时间:2023-04-01 10:33:26
导言:作为写作爱好者,不可错过为您精心挑选的10篇信号与通信论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
屏蔽门(Platformscreendoors,简称PSD)系统是现代化轨道交通工程的必备设施,它沿轨道交通站台边缘设置,将轨道区与站台候车区隔离,具有节能、环保和安全等功能。安装屏蔽门系统后,不仅可以防止乘客跌落轨道而发生危险,确保乘客安全,减少人为引起的停车延误,提高列车准点率,而且可以减少站台区与轨道区之间冷热气流的交换,从而降低环控系统的运营能耗,节约运营成本。
信号系统与屏蔽门系统相结合是屏蔽门系统工程的重要环节。此外,要更好地确保乘客的安全以及奠定无人驾驶的技术基础,就必须实现屏蔽门与列车车门的连动,并确保屏蔽门系统与信号系统的列车自动防护(ATP)之间建立联锁关系。根据世界各城市轨道交通工程的成功先例,屏蔽门普遍由信号系统进行控制。广州于2004年10月开始对正在运营的地铁1号线加装屏蔽门系统。该项工程预计总投资金额为1.484亿元人民币,是目前我国最大的一项轨道交通屏蔽门系统工程。本文主要对广州地铁2号线及1号线加装屏蔽门系统工程中的西门子信号系统与屏蔽门系统的接口进行分析。
1屏蔽门系统所需信号系统的条件及功能
(1)信号系统与屏蔽门系统的接口仅考虑线路上的列车的正向运行,但要满足屏蔽门对停车精度的要求。只有停车精度要求被满足,信号系统才允许自动或人工向列车和站台屏蔽门系统发送开门命令。目前,用于广州地铁2号线的LZB700M型中,ATP和ATO(列车自动运行)系统是由德国西门子公司提供的,其列车定点停车的精度ATO系统为±0.3m,成功率99.99%,ATP系统为±0.5m,已满足屏蔽门对停车精度的要求。广州地铁1号线同样采用LZB700M型ATP、ATO,目前列车停车的精度ATO系统为±0.5m,成功率99.5%,ATP系统为±1m。由此可见,要安装屏蔽门首先必须改善列车的停车状况,停车精度至少要达到ATO系统为±0.4m,成功率99.5%,ATP系统为±0.5m的要求;并要保证在列车停车精度为±400mm情况下,列车乘客门净开度≥1200mm(屏蔽门门开宽度为2000mm)。
(2)只有屏蔽门关闭的情况下列车才能运行。ATP轨旁单元通过故障安全型继电器输入接点接收当前屏蔽门的状态(PSD开门或PSD关门)。如果屏蔽门是开门状态,ATP轨旁单元会设置一个安全停车点,不让任何列车驶入相应的车站站台。
(3)PSD的状态通过ATP报文传输给列车。当列车接近运营停车点,且屏蔽门的状态由“PSD关闭”变化为“PSD开门”时,ATP轨旁单元会产生紧急制动让列车停车。
(4)确保当列车停在停车窗位置范围内时才连通列车到轨旁的通信通道。当列车在站台范围内移动时,ATP通过不激活“PTI(positivetrainidentification,有车标志)释放”切断PTI通道。如果列车停到指定的ATP停车窗位置时,则通过ATP激活“PTI释放”让PTI通道连通。当列车车门打开时,这些报文会通过PTI通道传输到轨旁单元,屏蔽门会随之而打开。
(5)屏蔽门控制系统向信号系统提供全部门“关闭及锁定”和“互锁解除”信息,接口采用安全型干接点双断硬线连接,接口分界点在屏蔽门控制设备外的线端子排。
(6)列车在ATP停车窗范围内停稳后,ATP车载单元会发出打开列车车门的信号。当列车车门打开,ATP车载单元一个持续的故障安全输出则会切断列车的牵引系统。这是为了防止列车在车门开启的情况下人为地启动列车。
(7)PTIMUX(PTItracksideunit)根据接收来的2个不同的PSD编码(对应PSD开门的编码)驱动2个继电器输出,它们是表示“PSD开门”命令的接口。为了产生一个持续的控制信号,ATO需不断发送“PSD开门”命令,直到屏蔽门被请求关闭为止。
(8)如果列车车门关闭(人工或自动),屏蔽门也随之关闭,这些报文会通过PTI通道传输到轨旁单元。目前广州1、2号线列车只有人工关闭车门功能。
(9)ATP车载单元在关闭车门的同时,输出关闭屏蔽门命令。只有收到列车车门关闭好,且通过ATP报文接收到屏蔽门的“关闭及锁定状态”信息后,列车牵引系统才被释放,ATP才允许启动列车。
(10)开左门或开右门应与站台的位置和列车运行方向相符合。如在换乘站(如公园前站),屏蔽门的开关要根据有利于乘客导向的原则来进行设计:先开下客侧的屏蔽门,后开上客侧的屏蔽门。
(11)屏蔽门系统发生故障,或屏蔽门实际已关闭但因故不能有效地把“关闭及锁定状态”信号传送给ATP系统时,司机只有按“PSD互锁解除”按钮,屏蔽门系统才能给ATP系统送出“互锁解除”的信号,用以切断屏蔽门系统和信号系统间的联锁关系,ATP才允许启动列车。且司机必须在每次发车前都按下“PSD互锁解除”按钮,直到故障修复为止。
(12)屏蔽门系统应为每侧站台提供一组接口与信号系统连接,因此,岛式站台和侧式站台有两组接口,一岛两侧式站台有四组接口(如公园前站)。
(13)由于广州地铁1、2号线的列车编组方式相同,在信号系统中没有考虑采用不同的列车编组来开启对应的屏蔽门。
2信号系统与屏蔽门系统的接口控制
2.1接口信号描述
信号系统与屏蔽门控制系统之间使用信号控制电缆连接,使用继电、双断、安全型干接点等方式的接口电路。两系统接口信号的描述见表1。
2.2ATP子系统对PSD打开状态时的保护联锁设计
屏蔽门的状态通过ATP报文传输给列车。ATP子系统在屏蔽门不同的打开情况下监督列车的移动,并最终控制列车导向安全。其出现的情况有图1中给出的5种。
图1中:情况1和2若PSD打开,轨旁ATP会生成一个安全停车点让列车不能进入相应车站的站台。在情况1中,当列车制动距离小于列车与安全停车点的接近距离时,列车实施正常制动让列车在停车点前停车。而在情况2中,当列车制动距离大于列车与安全停车点的接近距离时,列车则要被实施紧急制动。在情况3中,列车在站台区域移动,同时收到“PSD关闭”改变为“PSD开门”的信息时,车载ATP单元会产生一个紧急制动。同样,在情况4中,车载ATP单元也会产生一个紧急制动,这是因为列车尾部还在站台区域内。在情况5中,列车已出清站台区域时PSD打开,这时列车不会产生紧急制动。通过上述的5种情况,确保在PSD打开的情况下禁止列车在站台区段移动,防止危及乘客的安全。
2.3接口硬线连接的安全设计
简单的故障会导致屏蔽门错误地开、关门,这是必须要防止的。现说明接口故障的安全设计。
2.3.1PTIMUX和PSD控制器之间的继电器盒
PTIMUX和PSD控制器之间采用继电器进行隔离,防止电气干扰影响信号系统。同时为提高安全性,接口电路采用4线双切线路。一个正常的PSD命令是由4个PTIMUX输出继电器组合确定的,可以避免“PSD开门”和“PSD关门”两个信号同时出现的错误。这些继电器会安装在PTIMUX上,通过复合的接点关系防止“PSD开门”和“PSD关门”命令的错误输出。其原理见图2。继电器盒的继电器输出状态与逻辑结果见表2。
