大数据金融论文模板(10篇)

时间:2023-04-08 11:48:16

导言:作为写作爱好者,不可错过为您精心挑选的10篇大数据金融论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

大数据金融论文

篇1

>> 大数据时代的供应链物流服务 双渠道供应链中的价格决策与服务决策研究 从绩效驱动因素看大数据时代的供应链变革 非对称信息下双渠道供应链的定价决策分析 大数据环境下供应链金融模式研究 大数据视角下电子商务平台供应链金融的研究 大数据时代下的我国供应链金融发展形态研究 供应链管理中的大数据运用 大数据驱动下的图书馆服务创新 随机需求下产能充足双渠道供应链决策问题探讨 需求不确定环境下闭环供应链回收渠道决策研究 电子商务环境下“双渠道供应链”决策问题研究 全供应链下的库存管控 碳交易风险下供应链企业低碳技术采纳决策框架研究 供应链管理框架下的零售渠道合作 基于研发投入的双渠道供应链决策优化研究 网上代销双渠道闭环供应链的定价与协调决策 浅析在大数据时代背景下如何提升物流供应链价值 SaaS服务供应链的创新结构研究 试论供应链金融服务创新 常见问题解答 当前所在位置:l.

[48]武汉市五交家电商业协会.关于2013年全市家电行业发展情况和2014年行业发展建议[R/OL].[2014-04-15]..

[49]冯芷艳,郭迅华,曾大军,陈煜波,陈国青.大数据背景下商务管理研究若干前沿课题[J].管理科学学报,2013(1):1-9.

[50]Ernst & Young.Globalonlineretailing[EB/OL]..

篇2

近日,专业第三方电子商务、互联网金融研究机构与国内最大媒体服务平台——中国电子商务研究中心正式推出“中国电商大数据网”(100ec.cn/zt/bd/ ),国内覆盖最全的电商领域大数据应用一科技平台。

据(100EC.CN)监测数据显示,美国已有20%、30%的网络展示是通过大数据来售卖的,而目前中国还比较少,只有3%到4%,从这个角度来说大数据营销市场是大力可为的,有着广泛的发展空间。

篇3

[ 3 ] 王喜文.日本强化ICT领域国际竞争力[N].中国电子报,2012-06-15(003).

[ 4 ] The White House. Big Data Across the Federal Government[EB/OL].[2014-08-08].http://whitehouse.gov/sites/default/files/microsites/ostp/big_data_fact_sh-eet.pdf.

[ 5 ] The Wall Street Journal. Big-Data Success Stories: Splunk[EB/OL].[2014-08-08].http:///ve-nturecapital/2011/10/21/big-data-success-stories-s-plunk/.

[ 6 ] The New York Times. Harvard Releases Big Data for Books[EB/OL].[2014-08-08].http:///2012/04/24/Harvard-releases-big-data-for-books/

[ 7 ] Spolanka. OverDrive announces a series of “Big Data”reports[EB/OL].[2014-08-08].http://libraries.wr-ight.edu/noshelfrequired/2012/04/11/overdrive-an-no-unces-a-series-of-big-data-reports/.

[ 8 ] Xavier Amatrain,Justin flix公布个性化和推荐系统架构[EB/OL].[2014-08-08].http:///article/2013-04-04/2814767-netflix-ml-architecture.

[ 9 ] 云推荐[EB/OL].[2014-08-08].http:///.

[10] 中国科学院.李国杰院士:大数据成为信息科技新关注点[EB/OL].[2014-08-08].http:///xw/zjsd/201206/t20120627_3605350.shtml.

[11] 李奕.大数据应用方式:从数据服务、信息服务到知识服务[N].中国计算机报,2012-07-09(024).

[12] Big data:The next frontier for innovation,competition and productivity[EB/OL].[2014-08-08].http:///Features/Big Data.

[13] 李晨晖,崔建明,陈超泉.大数据知识服务平台构建关键技术研究[J].情报资料工作,2013(2):29-34.

[14] 秦晓珠,李晨晖,麦范金.大数据知识服务的内涵、典型特征及概念模型[J].情报资料工作,2013(2):18-22.

篇4

中图分类号:G250 文献标识码:A 文章编号:1672-3791(2017)02(c)-0219-02

大数据是当前社会发展中非常重要的组成部分,在大数据时代下,我国的图书馆管理也实现了高新技术的层面,图书馆数据流量也呈现出了级数非线性增长,大数据环境的主要特点是数据量大,高速且高价值。这也使得图书馆数据系统的复杂程度以及数据的管理难度有了极大的增加,大数据平台也逐渐成为广大黑客攻击的主要目标,基于此,如何保证在大数据时代下,图书馆数据平台的安全问题也就成为了当前主要的研究课题,怎样有效利用大数据技术来构建智能图书馆,这对于提升图书馆的市场竞争能力都是非常有帮助的。

1 大数据时代下数字图书馆说面临的安全威胁

1.1 数据中心IT系统安全需求

随着我国图书馆现代化的不断深入,图书馆系统也在不断的更新换代当中,在图书馆体系的运用上,系统要求安全检测具备更加广泛的深度和需求,这样一来就会导致图书馆数据中心系统的能耗急剧增加,档子运行的整体速度大幅度的下降,所以,我们在研究大数据的时候,一定要保证图书馆数据中心系统部署可以真正的满足用户服务的需求,进而创建一个科学高效的图书馆系统架构,这也是当前图书馆系统深入部署的有效前提,一般来说,传统的图书馆系统环境下,数据中心会设置相关的防范产品来控制数据流量的安全检测,而由于这些传统的安全策略对图书馆系统资源的耗能是非常大的,在加上图书馆数据流量总是出现延迟和数据丢失等问题也是非常的明显,很明显现在已经不能适应大数据时代下图书馆高校、快速的服务需求,在大数据环境下,图书馆在用户服务的时候还有可能会面临着木马、病毒等安全方面的威胁,除此之外,黑客还可以利用云计算以及大数据等技术手段对新模式进行攻击,所以,图书馆在复杂的大数据安全环境中,着呢用用加速、负载为单一的操作,对数据流在应用过程中只是做单一的处理,这也是为了能够进一步消除数据流在安全检测中出现延迟故障。

1.2 大数据给图书馆带来了新安全问题

随着大数据技术在图书馆应用的不断加深,图书馆数据环境具有海量存储、计数递增等特点,与此同时,数据结构模式以及数据类型的多样性特点也是非常明显的,这也导致数据处理的格式其可变性和处理速率也更加的不确定。

在大数据时代,图书馆对云计算计数的依赖性也在不断的增强,因此要求图书馆与云服务商要签署符合大数据环境的云服务租赁协议。明确双方的权利和义务。除此之外,云服务的安全保障有效性和安全管理效率也要有本质上的提升。这也与图书馆大数据应用安全息息相关。

除此之外,虚拟化技术也是当前我国图书馆大数据应用中非常重要的技术手段之一,数据虚拟化技术是一种允许用户访问和管理的方法,图书馆在利用虚拟化技术来改善图书馆系统的同时,也极大的降低了运营的实际成本,面临着数据中心系统设备异构化等安全问题。

