光纤技术论文模板(10篇)

时间:2023-03-29 09:27:55

导言:作为写作爱好者,不可错过为您精心挑选的10篇光纤技术论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

光纤技术论文

篇1

2.光纤传感器的类型及特点

光纤传感器的类型很多,按光纤传感器中光纤的作用可分为传感型和传光型两种类型。

传感型光纤传感器又称为功能型光纤传感器,主要使用单模光纤,光纤不仅起传光作用,同时又是敏感元件,它利用光纤本身的传输特性经被测物理量作用而发生变化的特点,使光波传导的属性(振幅、相位、频率、偏振)被调制。因此,这一类光纤传感器又分为光强调制型,偏振态调制型和波长调制型等几种。对于传感型光纤传感器,由于光纤本身是敏感元件,因此加长光纤的长度可以得到很高的灵敏度。

传光型光纤传感器又称非功能型光纤传感器,它是将经过被测对象所调制的光信号输入光纤后,通过在输出段进行光信号处理而进行测量的。在这类传感器中,光纤仅作为传光元件,必须附加能够对光纤所传递的光进行调治的敏感元件才能组成传感元件。

3.光纤传感器的应用

光纤传感器的应用范围很广,几乎涉及国民经济的所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年来一直存在的技术难题,具有很大的市场需求。主要表现在以下几个方面的应用:

(1)城市建设中桥梁、大坝、油田等的干涉陀螺仪和光栅压力传感器的应用。光纤传感器可预埋在混凝土、碳纤维增强塑料及各种复合材料中,用于测试应力松弛、施工应力和动荷载应力从而来评估桥梁短期、施工阶段和长期营运状态的结构性能。

(2)在电力系统,需要测定温度、电流等参数,如对高压变压器和大型电机的定子、转子内的温度检测等,由于电类传感器易受强电磁场的干扰,无法在这些场合中使用,只能用光纤传感器。分布式光纤温度传感器是近几年发展起来的一种用于实时测量空间温度场分布的高新技术,分布式光纤温度传感系统不仅具有普通光纤传感器的优点,还具有对光纤沿线各点的温度的分布式传感能力,利用这种特点我们可以连续实时测量光纤沿线几公里内各点的温度,定位精度可达米的量级,测温精度可达1度的水平,非常适用于大范围多点测温的应用场合。

(3)在石油化工系统、矿井、大型电厂等,需要检测氧气、碳氢化合物、CO等气体,采用电类传感器不但达不到要求的精度,更严重的是会引起安全事故。因此,研究和开发高性能的光纤气敏传感器,可以安全有效地实现上述检测。

(4)在环境监测、临床医学检测、食品安全检测等方面,由于其环境复杂,影响因素多,使用其它传感器达不到所需要的精度,并且易受外界因素的干扰,采用光纤传感器可以具有很强的抗干扰能力和较高的精度,可实现对上述各领域的生物量的快速、方便、准确地检测。目前,我国水源的污染情况严重,临床检验、食品安全检测手段比较落后,光纤传感器在这些领域具有极好的市场前景。

(5)医学及生物传感器。医学临床应用光纤辐射剂量计、呼吸系统气流传感系统;圆锥形微型FOS测量氧气浓度及其他生物参数;用FOS探测氢氧化物及其他化学污染物;光纤表面细胞质粒基因组共振生物传感器;生物适应FOS系统应用于海水监测、生化技术、医药。

光纤传感器在实践中运用到的例子举不胜举,这些技术都是多学科的综合,涵盖的知识面广,象光纤陀螺,火花塞光纤传感器,光纤传感复合材料,以及利用光纤传感器对植物叶绿素的研究等等;随着科技的不断进步,越来越多的光纤传感器将面世,它将被应用到生产生活的每一个角落。

4.光纤传感器的技术发展方向

光纤传感技术经过20余年的发展也已获得长足的进步,出现了很多实用性的产品,然而实际的需要是各种各样的,光纤传感技术的现状仍然远远不能满足实际需要。目前,光纤传感器技术发展的主要方向是。

(1)传感器的实用化研究。即一种光纤传感器不仅只针对一种物理量,要能够对多种物理量进行同时测量。

(2)提高分布式传感器的空间分辨率、灵敏度,降低其成本,设计复杂的传感器网络工程。注意分布式传感器的参数,即压力、温度,特别是化学参数(碳氢化合物、一些污染物、湿度、PH值等)对光纤的影响。

(3)传感器用特殊光纤材料和器件的研究。例如:增敏和去敏光纤、荧光光纤、电极化光纤的研究等。这些将是以后传感器进一步发展的趋势。

(4)在恶劣条件下(高温、高压、化学腐蚀)低成本传感器(支架、连接、安装)的开发和应用。

(5)新传感机理的研究,开拓新型光纤传感器。

参考文献

[1]肖军,王颖.光纤传感技术的研究现状与展望[J].机械管理开发,2006,6.

[2]吴洁,薛玲玲.光纤传感器的研究进展[J].激光杂志,2007,5.

[3]吴琼,吴善波,刘勇,袁长迎.新型光纤传感器的设计及其特性研究[J].仪表技术与传感器,2007,11.

篇2

2 光纤通信技术的发展史

近几十年来,通信技术发展迅速,随着通信技术要求越来越高,光纤通信具有带宽高、出错率小、传输快速等特点,使其逐渐走进人们视野,成为应用最广泛的通信技术。目前,我国主干网基本上也都是光纤通信,但仍存在一些不足。为了更好、更安全的通信,我们需了解光纤通信技术的发展史。光纤通信技术起源于国外,20世纪五六十年代,开始研制出光纤,但那个时候光纤的损耗高达每千米358分贝。后又经过英国科学家几年的研究,研究出理论损耗可以减少到每千米19分贝的新型光纤。接着日本也开始研究光纤,但还是没能达到最低损耗。最后,康宁公司采用粉末法研制出了每千米损耗20分贝的石英光纤。最近,掺锗石英光纤损耗降到了每千米0.2分贝,已经达到了石英光纤理论上提出的最低损耗极限。

3 光纤通信技术

3.1 光纤通信技术概述

光纤采用光波通信,光纤是一种由玻璃或塑料制成的纤维,利用全反射原理来传输信息的材料。光纤的发射装置的一端采用发光二极管或者一束激光将光脉冲传输至光纤,另一端接收装置采用光敏元件检测脉冲信号。光纤又分单模光纤和多模光纤,单模光纤的直径在8um-10um之间,多模光纤的直径有50um和62.5um两种。两者相比,单模光纤的传输距离更长。