通过其继电器控制电路逻辑结果分析,16种继电器可能的动作组合中,只有2种组合会产生正确的输出(PSD开门和PSD关门)。这样的设计也是为了防止继电器失误而产生错误的输出命令。
2.3.2报文容错
车载ATO通过PTI信标到PTI-MUX的整个传输通道的报文都有CRC(循环冗余码校验)进行校验。另外,列车停在停车窗位置范围时,整个PTI传输通道才连通,以确保其它情况下没有任何的报文接收,影响到PSD的功能。
2.4两侧都有屏蔽门的设计
该情况是列车可以打开左侧、右侧或者同时都要打开两侧车门的情况。
这里使用了6个继电器,其功能分别是:允许开门,允许关门,两侧门都开,开左门,开右门,关闭所有门。通过这6个继电器的接点组合控制PSD的命令输出:①开右侧屏蔽门,允许开门和开右门的继电器吸起;②开左侧屏蔽门,允许开门和开左门的继电器吸起;③开两侧屏蔽门,允许开门和两侧门都开的继电器吸起;④关闭屏蔽门,允许关门和关闭所有门的继电器吸起。继电器的输出状态和逻辑结果见表3。
如表3所述,只有上述的情况会产生命令输出,其它的组合是无效的。通过其继电器的互锁关系,确保不会因继电器错误动作产生有效的屏蔽门控制命令。如在公园前站这个需要两侧开门的换乘站,在设计上要考虑屏蔽门对乘客的导向作用,两侧屏蔽门要先开下客门再开上客门,而关门时要先关下客门再关上客门。这就需要在车载软件中设置两侧车门的开关延时时间。同样两侧屏蔽门开关的时间也应作对应的设置。
2.5车门与屏蔽门的同步
屏蔽门和列车车门的开门时间,会在小于1s内同步启动。屏蔽门和列车门关闭的时间应大致相同。同步要求的延误,主要是因为启动指令要从信号系统的车载设备传送到信号系统的地面设备,传送过程中会产生延误。关门同步实现起来比较容易。列车车门及屏蔽门收到关门命令也不是立即关闭的,而是都有一个延时时间。根据实际情况各自确定一个关门的延时时间即可。
3结语
屏蔽门系统与信号系统的结合提高了屏蔽门的自动性和安全性,在保证列车和乘客安全,实现快速、高密度、有序运行等功能的同时,为乘客提供了一个舒适安全的乘车环境。通过了解信号系统与屏蔽门系统之间的控制与监督,就能更深入了解屏蔽门系统的运作过程。
参考文献
随着集成电路的运算速度更快,集成度更高,就有可能耐复杂目益增加均一些多维数字信号处理。所它在最近才开始出现的一个新领域。尽管如此,多维信号处埋仍然对以下一些间提了解决的办法,这些问题是:计算机辅动断层成术(CAT),即综合来自不同方向的X射线的投影,以重建人体某一部分的三维图,源声纳阵列的设计及通过人造卫星地球资源。多维数字信号处理除具有许多引人注目和浅显易行的应用之外,它还具有坚卖的数学基础.,这不仅使我们能了解它的实现情况,而且当新问题出现时,也当及时解决。
典型的信号处理任务就是把信息从一种信号传递到另一种信号上,例如,可将一张照片加以扫描、抽样,并将共存储在计算机的存储器中。在这种情况下,信息是从可变的银粒密度转换戌可见光束,再变成电的波形,最后变戍数字的序列,随后该数字序列用。磁盘上磁畴的排列来表示CAT扫描器是一个比较复杂,经过处理,最后显赤射线管(CRT)的荧光屏上或胶片上。数字处理能增加信息,但可以重新排列信息,使观察者能更方便地理解它.观察者不必观看多个不同测面的投影而可直接观察截面图。
人们感兴趣的是信号所包含的信息,而不管信号本身是什么形式。也许可以概括地说,信号处理涉及两个基本任务一一信息的重新排列和信息的压缩。
数字信号处理涉及到用数的序列表示的信号的处理,而多维数字信号处理则涉罚用多维阵列表示的信号的处理,例如对同时从几个传感器所接收的抽样图像和抽样的时间波形的处理。由于信号是因而它可以用数字硬件处理,同时可以将信号处理的运算规定为算法。促使人们采用数字方法的是不言而喻的。数字方法既有效灵活。我们可以用数字系统使其有自适应性并易于重新组合。可以很方便地把数字算法由一个厂商的设备上转换到另一个厂商的设备上去,或者把专用数字硬件来实现。同样,数字算法也可用来处理作为时间函数或空间信号,数字算法自然地和逻辑算符如模式分类相联系。数字信号能够长时间无差错地存储。对很多种应用而言,数字方法Ⅸ其它方法更为简单,对另外一些应用,则可能根本不存在其他方法。多维信号处理是不同于一维信号处理,想在多维序列上实现的多运算,例如抽样、滤波和交换等,用于一维序列,然而,严格芯说,我们不得不说多终信号处理与一维信弓有很大差别的。
信号处理与一维信号处理还是有很大差别的,这是由三个因素造成的;(l)二维通常比一维问题包含的数据量大得多;(2)处理多维系统在数些上不如处理一维系统那样完备;(3)多维信号处理有更多的自由度,这给系统设计音以一维情况中无法比拟的灵活性。虽然所有递归数字滤波器都是用差分方程实现的,一维情况下差分方程是全有序的,而在多维情况下差分方程仅是部分有序的,冈而就存在着灵活性,在一维情况小,离散传里旰变换CDET)可以用快速傅里叶变换CEPT)算法来计算,而在多维情况下,有多且每一个OFT又可用多种AFT算法来计算。在一维情况下,我们可以调整速率。而且也可以调整抽排列。从另一方面来说,多维多项式不能进行因式分解,而一维多项式是可以进行因式分解的。因而在多维情况下,我们不能论及孤立的极,气、孤立的零点及孤立的根。所以,多维信号处理与一维信号处理有相当大的差别。在20世纪60年代初期,用数字系统来模仿模拟系统的想法,使得一维数字信号处毫的各种方法得到了发展。这样,仿照模拟系统理论,创立了许多离散系统理论.随后,当数字系统可以很好地模仿模拟系统时,人们认识到数字系统同时也可以完成更多的功能。由丁这种认识及数字硬件工艺的有力推动,数字信号处理得到了发展,而且现今很多通用的方法,已成为数字方法所特有的,没有与其等效的模拟方法,在发展多维数字信号处理时,可观察到同一发展趋向。因为没有连续时间的(或模拟的)二维系统理论可以仿效,因而最初的二维系统是以一维系统为基础的,80年代后期,多数二维信号处理都是用可分的二维系统。可分的二维系统与用于二维数据的一维系统几乎没有差别。随后,发展了独特的多维算法,该算法相当于一维算法的逻辑推理。这是一段失败的时期,由干许多二维应用要求数据量很大,且iT缺少二淮多项式太分解理论,很多一维方法不能很好地推广到二维上来。我们现在正处于认识的萌芽时代。计算机工业以其部件的小型化和价格日趋低廉而有助于我们解决数据量问题。尽管我们总是受限于数学问题,但仍然认识到,多维系统也给了我们新的自由度。以上这些,使得该领域既富于挑战性又无穷乐趣,电子信息技术的结合之软件结台,传统产业中可用电产信息技术的地方,仍然可以在生产或很低的条件下使用人力或传统机械。电予信息技术应到限制,在不同领域和不同水平有各种原因,但烂有一个共大原因是缺乏认识。没有认识,便没有应层。
事实上,在一维和二维信号处理理论之间有实质性的差别,而在二维和更高维之间,除了计算上的复杂世方耐差异之外,似乎差别较小。
参考文献:
[1]吴云韬,廖桂生,田孝华.一种波达方向、频率联合估计快速算法[J]电波科学学报,2003,(04).
[2]吕铁军,王河,肖先赐.利用改进遗传算法的DOA估计[J]电波科学学报,2000,(04)
[3]刘全,雍玲,魏急波.二维虚拟ESPRIT算法的改进[J]国防科技大学学报,2002,(03).