1.3 黑客会利用大数据技术对图书馆发起攻击

在图书馆利用大数据技术提高服务质量以及获取读者需求的时候,黑客会运用大数据技术向图书馆发起攻击,首先,图书馆大数据平台存储着大量的系统管理以及用户服务等数据信息,这些信息大部分都是客户的私密信息,而黑客通过对获取的大数据资源进行分析,能够明确图书馆的系统运营特点以及安全防范的相关措施,能够运用大数据决策对图书馆发起非常精准的攻击。

其次,由于大数据时代下的图书馆网络具备非常强的社会化属性,网络数据还附带复杂、敏感等特点,因此网络数据平台已经完成了不同图书馆大数据平台的数据整合与资源共享。

1.4 读者自身面临的威胁

在大数据时代下,图书馆主要是通过对用户行为数据的健康和采集来获取读者的个体特征,这些数据在确保图书馆用户服务质量的同时,也面临着泄露用户信息的威胁,而为了进一步的提高系统管理与用户服务决策的有效性,图书馆会通过扩展用户数据采集的对象来不断提升大数据几何的数据价值。

首先,数据拥有者能够通过对大部分无关的数据分析来获取用户的隐私信息,由于体术管对一些相对比较敏感的数据没有一个明确的界定,这一状况也使得很多机遇大数据的图书馆所有权和使用权也没有明确的界定。

其次,随着读者个性化阅读的不断提升,读者运用移动阅读的频率越来越高,现如今已经成为大数据时代下消除时间、地域、阅读环境以及阅读能力的主要模式。但是由于移动月底在带给读者阅读便利性的同时也间接的泄露了用户的个人信息。

2 基于大数据的数字图书馆安全防范策略

2.1 增强安全防御能力

2.1.1 现安全威胁

首先,我们的图书馆在利用大数据技术保护系统与服务安全的时候,我们的研究人员要对提供监控设备采集的大数据安全资源进行综合的分析,明确恶意攻击的来源,与此同时,还要通过对相关的安全指标数据关系来挖掘数据信息的价值,进而实现对非法攻击者的精准预测。

其次,在构建安全管理大数据平台的时候,要尽量使用一些技术相对成熟且兼容性强的数据来分析图书馆数据流,针对图书馆大数据服务于安全管理的相关需求来制定专业的大数据资源,增强图书馆基于大数据安全威胁发现的主动性。

2.1.2 构建基于大数据安全威胁与防御能力的评估评价体系

大数据安全威胁与预防能力的评价主要是针对当前我国图书馆精准评估安全威胁等级和安全防范能力的关键体系,图书馆基于大数据的安全威胁评估评价体系是图书馆服务信息与系统管理数据传输的重要载体,由于网络安全关系着图书馆管理与服务安全的可靠性,所以,图书馆在数据中心的网络传统评估中,要平均的在网络上部署大量的安全检测数据采集设备,进一步保证安全评估平台的全面性和准确性。

2.2 保证云计算计数和虚拟化数据的安全

在当前的大数据环境下,图书馆一般都会采用租赁等方式来采集图书信息,除此之外,我们的研究人员在对云服务平台的数据进行管理的传输的时候,图书馆最好是根据高校的计算机管理系统来实现对数据的自动化管理,不断加强对读者阅读行为的安全管理,通过建立全面、高校的监控网络来进一步实现对数据流的全程较差监管,这样也能够有效的避免数据出现非法监听和窃取。

2.3 制定实施科学的大数据安全管理策略

首先,大数据安全管理平台想要真正的实现安全管理和相关流程的整合,让我们的图书馆能够根据大数据安全信息来完成相关安全事件的管理和分析工作,因此需要我们的研究人员在对图书馆监控设备采集数据信息的时候,要对数据进行预先的处理,只有保证了数据格式的标准化之后,才能够真正的用于图书馆管理和运用。

其次,图书馆安全管理平台还要通过实时的监督管理系统来对图书馆安全威胁问题进行检测和评估,并根据安全管理平台数据反馈来实现对图书馆大数据运用平台的参数设置,提升图书馆安全管理的强度。增强图书馆管理系统的整体效率。

3 结语

大数据自身的复杂性和多样性特点使得在大数据环境下的图书馆出现了很多的不可预测攻击行为,导致图书馆大数据资源在采集的过程中经常会出现很多的问题,我们此次主要针Φ鼻拔夜大数据时代下现代化图书馆的安全威胁问题进行了详细的分析和研究,并针对出现的问题提出了几点可行性的解决建议,希望可以为我国的图书馆安全问题提供有效的帮助。

参考文献

[1] 蔡津津,郜新鑫,付建俐.基于业务元数据标准化的金融财经数据仓库及服务系统架构探讨[C]//中国新闻技术工作者联合会2012年学术年会、五届四次理事会暨第六届“王选新闻科学技术奖”的“人才奖”和“优秀论文奖”颁奖大会论文集.2012.

[2] 周为钢,杨良怀,潘建,等.论智能交通大数据处理平台之构建[C]//第八届中国智能交通年会论文集.2013.

[3] 乔向杰.基于大数据的旅游公共管理与服务创新模式研究[C]//北京两界联席会议高峰论坛文集.2013.

[4] 谭胜淋,陈曦.大数据的标准化研究[C]//市场践行标准化――第十一届中国标准化论坛论文集.2014.

[5] 包磊,罗兵,孙越林.大数据时代的态势评估技术思考[C]//2014第二届中国指挥控制大会论文集(下).2014.

[6] 尹素格,王健,张桂刚,等.大数据技术在精确空投系统中的应用[C]//2014第二届中国指挥控制大会论文集(下).2014.

[7] 刘春琳,冷红.基于大数据挖掘的城市关注平台的构建与应用[C]//城乡治理与规划改革――2014中国城市规划年会论文集(04城市规划新技术应用).2014.

[8] 飞.大数据时代中国期刊的发展机遇与探索创新[C]//第十二届2014全国核心期刊与期刊国际化、网络化研讨会论文集.2014.

[9] 朱力纬,刘丽勤,王健.高校基于大数据时代的数字化校园建设研究[C]//中国高等教育学会教育信息化分会第十二次学术年会论文集.2014.

[10] 孙圣力,郑志高,王平,等.RTDP系统网络体系结构及其关键技术[C]//.2013年全国通信软件学术会议论文集.2013.

[11] 张岚,郭俊杰.信息安全风险评估的安全措施探讨[C]//2011年通信与信息技术新进展――第八届中国通信学会学术年会论文集.2011.