3.2 光纤通信技术的特点

3.2.1 传输带宽高、容量大

光纤与双绞线和同轴电缆相比,其传输带宽高及信息容量大。带宽高和光纤的直径没有直接关系,即:不会由于光纤的直径大而带宽高 。随着光纤通信系统各个终端设备技术的改进,与密集波分复用技术结合应用,使得光纤的通信带宽高及信息容量大。

3.2.2 损耗低,传输距离长

在光纤、双绞线和同轴电缆三种传输介质中,光纤的传输损耗最低。由于损耗低,那么传输的距离相对而言也就长。减少了通信系统中的中继器使用量,从而降低了布置整个系统的成本,直接给运营商带来更好的经济利益。

3.2.3 抗干扰性好,保密性强

光纤以石英为材料制成,石英有较好的绝缘性、抗腐蚀性,从而抗电磁波干扰性强,不会形成接地回路。一般电磁波传输容易泄露信息,从而保密性差,而光纤基本上不会发生串扰现象,保密性强。光纤在通信中,受环境影响极小,可见光纤适用于强电领域。光纤还有质量小,轻便,布网方便,成本低,原材料石英丰富,耐高温等特点。

4 现代光纤通信技术的现状

21世纪,光纤通信技术快速发展起来。光纤通信技术主要是引入了光纤接入网技术和波分复用技术,从而大大的提高了通信的质量和安全性。

4.1 光纤接入网技术

光纤接入网技术是光纤通信技术一个全新的领域,来实现信息快速和高速传输,满足了人们生活的需求。光纤接入网技术由宽带的主干传输网络和用户接入各部分组成。光纤接入网技术的关键环节或者最后一个环节就是用户接入技术。要想所有用户实现信息的高速传输,满足用户的带宽需求,用户接入技术主要是对接入网的用户终端而言,通过该技术为用户提供方便,方便为用户提高不受限制的宽带,来满足用户需求。光纤接入网技术除了为网络通信主干网负责数据传输外,还负责网络中所有用户接入网络的用户接入技术。目前,根据光纤宽带的接入位置,来进一步区分光纤,主要有FTTB、FTTC、FTTCab、FTTH等类型。首先,介绍光纤到户技术,简称FTTH。光纤到户技术主要在光纤宽带接入方面来提供全光的接入方式。光纤到户技术利用光纤带宽的特点,先收集宽带信息,接下来整理处理宽带信息,最后传输宽带信息。通过这样的操作来给用户提供所需要的带宽,来满足用户上网需求和信息传输需求。可见,光纤接入网的最后一个环节是光纤到户技术。根据光纤到户技术不同的应用来看主要分为光纤有源接入技术和光纤无源接入技术两种形式。光纤有源接入技术实际上就是点到点的P2P技术,其主要为用户可以实现用户PC到服务器终端的直接连接,P2P可以实现高带宽接入;光纤无源接入技术则为一点到多点的XPON技术。传统网络通信方式一般都具有通信瓶颈的问题,光纤接入网技术能够很好地解决这个问题,能够满足主干网络或者核心网络的传输通信信息量。为了更好地满足用户和网络的传输需求,通常光纤接入网技术会结合SDH. ATM等多种技术混合使用,产生GPON、APON和EPON三种技术。一般而言,在电路交换性的业务通常使用GPON技术;只在信息传输过程中起到点对多点的连接作用的是EPON;相比较而言APON技术相对复杂,其用的比较少。

4.2 波分复用技术

波分复用技术是使用波分复用器,来大大降低光纤的损耗,从而来提高带宽,传输更大的信息量。波分复用技术可以使用在不同的光波频段和不同的波长,将传输的低损耗窗口分为很多个单通信管道。波分复用技术同时也在发送端装备波分复用器,利用它把不同的信号一起传送到光纤中,再利用光纤进行信息的传输。同样也在接收端安装波分复用器,其作用是把光纤中输出的信号再按不同的频率和波长进行分开处理。在接收端分离这些不同信号过程中,在同一个信道里的光波信号是独立的,从而实现不同光波信号在同一个信道里传输,即光复用技术传输。目前,波分复用技术在飞速发展,使用范围不断扩大。波分复用技术其中的粗波分复用技术,其信道间隔为20nm,采用波分复用技术中的集体发送和划分,从而实现在1260nm-1620nm范围内波长的波分复用。采用此技术能够大大降低光器件的成本,从而提高运营商的经济利益,同时也在很大程度上提高了信道容量。因此,波分复用技术得到了很多运营商的好评并得到了很大程度的应用。

4.3 光放大技术

在光纤接入网技术和波分复用技术两个技术成熟的同时,为了更好地通信,进一步引入光放大技术,光放大技术主要是采用光放大器对光信号进行放大加强。光放大技术很大程度上促进了光复用技术、光孤子通信以及全光网络的快速发展。在放大传信号之前,应该进行OEO变换,即:光电变换及电光变换。

篇3

由于光纤线路本身传输损耗偏低,可以实现长远距离的干线传输,确保电视信号的基本技术指标;光纤频带宽,也有利于有线电视多路信号能够均衡地传输到每一个光节点上;光纤本身的传输距离长,并且具备一定的抗干扰能力,并且其传输还不仅仅局限于有线电视信号,可以拓展成一个开放的平台来开展综合化业务传输。

1.2HFC网络技术特征

有线电视光纤传输在开展综合业务传输时,提供了一个广阔的开放性平台,这是宽带综合业务网当中一个关键的组成部分。在国内,各个广电部门都在积极地开展传输网络的升级与改造工程,将原本以同轴电缆作为主体的树型结构网络逐渐改造成为传输媒质的HFC网,因为HFC网具备抗干扰能力强、频带宽以及可靠性高等特点,作为双向交互式网络,其应用也非常广泛[2]。