[4]吕泽均,肖先赐.一种冲击噪声环境中的二维DOA估计新方法[J]电子与信息学报,2004,(03).
[5]金梁,殷勤业,李盈.时频子空间拟合波达方向估计[J]电子学报,2001,(01).
引言
由于数字化信息处理和集成电路的不断进步,各种语音合成芯片应用也不断扩大。其中有大部分都是采用PC机或微控制器的方法,这种方法的控制手段不但需要硬件的支持,同时也需要对软件系统和各种指令进行严肃处理。伴随着目前社会技术的不断发展,语音信息采集与处理措施要求不断增加,在处理之中,是通过将模拟语音信号通过相应软件和系统转变形成数字信号,再由单片机控制储存在存储器中,形成一套系统的工作流程。
一、信号发生器概述
1.1 信号发生器的发展
信号发生器广泛应用于各科学实验领域。它是一种常用的信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。六十年代以来,信号发生器有了迅速的发展,出现了函数发生器、扫频信号发生器、合成信号发生器、程控信号发生器等新种类。各类信号发生器的主要性能指标也都有了大幅度的提高,同时在简化机械结构、小型化、多功能等各方面也有了显著的进展。
1.2单片机原理
单片机是一种集成在电路芯片,具有数据处理能力的中央处理器CPU 随机存储器RAM、只读存储器ROM、多种I/O 口和中断系统、定时器/计时器等功能集成到一块硅片上构成的一个小而完善的计算机系统。单片机具有集成度高、系统结构简单、使用方便、实现模块化等特点,应用于仪器仪表、家用电器、医用设备等领域。
二、硬件电路设计与分析
2.1 工作原理
当按键按下时,通过程序判断哪个键按下,选好按键后,利用D/A转换器将数字信号转换成模拟信号,再经过滤波放大,由示波器显示出所需的波形,此时LED显示器也会显示其各自的类型以及频率。复位电路则是用于单片机的复位,使单片机接口初始化。
2.2 实现功能
(1)所使用的8位LED显示器,采用共阴极接法,输入段选码低电平有效,显示输出信号的类型和频率。
(2)通过P1.0和P1.1口控制信号的输入类型。当P1.0=0,P1.1=0输出正弦波;当P1.0=0,P1.1=1 输出三角波;当P1.0=1,P1.1=0输出锯齿波。
(3)输出信号幅度:0~5V。
(4)信号频率范围要求:1—1KHZ。
2.3.硬件电路设计与分析
好的硬件电路既能简化繁琐的程序,又能提高实验的成功率,是设计实验不可或缺的重要部分,必须高度重视。
2.3.1主控电路
本电路主要采用AT89C52型单片机,它具有如下特点:(1)有可供用户使用的大量I/O口线。(2)内部存储器容量有限。(3)应用系统开发具有特殊性。用89C52单片机构成最小应用系统时,只要将单片机接上时钟电路和复位电路即可。其中,在设计时钟电路时,采用12MHZ和晶振分别接引脚XTAL1 和XTAL2,电容C1,C2 均选择为30pF。由于频率较大时,三角波、正弦波、方波等波中每一点延时时间为几微秒,故延时时间还要加上指令时间即可得到指定频率的波形。在设计复位电路时,复位引脚RST通过一个斯密特触发器与复位电路相连,作用是用来抑制噪声。在每个机器周期的S5P2,其输出电平由复位电路采用一次,然后才能得到内部复位操作所需要的信号。
2.3.2键盘接口电路
本设计采用一般的键盘接口,键盘输出信号。具体为:P1.0、P1.1波形选择,其中当P1.0=0,P1.1=0 输出正弦波,当P1.0=0,P1.1=1 输出三角波,当P1.0=1,P1.1=0输出锯齿波;当P1.0=1,P1.1=1 输出方波。P1.2、P1.3、P1.4 频率由个位,十位,百位调节;P1.5频率加减控制;P1.6跳出循环。
2.3.3 DAC0832芯片与单片机硬件接口设计
由于用示波器显示波形,所以需要一个数/模转换器,将单片机输出的数字量转换成模拟量。此设计采用DAC0832转换器。由于此芯片是电流输出,为了变成电压输出,我们在其后加上一个运算放大器OP07。
2.3.4 LED显示电路
设计采用LED共阴极数码管显示电路。当某个驱动电路输出端为低电平时,相应的那位点亮,从而显示出波形的种类和信号的频率,在按键时显示出相关信息。添加74LHC573锁存器是为了增加显示的准确性。
三、语音信息系统主要芯片介绍
单片机作为一种集成电路芯片,是通过采用各种超大规模的集成电路技术将具有各种数据处理和函数计算能力的中央处理器、随机处理器以及定时器等终端系统和功能集成到一个完整的硅片之中形成一个完善而又系统化的微型计算机系统措施,这种电路芯片在目前被广泛的应用在各种工业生产和控制领域之中。伴随着社会的进步,单片机呈现出其顽强的生命力,以高速发展的优势迅速的应用在各个信息处理之中。
3.1 ISD4OO4芯片介绍
ISD4OO4语音芯片采用C14OS技术,通过在内部装置韩警惕的振荡器和防混叠过滤器等方式来扩大存储器容量,增加计算效率和准确度,因此只需要很少的器件就可以在其中构成一套完整的声音录入系统和回放体系,这在系统设计中不但能够节约设计消耗时间,同时能够避免设计中其他元件的增多。
在目前ISD公司的单片机构成中主要是通过信号输入系统、信号输出部分、存储系统、采样时钟部分和SPI部分六部分构成。其在构成中信号输入部分—音频信号放大器和五极点抗混叠滤波器:而信号输出部分在控制的过程中是通过平滑过滤器和自动静噪处理器来实现的。存储部—非易失性多电平模拟存储阵列;采样时钟部分一内部时钟振荡器和调节器:SPI—录、放、快进等操作的SPI接口;电源接口部分。
3.2 AT89C52芯片介绍
AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。芯片内含有8KB快闪可编程/擦除只读存储器的8位CMOS微控制器,使用高密度、非易失存储技术制造,并且与8OC31引脚和指令系统完全兼容。芯片上的FPEROM允许在线编程或采用通用的非易失存储编程器对程序存储器重复编程。
四、语音信息系统设计方案
ISD器件在录音存储操作之前,要对信号作调整。首先将输入信号放大到存储电路动态范围要求的最佳电平,这主要由内部放大器来完成。放大后的信号进入五级抗混叠滤波器进行调整。模拟信号的存储采用采样技术,利用抗混叠滤波器可以去掉采样频率I/2以上的输入频率分量,使所有采样数据都满足奈奎斯特定理,滤波器是一个连接时间五极点的低通滤波器。录音时,输入信号通过模拟收发器写入模拟多电平存储阵列中。将采样信号经过电平移位生成非易失性写入过程所需要的电压。采样时钟同时用于存储阵列的地址译码,以便将采样信号顺序地写入存储阵列中。放音时,录入的模拟电压在同一采样时钟的控制下顺序地从存储阵列中读出,重构原来的采样波形,输出通路上的平滑滤波器去掉采样频率分量,并恢复原始波形,ISD器件的采样频率通过内部温度补偿的基准振荡器来控制,这个振荡器不需要外接元件,采样频率取自内部振荡电路之后的一组分频器。平滑滤波后的信号经过自动静噪处理传送入放大器作为输出音频功放的输入信号,推动扬声器。
4.1语音输出电路
LW386是一种集成音频功放,同时其中具有着自身功能消耗低,电压的增长稳定,对电源电压的控制范围较为合理,单片机在应用的时候失真效率和要求较低。尽管LM386的应用非常简单,但稍不注意,特别是器件上电、断电瞬间,甚至工作稳定后,一些操作(如插拔音频插头、旋音量调节钮)都会带来的瞬态冲击,在输出喇叭上会产生噪声。
4.2录音电路
ISD器件采用录音时间为8分钟的ISD4OO4-8器件,以单片机AT89C52为微控制器,外接语音段录放控制键盘和LED显示器,外部存储器24CO2用于保存各语音段首地址及总语音段数,为了改善语音量,要提高输入端信噪比,因此在ISD语音输入端采用放大电路单端输入。
4.3放音电路
此系统分为三部分:单片机的控制部分、放音部分和显示部分。本文的控制部分主要由单片机89C52构成,包含必要的按键电路、复位电路和看门狗电路等电路,放音部分主要由ISD4OO4构成。
4.4程序工作顺序
程序工作思想电路上电后,程序首先完成程序的初始化,随后查询按键状态,进入系统待机状态。如果有按键按下,则转去执行按键指向的工作程序。按键包括放音键,程序将首先判断是去还是回,并点亮相应的指示灯。自动读出第一段的放音内容。如果不是首次按下,程序则首先判断当前位置,并以该位置为依据获得存放该站放音内容的首地址。调用放音子程序,读入前面获得的本次放音内容首地址,开始放音。
五、结束语
本文信号发生器只是一种可能实现的方法。此法的频率控制和幅度控制分辨率高,且硬件集成度高,整机自动化程度高,性能优良,具有很高的实用价值。
在传统的语音录放过程中,语音信号要经过设备豹接受后再转化为模拟电信号,遥过前置放大器把语音信号放大,通过带通滤波之后。去掉多余的干扰,再经过A/D转换为数字信号,控制器对其进行处理和存储。之后再由D/A转换为模拟信号,达到放音的目的。使用这种方法既复杂又容易使声音失真。所以,本文介绍了一种单片语音处理芯片ISD4OO4。通过对ISD4OO4语音芯片的简单介绍,熟悉了ISD4OO4的基本应用。通过对基于单片机控制系统的设计实现了语音的录入和播放。并阐述了系统工作各部件的性能特性,基于微处理系统的设计实现了录音和放音。此系统设计灵活,成本低,语音器件抗干扰性强,应用效果良好。
参考文献
[1]张友德,赵志英.单片微型机原理、应用与实验[J].上海:复旦大学出版社,1993.