篇5

中图分类号:TU984文献标识码: A

1引言

随着云计算、物联网等的发展,新兴信息技术与应用模式的涌现,使得全球数据量呈现出爆发式增长态势,市场调研机构IDC的研究显示,到2020年,全球以电子形式存储的数据量将达到35ZB,大数据的时代已经到来[1]。最早提出“大数据时代已经到来”的机构是全球知名咨询公司麦肯锡,其在报告中指出,“数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。”

1.1大数据概念

大数据的概念,尚未形成公认的准确定义。根据维基百科的定义,它是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理、处理的数据集合。从产业角度,常常把这些数据与采集它们的工具、平台、分析系统一起被称为“大数据”。在数据特性方面,大数据主要为非结构化信息,如文本、图形、遥感遥测信息,大多是实时信息;在信息来源上,大数据主要是互联网、医疗设备、视频监控、非传统IT 设备等社会日常运作和各种服务中实时产生的数字数据,数据容量巨大,从 TB 级别跃升到 PB 乃至 EB 级别,大数据具有4V特征Volume(数据体量大)、Variety(类型多)、Value(价值稀疏)以及Velocity(速度快)的特征[2]。大数据时代带来思维变革:更多不是随机样本而是全体数据,更杂不是精确性而是混杂性,更好不是因果关系,而是相关关系[3]。

1.2大数据发展历程

大数据并非新近出现,早在1980年,著名未来学家阿尔文•托夫勒便在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪潮的华彩乐章”。2009年开始,“大数据”成为互联网信息技术行业的流行词汇,2011年持续热门,在2012 年更达到一个高峰,2013年大数据概念逐为大众熟知。

2 大数据研究应用评述

2.1国外大数据研究应用

大数据的开发与利用已经在IT,媒体、医疗服务、金融业、零售业、制造业、物流、电信等行业广泛展开,并产生了巨大的社会价值和产业空间,但仍处于初级阶段[3]。2012年4月,美国政府启动“大数据研究和发展计划”,致力于提高从大数据中提取知识和观点的能力,并服务能源、健康、金融和信息技术等领域。在数据共享、突发事件处理、疫情观察方面已有较成功应用。2012年4月,英国、美国、德国、芬兰和澳大利亚等国家联合推出“世界大数据周”活动,旨在制定战略性的大数据措施;2012年5月,联合国发表了大数据发展白皮书;2012年7月,日本推出“ICT”战略研究计划,重点关注“大数据应用”。全球性IT巨头都开始关注大数据的机遇,微软、英特尔、甲骨文(微博)等都在开发基于大数据的IT架构。

2.2国内大数据研究应用

中国大数据的应用处于起步阶段,淘宝、腾讯、百度等互联网巨头是率先使用大数据技术的用户,主要是基于开源软件自主开发大数据应用,推出相应的大数据产品和平台,开展了多种深度商务分析,电信和银行领域也开始对大数据技术和服务产生浓厚的兴趣。此外,IT业、传媒界和学界举行了多次以大数据为核心的主题讨论会,共同探索大数据的发展与创新。

综观国内外大数据研究和应用现状可见:(1) 大数据相关的研究与应用目前仍然处于起步阶段,学术研究大多局限于概念、技术、发展预测等宏观探讨层面;(2) 基于大数据应用所需要的软件、硬件等技术支撑亟需进一步的深入开展;(3)现有的大数据研究大多立足于信息科学,侧重于大数据的获取、存储、处理、挖掘和信息安全等方面,鲜有从城市规划学科发展的角度探讨大数据对于城乡规划管理技术的变革与冲击的研究。

3 大数据时代城乡规划管理技术创新探讨

3.1现有城乡规划管理技术局限性

80年代末开始,我国城市规划管理领域开始引进新技术,网络技术、虚拟现实技术、数据库技术、地理信息系统、日照分析技术、电子报批审查技术等已初步得到运用,建立了基于GIS的城市规划管理系统,但仍存在一定局限性:(1)现有管理信息系统存储能力有限,仍无法建立实时、全面的资料档案库,同时也是内部条块分割,查询、检索困难,给城市规划管理工作带来了一定的障碍。(2)由于规划管理工作量大,规划管理人员虽然借助规划管理信息系统,提升了处理速度,但是仍不能满足快速城市化背景下快速准确地处理各类城市规划案件,对规划管理实施效果进行快速反馈。(3)公众参与与市民监督平台建设不足,城乡规划管理透明度有待进一步提高。

3.2大数据时代城乡规划管理技术变革方向探讨

3.2.1建立城乡规划管理大数据集系统,提高城乡规划管理效率

在大数据时代数据来源更广泛且分布更集中,以前散落各处的数据越来越集中,以前不可获取的信息现在可获取。通过互联网、医疗设备、视频监控、移动设备、智能设备、非传统IT 设备获得的文本、图形、音频、视频、遥感遥测等建立与城乡规划管理直接相关或者关联的实时数据集,处理空间信息与与之相关的属性信息,迅速及时地更新数据集,大规模综合性地管理城市空间分布信息。在城乡规划管理编制阶段,可以提高现状调研的效率和规划编制基础数据的准确全面,建立相应问题表象对于城市规划的决策系统、执行系统和反馈系统,改变规划的滞后性和低效率,提高规划的时效性。

3.2.2 建立城乡规划管理大数据分析系统,提高城乡规划管理科学性

基于城乡规划管理大数据,可将分散收集到的各种空间、属性信息实时更新,利用大数据技术中相关分析技术,同时结合GIS的空间分析技术,运用到规划管理的各个流程中,可进行人口、经济、交通流等与用地功能、空间等进行相关分析,对于城乡空间利用进行深入全面的解析,进一步提高城乡规划管理的科学性。

3.3城乡规划管理技术创新挑战

目前城乡规划管理技术创新所面临的挑战也是大数据发展应用中需要解决的问题:(1)从城乡规划管理大数据中精准定位并采集所需信息、管理海量复杂结构、实时增长的数据、保护和控制数据,数据管理挑战。(2)基于城乡规划大数据的实体识别与行为建模,挖掘大数据中蕴含的群体及其网络结构,分析社会群体的行为演化规律,数据分析挑战。(3)数据隐私性问题。

3.4城乡规划管理技术创新对策

大数据技术市场将会是一个混合多种技术的世界,应关注大数据技术的发展和应用,开发适合城乡规划管理不同层次的产品组合,包括服务器、存储、网络、软件和服务等,以获得更好的应用效果;加强城乡规划管理基础大数据集建设;提高城乡规划管理角度数据分析和提取技术能力;加快大数据处理相关技术人员培养;同时通过技术截堵,应用立法保护城乡规划管理大数据应用中个人隐私。

4 结论

大数据时代已经到来,大数据的应用仍处于一个快速发展的起步阶段,基于大数据和复杂系统管理理念的分析与决策是新形势下城乡规划管理发展的必由之路,大数据是城乡规划管理信息化建设的战略性资源和非物质性财富,是不可或缺的城乡规划管理和决策依据。将改变基于简单数据统计、经验分析甚至直觉判断的城乡规划管理模式,提高城乡规划管理的有效性,加快城乡规划管理大数据库建设和空间分析、相关分析能力,建立更加开放透明的公共参与平台和市民监督系统,随着大数据技术的发展改变大数据管理、分析、共享、决策、人才培养、隐私保护等问题,将会进一步提高城乡规划管理方面的信息化、智能化技术支撑能力,推动城乡规划管理由信息化向智能化发展。

参考文献

[1] Big data in 2020[EB/OL].[2012-12-24]/leadership/digital-universe/iview/big-data-2020.htm