2有线电视光纤传输系统的技术维护措施

科学地、高效地、细致地完成光纤传输技术维护工作,可以保证当光纤传输系统面临故障时,做好相应的判断、处理及修复工作。

2.1管理光纤竣工技术资料

对光纤传输系统而言,其竣工技术资料主要包含了:第一,光纤传输系统改造的技术方案。第二,敷设光纤线路时的分布图,包括活动接头的编号与位置、光缆敷设的方式与用途、每一条光缆的长度、光纤链路的总损耗、接头损耗等内容。第三,光缆尾纤盒或者是光缆尾纤配线架图、台内外光纤传输机房分布图。第四,光端机主要的性能指标、型号、备件库存情况以及生产厂商。第五,光纤传输日常维护与测试的记录表格、日常故障处理登记表格等。

2.2对电视信号光纤传输的日常维护

在有线电视光纤传输的日常维护中,主要是对相应的发射光功率进行测试,同时,对光纤传输系统能否正常的开展工作加以判断。在维护中,我们要随时把握光纤损耗出现的变化情况,同时,对光缆进行定期检测,详细记录被测试的光缆线路的实际损耗,对于每一个测试值竣工记工都需要同测试值进行相互的比较,分析哪一个节点部位没有出现损耗,注意随着季节的变化,光缆损耗值出现的变化,同时,记录好光纤传输的工作状况,如此有利于在发生故障之后,能够及时地判断故障发生的部位,针对故障进行相应的处理[3]。虽然光纤线路发生故障的概率非常低,但是低并不代表就不会发生故障。所以,对光纤线路的抢修也是一个不可能避免的问题。建立一支作风过硬、经验丰富的抢修队伍,才能够在发生光纤事故故障时,及时处理故障,避免对用户的使用带来影响。当然,控制故障的最高境界在于发生事故之前就能够排查隐患,避免对正常的传输产生影响。所以,合理地设置寻线员,配合上日常的检修维护是非常重要的。此外,向社会大众宣传光纤线路传输相应的法律法规知识,也有利于提高有线电视信号光纤线路传输安全性、稳定性及可靠性。

2.3接收端线路侧

第一,如果发射的光功率正常,但是接收端线路侧的接受光功率要远远低于原始记录值,或者是直接为零,就说明光纤线路出现损耗增大或者是中断等故障现象,这时对光纤线路可以利用光时域反射仪(OTDR)进行判断与测试。对于这一类型故障发生的原因有:第一,光纤活动接头处出现了故障、光缆断裂、光纤熔接点故障。外部引起的故障发生的原因有架空光缆、直埋光缆以及管道光缆出现损伤性故障,这一类型故障一般是在非接头的部位出现。另外,光缆传输损耗值过大也是原因之一,主要是因为光缆本身质量有所欠缺、光缆出现了弯曲变形的情况、光缆温度特性偏低,最终导致光缆损耗增大的现象发生。第二,如果接收端路侧接受光功率属于正常状态,但是接收机工作状态却不正常,使用药棉蘸酒精对光纤活动接头端面进行轻轻擦拭之后,依然无法满足光接收机的正常工作要求,则可能是因为光接收机本身出现了故障,这时可以利用一个备用的光接收机来做出相应的判断与试验,而故障机最好能够送到指定维修点进行检修或者是更换,严禁出现随意调试或维修后,又使用到光纤传输系统之中。

篇4

二、当前光纤通信技术的优势

1.通信容量大、频带非常宽

在光纤的通信系统中,光纤的传输带宽比电缆或铜线大很多,单模光纤的宽带具有几十GHz•km。对于单波长光纤通信系统来说,因终端设备出现电子瓶颈反应,而使光纤带宽的优势难以发挥出来,一般选取各种不同技术进行传输容量的增加,尤其在当前密集波分复用技术的应用中,极大地使光纤的传输容量得到了增加,能够让光纤的传输容量扩大几倍甚至可达到几十倍之多。从现在来看,单波长光纤通信的传输速率通常在2.5Gbps至10Gbps之间,在采用该技术可以实现的是多波长传输系统的传输速率比单波长传输系统高出数百倍之多,其巨大的带宽优势使得单模光纤成为当前电信宽带综合业务网的首推介质。

2.光纤芯径超细、重量非常轻、柔软无比、铺设简易

光纤的芯径非常细,其直径大约是0.1毫米,采用多芯光纤构成光缆的直径也相当的小,八芯光缆的直径大约为10毫米之小,而标准的同轴电缆却达到47毫米之大。如若选取光缆作为信道传输,可使减少传输系统占用大的空间,让空间得到有效的释放,使地下管道拥挤的难题得到解决,同时极大地节省了地下管道的投资成本;另外,光纤的重量非常轻,柔软性十足,其重量与电缆比较起来轻很多,光纤通信可以应用在人造卫星、宇宙飞船与飞机上面,能够有效减轻卫星、飞船与飞机等的重量,其发展意义不言而喻。

3.电磁抗干扰性能相当强

大家都通晓光纤主要是以石英制作而成的绝缘性材料,绝缘性非常好,且不易于被腐蚀。同其有关的还有一个优势是光波导对电磁干扰的免疫力,自然界中的太阳黑子活动、雷电与电离层的变化都难以对它进行干扰,甚至人为释放的电磁也不会受到其中的干扰与影响,并且还能应用在同电力导体密切组合构成一种复合光缆或者与平行铺设到高压电线。其作为非导电介质的一种,交变电磁波在其中不会产生同信号毫无相关的噪声。如此说来若将它平行铺设到高压电线与电气铁路旁,也难以受到电磁干扰的影响。

4.中继距离长、损耗相当低

石英光纤是当前光纤通信系统中使用最多的一种,该种光纤的传输损耗与任何一种传输介质的损耗相比较都显得低,所以由其构成光纤通信系统的中继距离比起其他的系统要长很多。若将来选取非石英极低损耗的光纤,从理论而言其损耗可以下降得更加低。这说明经由光纤通信系统能跨越更加大的无中继距离;而对于长途传输线路而言,因减少了中继站的数目,所以大大降低了系统成本与复杂性。在当前由石英光纤构成的光纤通信系统中,其最大中继距离有200多公里,而由极低损耗非石英光纤组成的通信系至数公里之长,这样有利于提高通信系统的可靠性与稳定性,更可降低其运作成本。