[2]常新等.高频信号发生器原理,维修与鉴定[M].北京:电子工业出版社,1996.
[3]陈泽宗等.单片精密函数发生器应用[J].电子技术报,1997,20(7):3~4.
[4]张根选,吴子怀.基于AT89S52单片机的信号发生器设计[M].湖南工程学院学报,2010.
[5]王为青,程国刚.单片机Keil Cx51 应用开发技术[J].北京:人民邮电大学出版社,2007.
姓 名:
学 号:
报告日期:
论文(设计)题目:
智能天线技术的基本原理及其music算法
指导教师:
论文(设计)起止时间:
一、论文(设计)研究背景与意义
智能天线是3g的一项关键技术,作为当今三大主流标准之一的td-scdma(time division-synchronous code division multiple access)是由中国自主提出使用的tdd方式的(时分双工方式)的第三代移动通信系统标准。td-—scdma的核心技术之一就是智能天线技术。在td-—scdma系统中使用智能天线技术,基站可以利用上行信号信息对下行信号进行波束成形,从而降低对其他移动台的干扰,同时提高接收灵敏度,增加覆盖距离和范围,改善整个通信系统的性能。
智能天线是一种多天线系统,它按照某种算法来对准期望信号,使得期望信号得到最大增益,而干扰信号被压制。 智能天线系统的核心在于数字信号处理部分,它根据一定的准则,使天线阵产生定向波束指向移动用户,并自动调整权系数以实现所需的空间滤波。智能天线需要解决以下两个关键问题:辨识信号到达方向doa(directions of arrinal)和数字波束赋形的实现。在对信号doa估计的算法中,作为超分辨空间谱估计技术的music(multiple signal classification)算法是最经典的算法之一。
本文针对3g的需求背景,研究智能天线技术及doa估计算法。随着移动通信用户数迅速增长和人们对通话质量要求的不断提高,要求移动通信网在大容量下仍具有较高的话音质量。经研究发现,智能天线可将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向doa(directions of arrinal),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。同时,利用各个移动用户间信号空间特征的差异,通过阵列天线技术在同一信道上接收和发射多个移动用户信号而不发生相互干扰,使无线电频谱的利用和信号的传输更为有效。在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。
其实就是一种多天线系统,它按照某种算法来对准期望信号,使得期望信号得到最大增益,而干扰信号被压制。因此需要知道期望信号到来的方向,即doa。music算法是经典的用来估计波达方向的算法。
二、论文(设计)的主要内容
智能天线是一种安装在基站现场的双向天线,通过一组带有可编程电子相位关系的固定天线单元获取方向性,并可以同时获取基站和移动台之间各个链路的方向特性。智能天线的原理是将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向doa(direction of arrinal),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。
波达方向(doa,direction of arrival)估计是智能天线研究的一个重要方面,无论是上行多用户信号的分离,还是下行选择性发射,对用户信号doa的测定,都成为智能天线实现指向性发射的必要前提。在对信号doa估计的算法中,作为超分辨空间谱估计技术的music(multiple signal classification)算法是最经典的算法之一。本文主要介绍智能天线技术的基本原理,发展历程,技术分类,及智能天线对系统的改进和主要用途。写出均匀线阵的统计模型,研究music算法的基本原理,用matlab仿真实本课题的主要研究内容如下:
(1)介绍智能天线技术的发展历程、研究现状和技术分类;
(2)在均匀线阵的统计模型下研究智能天线技术的基本原理;
(3)重点研究music算法的基本原理,并用matlab仿真软件实现;
(4)分析music算法的估计精度,得出全文结论。
三、论文(设计)的工作方案及进度安排
第一阶段(XX年9月7日-XX年10月11日)查阅有关智能天线技术,music算法和matlab仿真等方面的资料,关注国内、外当前的先进技术和发展前景,积累知识。
第二阶段(10月12日-11月8日)对智能天线的工作原理进行详尽地分析,给出均匀线阵的统计模型,研究music算法的基本原理,学习用matlab实现仿真
第三阶段(11月9日-11月22日)用matlab编写程序,程序调试
第四阶段(11月23日-12月20日)整理资料,结合设计经历撰写论文,备战论文答辩。
四、参考文献
1) 刁鸣,熊良芳,司锡才,超分辨测向天线阵性能的计算机仿真研究,电子学报,XX no.5
2) 何子述,黄振兴,向敬成,修正music算法对相关信号源的doa估计性能,通信学报,XX no.10
3) 张贤达,保铮,通信信号处理,国防工业出版社,XX
4) 刘德树,罗景青,张剑云,空间谱估计及其应用,中国科学技术大学出版社,1997
5) 李旭健,孙绪宝,修正music算法在智能天线中的应用,山东科技大学,266510
6) 陈存柱,浅析自适应智能天线技术的应用,北京师范大学,100875
7) [美]s.m. 凯依 著,黄建国等 译,现代谱估计原理与应用,科学出版社,1994
8)徐明远, matlab仿真在通信与电子工程中的应用 XX
五、指导教师意见
指导教师签字:
年 月 日
论文摘要:扩频通信是现代通信系统中新的通信方式,它具有较强的抗干扰、抗衰落和抗多径性能,频谱利用率高。本文介绍了扩频通信的工作原理、特点、及其发展应用。
一、扩频通信的工作原理
在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。
二、扩频通信技术的特点
扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。
1.抗干扰性强
扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。
2.低截获性
扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。
3.抗多路径干扰性能好
多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。
4.保密性好
在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。
5.易于实现码分多址
在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。
三、扩频技术的发展与应用
在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.