[2] IDC,中国大数据技术与服务市场 2012-2016 年预测与分析

[3]维克托•迈尔-舍恩伯格,肯尼思-库克耶著,盛杨燕,周涛译.杭州:浙江人民出版社,2013

作者简介:黄 赞,男,国家注册城市规划师,现就职于中社科城市与环境规划设计研究院,城乡规划所所长

篇6

大数据作为一种有用的信息资源,在商业、金融等领域发挥着越来越重要作用,也逐渐成为社会科学的国际前沿应用研究内容之一。然而,在经济学领域,大数据还鲜少被用到(据统计,截至2014年12月,google中学术搜索到的与“大数据”有关的研究论文共3026篇,其中仅有29篇是和经济学相关)。但因海量经济数据资源的快速增长,计算技术和能力的不断提高,以及方法论的不断发展,将大数据分析技术运用于经济学已成为一个值得探讨的新课题。展望未来,由于经济学是一门理论与实践相结合的学科,将大数据应用于经济学,有可能会开辟一个全新的经济学发展领域。

一、大数据在经济学领域应用的基本原理

大数据在经济学中应用的基本思路以大样本数据统计与机器学习技术为基础。其中大样本统计的过程概括如下:用N个代入变量得出对应的N个测量结果与K个潜在的预测因子,比如:以居民消费价格CPI指数预测为例,首先通过GOOGLE数据搜索或其他软件,筛选出同CPI有关的一系列关键词(比如粮食产量、原油期货价格、气候温度、价格改革政策等),然后通过这些关键词在文本数据(新闻、微博、评论、研究报告、学术论文等)出现的时间频次,计算它们之间的相关关系和逻辑路径关系,从而得到测量结果N和预测因子K。在许多情形下,每一个代入变量的信息是足够丰富的,但不具有结构性,故可能会产生很多潜在预测因子,因此,需要注意的是:若是过度拟合,即预测因子K的个数可能会远远大于观测变量N的个数时,虽然模型可完美解释观测到的结果,但样本外数据的解释力却很差。在这种状况下,构造一个最大化样本解释力的模型便成为首要目标,同时构建的模型还不能出现因过度拟合所导致的样本外无力解释的情形。因模型构建不同,使用方法也随之改变,惩罚预测因子的过度使用方式也不同。如Lasso回归模型,在满足一系列约束条件下,依据最小化离差平方和来选择模型系数。通过将样本分为“训练样本”和“测试样本”(“训练样本”用来估计模型参数,“测试样本”用来评估模型)进行过度拟合。而在评估预测效果时,一般交叉使用样本内预测与过度拟合,但目前这种交叉验证的方法在当前的实证微观经济学中也鲜少用到。

机器学习的一个非常重要假设就是机器学习的环境是相对稳定的,也就是样本数据(训练样本与测试样本情形相同)独立产生于同一过程。但由于现实环境会随着时间发生改变,故这一假设并不合理,因此,在高频使用新数据的应用中,往往通过对自身持续“再训练”,从而使得模型可以随着时间与环境的变化对预测结果进行调整。当然,对于机器学习,有些经济学家提出了卢卡斯批判的疑问,即若根据模型的预测结果进行政策调整,则政策调整后的现实结果可能与初始模型的预测结果有差异,因为政策的改变会影响数据间的潜在行为关系,但这一疑问在其他预测模型,比如计量经济模型、结构方程模型和联立系统模型中也都存在。

二、大数据对经济学的影响及前景

如今,随着数据样本容量的急剧增加,使得大数据的使用方式不尽相同。作为一个规律性科学,经济学需要广泛、详细的数据,并运用统计技术来处理新型数据,大数据的出现可能会在社会学与计算机科学间构建一架桥梁,其学科价值可能在于创造新的思维方式,这将会导致对经济学的新思考和研究方法创新,甚至会带来分析经济学方法的质变。

一方面,由于多维度的精细间隔,大数据可以为经济学研究人员提供更多研究变量和视角,可以研究以前难以测度的行为理论,这为经济理论研究提供了一种全新的测量方法。例如:麻省理工大学助理教授Alberto Cavallo设计的“百万价格”项目,该项目旨在通过一个网络程序,获取网上物品价格,继而运用这些数据计算得出通胀指数,该通货膨胀指数就是阿根廷的精确透明通货膨胀指标,其实时价格数据的捕捉能力和准确度,使得该指标作为政府测量通胀的替代选择。又如,谷歌提供的请求式数据选择也提供了一个探索新机会的理由,目前一个备受瞩目的例子就是“及时预报”,在某些方面它可以通过庞大经济社会数据集进行短期精确预测。

篇7

段云峰

承担了国内最大电信运营商的数据仓库和大数据中心的设计和建设、运营工作(截止到2015年该系统达到18000TB存储容量,累计投资120亿元),积累了15年的大数据领域的实际工作经验。带领相关的团队,从系统创建到系统运营,开发了很多大数据领域的各种应用。积累了国内唯一的大数据在大企业建设、运营方面的经验。其前后主持设计的文档,有150余册、1200多万字,涉及大数据系统的数据模型、数据接口、系统架构、质量管控、业务应用、系统安全等各个领域。

秦晓飞

具有理学学士、工学学士和管理学硕士学位。最近十几年先后从事BI系统的运维、开发、项目管理以及应用推广等工作,参与并见证了中国移动BI系统从TB级别数据仓库向PB级别大数据平台跨越的整个过程。先后获得高级工程师、信息系统项目管理师、高级电信业务师、国际信息系统审计师等专业资格认证,并且被评为2012年山西省青年岗位能手。在《移动通信》《中国新通信》《电子世界》《信息与电脑》等杂志发表多篇专业论文,并且申报了多项国家发明专利。