5.保密性能非常好

随着不断发展的科学技术,电通信方式的保密性存在着一定的缺陷,易于被人偷窃监听,只需在电缆或明线周边布设一个接收器,就能够获得传送的信息,而光纤通信系统却可解决反窃听这一难题,其保密性非常好。光纤通信同电通信有所不同,光纤的设计独特无比,在光纤中传输的光波基本没有跑到光纤的外面,已被局限于光纤的纤芯与包层邻近进行传输。尽管在弯曲半径十分小的地方,泄漏的可能性也非常微弱。所以泄漏到光缆之外的光基本上没有,更况且中继光缆与长途光缆通常均埋在地下,由此可知其保密性能相当不错。

三、电信光纤通信技术的发展与实际应用

光纤技术的发展有赖于通信技术的不断发展,在全新时代的背景下,人们对光纤通信需求将与日俱增中,下面简要介绍四种光纤通信技术的应用情况。

1.电信光纤到户接入技术

随着社会经济的迅速发展,人们的物质生活水准得到了大大的提高,网络信息传递的高速化已成为每个人心目中所要追求的目标,光纤到户接入技术却能使人们的这一种需求得到满足,该技术能够实现宽带波长的不断变化,也能允可同时使用多个用户,使信息传输的高速化得到了实现,让多媒体技术与高速信息传输真正走进人类社会的实际应用当中去。

2.波分复用技术

波分复用技术能够按信道光波的频率或不同波长,以光纤的广播当作信号载波,经合波器进行有效合并,通过一根光纤传输,采用分波器于接收端处把不同的光波加以分开,这样可实现复用传输。在波分复用技术应用的过程中,使光纤通信的大容量传输得到了实现,同时极大地节省了通信运作成本,使通信技术获得了一个新的制高点,并且为运营商们提供了非常大的便利。

3.光联网的实现

波分复用技术主要是以点至点为基础的通信,若在光路上也能让交叉连接得到实现的话,就能够产生光联网。光联网的发展潜力可谓前途一片光明,不但让网络得到了扩展,而且使网络透明性增加了不少,其必然将会成为全球电信网络建设的核心项目。

4.全新一代光纤

随着不断增加的IP业务量,电信网络架构传输容量大的光纤就成了全新一代网络应用的根本。传统旧有的一模光纤在进行超高速长距离传输时,已显得有点乏力,全波光纤作为全新一代的研发已经拉开序幕,同时也是电信通信业作为开发的核心目标。

篇5

信息通信业是一个充满生机与活力的朝阳产业,网络经济有着强大的生命力,信息技术、网络技术的发展在如今仍然是推动社会进步的重要动力,信息网络化仍然是当今世界经济、社会发展的强大趋势。因此在全球经济好转、通信市场复苏及我国西部开发等有利条件下,我们应积极了解光纤与光缆技术的发展特点及其产业的发展前景,抓住机遇,促进光纤光缆技术与产业向更大的方向发展。

一、光纤技术发展的特点

1.1网络的发展对光纤提出新的要求

不管下一代网络如何发展,一定将要达到三个世界,即服务层面上的IP世界、传送层面上的光的世界和接入层面上的无线世界。下一代传送网要求更高的速率、更大的容量,这非光纤网莫属,但高速骨干传输的发展也对光纤提出了新的要求。

(1)扩大单一波长的传输容量

(2)实现超长距离传输

(3)适应DWDM技术的运用

1.2光纤标准的细分促进了光纤的准确应用

光纤标准的细分促进了光纤的准确使用,细化标准的同时也提高了一些光纤的指标要求(如有些光纤几何参数的容差变小),明确了对不同的网络层次和不同的传输系统中使用的光纤的不同指标要求(如PMD值的规定),并提出了一些新的指标概念(如"色散纵向均匀性"等),对合理使用光纤取得了很好的作用。所有这些建议的修改、子建议的出现及新子建议的起草,都意味着光纤分类及指标、测试方法有某些改进,或有重要的提升;都标志着要求光纤质量的提高或运用方向上的调整,是值得注意的光纤技术新动向。

1.3新型光纤在不断出现

为了适应市场的需要,光纤的技术指标在不断改进,各种新型光纤在不断涌现,同时各大公司正加紧开发新品种。

(1)用于长途通信的新型大容量长距离光纤

主要是一些大有效面积、低色散维护的新型G.655光纤,其PMD值极低,可以使现有传输系统的容量方便地升级至10~40Gbit/s,并便于在光纤上采用分布式拉曼效应放大,使光信号的传输距离大大延长。

(2)用于城域网通信的新型低水峰光纤

城域网设计中需要考虑简化设备和降低成本,还需要考虑非波分复用技术(CWDM)应用的可能性。低水峰光纤在1360~1460nm的延伸波段使带宽被大大扩展,使CWDM系统被极大地优化,增大了传输信道、增长了传输距离。

(3)用于局域网的新型多模光纤

虽然多模光纤比单模光纤价格贵50%~100%,但是它所配套的光器件可选用发光二极管,价格则比激光管便宜很多,而且多模光纤有较大的芯径与数值孔径,容易连接与耦合,相应的连接器、耦合器等元器件价格也低得多。由于局域网发展的需要,它仍然得到了广泛使用。

(4)前途未卜的空芯光纤

据报道,美国一些公司及大学研究所正在开发一种新的空芯光纤,即光是在光纤的空气够传输。从理论上讲,这种光纤没有纤芯,减小了衰耗,增长了通信距离,防止了色散导致的干扰现象,可以支持更多的波段,并且它允许较强的光功率注入,预计其通信能力可达到目前光纤的100倍。欧洲和日本的一些业界人士也十分关注这一技术的发展,越来越多的研究证明空芯光纤似有可能。

二、光缆技术的发展特点

2.1光网络的发展使得光缆的新结构不断涌现

光缆的结构总是随着光网络的发展、使用环境的要求而发展的。新一代的全光网络要求光缆提供更宽的带宽、容纳更多的波长、传送更高的速率、便于安装维护、使用寿命更长等。近年来,光缆结构的发展可归纳为以下一些特点。

(1)光缆结构根据使用的网络环境有了明确的光纤类型的选择,如干线网光纤、城域网光纤、接入网光纤、局域网光纤等,这决定了大范围内光缆光纤传输特性的要求,具体运用的条件还有可依据的细分的标准及指标;

(2)光缆结构除考虑光缆使用环境条件以外,越来越多的与其施工方法、维护方法有关,必须统一考虑,配套设计;