新的移动通信实验教学体系,将先修课学习、工业实习、理论课学习、实验课开展、毕业论文等多个教学环节进行整合,形成从基础理论仿真到专业实验操作、工程技术实训、创新实验等一个开放的实验教学体系。
通过通信类先修课程的学习,使学生准备好相关的基础知识,同时也对移动通信在课程体系中的地位有明确的定位[14,15]。相应编程语言类课程的学习更为实验仿真提供了良好的基础。移动通信理论课程的讲授为实验课程的开设提供了直接的理论平台。工业实习安排在移动通信实验课开设前一学期开展,实习内容是到各通信运营商公司和设备厂家进行跟岗实习,涉及到的内容有:移动通信系统基站的建设与维护;交换与传输系统管理和维护;光纤传输设施维护;移动终端制造与维修;3G应用等多个方面。通过工业实习使学生对当前移动通信所涉及到具体问题有了充分的感性认识,这对之后实验教学的开展,特别是移动网络方面实训的进行有很好的促进作用。移动通信实验教学的开展涵盖以下几个方面:基础理论仿真、专业实验操作、工程技术实训、创新实验、毕业设计。基础理论仿真是利用MATLAB软件实现:QPSK调制及解调;MSK、GMSK调制及相干解调;QAM调制及解调;OFDM调制解调;m序列产生及特性分析;Gold序列产生及特性分析;数字锁相环载波恢复;Rake接收机仿真实验。例如,OFDM调制解调实验,按照图2OFDM仿真结构图,利用MATLAB程序实现图2中不同测试点处的信号波形。
工程技术实训阶段则是利用3G天线获取实际信号,利用频谱分析仪等仪器实现CDMA2000、WCDMA、TD-SCDMA信号的分析。同时实现基站放大器、塔顶放大器性能指标的测试。例如,图4中给出利用频谱分析仪所测得实际CDMA2000和WCDMA信号的频谱特性。
创新实验阶段主要是针对有兴趣参加各类设计竞赛的学生开展,将全国及各省、校级电子设计大赛题目进行改造,从中选取与移动或无线通信有关,且具有创新性、前瞻性、实用性的方案,经过适当修改作为创新实验阶段的实验案例。学生可以通过这样的实验案例了解各级大赛的要求及特点,教师则也可以在实验教学过程中,选拔优秀学生参加各级大赛,进而提高学生的能力和水平。毕业设计阶段主要是利用实验室实验条件,从学院承担的科研项目中,将某些项目进行简化、修改、重组,转化成通信专业类论文题目,或从本专业最新的科技论文中选择其中合适的内容进行改进,作为通信专业类综合性毕业设计案例,从而将先进的科研成果打造为优质教学资源,实现基础与前沿、经典与现代的结合。为通信类专业学生提供了广阔的选择空间和开放的培养环境。总之,移动通信实验教学体系中基础理论仿真、专业实验操作和工程技术实训是必修课程教学内容,是实验教学的基础与根本[16]。创新实验、毕业设计则是移动通信实验向之后教学、实践环节的扩展与延伸。这样由必修和扩展环节共同构建起移动通信实验教学开放体系。
本文作者:冯敏罗清龙作者单位:聊城大学
1.引言在蜂窝移动通信网中,切换是保证移动用户在移动状态下实现不间断通信越区切换;切换也是为了在移动台与网络之间保持一个可以接受的通信质量,防止通信中断,这是适应移动衰落信道特性的必不可少的措施。特别是由网络发起的切换,其目的是为了平衡服务区内各小区的业务量,降低高用户小区的呼损率的有力措施。切换可以优化无线资源(频率、时隙、码)的使用;还可以及时减小移动台的功率消耗和对全局的干扰电平的限制。
2.越区切换的定义当移动台从一个小区(指基站或者基站的覆盖范围)移动到另一个小区时,为了保持移动用户的不中断通信需要进行的信道切换称为越区切换,
3.越区切换的分类从技术上分:当一次切换被触发后,一个新的信道将被建立,通信将转接到新的链路,同时,原来的信道被释放。切换处理过程可以根据新链路的建立途径(旧链路的释放是发生在新链路的建立之前、之中或之后)来分类。硬切换:新的连接建立前,先中断旧的连接;软切换:指既维持旧的连接,又同时建立新的连接。
硬切换:硬切换的特点是移动台在硬切换情况下,同一时刻只越区切换占用一个无线信道,它必须在一个指定时间内,先中断与原基站的联系,调谐到新的频率上,再与新基站取得联系,在切换过程中可能会发生通信短时中断。硬切换主要是不同频率的基站和扇区之间的切换。
软切换:软切换的特点是在软切换过程中,两条链路及相对应的两个数据流在一个相对较长的时间内同时被激活,一直到进入新基站并测量到新基站的传输质量满足指标要求后,才断开与原基站的连接。软切换是同一频率下不同基站之间的切换。
从小区的性质上分:同一交换中心基站之间的越区切换;同一BSC之间的切换;不同BSC之间的切换;不同交换中心之间基站的越区切换;微小区与宏小区之间的切换;同基站内不同扇区的切换;不同运营商之间的切换。
4.三种体制下的越区切换WCDMA与CDMA2000均采用软切换,TD-SCDMA采用接力切换。
WCDMA中的软切换
它是采用移动台发起的异步软切换方式进行的导频切换,基站需要确定在什么时间、什么位置为移动台启动软切换算法。论文大全。WCDMA的移动台可在同一频率下检测到其他基站与本基站的信号,确定它们之间的时间差。检测到的时间信息经由本基站到达新的候选基站,候选基站调整它新的专用信道的发射时间,即在发送信息的时间上进行调整,使不同基站在这个信息比特期间与下行码道同步。无线链路增加和释放过程:(1)小区2的导频信号强度逐渐增强,当小区2的导频强度Ec/Io达到(最好导频Ec/Io-(报告门限-增加滞后门限))并维持T时间,而此时候选集没有满,小区2此时被加入到候选集里。该项动作也称为无线链路增加。(2)小区3的导频信号强度逐渐增加并开始超过最早的小区1的导频信号强度,在小区3的导频(最好候选导频)强度Ec/Io达到(最弱导频Ec/Io+替换滞后门限)并维持T时间,而此时候选集的数目已满(假设此时系统设置的候选集最大数目是两个),小区3(候选集中最强的信号)此时替代小区2(候选集里最弱的信号)被加入到候选集里,小区1同时被移出候选集。该项动作也被称为无线链路增加和释放。论文大全。(3)此时候选集中小区3的导频信号强度逐渐减弱,当小区3的导频强度Ec/Io弱到(最好导频Ec/Io-(报告门限+删除滞后门限))并维持T时间,小区3(候选集里最弱的信号)此时被移出候选集。该项动作也称无线链路的释放。
CDMA2000中的软切换
它也是导频切换,移动台不断地搜索着激活类、候选类、邻近类、剩余类各个导频的强度,并且根据导频强度维护各个类,当移动台靠近切换区时,移动台开始以下操作过程:(1)导频p2强度超过了T_ADD,但尚未到达动态门限,移动台将这个导频移到候选集;(2)导频p2强度超过了[(SOFT_SLOP/8)×10×log10(PS1)+ADD_INTERCEPT/2],移动台发送导频强度测量消息;(3)移动台收到扩展切换指示消息DROP_INTERCEPT/2,将p2移入激活集,开始宏分集,而后发送切换完成消息;(4)导频p1的强度下降低于动态门限[(SOFT_SLOPE/8)×10×log10(PS2)+DROP_INTERCEPT/2]移动台开始启动发送切换定时器;(5)切换下降定时器超时,移动台发送导频强度测量消息给基站;(6)移动台收到切换指示消息,将p1移入候选类。而后发送切换完成消息;(7)导频p1的强度下降低于T_DROP。移动台开始启动发送切换定时器;(8)切换下降定时器超时,移动台将p1从候选类移到邻近集。