目录

01大数据现状/1

1.1大数据的概念和特点/2

1.2互联网思维的故事/4

羊毛出在猪身上/4

圈客户/圈眼球/4

1.3“天变了”/5

用户变了/6

平台变了/8

金融变了/9

营销变了/9

思维变了/10

1.4大数据为什么需要互联网思维/12

大数据项目不同于传统IT项目/12

大数据产业是咨询服务产业/13

互联网思维是咨询服务产业的法宝/14

大数据“变现”需要互联网思维/15

大数据中“群众的智慧是无穷的”/15

1.5小结/16

02堪比“文艺复兴”的互联网思维/17

2.1文艺复兴的意义类比/18

艺术解放思想,思想解放生产力/19

引导了第一次工业革命/19

互联网引导新的工业4.0/20

改写金融业,改写社会/21

2.2互联网企业的发展/21

BAT的造梦/22

IT技术成为企业的核心竞争力/22

2.3互联网思维的概念/24

2.4互联网思维的特点/24

2.5互联网思维改写了手机产业/26

2.6互联网思维改变大数据/29

大数据的客户体验/29

大数据的产品化思维/30

大数据的平台思维/37

大数据的迭代思维/42

2.7大数据的新生/44

从配角到主角/44

产业化成为可能/45

大数据的春天/45

2.8小结/46

03大数据的发展/47

3.1大数据产业的发展/48

互联网改写了历史,大数据改写了互联网/48

第三次浪潮中的新兴产业/49

数据成为最大的资产/50

促进“理性社会”/51

3.2从网络运营到大数据运营/52

互联网平台如何使用用户数据/53

建立数据分析保障管理体制/55

从基础设施到产品提供/57

从网络产品到数据产品/59

3.3如何运营大数据/60

互联网基因/60

对内服务/63

对外服务/66

大数据营销/68

3.4大数据发展的瓶颈/69

与传统IT不同/70

机构和机制不同/71

新理论和新思维/71

转型更难/72

3.5小结/72

04大数据的客户体验/74

4.1客户是谁/75

内部客户/外部客户/77

个人客户/集团客户/78

校园客户/80

4.2客户的大数据需求是什么/80

取数——“取柴火”/82

取知识——“将柴火烧成炭”/83

取专业建议——“集体供暖”/84

4.3客户体验是什么/85

什么是体验/85

数据如何可读/90

“啤酒和尿布”的另一个角度解读/95

4.4客户体验如何提升/96

服务不同角色/96

娱乐思维/98

管家式服务/98

4.5小结/99

05大数据产品设计/100

5.1大数据产品背景/101

产品长什么样/101

谷歌是搜索门户还是数据门户/102

提品还是平台/103

卖咨询服务/104

智慧产品/104

5.2大数据产品内容/105

工具类/106

中间类/107

像棋谱一样的知识库/108

数据分析手机/109

互联网联通了人,数联网联通了大脑/110

5.3产品的“客户流量”/110

吸引客户/110

运营客户/111

5.4大数据产品类比/113

大数据的搜索门户/113

大数据的社交平台/113

大数据的电商平台/115

大数据的云化——在云里找数据/115

5.5大数据产品特点/115

目的决定产品特点/116

通过对比显示价值/116

更多的群众参与/116

5.6产品的界面优化/117

从苹果App中学习什么/117

结果的可视化/117

5.7产品的用户定位/117

如何让孩子看懂/118

数据的消费者/118

DIY发烧友/118

产品的商业模式/118

5.8小结/119

06大数据的极致思维/120

6.1产品的极致/121

傻瓜化的App/121

新的触摸屏在哪里/123

服务的极致/124

专家的极致/125

棋手的极致/126

智能改造之后的极致产品/127

智慧产品的极致/132

6.2思维的极致/134

兵书的知识提炼/134

参谋的极致/134

知识库和运维/135

思维的“众筹”/135

6.3营销的极致/136

点对点的精准营销/136

成本控制的极致/137

6.4“讲故事”的极致/137

吸引人的标题/138

吸引人的叙事方法/139

吸引人的数据证据选择/140

6.5小结/140

07大数据的快速迭代/142

7.1怎么“快”/143

标准零件的拼接/143

分析过程简单/143

不要追求完美,但求不断完善/144

7.2数据的标准/144

大数据是否还有逻辑模型/144

口径的管理/145

业务元数据和技术元数据/145

7.3平台的标准/146

云计算平台的标准化/146

PaaS还是SaaS/147

7.4环境的标准/148

编程规范和标准/148

软件结算的标准等/149

7.5迭代的知识积累/149

农业知识积累出的农历/149

何时更新、如何更新/150

7.6小结/150

08大数据的平台思维/151

8.1大数据的平台定义/152

数据得到丰富,取得规模效益/153

运营能够细分,拓展发展前景/153

8.2大数据平台思维的特点/153

平台越来越通用,应用越来越专业/153

孤立的数据是金,共享的数据是钻/154

数据的多维决定着平台价值的多样/154

8.3大数据的平台实体——“数联网”/154

数据交换的高效网络/155

数联网的内容/155

访问工具/160

数据管控/161

8.4大数据平台的生态环境/180

谁会购买大数据产品/181

各方获利的互联网模式/182

速度弥补精度/184

8.5平台SDK的开放性/185

平台的可编程API接口/186

数据的标准/186

数据的可读性/187

加工的简化性/188

容易参与/190

人人参与/192

8.6互联网企业的数据开放平台/192

阿里巴巴的御膳房/192

腾讯的微信开放平台/199

百度的阿拉丁/202

8.7人人的“数据”到数据的“人人”/204

8.8互联网平台升级到大数据平台/205

互联网平台是新时代的农业文明/205

大数据平台的价值最大化/205

电信运营商,新的电力公司or大数据公司/206

8.9小结/207

09大数据的跨界思维/208

9.1大数据跨界的背景/209

Hadoop的兴起,去了IOE/209

大数据的渗透——大数据×/210

9.2大数据跨界的定义/211

大数据跨界的特点/211

大数据跨界的展望/213

大数据跨界的案例/215

9.3大数据的业务多维/216

横看成岭侧成峰/216

数据的行业解读/216

9.4大数据的行业交叉/216

电信数据与金融数据的交叉/217

电商数据与医药数据的交叉/219

9.5小结/220

10大数据实践案例探索/222

10.1大数据提升客户体验/223

基于角色的应用/223

解决问题的应用/226

用户的GUI界面/234

10.2大数据实现产品化/238

BI Store案例/238

自助分析工具/242

用户的知识库/251

10.3大数据的极致思维/254

思维导图案例/255

大数据分析报告剧本/256

10.4大数据的跨界思维/258

大数据在交通行业的应用/258

大数据在金融行业的应用/259

大数据在制造业的应用/261

10.5大数据的平台思维/261

淘宝的API开放平台/261

某电信运营商的对外开放平台/265

10.6大数据的快速迭代/267

多波次灰度营销/267

数据字典的迭代/268

篇8

文章编号:2095-5960(2014)02-0036-07;中图分类号:F840;文献标识码:A

一、引言

信息是金融行业中最重要的资源之一,而数据是信息最直接的表现方式。随着电子技术发展以及世界金融市场交易规模的迅速扩大,金融行业中的数据量呈爆炸式增长趋势,如每一天世界金融产品交易数据达到500G以上,其中保险公司的数据占比达到12%(第一届CCF大数据学术会议,国家会议中心,2012年12月)。这充分说明金融行业已经进入了“大数据时代”。

按照Kenneth Cukier在《Big data》中的定义,大数据又被称为巨量信息、海量数据等,指的是所涉及的信息量非常巨大,超过传统软件和技术所涉及的范围[1],而所谓的大数据技术或大数据能力就是在这种海量数据下有效的数据分析技术,即能够利用各种各样类型的巨量数据,快速获取有价值信息,并使之应用的能力[2]。鉴于金融行业的巨量数据存量以及每天的新增数据规模,大数据分析能力对其尤为重要[3],保险公司是金融行业的重要组成部分,也不可避免要面对大数据现状,充分利用巨量数据来推动业务发展和创新,提升竞争力也自然成为当前最迫切的任务[4][5]。

为了详细了解我国国内的大数据情况,我们对中国保险业进行了数据情况的统计(以下简称“中国保险业大数据背景调查”)。该统计所涉及的保险公司共122家,其中包括58家人身险公司、59家财产险公司以及5家再保险公司。在人身险公司中,中资公司35家,外资公司23家;在财产险公司中,中资公司38家,外资公司21家。这些公司的业务规模占全部保险市场的95%以上,可以认为调查结果具有一定的普遍性。