(3)光缆新材料的出现,促进了光缆结构的改进,如干式阻水料、纳米材料、阻燃材料等的采用,使光缆性能有明显改进。

2.2光缆的自动维护、适时监测系统已逐渐完善,可保证大容量高速率的光缆不中断传输

光缆的维护对于保证网络的可靠性是十分重要。在已开通的光网络中,光缆的维护和监测应该是在不中断通信的前提下进行的,一般通过监测空闲光纤(暗光纤)的方式来检测在用光纤的状态,更有效的方式是直接监测正在通信的光纤。虽然ITU-T长时间收集和讨论了国际上的最新资料,于1996年了L.25光缆网络维护的建议书,对光缆的预防性维护和故障后维护规定了详细的维护范围和功能,但已经不能满足当前的需要,目前最新的建议是2001年12月IUT-TSG16会议通过的"光缆网络的维护监测系统"(L.40建议)。为了进一步缩短检测及修复时间,美国朗讯公司曾提出了新一代光纤测试及监控系统,能在1s内发出故障告警,3min内找到故障点,且工作人员可以遥控操作,据称该系统还将开发有故障预测及对断纤(缆)的快速反应能力。

三、光纤光缆技术与产业发展中几个值得思考的问题

3.1积极创新开发具有自主知识产权的新技术

虽然这几年来,我国光纤光缆技术有很大发展,有一些具有自主知识产权的技术已在发挥作用,但是应该看到这种比例仍是很小的,国内有近200家光纤光缆厂,但大多产品单一,没有自主的知识产权,技术含量较低,竞争力不强。实际上我国的光纤光缆技术应该说与国际水平己差距下大,因此我们作为世界第二的光缆大国,应该把开发具有自主知识产权的技术作为我们工作的重中之重,争取创造更多的光纤光缆专利。

3.2开发具有先进技术水平、与使用环境、施工技术相配套的新产品

篇6

0引言

近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。

1光纤通信技术定义

光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

2光纤通信技术优势

2.1频带极宽,通信容量大

光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。散波长窗口,单模光纤具有几十GHz·km的宽带。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。采用密集波分复术可以扩大光纤的传输容量至几倍到几十倍。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps,采用密集波分复术实现的多波长传输系统的传输速率已经达到单波长传输系统的数百倍。巨大的带宽潜力使单模光纤成为宽带综合业务网的首选介质。

2.2损耗低,中继距离长目前,实用的光纤通信系统使用的光纤多为石英光纤,此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。

如果将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。目前,由石英光纤组成的光纤通信系统最大中继距离可达200多km,由非石英系极低损耗光纤组成的通信系至数公里,这对于降低通信系统的成本、提高可靠性和稳定性具有特别重要的意义。

2.3抗电磁干扰能力强我们知道光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。它是一种非导电的介质,交变电磁波在其中不会产生感生电动势,即不会产生与信号无关的噪声。这样,就是把它平行铺设到高压电线和电气铁路附近,也不会受到电磁干扰。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。

2.4光纤径细、重量轻、柔软、易于铺设光纤的芯径很细,约为0.1mm,由多芯光纤组成光缆的直径也很小,8芯光缆的横截面直径约为10mm,而标准同轴电缆为47mm。这样采用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题,节约了地下管道建设投资。此外,光纤的重量轻,柔韧性好,光缆的重量要比电缆轻得多,在飞机、宇宙飞船和人造卫星上使用光纤通信可以减轻飞机、轮船、飞船的重量,显得更有意义。还有,光纤柔软可绕,容易成束,能得到直径小的高密度光缆。

2.5保密性能好对通信系统的重要要求之一是保密性好。然而,随着科学技术的发展,电通信方式很容易被人窃听,只要在明线或电缆附近设置一个特别的接收装置,就可以获取明线或电缆中传送的信息,更不用去说无线通信方式。

光纤通信与电通信不同,由于光纤的特殊设计,光纤中传送的光波被限制在光纤的纤芯和包层附近传送,很少会跑到光纤之外。即使在弯曲半径很小的位置,泄漏功率也是十分微弱的。并且成缆以后光纤在外面包有金属做的防潮层和橡胶材料的护套,这些均是不透光的,因此,泄漏到光缆外的光几乎没有。更何况长途光缆和中继光缆一般均埋于地下。所以光纤的保密性能好。此外,由于光纤中的光信号一般不会泄漏,因此电通信中常见的线路之间的串话现象也可忽略。

3光纤接入技术

随着通信业务量的不断增加,业务种类也更加丰富,人们不仅需要语音业务,高速数据、高保真音乐、互动视频等多媒体业务也已经得到了更多用户的青睐。光纤接入网可分为有源光网络A(ON)和无源光网络((PON。)采用SDH技术、ATM技术、以太网技术在光接入网系统中称为有源光网络。若光配线网(ODN全)部由无源器件组成,不包括任何有源节点,则这种光接入网就是无源光网络。

现阶段,无源光网络P(ON)技术是实现FT-Tx的主流技术。典型的PON系统由局侧OLT光(线路终端)、用户侧ONUO/NT(光网络单元)以及ODN-OrgnizationDevelopmentNetwork(光分配网络)组成。PON技术可节省主干光纤资源和网络层次,在长距离传输条件夏可提供双向高带宽能力,接入业务种类丰富,运维成本大幅降低,适合于用户区域较分散而每一区域内用户又相对集中的小面积密集用户地区。

为实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达置的不同,有FTB、FTTC,FTTCab和FTTH等不同的应用,统称FTTx。

FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制定了FTTH的技术标准和建设标准,有的城市还制门了相应的优惠政策,这此都为FTTH在我国的发展创造了良好的条件。

篇7

(一)复用技术

光传输系统中,要提高光纤带宽的利用率,必须依靠多信道系统。常用的复用方式有:时分复用(TDM)、波分复用(WDM)、频分复用(FDM)、空分复用(SDM)和码分复用(CDM)。目前的光通信领域中,WDM技术比较成熟,它能几十倍上百倍地提高传输容量。

(二)宽带放大器技术

掺饵光纤放大器(EDFA)是WDM技术实用化的关键,它具有对偏振不敏感、无串扰、噪声接近量子噪声极限等优点。但是普通的EDFA放大带宽较窄,约有35nm(1530~1565nm),这就限制了能容纳的波长信道数。进一步提高传输容量、增大光放大器带宽的方法有:(1)掺饵氟化物光纤放大器(EDFFA),它可实现75nm的放大带宽;(2)碲化物光纤放大器,它可实现76nm的放大带宽;(3)控制掺饵光纤放大器与普通的EDFA组合起来,可放大带宽约80nm;(4)拉曼光纤放大器(RFA),它可在任何波长处提供增益,将拉曼放大器与EDFA结合起来,可放大带宽大于100nm。