TD-SCDMA中的接力切换
接力切换是一种基于智能天线的切换方案。它利用精确的定位技术,在对移动台的距离和方位进行定位的基础上,根据移动台方位和距离作为辅助信息,来判断移动台是否移动到了可进行切换的相邻基站临近区域。实现接力切换的必要条件是:网络要准备获得移动台的位置信息,包括移动台的信号到达方向(DOA)以及移动台与基站的距离。在TD-SCDMA系统中,由于采用了智能天线和上行同步技术,系统较容易获得移动台的DOA,从而获得移动台的位置信息。具体过程是:利用智能天线和基带数字信号处理技术,可以使天线根据每个移动台的DOA为其进行自适应的波形赋形。对每个移动台来讲,仿佛始终都有一个高增益的天线在自动跟踪它,基站根据智能天线的计算结果就能确定移动台的DOA,从而获得移动台的方向信息;利用上行同步技术,系统可以获得移动台信号传输的时间偏移,进而计算得到移动台与基站之间的距离;经过前两步之后,系统就可准确获得移动台的位置信息。
通过比较WCDMA、CDMA2000、TD-SCDMA中的切换技术,可以得到下面的结论:
在测量过程中,软切换和硬切换都是在不知道移动台准确位置的情况下进行切换、测量的,因此需要对所有的邻小区进行测量,然后根据给定的切换算法和准则进行切换判断和目标小区的选择。论文大全。
而接力切换是在知道移动台精确位置的情况下进行切换测量,所以它没有必要对所有邻小区进行测量,只需对与移动台移动方向一致的、靠近移动台一侧少数几个小区进行测量,然后根据给定的切换算法和准则进行切换判断和目标小区的选择,就可以实现高质量的越区切换。
5.越区切换的应用越区切换作为通信系统的关键技术,它可广泛应用于各种场合。例如,近年来地空数据通信的使用改变了对空作战指挥模式,而实现指控系统对空中平台远距离、大区域、不间断地引导指挥,关键在于实现空中平台的越区切换;GSM―R铁路专用移动通信系统,为铁路提速和客运专线提供网络化、智能化、综合化的行车调度指挥系统,越区切换技术是GSM―R移动性管理中的关键技术;双卡双模手机中的应用等。
参考文献
[1]《GSM―R越区切换分析与优化》,北京交通大学,电子信息工程学院丽聪、来尉
1.概述
江门地区总面积为9541平方公里,丘陵广布,山体起伏较大,落差大,沟脊、水系发育、水库较多,小水电多分布在沟谷中。2013年,我局小水电共计196个,由于地处偏远,无公网信号或公网信号不稳定等原因,造成负控终端长期处于离线状态或上线不,导致数据上送不持续,丢失严重,直接影响电能量数据的采集,难以满足计量装置远程监控、抄核收、线损分析等计量营销业务的需要。
2.原因分析
江门供电局计量自动化系统公变、配变及集抄系统广泛采用公网公司的GPRS无线数据VPN网络。受网络覆盖的影响,部分终端不能上线采集。经现场勘查,2013年在接入计量自动化系统的145台小水电终端中,有41台由于地处偏远,处于公网信号盲区的原因,造成负控终端长期处于离线状态,10台由于树木、山石等障碍造成了信号衰减,导致公网信号不稳定,数据丢失严重。我们抽取了2013年1月份到4月份的系统数据进行了分析,结果如表1所示:
表1 2013年小水电终端运行情况分析
月份 终端在线率 数据完整率
1月 74.5% 78.6%
2月 76.7% 80.2%
3月 78.6% 81.7%
4月 79.8% 83.5%
从上表可知,小水电终端对整体的在线情况和数据完整率的影响,未能达到98%以上;
3.各种通信解决方案分析和选择
针对公网盲区及信号不稳定问题主要可以通过以下方法解决。
(1)采用非公网上行方式,完全避免无线通信不稳定性问题、电房电柜屏蔽问题,保证实时在线。非公网上行方式可考虑采用电话线通信、宽带网络通信、电力光缆等。
(2)采用公网上行方式,但通过其他通信方式接驳,如通过载波、485 通信、微功率无线等方式转发数据。
(3)采用公网上行方式,但采用信号增强扩展公网通信距离。如通过同轴电缆信号放大、无线直放站、新建基站等方式。
3.1 非公网上行
非公共网主要有电话拨号接入方式、公共有线电视、光缆等。此种方式均需要布线,由于小水电地处偏远,布线成本巨大,且环境恶劣,维护困难。
3.2 公网上行,其他通信方式接驳
(1)电力载波
电力载波方式是将终端通信模块外置于能接收到公网信号位置,电表通过电力载波方式与终端交换数据,该方案省却了布线或无线信号干扰影响,但实际应用存在信号衰减快、干扰大、不能跨变压器、互感器等诸多问题。
(2)有线中继接入
该方案采用终端侧模块和外置侧模块,通过以太网双绞线RJ45接口连接。由于采用双绞线,通信线路以100米为宜,最长不超过300米。
(3)无线中继通信
该方案是通过微功率无线通信的方式传输数据,中继器采用470MHz 通信时,通信距离经测试在150 米以内,距离较远时,可通过增加中继的方式延长通信距离,目前可增加2级中继。该方案的优点是施工简单,初次投入不大,且后续无运行费用,但需对GPRS 转接器提供220V电源,如终端维护口协议非标准广电规约,GPRS 转接器处需对协议进行处理后再进行转发,该方案理论上适用于任意厂家终端。
图1 无线中继实现方式示意图
3.3 公网上行,信号增强扩展公网通信距离
(1)无线放大器方案
无线放大器(也称直放站)属于同频放大设备,其基本功能就是一个射频信号功率增强器。该方案施工虽相对复杂,但无需对终端侧设备进行改动,适用于所有厂家终端,可以一个无线放大器带几台终端设备,通过共享设备,成本相对较低,更重要的是,不需后续运行费用。但该方案也有其局限性,受到信号衰减影响,实际通信距离在40米内(采用更好质量的同轴电缆可适当延长距离,但一般不超过100米)。
(2)运营商建基站
运营商建设新基站,增加信号的覆盖范围,对于局方来说,是一劳永逸的方式。但投资一个标准基站需要接近两百万元,同时该部分区域一般客户数量较为稀少,出于对投资收益的考虑,运营商短时间内不会考虑投入,故短时间内无法实现。
4.方案选择及应用
以上各种解决方案在特定场景均具备实际运行的优势和可行性。但结合供电局计量自动化系统实际运行以及运维成本、通信可靠性等综合考虑,采用“安装无线中继通信设备”方式投入成本小、安装周期短、设备安装方便灵活。因此本文选择无线中继方式,如图1所示。
图2 试点月在线时长对比图
图3 试点数据完整率对比图
5.实际运行效果
本文选取了5个试点,使用无线中继通信方式解决终端长期离线及数据传输不稳定问题,结果表明终端在线时间和数据完整率大幅度提高。如图2、图3所示。
参考文献
[1]王鹏,司徒彪.公网通信盲区电能量数据传输解决方案研究[J].装备制造技术,2013,12.
[2]周培祥,李学东,傅光达,梁丽华.山东建筑工程学院新校区移动通信解决方案[J].山东建筑工程学院学报,2004,6.
[3]陈智勇.浅谈天线调整在移动通信网络优化中的作用. 2002中国通信学会无线及移动通信委员会学术年会论文集,2002,9.
Abstract: in this paper the author introduces the technical scheme of low pressure test device, focuses on the instructions of the principle of two detection methods.
