建模有关的Matlab、Lingo、SPSS等软件,供学生上机实践。另外,学院创新实验室和大型多媒体教室可供数学建模培训和选修课上课使用。高等数学课程中每学期专门拿出18个实验学时,学习利用Matlab等数学软件解决数学问题,学生学习数学积极性大大提高。

篇2

1985年,数学建模竞赛首先在美国举办,并在高等院校广泛开设相关课程。我国在1992年成功举办了首届大学生数学竞赛,并从1994年起,国家教委正式将其列为全国大学生的四项竞赛之一。数学建模是分为国内和国外竞赛两种,每年举行一次。三人为一队,成员各司其职:一个有扎实的数学功底,再者精于算法的实践,最后一个是拥有较好的文采。数学建模是运用数学的语言和工具,对实际问题的相关信息(现象、数据等)加以翻译、归纳的产物。数学模型经过演绎、求解和推断,运用数学知识去分析、预测、控制,再通过翻译和解释,返回到实际问题中[1]。数学建模培养了学生运用所学知识处理实际问题的能力,竞赛期间,对指导教师的综合能力提出了更高的要求。

2.数学建模科技论文撰写对学生个人能力成长的帮助

2.1.提供给学生主动学习的空间

在当今知识经济时代,知识的传播和更新速度飞快,推行素质教育是根本目标,授人与鱼不如授人与渔。学生掌握自学能力,能有效的弥补在课堂上学得的有限知识的不足。数学建模所涉及到的知识面广,除问题相关领域知识外,还要求学生掌握如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学、数学软件包的使用等。多元的学科领域、灵活多变的技能方法是学生从未接触过的,并且也不可能在短时间内由老师一一的讲解清楚,势必会促使学生通过自学、探讨的方式来将其研懂。给出问题,让学生针对问题去广泛搜集资料,并将其中与问题有关的信息加以消化,化为己用,解决问题。这样的能力将对学生在今后的工作和科研受益匪浅[2]。

在培训期间,大部分学生会以为老师将把数学建模比赛所涉及到的知识全部传授给学生,学生只要在那里坐着听老师讲就能参加比赛拿到名次了。但是当得知竞赛主要由学生自学完成,老师只是起引导作用时,有部分学生选择了放弃。坚持下来的学生,他们感谢学校给与他们这样能够培养个人能力的机会,对他们今后受用匪浅!

2.2.体验撰写综合运用知识和方法解决实际问题这一系列论文的过程

学生在撰写数学建模科技论文的时候,不光要求学生具备一定的数学功底、有良好的计算机应用能力、还要求学生具备相关领域知识,从实际问题中提炼出关键信息,并运用所学知识对这些关键信息加以抽象、建立模型。这也是教师一直倡导学生对所学知识不光要记住,而且要会运用。千万不要读死书,死读书,读书死。

2.3.培养了学生的创新意识和实践能力

在撰写过程中潜移默化的培养了学生获取新知识、新技术、新方法的能力,并在解决实际问题的过程中培养学生的创新意识和实践能力。有别于其他竞赛活动,数学建模竞赛培养学生运用所学知识将实际问题数字化的能力,学生要有良好的洞察力,具有从现象抓本质的能力。给出的实际问题,没有唯一的解决方案,要求学生大胆假设,运用所学知识将问题由最简单、最直接的科学方法求解出来[3]。

2.4.团队精神的培养。

数学建模竞赛是由三人组队参加比赛的集体项目。三个人必须要配合默契,团结协作,发挥各自的优势,深刻理解了由三人组队的规则,充分发挥团队精神;不能夸大个人能力,不能自大骄傲,要本着整体高于个人的原则,积极合作。竞赛所提倡的团队精神,将会培养学生尊重他人,具有合作意识,,取长补短,团结协作,患难与共的集体主义优良品格[4]。

有些队伍在组队前期,由于每个人的性格迥异,再加上年龄小,经常会因琐碎小事起争端。比如看待问题、解决问题的思路不统一;生活习惯造成其他人的反感;说话处事不能圆满表达,致使产生矛盾等。经过一年的团队磨合,学生看问题不会从自我出发,面对问题时,会先聆听他人的想法,然后再阐述自己的观点;生活习惯也趋于常理化,不会特立独行;为人处世不会有那么多棱角,会选择以让人能够接受的方式表达出来。

2.5.诚信。

篇3

关键词:认知心理学;思想;数学建模;认知结构;学习观

认知心理学(CognitivePsychology)兴起于20世纪60年代,是以信息加工理论为核心,研究人的心智活动为机制的心理学,又被称为信息加工心理学。它是认知科学和心理学的一个重要分支,它对一切认知或认知过程进行研究,包括感知觉、注意、记忆、思维和言语等[1]。当代认知心理学主要用来探究新知识的识记、保持、再认或再现的信息加工过程中关于学习的认识观。而这一认识观在学习中体现较突出的即为数学建模,它是通过信息加工理论对现实问题运用数学思想加以简化和假设而得到的数学结构。本文通过构建数学模型将“认知心理学”的思想融入现实问题的处理,结合教学案例,并提出建立良好数学认知结构以及数学学习观的原则和方法,进一步证实认知心理学思想在数学建模中的重要性。