我们统计的数据种类包括以下五类:一是保单数据及保单维持数据:这部分数据组成了保险公司的业务系统,以专业的数据库软件来操作。二是核赔理赔数据:这部分数据随着电子化进程加快,大部分也在业务系统中,同时部门内部也有对应的数据库。三是投资理财数据:因为寿险经营时间长,需要对保费保值增值,所以寿险的保费投资是经营的重要方面,导致这部分数据非常丰富,相对来说,财产险公司中,这类数据量比例较小。四是定价数据:这部分数据是精算部门用来定价和利润测试,以及用来向保监会报送各类报表运算时候需要的数据,有相当一部分来自于业务系统。五是风险管理数据,这部分数据相当零散,且涉及以上各类数据,同时还包括公司的财务数据、行业数据、监管数据、宏观经济数据乃至宏观管理数据。六是再保险公司公司数据,再保险公司承担保险公司的分出业务,通常掌握了很多家原保险公司的数据,具有比原保险公司更多的数据,这部分数据尽管有相当一部分来自于原保险公司,但大数据的核心并非是关注数据的重复问题,而是如何利用数据进行快速决策,所以我们把再保险公司的数据也统计在内。

我们对所有参与统计的原保险公司前五类数据并汇总,然后加上再保险公司数据,由此构成中国保险业整体的数据情况。这里需要注意到:汇总过程中会有很多冗余数据,例如投资相关的金融市场数据等,但从大数据的核心出发,这些数据应该不作区分。原因如下:

首先,大数据的本质是快速和预测,而并不关心重复数据的冗余情况,对重复数据冗余的处理其实是降低大数据应用效率的,大数据更关心的是基于整体的巨量信息快速进行决策和分析[6][7]。

其次,每家公司在经营过程中,即需要考虑公司本身特有的信息、特有的数据,同时也必然和其他公司一样面对公共的信息、公共的数据,这些数据都是他们决策基础[5]。

最后,重复的数据虽然存在但其对决策的影响其实是不同的,这和一同协作的数据有关,也和每家公司的大数据能力有关,换句话说,对每家公司来说,即使是重复的数据但也意味着不同的信息。

这种现状正是本文研究的出发点,我们将以掌握的数据为基础,在定价、巨灾分析以及健康险方面进行大数据应用研究的尝试。

二、跨部门大数据应用:寿险产品精算定价

产品精算定价能力是保险公司的核心竞争力之一,大数据在精算定价中的应用核心就是从“样本精算”过渡到“全量精算”。

对寿险来讲,保险公司基于“精算模型”,并使用“资产份额”和“宏观定价”等方法来确定实际保费。对财险公司而言,保险公司通常利用历史数据来获得“损失模型”,并通过分析各因素作用来获得最终保费。传统的这些过程中,一般只涉及公司所掌握数据的很小一部分,是“样本精算”,但为了获得更大的市场空间,保险公司有必要利用大数据来获得“定价”的比较优势,实现“全量精算”。这里我们仅以寿险定价为例来进行应用研究。

寿险公司在长期经营过程中积累了大量的数据和信息,同时外部环境变化也积累了海量数据,而传统的寿险产品定价对这些数据置若罔闻,仍然是基于保监会公布的00—03生命表和一些公司的有限信息来进行,这必然不能反映真实的风险状况,也丧失了市场竞争中的比较优势。

这里以一家普通的保险公司为例来说明大数据应用。我们将数据范围扩展到公司的全部部门(包含整个业务部门乃至核保核赔部门),这些部门的数据经过唯一的ID(如身份证号)链接,形成一个庞大的海量数据记录,在舍弃一些信息并整理后(仅包含索赔引起的死亡率信息)形成了一个900M的数据库,涵盖的时间是2003—2009。该数据即是进行“全量精算”的基础。接下来,我们对数据库进行整理并加上国家统计的数据(来自于《中国人口与就业统计年鉴》),获得了从1983年开始的分年龄段死亡率表(表1)。

根据此定理,我们利用大数据的信息来进行参数估计,方法是最小二乘法或极大似然估计。保险公司仅需要在大数据的基础上,进行程序运算,给出对应的距离或其他信息,就可以得到该极值分布的具体参数。如我们以上述例子为样本,可以得到其参数估计值分别为-0.7和1.8。有了损失分布,财产险公司就可以用来进行定价或者进行分保安排,而再保险公司就可以进行风险控制。

五、结论

通过以上大数据在保险公司中的具体应用,我们得到几点结论:

第一,保险公司应该在定价中充分利用公司所掌握的全部数据,让定价从“样本精算”转移到“全量精算”上来,让每个部门数据都发挥作用,通过整合和利用大数据技术,达到更精确的风险定价,从而获得更大的定价空间。

第二,保险公司自身应该重视数据接力,甚至保险公司之间应该加强数据合作,通过针对性的保险产品覆盖来实现客户价值挖掘,扩大保险市场。

第三,保险公是不但要重视本行业的数据积累,还要重视并挖掘其他行业的数据价值,通过与自身数据的融合来实现大数据所带来的价值。

参考文献:

[1] Viktor and Kenneth, Big Data: A revolution that will transform how we live work and think [M]. Eamon Dolan/Houghton Mifflin Harcourt Press, 2013.

[2] Redman T.The impact of poor data quality on the typical enterprise [J].Communications of the ACM,1998,41(2):79-82.

[3] 张宁,云计算在保险公司信息化中的应用[J].数学的实践与认识, 2012, 42(27): 97-103.

[4] Eckerson W.Data Warehousing Special Report:Data quality and the bottom line JR. Applications Development Trends,2002.

[5] English LP.Improving Data Warehouse and Business Information Quality:Methods for Reducing Costs and Increasing Profits[M].New York:Wiley,1999

[6] Swartz N.Gartner warns firms of‘dirty data’ [J].Information Management Journal, 2007, 41(3):6-12.