Keywords: low voltage set copy; Detection device
中图分类号:TU71文献标识码:A 文章编号:
0 引 言
由于缺乏相应的软、硬件测试手段,无法模拟现场的各种工况,难以发现低压集抄系统的产品质量隐患,亟需研制一种面向低压集抄系统的检测装置,对低压集抄系统各组件的功能和性能进行一体化测试。
1 技术方案
1.1 检测装置的结构
采用一柜一挂表架的分体式结构,数字信号源、功率放大器、标准电能表装在柜中,其余部分不在挂表架中。挂表架采用两排结构,上排设置12个单相电能表表位,下排设置2个集中器位、2个采集器位、3个三相电能表表位。电流接线采用压接式,其余采用插座接线的方式。三相平衡设计。总体框图如图l所示。每个电能表位置提供1个电能表校验脉冲输入接
图1检测装置总体框图
口,1个时钟信号输入接口,2~RS485通信接口。配置各类专用的虚拟电能表,支持通过RS485和电力线载波接口与集中器和采集器的通讯,并且可根据用户需要,扩充支持微功耗无线和蓝牙方式。配置测试各种集中器所需的以太网、RS232接口、GPRS/CDMA调制解调器、PSTN调制解调器和PSTN换机。
1.2 检测装置具备的功能
检测装置不仅可按照集中器上行通信规约和电能表通信规约进行系统通信规约的检测,而且可以对集中器、采集器、用户电能表等设备实时走字,测试集抄系统运行工况。能对集中器、采集器、用户电能表进行时钟准确度测试。能依据GPS时钟对集中器、采集器、用户电能表进行授时。
采用数字化程控信号源,模拟出集抄系统运行环境,通过加快时钟节拍,利用虚拟电能表产生测试所需的电能表数据,配合可设置的测试策略,使得系统历史数据的测试时间大为缩短,提高测试效率。
2 硬件单元
检测系统主要由数字信号源、功率放大器、标准电能表、误差处理系统、虚拟多功能电能表、GPS时钟频率源、功耗测试仪、运行环境模拟电路、通信线路、IDE测试环境和PC机等组成。
2.1 分布式MCU控制系统
整个检测装置属于一个分布式控制系统,是多个MCU系统的集成,核心主控CPU由PC机承担,装置控制部分MCU的通信关系如图2所示。
图2 控制部分CPU通信关系图
DSP信号源的MCU为TMS320F2407A;控制及通信部分的MCU为P89LV51RB2,通过外扩四路UART接口分别连接输入脉冲切换电路、表位485接线切换电路、误差处理电路和标准表。电表485通信板的MCU为AT89S52。
以上各功能模块之间通过RS232C和CAN总线进行通信。
2.2 高精度数字信号源
采用高速DSP和高速D/A转换器实现直接波形输出,波形输出的工作过程完全由DSP程序和算法控制,当DSP收到需要调节输出量的指令后,重新计算和刷新该量的输出量波形表,采用AD587来保证参考电压的稳定。并根据l6位A/D转换器的高精度输入采样值进行分析调整,以实现闭环控制。利用DSP强大的实时运算能力,实现数字信号源的各种功能,包括谐波、升降控制、相控波形和波群控制、电压跌落和中断等功能。
2.3 功率放大器
采用成熟稳定的工频精密AB类功率放大器,它是专门为放大校验用电压、电流信号设计的电路,具有较窄的通频带(40Hz-lkHz),输大的时间常数和输深的反馈量,适合放大稳态信号,具有很高的稳定性和准确度。
功放管采用的是10对安森美公司的MJ15024和MJ15025,主要通过精确设计和升流器(升压器)的匹配、继电器动作时序、末级输出管的过流保护、反电势吸收等来保证可靠性。若发生电压短路和电流开路,则输入波形和输出波形有较大的差值,反映在差值检测电路上,就能输出保护信号给CPU,CPU就能进行相应的操作实现保护。
2.4 测试方式切换电路
由于既具有电力线载波集抄测试功能,又具有电能表误差测试功能。因而检测装置须对单相电能表校表状态、三相电能表校表状态、集抄系统测试状态进行切换。同时依照集中器、采集器、电能表之间的接线和从属关系,也经由切换电路进行设置。运行环境模拟切换电路主要分两部分,如图3所示。
图3 测试方式切换电路框图
2.4.1 电压、电流接线方式切换
通过四常开四常闭的220V接触器切换电路实现:
(1)抄表系统测试时所有电压接通,使载波通道可以建立物理连接;
(2)校表状态时,隔离电压互感器接入,电流回路串联,实现高精度误差测试。
2.4.2 小信号切换
通过小信号继电器切换电路,选择用户电能表或虚拟电能表的RS485接口与选定的集中器、采集器相连。
2.5 时钟频率源
GPS卫星上都安装有铯原子钟,因而具有很高的频率准确度和时间准确度,本装置的GPS接收模块采用RS232与PC机相联, 通讯协议是标准的NMEA-0183。对GPS接收模块送出的内容进行解码,就可以得到所需的时钟信息,可以用于对外接设备进行授时和比对,授时精度
2.6 通信电路
由两块8口的MOXA工业级多串口卡、RS232-RS485转换电路、PSTN交换机、PSTN调制解调器、GPRS调制解调器、以太网交换机等组成。
3 测试原理
测试方法有实际运行方式与虚拟运行方式两种。
3.1 实际运行方式
检测装置提供了12只单相电能表位置和3只三相电能表位置,并提供2只采集器位置和2只集中器位置,通过不同的连接线配置测试所需的应用环境,通过软件控制信号源的电压、电流、相位,测试软件通过GPRS无线公网对集中器抄读电能表运行数据,完成集抄系统实际运行方式的测试。
3.2 虚拟运行方式
检测装置用软件模拟现场运行的电能表,通过集中器、采集器与虚拟电能表进行通信,虚拟电能表的数据通信协议遵循DL/T645规约。完成集抄系统虚拟运行方式的测试。
虚拟电能表硬件部分,通过共6个串行口与外部进行数据交换。其中2个串行口转换成RS485接口用于模拟台区总表,接人到集中器台区总表接口;2个串行口转换成RS485接口用于模拟用户RS485电能表,接入到采集器的RS485口;另2个串行口分别通过青岛东软的PRO-II型抄控器和北京晓程的DEMO-PL3201调试器转换成两种不同的载波接口,用于模拟用户载波电能表,接入到集中器的电源线。
用虚拟电能表软件包模拟l至n块电能表,通过当前调置的电压电流和相位值,缩放比率,起始时间等参数自动进行走字。
试验时发送消息,调用计电量子程序,计时终止时,再发送消息,关闭计电量子程序,如果是运行期间跳过某个阶段,只需再加送一次结束时间,虚拟电能表会自动计算跳过的某个阶段的电量,并实现电量的累加,使得在现场需运行很长时间,在虚拟电能表模块可以在较短的时间内完成。还可以通过时钟加速运转方法进行加速走字,加速的电量自动计算更新。
4 结束语
检测装置提供集中器上行通信、集中器下行通信的通信方式。
参考文献:
1.前言
目前我国照明用电量占建筑用电的20%-30%,智能照明电气公司生产的场景控制器和调光产品基本上都采用开环控制,根据区域要求打开光源并调节光的输出,这样很难达到该环境最合理的照度,通常调节好一个照度水平后,不会再根据该环境的光线强度来改变照度。这种不合理的控制光源方法,增加了用电量,造成大量污染。无线传感器网络技术是本世纪最具影响力的技术之一,如果将无线传感技术应用到照明控制系统中,不仅会大大减少成本,而且节约资源,避免不必要的浪费。
本文提出的照明控制系统主要利用短距离无线通信和CAN总线技术,应用于小环境光源照明控制,由无线通信基站、无线通信从站和终端节点组成。本方案适合小环境光源控制,克服了自动化程度低、管理比较混乱、控制相对分散的传统照明控制系统的缺点,为人们生活提供一个更加智能化的环境。
2.原理及技术
本研究方案主要应用到短距离无线通信技术和CAN总线技术。其中,短距离无线通信技术采用低功率短距离无线通信技术,采用nRF905无线射频收发芯片。无线通信基站由STC89C52和nRF905无线收发器组成。STC89C52为改基站的控制芯片,用来产生控制信号,并对从站返回的状态做出反应,确保照明光源运转正常;nRF905无线收发器为基站信号发送设备,通过nRF905完成对控制信号的发送和对从站发送的照明光源状态信号的接收。