一、案例分析

2011年微软公司在招聘毕业大学生时,给面试人员出了这样一道题:假如有800个形状、大小相同的球,其中有一个球比其他球重,给你一个天平,请问你可以至少用几次就可以保证找出这个较重的球?面试者中不乏名牌大学的本科、硕士甚至博士,可竟无一人能在有限的时间内回答上来。其实,后来他们知道这只是一道小学六年级“找次品”题目的变形。

(一)问题转化,认知策略

我们知道,要从800个球中找到较重的一个球这一问题如果直接运用推理思想应该会很困难,如果我们运用“使复杂问题简单化”这一认知策略,问题就会变得具体可行。于是,提出如下分解问题。问题1.对3个球进行实验操作[2]。问题2.对5个球进行实验操作。问题3.对9个球进行实验操作。问题4.对4、6、7、8个球进行实验操作。问题5.如何得到最佳分配方法。

(二)模型分析,优化策略

通过问题1和问题2,我们知道从3个球和5个球中找次品,最少并且保证找到次品的分配方法是将球分成3份。但这一结论只是我们对实验操作的感知策略。为了寻找策略,我们设计了问题3,对于9个球的最佳分配方法也是分为3份。因此我们得到结论:在“找次品”过程中,结合天平每次只能比较2份这一特点,重球只可能在天平一端或者第3份中,同时,为了保证最少找到,9个球均分3份是最好的方法。能被3除尽的球我们得到均分这一优化策略,对于不能均分的球怎么分配?于是我们设计了问题4,通过问题4我们得到结论:找次品时,尽量均分为3份,若不能均分要求每份尽量一样,可以多1个或少1个。通过问题解决,我们建立新的认知结构:2~3个球,1次;3+1~32个球,2次;32+1~33个球,3次;……

(三)模型转化,归纳策略

通过将新的认知结构运用到生活实践,我们知道800在36~37之间,所以我们得到800个球若要保证最少分配次数是7次。在认知心理学中,信息的具体表征和加工过程即为编码。编码并不被人们所觉察,它往往以“刺激”的形式表现为知觉以及思想。在信息加工过程中,固有的知识经验、严密的逻辑思维能力以及抽象概况能力将为数学建模中能力的提高产生重要的意义。

二、数学建模中认知心理学思想融入

知识结构和认知结构是认知心理学的两个基本概念[3]。数学是人类在认识社会实践中积累的经验成果,它起源于现实生活,以数字化的形式呈现并用来解决现实问题。它要求人们具有严密的逻辑思维以及空间思维能力,并通过感知、记忆、理解数形关系的过程中形成一种认知模型或者思维模式。这种认知模型通常以“图式”的形式存在于客体的头脑,并且可以根据需要随时提取支配。

(一)我国数学建模的现状

《课程标准(2011年版)》将模型思想这一核心概念的引入成为数学学习的主要方向。其实,数学建模方面的文章最早出自1982年张景中教授论文“洗衣服的数学”以及“垒砖问题”。虽然数学建模思想遍布国内外,但是真正将数学建模融入教学,从生活事件中抽取数学素材却很难。数学建模思想注重知识应用,通过提取已有“图式”加工信息形成新的认知结构的方式内化形成客体自身的“事物结构”,其不仅具有解释、判断、预见功能,而且能够提高学生学习数学的兴趣和应用意识[4]。

(二)结合认知心理学思想,如何形成有效的数学认知结构

知识结构与智力活动相结合,形成有效认知结构。我们知道,数学的知识结构是前人在总结的基础上,通过教学大纲、教材的形式呈现,并通过语言、数字、符号等形式详细记述的。学生在学习时,通过将教材中的知识简约化为特定的语言文字符号的过程叫作客体的认知结构,这一过程中,智力活动起了重要作用。复杂的知识结构体系、内心体验以及有限的信息加工容量让我们不得不针对内外部的有效信息进行筛选。这一过程中,“注意”起到重要作用,我们在进行信息加工时,只有将知识结构与智力活动相结合,增加“有意注意”和“有意后注意”,才能够形成有效的数学认知结构。根据不同构造方式,形成有利认知结构。数学的知识结构遵循循序渐进规律,并具有严密的逻辑性和准确性,它是形成不同认知结构的基础。学生头脑中的认知结构则是通过积累和加工而来,即使数学的知识结构一样,不同的人仍然会形成不同的认知结构。这一特点取决于客体的智力水平、学习能力。因此若要形成有利认知结构,必须遵循知识发展一般规律,注重知识的连贯性和顺序性,考虑知识的积累,注重逻辑思维能力的提高。

三、认知心理学思想下的数学学习观

学习是学习者已知的、所碰到的信息和他们在学习时所做的之间相互作用的结果[5]。如何将数学知识变为个体的知识,从认知心理学角度分析,即如何将数学的认知结构吸收为个体的认知结构,即建立良好的数学学习观,这一课题成为许多研究者关注的对象。那么怎样学习才能够提高解决数学问题的能力?或者怎样才能构建有效的数学模型,接下来我们将根据认知心理学知识,提出数学学习观的构建原则和方法。