篇9

[中图分类号] F83 [文献标识码] A [文章编号] 2095-3437(2014)14-0029-02

一、背景

数据是与自然资源、人力资源一样重要的战略资源,其背后隐含着巨大的经济价值。近年来,“大数据”研究已经备受关注。[1]例如,2012年,美国政府在国内了“大数据”研究和《发展倡议》,投资约两亿美元发展大数据研究,用以强化国土安全、转变教育学习模式和进一步加速科学和工程领域的创新速度和水平。继1993年美国宣布“信息高速公路”计划后,这项决定标志着美国的又一次重大科技发展部署。美国政府认为“大数据”研究势必对未来的科技、经济等各领域的发展带来深远影响。在大数据应用的技术需求牵引下,数据科学研究和人才培养引起了各国的重视。美国哥伦比亚大学和纽约大学、澳大利亚悉尼科技大学、日本名古屋大学、韩国釜山国立大学等纷纷成立数据科学研究机构;美国加州大学伯克利分校和伊利诺伊大学香槟分校、英国邓迪大学等一大批高校开设了数据科学课程。

二、机器学习理论

机器学习(machine learning)是继专家系统之后人工智能应用的又一重要研究内容,在某种意义上,机器学习或将认为是数据挖掘的同义词。数据挖掘是指有组织、有目的地收集数据、分析数据,从海量数据中寻找潜在规律,并使之为决策规划提供有价值信息的技术。机器学习是人工智能的核心部分,在金融、工业、商业、互联网以及航天等各个领域均发挥着重要的作用。对机器学习研究的进展,必将对人工智能、数据挖掘领域的发展具有深远影响。

机器学习方法主要包括:Exper System(专家系统)、K-Nearest Neighbor(K近邻算法)、Decision Tree(决策树)、Neural Net(神经网络)、Support Vector Machine(支持向量机)、Cluster Analysis(聚类分析)等。近几年,研究人员将遗传算法、神经网络、系统理论以及当代数学研究的最新进展,应用于金融领域。这使得金融领域数据挖掘在金融管理中备受青睐。例如,产品定价、金融风险管理、投资决策甚至金融监管都越来越重视金融数据挖掘,通过数据挖掘发现金融市场发展的潜在规律与发展动态。机器学习理论及其在金融领域的应用成为了一个比较热的研究领域。[2] [3]

三、金融数据的特点

在众多机器学习方法中,基于Logistic回归、判别分析等传统的统计方法,对金融模型假定条件非常严格,在实际应用中很难达到理想效果。其原因在于对金融数据的非线性和非平稳性的操作具有片面局限性,在实际处理金融数据时,既定假设与金融市场发展实际并不完全一致,这样可能会影响模型的推广能力和泛化能力。

基于分类树方法、K-近邻判别分析、遗传算法等传统的非参数统计方法,其预测能力较好,但不能量化解释指标的程度。例如,K-近邻判别分析是一种非参数距离学习方法,通常按照数据样本之间的距离或相关系数进行度量,这样会受到少数异常数据点的影响。但是,在相同样本容量下,如果对于具体问题确实存在特定参数模型可以应用时,非参数方法效率相对较低。以神经网络、支持向量机等为典型的机器学习方法,优点在于可以有效处理金融数据的非线性特性,并且不需要事先严格的统计假设,这样会表现出较强的适应效果,充分体现人工智能、机器学习等方法的魅力。神经网络预测精度是各种机器学习方法中相对较好的,因为在一定程度上,神经网络可以按照任意精度近似非线性函数,为高度非线性问题的建模和算法提供相应支持。尽管神经网络技术进步有目共睹,但仍然存在一些难题。例如,通常难以确定隐层节点数,并会存在“过学习”现象和局部极小值等问题。

四、支持向量机

传统的统计模式识别方法是在样本数目足够多的情况下进行的,但是样本数目足够多在实际问题里面往往难以保证。1968年Vapnik等人首次提出了统计学习理论,专门从事有限样本情况下机器学习规律的研究。在此基础上,1995年Vapnik等人首先提出支持向量机(Support Vector Machine,简称SVM)的学习方法,它是数据挖掘中的一项新的技术。SVM是机器学习研究领域的一项重大成果,主要研究如何根据有限学习样本进行模式识别和回归预测,使在对未知样本的估计过程中,期望风险最小。近年来,它被广泛地应用于统计分类以及回归分析中。近几年的研究成果表明,SVM在实用算法研究、设计和实现方面已取得丰硕的成果,其在理论研究和算法实现方面都有突破性进展,逐渐开始成为克服维数灾难和过学习等传统问题的有力手段。支持向量机可以成功处理回归分析和模式识别等诸多问题,并可推广于预测和综合评价等领域,因此可应用于管理、经济等多种学科。支持向量机属于一般化线性分类器,可以认为是提克洛夫规则化(Tikhonov Regularization)方法的一个特例,其特点是他们能够同时最小化经验误差与最大化几何边缘区。支持向量机的优点表现在:1.它通过使用结构风险最小化代替传统的经验风险最小化,使用满足Mercer 条件的核函数,把输入空间的数据变换到高维的Hilbert 空间,将向量映射到一个更高维的空间里。在这个空间里建立有一个最大间隔超平面,实现了由输入空间中的非线性分析到Hilbert 空间中的线性分析。2.训练的复杂度与输入空间的维数无关,只与训练的样本数目有关。3.稀疏性。决定最大间隔超平面的只是少数向量――支持向量,就推广能力方面而言, 较少的支持向量数在统计意义上对应好的推广能力。4.本质上,SVM算法是一个二次优化问题,能保证所得到的解是全局最优的解。综上所述,SVM在一定程度上解决了以往困扰机器学习方法的很多问题,例如,模型选择与“过学习”问题、非线性和高维小样本等维数灾难问题、局部极小问题等。[4]正是由于SVM具有完备的理论基础和出色的应用表现,使其在解决高维小样本、非线性、压缩感知以及高维模式识别问题中表现出独特的优势,正成为自神经网络之后,机器学习领域中新的研究热点之一。[5] [6]

同其他机器学习方法比较,支持向量机更具严密的理论基础,因而在模型表现上也略胜一筹,被成功应用于模式分类、非线性回归,从使用效果来看,其结果较为理想。但从实践角度分析来看,模型参数的选择过度依赖人们的实验方法和实践技能,在一定程度上降低了模型的推广泛化能力和应用领域。同时计算方面,训练时间过长、核参数的确定,在大训练样本情况下, SVM面临着维数灾难,甚至会由于内存的限制导致无法训练。目前支持向量机在金融数据挖掘方面也存在一定的局限性,主要表现以下几方面:动态适应性、鲁棒性、特征变量异质性调整、模型推广精度等不尽如人意;建模方法与技术还有待进一步完善;支持向量机研究金融数据挖掘和金融问题的成果虽然不少,但大多集中在股票价格和股票市场走势预测方面,关于公司财务危机预测、套期保值分析、金融市场连接机制分析及其创新成果方面有待加强。

五、结论

大数据时代下金融专业的数学重在以下方面的应用:深度学习(Deep Learning)、机器学习和数据挖掘、分布式计算,如MR、Hadoop等,在大数据中预测最先取得突破的技术环节将会是分析中的大数据挖掘与关联分析、存储结构和系统、数据采集和数据化。目前金融问题的研究方向和发展趋势,主要集中在计量经济方法,例如,格兰杰因果分析、向量自回归、条件异方差、随机波动分析等。这些计量经济方法和技术大部分使用了线性技术,以及与金融市场不太吻合的理论假设,基于这些方法的结果,例如,资产预测价格、发展动态以及风险评估结果和实际出入较大,影响了金融管理的效率。对于我们大学教师来说,如何将已有分析数据算法整合,让学生抓住重点,挖掘到比较可靠的信息或知识,都将成为金融专业数学研究的方向和目标。

[ 注 释 ]

[1] Anand Rajaraman Jeffrey David Ullman.大数据――互联网大规模数据挖掘与分布式处理[M].北京:人民邮电出版社,2012.