2.1 短距离无线通信
随着通信和信息技术的不断发展,短距离无线通信技术的应用步伐不断加快,正日益走向成熟。一般意义上,只要通信收发双方通过无线电波传输信息且传输距离限制在较短范围(几十米)以内,就可称为短距离无线通信。短距离无线通信技术的工作频段为ISM频段,使用这类频段不需要任何许可证,通常只要求发射不超过一定的功率(通常低于1W),只要不干扰其它频段即可。目前常见的短距离无线通信经常应用于以下几个ISM频段:27MHz频段;2.4GHz频段和315MHz;433MHz和868MHz等频段。
2.2 CAN总线
CAN总线是德国BOSCH公司从80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。通信速率可达1MBPS。CAN总线是具有通信速率高、容易实现、且性价比高等诸多特点的一种已形成国际标准的现场总线,是最有前途的现场总线之一。
3.选用部件
本方案所用设备主要为PHILIPS半导体生产PCA89C250收发器、SJA1000控制器和挪威Nordic公司nRF905无线收发器。
PCA82C250是CAN控制器的物理接口,其主要作用是:给BUS提供差动发送信号,给CAN控制器提供差动接受信号。该芯片采用5V直流电供电,PCA82C50是针对汽车中高速通讯的应用而设计,符合ISO11898标准。
SJA1000是一种CAN独立控制器,通常用于自动化领域,用来控制区域网络控制。SJA1000与控制器Basic CAN最主要的不同在于SJA1000提供了Pelican的全新工作模式,在该模式下,CAN总线符合全部的CAN2.0B协议。
挪威Nordic公司的nRF905芯片主要应用于小面积区域。nRF905在无线数据通信、无线报警及安全系统、无线监测、无线开锁、家庭自动化和玩具等诸多领域得到广泛应用。
4.系统硬件
4.1 nRF905通讯模块
nRF905与STC89C52单片机硬件接口如图1所示。
4.2 CAN控制收发器
本方案用到的PCA82C250芯片是为CAN协议配置的物理总线接口,能够为CAN总线提供差动发送能力,为SJA1000提供差动接收能力。图2为SJA1000与PAC82C250组成的硬件图。
5.系统软件
硬件操作需要通过软件来实现。软件的基本操作包括初始化和常规服务两部分。初始化服务包括SJA1000和nRF905两个芯片的初始化,SJA1000发送和接收的配置,nRF905的发送和接收的配置;常规服务包括:无线通信基站、无线通信从站、无线终端节点之间的通信。
5.1 CAN总线操作
初始化SJA1000芯片,配置SJA_MOD寄存器,进入复位模式,确定验收滤波器模式;配置SJA_CDR0寄存器,选择PeliCAN模式,禁止SJA1000的CLKOUT引脚;配置总线定时寄存器波特率设置为125Kbps,配置输出控制寄存器为正常输出模式,TX0为下拉,TX1为下拉;配置命令寄存器释放接收缓冲器,配置验收滤波寄存器。
5.2 无线数据操作
初始化nRF905,nRF905所有配置都是通过SPI接口进行,SPI接口由5个寄存器组成,只有在掉电模式和Standby模式是激活的。置高PWR_UP,置低TRX_CE使nRF905工作于Standby模式。SPI接口包括5个内部寄存器:状态寄存器、RF配置寄存器、发送地址寄存器、发送有效数据寄存器、接收有效数据寄存器。通过配置RF配置寄存器可使nRF905正常运行。
5.3 CAN总线数据发送
CAN发送:发送缓冲器配置分为描述符区和数据区,描述符区第一个字节是帧信息字节,它说明了帧格式(标准帧格式或扩展帧格式)、远程或数据帧和数据长度。标准帧格式有两个字节的识别码,扩展帧格式有4个字节的识别码,数据长度最长为8个字节,发送缓冲器长13个字节。配置发送缓冲器工作在扩展帧格式,发送数据帧,数据长度为8个字节,识别码与下位机匹配,发送数据为nRF905无线接收的数据。检测状态寄存器,接收状态位为0、发送完成状态位为1且发送缓冲器状态位为1,则将发送缓冲器数据放入TX缓冲器,命令寄存器SJA_CMR发送请求位置1,发送数据。
5.4 CAM总线数据接收
CAN接收:中断寄存器SJA_IR接收中断位置高,开始接收RX缓冲区数据,将数据存入接收缓冲区,存储完成后接收缓冲器位置高释放RX缓冲区;释放仲裁丢失捕捉寄存器和错误捕捉寄存器。
5.5 无线数据发送
nRF905发送:TRX_CE=0,TXEN=0,nRF905处于SPI编程;CSN置低,SPI等待一条指令W_TX_PAYLOAD=“00100000”,写TX有效数据,写操作从字节0开始;发送TX缓存存放数据;CSN置高;CSN置低,SPI等待一条指令,W_TX_ADDRESS=“00100010”,写TX地址,全部写操作从字节0开始;发送TX缓存存放地址;CSN置高;TRX_CE置高开始发送;发送完成后TRX_CE置低。
5.6 无线数据接收
nRF905接收:TRX_CE=1,TXEN=0,nRF905处于接收状态;DR=1&&TRX_CE==1&&TXEN==0是否为1,判断是否有新数据传入且数据接收完成,TRX_CE=0进入Standby模式;CSN置低,SPI等待一条指令,R_RX_PAYLOAD=“00100100”,读RX有效数据,读操作从字节0开始;CSN置高;TRX_CE=1。
5.7 无线通信基站控制
常规服务即无线通信基站工作包括:在完成对nRF905芯片的初始化后使TXEN和TRX_CE引脚置低,nRF905处于SPI编程,将nRF905所发地址及数据写入缓存,置高TRX_CE和TXEN引脚,发送数据,发送不成功则重新发送,如果成功,置低TRX_CE,等待下一个数据发送。
6.系统测试
将CAN收发器单片机的串行接口与PC机串口相连,利用PC机串口通信程序将数据通过串口发送给CAN接收器,实现CAN节点的收发数据测试。串行通信的参数设置为:串口端口号:1;波特率:9600bps;数据位:8位;停止位:1位。
在使用串口时先要打开串口,然后将数据传给CAN节点单片机。发送数据中要包含无线控制器的下位机地址和其他控制信息,如在实验中使用的节点地址为0x00020406、其他控制数据为34。34对应的二进制数据为00110100。实验表明,本方案给出的无线与有线混合的网络控制系统工作正常。
无线通信基站发送0X34到无线通信从站,从站接收信号后通过CAN总线发送至终端节点,终端节点接收并在数码管显示接收数据,并控制下面LED灯相应的暗灭,显示正常发送RXOK信号通过CAN总线传输至无线通信从站,从站将信号发送至基站,基站接收信号并将数码管置零,等待下一个发送信息。
7.小结
该系统能利用有线与无线网络相结合完成对光源的控制,取得了较好的效果,综合了有线和无线网络的各自优点,使得网络控制成本更低、网络利用率更高、系统智能化更强,便于网络的管理和应用,适合学校、家庭、政府、企业等场所应用,该网络结构的应用将具有可观的社会效益和经济效益。
参考文献
[1]卢志强.无线控制网络的研究[D].西安:西安科技大学硕士学位论文,2004.
[2]黄晓霞.无线传感器网络在绿色照明系统中的应用[D].上海:同济大学硕士学位论文,2007.
[3]黄艳玲.智能控制技术在住宅照明控制中的应用研究[D].重庆:重庆大学硕士学位论文,2003.
[4]孙宗智,王涛.一种智能照明控制系统方案的研究[J].信息技术与信息化,2010(1):55-57.
[5]张岳军.智能照明系统的研究与开发[D].浙江:浙江大学硕士学位论文,2006.