(一)良好数学学习观应该是“双向产生式”的信息

加工过程学习是新旧知识相互作用的结果,是人们在信息加工过程中,通过提取已有“图式”将新输入的信息与头脑中已存储的信息进行有效联系而形成新的认知结构的过程[6]。可是,当客体对于已有“图式”不知如何使用,或者当遇到可以利用“图式”去解决的问题时不知道去提取相应的知识,学习过程便变得僵化、不知变通。譬如,案例中,即使大部分学生都学习了“找次品”这部分内容,却只能用来解决比较明确的教材性问题,对于实际生活问题却很难解决。学习应该是“双向产生式”的信息加工过程,数学的灵活性在这方面得到了较好的体现。学习时应遵循有效记忆策略,将所学知识与该知识有联系的其他知识结合记忆,形成“流动”的知识结构。例如在案例中,求800个球中较重球的最少次数,可以先从简单问题出发,对3个球和5个球进行分析,猜测并验证出一般分配方法。这一过程需要有效提取已有知识经验,通过拟合构造,不仅可以提高学生学习兴趣,而且能够增强知识认识水平和思维能力。

(二)良好数学学习观应该具有层次化、条理化的认知结构

如果头脑中仅有“双向产生式”的认知结构,当遇到问题时,很难快速找到解决问题的有效条件。头脑中数以万计“知识组块”必须形成一个系统,一个可以大大提高检索、提取效率的层次结构网络。如案例,在寻找最佳分配方案时,我们可以把8个球中找次品的所有分配情况都罗列出来。这样做,打破了“定势”的限制,而以最少称量次数为线索来重新构造知识,有助于提高学生发散思维水平,使知识结构更加具有层次化、条理化。在学习过程中,随着头脑中信息量的增多,层次结构网络也会越来越复杂。因此,必须加强记忆的有效保持,巩固抽象知识与具体知识之间的联系,能够使思维在抽象和现实之间灵活转化。而这一过程的优化策略是有效练习。

(三)良好数学学习观应该具有有效的思维策略

要想形成有效的数学学习观,提高解决实际问题的能力,头脑中还必须要形成有层次的思维策略,以便大脑在学习和信息加工过程中,策略性思维能够有效加以引导和把控。通过调节高层策略知识与底层描述性及程序性知识之间的转换,不断反思头脑思维策略是否恰当进而做出调整和优化。譬如,在案例中,思维经过转化策略、寻找策略、优化策略、归纳总结四个过程,由一般特殊一般问题的求解也是思维由高层向底层再向高层转换的层次性的体现。

篇4

高等学校作为知识创新和人才培养的最主要基地,承担着培养知识结构合理、基础扎实、勇于创新、具有国际竞争力的优秀人才的重任。因此,以素质教育为核心,培养大学生综合素质和创新能力已成为我国高等教育改革的重点和着眼点。那么,在这项改革中,教育模式和方法的探究就显得尤为重要。

教育模式和方法不是一成不变的,是随着时代、社会环境和受教育主体的需求而改变的,当代大学生面临什么样的社会背景和走势,这些背景和走势对大学生的学习提出了什么样的要求[1。

科技发展走势摘要:科学知识发展越来越快,知识更新周期越来越短,这样情况下会学比学会更重要。

市场经济走势摘要:市场经济的本质特征是竞争。随着我国市场经济的深化,竞争日趋激烈,就业和创业都有竞争,决定竞争胜败的是人的能力和素质,包括人的学习能力。

学习化时代走势摘要:21世纪人类进入学习化社会,终身学习是每一个社会成员的任务,人可以离开学校但离不开学习。大学生的根本任务是学习,但首要是学会学习,为一生的学习打基础。

经济形势走势摘要:人类社会正在从工业经济走向知识经济,创新成为第一位的,创新性学习成为最重要的学习。

21世纪的数学教育对受教育主体面临的上述走势表现出如下的反应和变化摘要:

1.数学教学将从传统的“传授知识”的模式更多地转变到“以学生为主体,以喜好为引导”的实践模式;

2.数学教学将更着重培养、发展学生的数学学习能力。包括采集和处理信息的能力;独立获取知识的能力;自我练习和实践的能力;创新学习的能力;

3.素质教育要求我们在基础教育阶段就开始培养学生有实现自我“可持续发展”的意识和能力,它要求我们的学生学会设问、学会探索、学会合作,去解决面临的新问题。只有学会学习,才能学会生存,只有敢于创新,才能赢得发展。

数学建模作为一个学数学、用数学的过程,恰好是实现上述目标的有效途径之一。同时数学建模给学生们再现了一个微型的科研过程,这对学生们今后的学习和工作无疑会有很好的影响,也对学生的能力提出了更高层次的要求。近年来,数学建模已成为国际、国内数学教育中稳定的内容和热点之一,在建模内容、模式、范围和课堂教学内容真正意义的结合上进行了不懈的努力和探索,本文通过对数学建模教学模式进行了探究和探索,旨在拟出一套具有较强操作性、行之有效的培养学生数学建模能力的途径和方法。