[2] Kumar, P.R. and Ravi, V. 2007. Bankruptcy prediction in banks and firms via statistical and intelligent techniques-a review. European Journal of Operational Research, 180(1):1-28.

[3] M. Oet, R. Eiben, T. Bianco,D.Gramlich, S. Ong, and J.Wang,“SAFE: an early warning system for systemic banking risk,”in Proceedings of the 24th Australasian Finance and BankingConference, SSRN, 2011.

篇10

二、大数据背景下会计专业教学创新的主要方向

大数据要求会计教学提高学习主动性。相对于对科技进步较为敏感的网络专业,会计专业的学生较为缺乏对新时代的敏感性和学习并适应新时代要求的主动性,会计专业的教学甚至科研都对大数据缺乏敏感度。在日新月异的新时代,会计教学不应只拘泥于传统的教学内容,更要培养学生的自主学习意识,帮助学生在走上工作岗位后,能够有不断更新自己、与时俱进和不断学习的习惯,才不会在发展浪潮中被淘汰。学习的主动性来源于自主学习意识和对新知识的认知感。自主学习意识是人的主观能动作用,需要人对该事物的重要性和紧迫性有足够认知,并有足够自制力将其转化为积极主动的动力。在大数据背景下增强会计专业学生的自主学习能力,需要会计教学的教师们充实和更新教学的内容,紧跟时代步伐,到一线企业公司了解工作的实务内容和要求,将大数据的实例转化成题目或操作项目,引进到教学中来;还需要教师们创新教学手段,充分利用网络资源和数据,引进全方位、多角度的操作实践,让学生充分认识到大数据的运用与教科书上会计基本理论知识的区别,并将会计的基本原理,从课本题目的小数据,延伸到工作中的大数据中,熟练运用和操作大数据。对新知识的认知感是青年学生的最大优势,在足够的兴趣和主动性影响下,青年学生对大数据时代新鲜事物的感知性可能是其教师们都比不上的。这时就需要教师们因势利导,充分发挥学生的认知感,认可学生的锐眼和创新想法,并组织学生进行交流,形成竞争意识,将学生对新知识的了解,转化为教学内容,并引导学生进行课内课外的主动交流,互通有无,团结协作,互相学习,研究创新。

三、大数据视角下会计专业教学的创新

目前高职院校会计专业人才培养理念拘泥于培养记账、算账甚至做账的会计从业人员。但是,会计专业学生所服务的有潜力的大中小型企业更需要会计人员在企业的战略管理方面提供服务,即需要会计管理能力,尤其是在交易量特别巨大的行业市场,需要会计人才对相关市场进行大数据的收集和分析,为企业中短期决策提供数据依据支持。教学创新首先要做到教学理念的创新,只有理念先进了,教学改革创新才会顺利进行,否则传统势力的存在会对教学改革产生负面影响。从教学理念上看,会计专业的教学理念需要适应科技经济的社会发展需要,调整方向应该是:以核算能力的培养为基础,以会计管理能力的培养为核心,运用新的科技手段,掌握大数据的处理和分析。教师必须先从自身做起,更新自己的观念,充分体会和感受大数据对工作和生活的巨大影响。然后要对大数据在职业中的实际应用有所了解,对大数据给会计工作带来的机遇与挑战,知识的更新和创新有所了解,对社会的发展趋势紧紧把握,将最新的信息引入到教学中来。在理念更新的基础上,会计教学要对课程计划进行创新,在传统教学的理论基础上,引进新的资源和知识体系,增强学生的实践技能和工作能力。同时,也将会计理论潜移默化地引入到大数据的要求中去,培养学生对大数据的编制能力、处理能力、运算能力、检查能力和总结能力。从实际操作来看,会计专业教学的创新,要在保证学生拥有接入相关网络数据的、处理运算大数据能力的基础计算机硬件和软件设备的基础上进行。首先应培养学生在网络数据中挖掘有效资源的能力。教师在教学过程中应布置此类作业或实践项目,锻炼学生在网络上查找和筛选数据的能力。在搜集数据的基础上,在保证学生对传统会计理论知识充分掌握的前提下,教师教学生使用相关软件进行数据分析,培养学生对数据的预处理和建模创新能力,帮助学生养成管理型会计的思维方式。另外,由于大数据的工作量巨大,实际会计工作往往是由一个会计团队合作进行的。在创新的课程中,必须通过课题或项目,让学生组成项目小组进行实践操作,通过团队合作完成项目的方式,使学生能够运用会计专业的各方面知识,分担会计工作流程中的各个工作岗位的角色,培养团队意识,学会分工合作,适应未来工作需要。在开设检索课程和统计学课程之外,需要增设数据处理软件工具的实务操作课程,在会计电算化的要求下,会计教学中必须教会学生如何熟练、巧妙地使用电算化的相关软件,如ex-cel、用友等。在学校里,学生学习的都是基本用法,但是在实际工作中,由于行业不同、企业不同、数据性质不同、计算需要不同,会计需要自己编制一些适合的表格进行计算。那么,复杂套表的设计,公式的运用等就需要会计灵活地使用软件进行设计,满足会计实际工作中的需要。由于大数据的规模性和系统性,并且处理的数据量巨大,一个小小的差错就可能导致结果的很大误差或错误,会计工作中的准确性和对责任感的要求都是极为严格的。教学实践中需要步步留痕,每一个步骤都是由团队中的某位成员进行的,都有据可查,在作业结果错误时,对出错的成员进行“惩罚”,以示团队对准确性的严格要求,以利于团队成员中个人责任感的提升。教学中也可以建立学分之外的奖惩机制,在项目进行的过程中和项目完成后,对优秀学生进行奖励,对出过错误的学生进行“惩罚”。课程中还可以结合实务技能,引用互联网上的实际数据,分门别类地对各行业的大数据进行立项分析,或者从某些大型企业的公开数据中,进行数据的引用,使用这些数据进行教学训练,模拟公司会计实务操作流程,使学生能够身临其境地进行大数据的计算和分析,以总结性论文、报告或演讲的形式将结论进行汇报,通过各组的相互对比,评价立项活动的各组业绩是否正确,从而进行学分评价。完善会计网络教学平台建设和使用。学校可以设计搭建或引进会计网络教学平台,学生平时通过平台进行课程学习、完成和提交作业、完成随堂和结课测验等功能。运用网络促进学生学习,需要进一步完善网络软硬件设施的建设,及时升级更新教学平台,引进会计的大数据资源,进行相关数据的自动或手动的实时监控收集,套用常用的建模,划分统计模块,进行项目操作。同时,教学平台还要让学生查看学习作业和随堂测试结果,教师的评语和建议,及时了解自己不懂不会的知识点。教师也能全面了解学生随堂知识的掌握情况,掌握学生学习动态数据,随时改进教学进度和教学方法。会计教学的创新还可以与行业公司进行合作,承揽一些实际的会计工作项目,如预决算、招投标、核标、工程评估、财务报表、统计、科研调查等。这一与关联公司的互动合作是互利互惠的,既能帮助公司完成工作,也能借此锻炼学生的工作能力,促使学生将理论与实践相结合,为学生的未来工作打好基础。