(三)色散补偿技术

对高速信道来说,在1550nm波段约18ps(mmokm)的色散将导致脉冲展宽而引起误码,限制高速信号长距离传输。对采用常规光纤的10Gbit/s系统来说,色散限制仅仅为50km。因此,长距离传输中必须采用色散补偿技术。

(四)孤子WDM传输技术

超大容量传输系统中,色散是限制传输距离和容量的一个主要因素。在高速光纤通信系统中,使用孤子传输技术的好处是可以利用光纤本身的非线性来平衡光纤的色散,因而可以显著增加无中继传输距离。孤子还有抗干扰能力强、能抑制极化模色散等优点。色散管理和孤子技术的结合,凸出了以往孤子只在长距离传输上具有的优势,继而向高速、宽带、长距离方向发展。

(五)光纤接入技术

随着通信业务量的增加,业务种类更加丰富。人们不仅需要语音业务,而且高速数据、高保真音乐、互动视频等多媒体业务也已得到用户青睐。这些业务不仅要有宽带的主干传输网络,用户接人部分更是关键。传统的接入方式已经满足不了需求,只有带宽能力强的光纤接人才能将瓶颈打开,核心网和城域网的容量潜力才能真正发挥出来。光纤接入中极有优势的PON技术早就出现了,它可与多种技术相结合,例如ATM、SDH、以太网等,分别产生APON、GPON和EPON。由于ATM技术受到IP技术的挑战等问题,APON发展基本上停滞不前,甚至走下坡路。但有报道指出由于ATM交换在美国广泛应用,APON将用于实现FITH方案。GPON对电路交换性的业务支持最有优势,又可充分利用现有的SDH,但是技术比较复杂,成本偏高。EPON继承了以太网的优势,成本相对较低,但对TDM类业务的支持难度相对较大。所谓EPON就是把全部数据装在以太网帧内传送的网络技术。现今95%的局域网都使用以太网,所以选择以太网技术应用于对IP数据最佳的接入网是很合乎逻辑的,并且原有的以太网只限于局域网,而且MAC技术是点对点的连接,在和光传输技术相结合后的EPON不再只限于局域网,还可扩展到城域网,甚至广域网,EPON众多的MAC技术是点对多点的连接。另外光纤到户也采用EPON技术。

二、光纤通信技术的发展趋势

对光纤通信而言,超高速度、超大容量、超长距离一直都是人们追求的目标,光纤到户和全光网络也是人们追求的梦想。

(一)光纤到户

现在移动通信发展速度惊人,因其带宽有限,终端体积不可能太大,显示屏幕受限等因素,人们依然追求陸能相对占优的固定终端,希望实现光纤到户。光纤到户的魅力在于它有极大的带宽,它是解决从互联网主干网到用户桌面的“最后一公里”瓶颈现象的最佳方案。随着技术的更新换代,光纤到户的成本大大降低,不久可降到与DSL和HFC网相当,这使FITH的实用化成为可能。据报道,1997年日本NTT公司就开始发展FTTH,2000年后由于成本降低而使用户数量大增。美国在2002年前后的12个月中,FTTH的安装数量增加了200%以上。在我国,光纤到户也是势在必行,光纤到户的实验网已在武汉、成都等市开展,预计2012年前后,我国从沿海到内地将兴起光纤到户建设。可以说光纤到户是光纤通信的一个亮点,伴随着相应技术的成熟与实用化,成本降低到能承受的水平时,FTTH的大趋势是不可阻挡的。

(二)全光网络

传统的光网络实现了节点间的全光化,但在网络结点处仍用电器件,限制了目前通信网干线总容量的提高,因此真正的全光网络成为非常重要的课题。全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性,并能提供巨大的带宽、超大容量、极高的处理速度、较低的误码率,网络结构简单,组网非常灵活,可以随时增加新节点而不必安装信号的交换和处理设备。当然全光网络的发展并不可能独立于众多通信技术,它必须要与因特网、ATM网、移动通信网等相融合。目前全光网络的发展仍处于初期阶段,但已显示出良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

篇8

引言

近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。

一、光纤通信技术定义

光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

二、光纤通信技术优势

2.1频带极宽,通信容量大

光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。散波长窗口,单模光纤具有几十GHz·km的宽带。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。采用密集波分复术可以扩大光纤的传输容量至几倍到几十倍。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps,采用密集波分复术实现的多波长传输系统的传输速率已经达到单波长传输系统的数百倍。巨大的带宽潜力使单模光纤成为宽带综合业务网的首选介质。

2.2损耗低,中继距离长目前,实用的光纤通信系统使用的光纤多为石英光纤,此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。

如果将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。目前,由石英光纤组成的光纤通信系统最大中继距离可达200多km,由非石英系极低损耗光纤组成的通信系至数公里,这对于降低通信系统的成本、提高可靠性和稳定性具有特别重要的意义。

2.3抗电磁干扰能力强我们知道光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。它是一种非导电的介质,交变电磁波在其中不会产生感生电动势,即不会产生与信号无关的噪声。这样,就是把它平行铺设到高压电线和电气铁路附近,也不会受到电磁干扰。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。

2.4光纤径细、重量轻、柔软、易于铺设光纤的芯径很细,约为0.1mm,由多芯光纤组成光缆的直径也很小,8芯光缆的横截面直径约为10mm,而标准同轴电缆为47mm。这样采用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题,节约了地下管道建设投资。此外,光纤的重量轻,柔韧性好,光缆的重量要比电缆轻得多,在飞机、宇宙飞船和人造卫星上使用光纤通信可以减轻飞机、轮船、飞船的重量,显得更有意义。还有,光纤柔软可绕,容易成束,能得到直径小的高密度光缆。