教学是一种由师生双方共同完成的、有目的、有组织的活动,它是教和学的有机统一,其中教师起着主导功能。“教什么”、“如何教”直接影响着学生学习的主动性和积极性,影响着教学的效率和质量,也关系到教学目标能否实现,教学任务能否完成。优秀教师取得成功的关键就在于他们能对教学内容(教什么)和教学方法(如何教)进行合理的组合,即能按某一种或某几种有效的教学模式进行教学。

数学建模教学模式主要有三种摘要:讲解-传授数学建模教学模式;活动-参和数学建模教学模式;引导—发现数学建模教学模式。本文主要介绍引导—发现数学建模教学模式[2。

发现学习的根本目的在于促进学生在获取知识的同时,拓展思维能力,培养独立思索能力和创新精神,从而在学习方式上,改变了从师型过多,自主型过少的状况;注重知识的发生、发展过程,让学生自己发现新问题,主动获取知识,从而在学习状态上,改变了顺从型过多,新问题型过少的状况;实施发现法教学,根据青少年好奇、好学、好问、好动手的主要特征,在教师指导下,通过阅读、观察、实验、思索、讨论等方式,引导学生像数学家当初发现定理那样去发现新问题、探究新问题,进而解决新问题,总结规律,努力使学生成为知识的发现者,从而在学习层次上,改变了继续型过多,创新型过少的状况;发现法教学不注重新问题的结果,因为新问题提出方式的不同会产生不同的结论,从而在思维方式上,改变了求同型过多,求异型过少的状况;发现法教学旨在在发现新问题过程中培养学生学习的喜好,而不单是应对考试,从而在学习情感上,改变了应试型过多,喜好型过少的状况。

一般认为,引导—发现教学模式由以下四个环节组成摘要:

(1)设置情境或创设发现新问题;(2)收集信息并进行探索实验;(3)引导发现,激励学生自主地解决新问题;(4)引导评价,及时归纳总结。

“引导—发现”数学建模教学模式对于教师和学生来说,都是一个学数学、用数学共同促进的过程。非凡对于教师来说,教师的“引导”体现在为学生创设一个好的新问题环境,激发起学生的探索欲望,最终由学生“自主发现解决”面临的新问题,并使获取的知识成为继续发现新问题,获取新知识的起点和手段,形成新的新问题环境和学习过程的循环。它的主旨应通过这个过程让学生在发现新问题,在探索求解的实践活动中学习数学,加深对数学意义的理解,习惯用数学思维来思索新问题,提高用数学知识解决新问题的能力和意识。

“发现”在教学中起着非常重要的功能,它能充分调动学生的主动性和积极性,在探索、发现的过程中培养学生的思维能力和创新精神。同样在数学建模教学中,老师应有针对性地选择一些富有思索性、探索性的新问题,引导学生在发现中学习。因为发现法有两个效用摘要:一是“喜好”,即能使学生在发现中产生“兴奋感”,近而培养学习喜好,从“化意外和复杂性为可预料性和简单性”的行动中获得理智的满足,能使数学建模教学比较生动活泼。二是“迁移”能力的提高。这是指学生从发现学习中能获得这样一种能力,在碰到类似的但未学习过的新问题时其思维过程将大大缩短,具备举一反三的能力。引导—发现教学模式的宗旨是要人们意识到并把握科学探究的过程,而不仅仅是找到新问题的答案。在这一模式中,师生之间是一种合作的关系,师生比较平等,学生可以自主地进行探究,有利于培养学生的自控能力。

这一教学模式主要应用在数学建模的高级阶段,在这一阶段,学生己有一定的建模能力,可以接触较复杂的应用新问题,学生在采集有用信息时,发现新问题,在教师的引导下解决新问题。但这种教学方法对教师和学生的要求都比较高,教师需要了解学生把握建模方法的思维过程和学生的能力水平,学生则必须具备良好的认知结构,而内容必须是较复杂的,符合探究、发现等高级思维活动方式。因此,在数学建模教学中教师应根据不同的教学内容和教学对象有选择地采用此模式进行教学,扬长避短,使此模式教学取得实效。

参考文献

[1张德江《会学比学会更重要-在学习革命探究会成立大会上的讲话》[J长春工业大学学报2006.3页码107-110

[2沈小青《数学建模教学模式论》[D福建师范大学200310页码16-19

篇5

建模比赛的一般分工是数学模型的建立、程序编写与拟合、论文的叙述。其中论文是评定参赛队伍成绩的好坏、高低、获奖级别的唯一依据,并且也是每组参赛期间成果的结晶,这是相当重要的一部分。那么今天我们就来分享一下有关建模论文的写作的一些注意事项。

首先

论文的评阅原则是

假设的合理性 ;建模的创造性;

结果的合理性 ;表述的清晰性。

在写作的时候可以按照这些要点来给自己一个大概的估计。

我们在写论文的时候,一般是按如下的结构:

1.摘要

2.问题的叙述,问题的分析,背景的分析等

3.模型的假设,符号说明

4.模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)

5.模型的求解

6.模型检验:结果表示、分析与检验,误差分析,……

7.模型评价:特点,优缺点,改进方法,推广……

8.参考文献

9.附录:计算框图、详细图表,……

摘要是整篇论文最精华的部分,也是评阅人最关注的部分。在写摘要时,我们首先要对这个模型进行数学归类,并且通过之前和队友一起进行建模过程中对整体思路有着比较清楚的了解,然后阐述模型的优点、算法特点等,最后对主要结果进行说明,即回答题目所问的全部问题。

对于模型的建立,基本原则是实用、有效,因为我们建立模型是为了解决实际问题的,而不是追求单纯理论数学上的“高大上”。能用初等方法解决就不用高级方法;能用简单方法解决就不用复杂方法;能用被更多人看懂、理解的方法就不用只能少数人看懂、理解的方法。

篇6

教师作为教育工作的直接参与者,对提高学校的教学质量发挥着重要的作用,这就需要教师具有实践教学的教育理念,既要精通理论知识和实践能力,又要亲自指导学生实践,培养学生实践能力。在教学模式上,打破传统的讲授教学模式,突出教学内容的实用性,让实践教学模式渗透到学生的财经学习过程中,使学生能够充分利用所学知识提升自己的职业技能。

(二)创新实践教学手段

学校应该紧跟时展,引进新的教学手段,把传统的讲授教学方式逐步转变为运用多媒体、电子教程、投影仪等现代化教学方式上来,摆脱以往学习的枯燥乏味,活跃课堂气氛,提高学生对于所学课程的学习兴趣。师生之间加强交流沟通,促进教学质量的改进。再者,中职院校应充分利用已有的教学资源,提高教学效率。建立财经类综合实践实训基地,不断进行实训基地各种教学制度的完善,明确自身管理职责,进行综合实训基地的统一规划和管理,实现规范、科学的教学管理[3]。

(三)强化教师团队建设,培养学生综合实践能力

在学校教学过程中,教师是教学活动的组织者和领导者,强化教师团队建设是提高学生实践能力的关键。在日常实践教学过程中,应设立专业对口的实训项目或是与校企单位进行合作,经过专业教师的指导,实现学生真正上岗实践,通过所学理论在实际工作过程中的运用,能够加快学生理论知识与实践能力的整合,增强学生自身对财经类工作岗位的认识,树立积极的职业观和价值观。实践上岗教学模式,能够培养学生的探索实践能力,能够在实际的实践工作过程中,按照企业规定严格约束自己的行为,培养更多符合社会需要的实践型人才。通过上岗实践教学使学生在学习态度上有了重大的转变,体验到在企业中生存的基本法则,这种压力激励着他们不断进取,使得学生的探究、分析问题、解决问题的能力得到了很大程度的提升[4]。

篇7

二、深入本质,深化理解

学生的认知规律是由形象到抽象再到形象,这一特点决定了在学生建模的过程中,要加强引导,深入本质。如植树问题是小学数学教学的一个重点也是难点,而要突出重点突破难点,就必须要让学生深入本质的理解,这样学生才能灵活地加以运用,才能掌握数学建模这一重要的数学思想。经过师生之间的互动探究得出不封闭路的植树棵数=间隔数+1后,再次提出问题引导学生思考:(1)道路长度是100米,每隔5米种1棵树,有多少个间隔?可以种多少棵树?(2)如果间隔数是30个,可种多少棵树?间隔数是n个,可种多少棵树?(3)如果路的长度改变,而其他条件不变,植树棵数=间隔数+1这个公式是否成立?(4)思考为什么植树棵数不等于间隔数而是等于间隔数+1?这样的几个问题层层递进,由特殊到一般,由抽象到弄错,步步深入,可以将学生的认知由形象引向抽象再到形象,从而达到学生对知识的深刻理解与灵活掌握,亲历数学建模全过程,实现对这一基本数学思想的真正内化。

三、回归生活,提升能力

篇8

高职院校高等数学课时普遍较本科院校少。项目教学法不仅解决了课时少的难题,更提高了学生的学习兴趣与效率,让学生在完成项目的过程中积极、主动、轻松地掌握知识。当然,课时的减少,并不代表教师的工作量减少。任务的选取、布置、指导和评价都对教师提出了更高的要求。

(二)拓展学生的知识面,掌握数学建模方法

因为项目任务往往是跨学科、跨专业的。学生在项目的完成过程中自然拓宽了知识面,当然更主要的是掌握了数学建模的方法,这种方法正是教师“授之以渔”中的“渔”。

(三)在实践中培养综合职业能力

由于从项目的计划、实施、完成及评价均由学生自主完成,对学生的综合能力培养提出了更高的要求。学生在项目的完成中要真正地走入社会,学会收集资料,学会调研,学会与人沟通,学会团结与分工合作,在实践中锻炼自己。