2.5保密性能好对通信系统的重要要求之一是保密性好。然而,随着科学技术的发展,电通信方式很容易被人窃听,只要在明线或电缆附近设置一个特别的接收装置,就可以获取明线或电缆中传送的信息,更不用去说无线通信方式。光纤通信与电通信不同,由于光纤的特殊设计,光纤中传送的光波被限制在光纤的纤芯和包层附近传送,很少会跑到光纤之外。即使在弯曲半径很小的位置,泄漏功率也是十分微弱的。并且成缆以后光纤在外面包有金属做的防潮层和橡胶材料的护套,这些均是不透光的,因此,泄漏到光缆外的光几乎没有。更何况长途光缆和中继光缆一般均埋于地下。所以光纤的保密性能好。此外,由于光纤中的光信号一般不会泄漏,因此电通信中常见的线路之间的串话现象也可忽略。

三、光纤接入技术

随着通信业务量的不断增加,业务种类也更加丰富,人们不仅需要语音业务,高速数据、高保真音乐、互动视频等多媒体业务也已经得到了更多用户的青睐。光纤接入网可分为有源光网络A(ON)和无源光网络((PON。)采用SDH技术、ATM技术、以太网技术在光接入网系统中称为有源光网络。若光配线网(ODN全)部由无源器件组成,不包括任何有源节点,则这种光接入网就是无源光网络。

现阶段,无源光网络P(ON)技术是实现FT-Tx的主流技术。典型的PON系统由局侧OLT光(线路终端)、用户侧ONUO/NT(光网络单元)以及ODN-OrgnizationDevelopmentNetwork(光分配网络)组成。PON技术可节省主干光纤资源和网络层次,在长距离传输条件夏可提供双向高带宽能力,接入业务种类丰富,运维成本大幅降低,适合于用户区域较分散而每一区域内用户又相对集中的小面积密集用户地区。

为实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达置的不同,有FTB、FTTC,FTTCab和FTTH等不同的应用,统称FTTx。

FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制定了FTTH的技术标准和建设标准,有的城市还制门了相应的优惠政策,这此都为FTTH在我国的发展创造了良好的条件。

篇9

一、光纤网络的发展现状和发展需求

光纤通信是以光波为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。从国家骨干通信网到城域网以及到用户的接入网,基本上都是采用光纤通信的方式实现的。光纤通信技术和计算机技术是信息化的两大核心支柱,计算机负责把信息数字化,输入网络中去;光纤则负责信息传输的重任。目前,我国累计敷设光缆近400万公里,累计光纤用量近8000万公里。随着当代社会和经济的发展,信息容量日益剧增,为提高信息的传输速度和容量,光纤通信技术有了突破性的发展,成为继微电子技术之后信息领域中的重要技术。

随着网上办公、3G移动通信、远程移动存储等新业务的应用,人们对光纤通信网的传输速度和容量需求不断增长,甚至有些地区的单用户接入速度要求达到1Gb/s,因此必须建设速度更快、容量更大的光纤通信网才能满足人们日益增长的通信需求。为了满足更高的用户服务质量要求,对基层传输协议的更新也是很重要的。光纤网络快速发展的另一个应用领域是网格计算以及商业化的云计算,在未来几年,这样的计算将不再仅仅局限于科学计算,而将进一步扩展到商业领域和军事应用领域。如在军事上成功应用的传感器网格和美国国防部耗资几十亿美元的“全球信息栅格”计划,都是网格计算的应用。

二、光纤网络的新技术

2.1光纤高速传输技术

人们需要光纤网络的超高速、超大容量,但到目前为止我们能够利用的最理想传输媒介仍然是光。因为只有利用光谱才能带给我们充裕的带宽。光纤高速传输技术现正沿着扩大单一波长传输容量、超长距离传输和密集波分复用(DWDM)系统三个方向在发展。单一光纤的数据传输容量在20年里提升了万余倍;超长距离实现了1.28T(128x10G)无再生传送8000Km;波分复用实验室最高水平已做到273个波长、每波长40Gb。

2.2宽带接入

光纤网络必须要有的支持,各种宽带服务与应用才能开展起来,网络容量的潜力才能真正发挥。宽带接入技术五花八门,主要有以下四种:一是基于高速数字用户线(VDSL);二是基于以太网无源光网(EPON)的光纤到家(FTTH);三是自由空间光系统(FSO);四是无线局域网(WLAN)。

2.3无源光网络

无源光网络(PON)的概念由来已久,它具有节省光纤资源、减少线路和外部设备的故障率,提高系统可靠性,节省维护成本、对网络协议透明的的特点,在光接入网中扮演着越来越重要的角色。同时,以太网(Ethernet)技术以其简便实用,价格低廉、易维护、可扩展、标准化和广泛的商用软硬件支持的特性,几乎完全统治了局域网,随着IP业务在城域和干线传输中所占的比例不断攀升,以太网也在通过传输速率、可管理性等方面的改进,逐渐向接入、城域甚至骨干网上渗透。而以太网与PON的结合,便产生了以太网无源光网络(EPON)。它同时具备了以太网和PON的优点,被认为是下一代网络中主要的宽带接入技术。它通过一个单一的光纤接入系统,实现数据、语音及视频的综合业务接入,并具有良好的经济性。业内人士普遍认为,FTTH是宽带接入的最终解决方式,而EPON也将成为一种主流宽带接入技术。由于EPON网络结构的特点,宽带入户的特殊优越性,使得全世界的专家都一致认为,无源光网络是实现“三网合一”和解决信息高速公路“最后一公里”的最佳传输媒介。

2.4自动交换光网络

下一代的光网络是以软交换技术为核心,采用容量巨大高密集波分系统,具有自动配置功能的大容量光交换机,新一代的光路由器,各种适合于不同场合运用的低端光系统(如MSTP和RPR),组成的智能光网络。早在2002年AT&T在OFC上就称“智能光网络目前就已经成为现实”。构建高效灵活的自动交换光网络的重要节点设备光交叉连接设备(OXC)和光分插复用设备(OADM),随着这些设备的发展,智能光网络有了新的发展,也就是自动交换光网络(ASON),其最突出的特征是在光传送网中引入了独立的智能控制平面,利用控制平面来完成路由自动发现、呼叫连接管理、保护恢复等,从而对网络实施动态呼叫连接管理。

目前,光网络的发展主要是利用DWDM技术扩大传输容量,但是,随着光分插复用(OADM)和光交叉连接(OXC)技术的逐步成熟,原来只是提供带宽传送的波长本身也能成为组网(分插、交换、路由)的资源。同时,在扩大传输容量的同时,如何有效的运行、管理和维护如此大规模的网络已经被人们提上日程。目前,光网络的管理与控制仍然采用类似于SDH网络的传统模式,光网络只作为简单的传送介质。这种传统的传输业务与通信业务分别控制与管理的模式,使当前提供宽带通道仍然只能采用静态配置方式,不能灵活提供各种需要的带宽。