二、高职数学建模项目教学的实施对象

由于数学建模教学面对的是全院学生。学生的水平参差不齐。本着因材施教的教学基本原则,大部分学院数学建模的教学均采取分层教学模式,一般分为基础普及层、能力提高层和优秀拔尖层。针对基础普及层的学生,一般教师会通过启发式教学法和案例教学法,在高等数学课堂教学中融入简单数学建模案例,让学生初步体会数学建模的思想。如在函数最值应用中可引入易拉罐形状的最优化设计问题、绿地喷浇设施的节水设想和竞争性产品生产中的利润最大化等模型;在常微分方程中引入人口问题、刑事侦查中死亡时间的鉴定和名画伪造案的侦破问题等模型;在线性代数中引入矩阵密码、投入产出等模型;在概率统计中引入考试成绩的标准分、保险问题、风险分析等模型,使学生从各类建模问题中逐步领悟到数学建模的广泛应用,从而激发学生对数学建模的兴趣。针对能力提高层和优秀拔尖层的学生一般采用实验教学法与项目教学法,可通过开设选修课《数学建模与数学实验》和数学建模培训班的形式进行。另外,针对这类学生,一般院校还会积极组织他们参加各类数学建模竞赛,申报省大学生科研项目等。事实证明,经历过数学建模锤炼后的学生,自主学习、科研能力、实践能力、自信心等都明显增强,而且大部分同学都会进入本科院校继续学习深造。

三、高职数学建模项目教学的实施过程

(一)项目选取

首先,教师根据课程特点和学生认知水平,设计相应的项目任务并下达给学生。项目可分为初等模型、微分方程模型、预测类模型、图论模型、规划类模型、评价类模型、概率类模型和多元统计分析这八类,每一类设计不同专业领域的项目。学生可根据自身专业和兴趣选择不同的任务,也可根据实际自选任务。项目任务的设计要具有示范性、覆盖性、实用性、综合性和可行性。

(二)项目分析

为使项目活动顺利开展,教师可将与任务相关的数学概念或内容呈现出来,供学生参考。指导学生将任务细化,明确任务目标。对于一些较复杂的项目,可以指导学生将其阶段化,分为若干子项目加以完成。

(三)制定计划

学生根据任务目标,制定实施计划,具体到时间与人员分工,在制定计划时可兼顾学生自身特点,如计算机专业的学生可以以程序的编写和运行为主。

(四)自主学习

知识的理解和运用、软件的学习和使用、算法的编写与运行等,这些具体细节都需要学生自主地去学习和探究。

(五)完成任务

根据实施计划,分阶段、分步骤、分工合作完成数据的收集与整理、模型的建立与求解以及论文的写作。

(六)评价、修改与推广

在这一环节,主要以学生代表展示成果的方式进行,对已建立的模型进行讲解与分析,对已完成的任务开展自评和互评,最后由教师总评。学生再根据教师和学生的意见对模型进行修改与推广。

四、高职数学建模项目教学的评价体系

(一)过程性评价

主要指项目进行过程中学生的全方面表现,主要包括八个方面:1.认真,自主学习能力强;2.有创新性,敢于挑战;3.团结友好,善与人沟通;4.考虑问题全面;5.数学基础厚实;6.编程能力强;7.写作能力强;8.有领导才能。评价结果综合学生自评、学生互评和教师评价三方面。这样的评价方式,不仅要求学生们对自己能力的了解以及相互之间相互了解,更需要教师对每个学生的了解,要求教师与学生的零距离接触,充分发挥教师的指导性作用。

(二)终结性评价

主要指对最终成果的评价,以数模论文假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主。

五、高职数学建模项目教学案例

下面以图论模型的项目教学为例说明具体实施过程。图论是用点和边来描述事物和事物之间的关系,是对实际问题的一种抽象,能够把纷杂的信息变得有序、直观、清晰。自然界和人类社会中的大量事物以及事物之间的关系,常可用图形来描述。例如,物质结构、电气网络、城市规划、交通运输、信息传输、工作调配、事物关系等等都可以用点和线连起来所组成的图形来模拟并转化为图论的问题,再结合图论算法,计算机编程,从而解决实际问题。本教学单元从图论的实际应用中选取“物流线路与管网设计”这两个典型应用作为项目任务导入。

项目1:(物流线路问题)物流运输作为重要的物流网络优化问题,其方案的设计直接影响企业的运输成本和运输时间等。请以实际城区主干线为例,构建图论模型,利用图论算法,给出城区主干线上的结点间最短路径,并通过构建欧拉回路,给出最优巡回运输路径。相关知识:无向连通图,一笔画问题,欧拉回路,历遍性最短路,最大流,Dijkstra、Floyd、Edmonds、Fleury等算法。教师活动:布置任务,提供必要的知识和软件指导,协助组员分工,引导学生顺利完成任务。学生活动:明确任务目标,根据自身特点组队,制定实施计划并分工合作,完成任务。(1)基本知识与软件的学习阶段;(2)数据的收集与整理阶段;(3)城区主干线图论模型的构建;(4)利用Dijkstra和Floyd算法计算出结点间最短路径;(5)利用Edmonds和Fleury求最小权理想匹配和欧拉巡回。项目推广:车载导航仪、中心选址问题、最佳灾情巡视路线等。

篇9

目前数学广泛应用于生物技术、生物医学工程、现代化医疗器械、医疗诊断方法、药物动力学以及心血管病理等医学领域。数学在医学中的应用引起了医学的划时代变革,而这些应用基本上都是通过建模得以实现。长期以来,医学院校的高等数学课在学生心目中成为可有可无、无关紧要的课程。问题在于课程体系中缺乏一门将数学和医学有机结合的课程——数学建模。它为医学和数学之间架设起桥梁,教学内容注重培养学生运用数学知识解决实际问题的能力,同时促进理论知识形式,加深学生对数学概念定理本质的直观理解,最大限度激发学生学习兴趣,对传统数学教育模式是个冲击,相应教学方法必须进行改革。

1、医用数学建模课教学设计改革

1.1 通过医学问题,设计模型数学情境

本着“学以致用”的原则,医学院校开设数学建模课与传统的医学教学设计不同,数学建模课以实际医学问题为出发点,学生在具备一定高等数学基础知识的前提下,以医学实际问题出发点,要求收集必要的数据,这部分可以留给学生作为课前预习。在处理复杂问题的时候,这个环节关键是:抓住问题的主要矛盾,舍去次要因素,对实际问题做适当假设,使复杂问题得到必要的简化,为下一步模型建立打下基础,从而在医学问题中抽象出数学问题情境。

1.2 运用数学知识,设计模型建立[1]

这是整个教学环节成败的关键,医科高等数学教学有别于理工科,理工科高等数学的学时较多,教学内容设计的系统性强,医学高等数学更侧重于数学在医学上的应用,并通过医学问题的解决加深巩固对数学知识的理解,更深刻掌握。在上一步去粗取精把握主要矛盾的基础上,设置变量,利用数学工具刻画数量之间的关系,从而建立数学模型。同样的问题可以有不同的数学模型,衡量一个模型的优劣全在其作用的效果,而不是采用多么高深的数学方法。模型可以通过理论推导得到结果,也可以运用mathematics或matlab求数值解,教学设计核心问题应设计如何引导学生分析问题,建立模型,发现问题解决方程式。

1.3 检验合理性,设计模型完善

建模后引导学生对数学结果进行分析,设计分析求解结果的正确性,求解方程的优越性,知识运用的综合性分析及求解模型的延续性、稳定性、敏感性分析。进行统计检验、误差分析等,从而检验模型合理性,并反复修改模型有关内容,使其更切合实际,这使学生应用数学知识的基础上进一步深化并结合医学实际,温习医学知识,为临床实践打下坚实的基础。

1.4 分析结论,设计模型回归实践

数学建模是运用数学知识,解决医学实际问题,利用已检验的模型,设计、分析、解释已有的现象,并预测未来的发展趋势。启发学生这样的模型代表特点是什么?可以解决哪类医学实际问题,并引出运用相同方法可以解决的数学模型问题留做学生课后练习。

2、实例检验

在2003年流行性的传染病SARS爆发,对于复杂的医学问题适当假设:某地区人口总数N不变;每个病人每天有效接触平均人数常数λ ;人群分两类易感染者(S)和已感染者(I);根据假设,建立SARS数学模型NdIdt=λNSI ,得到解I(t)=11+(1I0-1)e-λI ;通过实践我们发现当∞时,I1 ,即所有人都被感染,这显然不符合实际,因为忽略了被感染SARS后,个体具有一定的免疫能力,人群还分出一类移出者R(t),设μ 为日治愈率,此时微分方程为:dIdt=λSI-μI

dSdt=λSI

I(0)=I0,S(0)=S0 ,

解得I=(S0+I0)-S+μλ ln SS0 ;引导学生代入北京4月26日到5月15日SARS上报的数据基本复合实际。获得的结论我们可以运用指导目前蔓延的禽流感疾病,预测流行病的传播趋势,及时有效的采取防御措施。

3、采取有效措施,重视教学方法改革

3.1 变革课内教学环节

以学生为主体,把学生知识获取,个性发展,能力提高放在首位。课堂强化“启发式”教学,采用“开放式教学方法,减少课堂讲授,增加课堂交流时间,将授课变成一次学生参加的科学研究来解决实际问题,引领学生进行创新实践的尝试,鼓励学生大胆发表见解,选用的案例都是医学实际问题,并通过设计让学生认识到数学建模的适用性、有效性,在某些案例的讲授环节注重讲解深度,注意为学生留有充分想象空间,并引导学生思考一系列相关问题,这种建模方法还可以使用到哪类问题中?建模成功的关键是什么?运用到哪些数学知识?该数学知识还能解决什么样的医学实际问题?