随着IP业务快速的增长及IP业务量本身的不确定性和不可预见性,使得对网络带宽的动态分配要求越来越迫切。这种不可预见的业务需求要求具有很强动态性能的新型光网络出现,以适应新业务的需求。另外,在当前竞争激烈的通信市场上,提供"即时服务"已经成为电信运营商竞争的关键优势。因此,人们将在未来核心光网络中引入动态的网络配置方式,或称"自动交换",以满足数据/互联网的无法预测的动态特性。这将充分提高网络的资源利用率,从而降低网络成本。为此,ITU-T等国际标准化机构提出自动交换光网络(ASON)的概念作为下一代光网络的标准草案。ASON这一概念的提出,是光传送网的一大突破,它将交换功能引入了光层,促进了通信网两大技术--传输和交换的进一步革新和融合。

ASON是一个智能化的光网络,它采用客户/服务器(Client/Server)的体系结构,具有定义明确的接口,可以使网络资源按照用户的需求快速动态的分配,同时具有快速的网络恢复和自愈能力,能够保证网络的可靠性和提供灵活的路由功能。现有的光通信系统大都采用电路交换技术,而发展中的自动交换光网络凭借其"智能"交换技术为用户提供了交叉连接、交换和路由等强大的功能,从而实现了网络的高速率和协议透明性。

篇10

1.2在光纤通信系统中的应用第一,在接入网中的应用。光纤接入网的接入方式可分为无源接入和有源接入两种,其中,无源光网络是一种非常优质的接入方式,具有低成本、光纤少、中心局终端少、雷电影响小、电磁干扰少等优点,后期的运营维护成本也较少,其扩展性强,能随着技术的发展而升级改造。带宽大、传输距离可达20km。正是由于诸多的优点无源光网络接入方式成为光纤接入网的首选接入方式,其中,上行接入技术乃技术关键点和难点,不能采用以往的以太网CSMA/CD媒体接入控制方式进行上行接入,可以将光波分复用技术应用到其中,进行上行接入。基于光波分复用技术的波分多址上行接入方式以波长为用户端ONU的标识,实现上行接入,具有较大的带宽,能充分利用光纤的大带宽,实现对称宽带接入。同时,该种接入方式还能有效解决ONU测距、快速比特同步等困难,在网络管理和系统升级方面具有显著优势。随着光波分复用技术的发展,光波分复用器材价格越来越低,性能越来越优,这有效推动了无源光网络的发展。第二,在城域网建设中的应用。传统电信城域网无法适应数据业务突变性特点,承载多业务的带宽效率低。因此,当前城域网发展的目标为面向数据和多媒体业务应用的IP优化网络。基于IP和光波分复用技术建设的城域网成为新型城域网的主要方案,其采用IPoverWDM传输技术,就是使IP数据包直接在光路上跑,减少网络层之间的冗余部分,该方法省去了中间的ATM层和SDH层,传输效率高、运行成本低,用户网络费用少,非常适合于城域网建设。从通信协议角度来讲,该方案的网络结构层次为IP业务层和光网络层,光网络层又可以分成光网络适配子层、光复用子层、光传输子层,其中,光复用子层为核心,它完成光复用协议的相关内容,复用带宽、保护线路、定位故障点。该方案有效应用了光纤的巨大带宽资源,提高带宽和传输速率,实现数据格式、调制方式的透明化,实现与现有通信网的兼容,支持网络升级,具有极高的推广性和生存性。同时,该方案也有一定缺点,网络管理与其传输的信号和网管分离开来,只是点对点的拓扑结构方式,没有实现真正意义上的光网络。在光纤通信系统中,若没有应用光波分复用技术,则需要多投入n-1根光纤,若光纤通信方式为多个用户协同工作,则适用光波分复用技术能更好突出光波分复用技术的优势,实现单根光纤传输容量成几倍乃至几十倍的增长,更好利用现有的光纤带宽资源。在远距离运输中,适用WDM技术有助于节省大量光纤,降低光纤通信系统的开发建设成本。WDM以波长路由代替传统电子信号路由,以解复用器代替光电转换交换器,消除延迟转发等瓶颈问题,保证传输的透明性。总而言之,光波分复用技术在光纤通信系统中有广阔的应用空间,能带来良好的应用效果,值得大力推广。

1.3光波分复用技术的发展趋势随着光波分复用技术的发展和应用,光纤通信朝着高速率、大传输容量方向发展,光纤通信对光波分复用技术提出更高要求,进一步推动光波分复用技术的发展。作为一种对米元件依赖性强的技术,未来的WDM技术发展方向是研发出更多新的、性能更好的米元件,开发低价的小型集成光元件,如:放大器、光交叉连接器、光分插复用器、滤波器、信号调节器、光存储器等。其实现互通性和标准化服务,还必须实现传输协议和网关标准的规范化。伴随着光纤通信系统的发展,以WDM为基础的光网络层将逐步实现全光网络连接,实现用户与光纤通信网络的亲密接触,到时候,人们可以利用WDM技术实现可视电视、可视会议、远程技术等支援,进行语音、数据、图像等多媒体信息的传输、处理和交换。简单来说,WDM技术的完善将推动广电数字网络的发展,用户对广电数字网络的需求又成为WDM发展的巨大推动力。WDM技术第一次实现了电信号到光信号的转换,它标志着光通信时代的到来。当前的研究重点是密集波分复用技术,其商用水平为320Gbit/s,也就是说,一对光纤可传送400万话路,商用系统的传输能力仅是单根光纤传输容量的百分之一。在光纤网络中,FTTH解决的是光纤通信“最后一公里”的问题,日本、美国、韩国紧锣密鼓的建设FTTH网络,进行大规模建设,将光波分复用就似乎应用其中,发展成为今天的WDM-PON。在我国,FTTH网络的技术越来越多,且理论也较为完善,但却还媒体一项技术被认为是完善的技术,这个时候充分利用无源光网络技术则是可行的一种选择,推动光波分复用技术的发展,逐渐根据社会需求,采用WDM-PON方式建设FTTH网络。