3.2 深化课外实践改革[2]

数学建模课应通过案例卜椒í踩砑彩道彩笛檎飧鲇行У慕萄模式,建模是一个综合性的科学,涉及广泛的数学知识、医学知识等,采取导学和自学的相结合教学方式,培养学生归纳总结能力和自学能力,在课内引导的基础上,通过留作业、出开放性思考题的方法引导学生积极收集资料,自学知识的盲点,同时激发学生学习兴趣;组建建模小组,小组成员分工合作,运用数学知识解决医学实际问题,同时培养学生团结协作精神。

4、循序渐进,实施课程考核方式改革

4.1 开卷和闭卷相结合[3]

开卷是布置一个大作业,三、四道医学类实际问题,同学自由组合3人一组,从资料收集、模型准备、模型假设、计算方法、模型改进、推广到论文撰写,教师可以对学生进行全面跟踪,指导是有度的,教师不干预学生的个性思维,鼓励尊重个人意见,只是关键时刻指出问题所在,在开放开始中使学生成为主体,以小组为单位协作完成一个科研课题,并以书面形式上交,作为开卷考试的成绩评定依据。

4.2 鼓励性加分作为补充

篇10

虽然我国正式明文提出有关高中数学中的建模教学的相关内容,但在实践效果来看并不理想.不少高中对于这一议题的实施常常会因不同学校的差异、这样那样的实际情况限制等条件而不完全落实指导思想.加之高中学习阶段的紧张性,常常会形成建模被冠以浪费时间的名号而不被应用.然而,就现状分析来看,高中生们对高中数学的应用能力远不如预想的好.相关教育者及研究人员也逐渐意识到这一严峻问题,终于将眼光投入到建模教学对于高中生思维发展的重要性.

以“高中数学,建模”为关键词查询2000年至2014年十余年时间内的研究理论文献,得出结果29600篇,这一结果是值得我们欣慰的,越来越多的人们关注到高中数学建模的重要性,并不断探索其有效实践方式及效果分析.就建模教学对于高中数学的意义而言,具有多重性.首先,建模教学的内容特殊性可以在学生与老师之间形成良性制动系统,也就是说,老师们在研究建模教学具体操作时,会多方面权衡各方条件及因素,对于课堂设计有促进意义.此外,通过以小组学习为主要教学方式的建模教学过程,可以培养学生们对于高中数学的非智力因素.目前,数学建模在高中数学中的实施难点在于多数教师并不具备数学建模的教学经验,教师们在不断尝试,因此,数学建模的收效性一般.

二、高中数学建模对学生的多方位影响

(一)拓宽学习范围,以数学为中心融合进其余学科的知识,有利于学生视野范围的扩大.数学学科以基础学科的身份在其余学科中常常出现,比较常见的包括物理、化学、生物,而表面看关联不大的语文学科也处处体现着数学的思想.原本传统高中数学教学过程中,往往忽视了这一点,造成学生们的思维局限性.而数学建模的出现对这一现状的改善有促进作用.其中,通过有效的课堂教学模式及教学内容的设计,建模教学可以集合数学与物理、化学、生物甚至是美术的问题来供学生们思考.换言之,在教学过程中体现数学与其他学科之间的呼应关系,既可以帮助学生巩固数学知识,更能起到辅助学生进一步理解其余学科内涵的作用.学科间的交叉无形中培养学生自主建立建模意识,有利于学生们思维的发散性发展.

(二)以创新性思维影响学生的思维过程,在潜移默化中提升学生的思维水平.建模教学区别于传统教学的明显特征在于其创新思维的引入.通过课堂上的多元化教学方式的促进,可以培养学生的创新思维能力,在面对贴合实际的理论问题时,学生们会受到建模思想的印象而自发地运用多维度分析、辨别能力,这对于学生们发散性思维的养成很有益处.而建模教学中的创新性并不是空谈,其有实际的理论支撑以及丰富的知识源储备作依托.同时,建模教学对于学生的思维深刻度与灵活度也有一定要求,可以在过程中锻炼学生独立、自觉寻求问题最佳解决方案的能力,对其今后的工作、生活能力的提升也有帮助.

(三)以倡导学生自主学习、实践的操作过程,培养学生自主探索问题解决方法的良好学习习惯.区别于传统高中数学单一的教学方式,建模教学不再将学生们的学习过程局限于接受传输、记忆要点、模仿练习的枯燥过程,而是将自主探索、主动实践、合作学习、多样性自学等教学模式融入到高中数学的课堂教学中.从学生心理条件的分析中我们可以看到,上述几种建模教学的常用方式有助于学生在思维养成中的主动性的培养,改变传统教什么做什么的呆板模式,令学生的学习过程成为教师初期引导、学生后期再创造的愉快过程.此外,多样性、多元化、信息化的教学过程也符合现代社会的发展趋势,对于高中生思维的锻炼有很大帮助,在学习能力提升的同时,可以令学生掌握很多学习之外非常有用的实践能力,真正实现学生们各方面能力的综合提高.

三、议题要点概括

建模对于培养学生思维能力及实践能力有重要意义,在当前建模思想被广泛重视的时代背景下,相关教育工作者及研究人员需要注意自身对于学生们的引导方式及方向.以对实际问题进行抽象分析的原则对教学内容建立对应的、恰当的数学模型.值得注意是,在当前建模教学依旧处于探索期的阶段,教师们或许需要借助于传统教学与建模教学的对比方式,在效果及便捷性方面给学生提供直观感受,以明显的实践结果令学生自主体会建模教学的优点与优势.此外,在建模教学对学生思维发展的影响的探究过程中,需要注意不能忽视学生的非智力因素的培养与课堂教学的融合.