刚架结构设计论文模板(10篇)

时间:2023-04-08 11:48:18

导言:作为写作爱好者,不可错过为您精心挑选的10篇刚架结构设计论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

刚架结构设计论文

篇1

一。设计方面

1.屋面活荷载取值

框架荷载取0.3kN/m2已经沿用多年,但屋面结构,包括屋面板和檩条,其活荷载要提高到0.5kN/m2.《钢结构设计规范》规定不上人屋面的活荷载为0.5kN/m2,但构件的荷载面积大于60m2的可乘折减系数0.6.门式刚架一般符合此条件,所以可用0.3kN/m2,与钢结构设计规范保持一致。国外这类,要考虑0.15-0.5N/m2的附加荷载,而我们无此规定,遇到超载情况,就要出安全问题。设计时可适当提高至0.5kN/m2.现在有的框架梁太细,檩条太小,明显有人为减少荷载情况,应特别注意,决不允许在有限的活荷载中“偷工减料”。

2.屋脊垂度要控制

框架斜梁的竖向挠度限值一般情况规定为1/180,除验算坡面斜梁挠度外,是否要验算跨中下垂度?过去不明确,可能不包括屋脊点垂度。现在应该是计算的。一般是将构件分段,用等截面程序计算,每段都要计算水平和竖向位移,不能大于允许值,等于要验算跨中垂度。跨中垂度反映屋面竖向刚度,刚度太小竖向变形就大。要的度本来就小,脊点下垂后引起屋面漏水,是漏水的原因之一。有的工程由于屋面竖向刚度过小,第一榀刚架与山墙间的屋面出现斜坡,使屋面变形。本人有此想法,刚架侧移后,当山尖下垂对坡度影响较大时(例如使坡度小于1/20),要验算山尖垂度,以便对屋面刚度进行控制。

3.钢柱换砼柱

少数设计的门式刚架,采用钢筋混凝土柱和轻钢斜梁组成,斜梁用竖放式端板与砼柱中的预埋螺栓相连,形成刚接,目的是想节省钢材和降低造价。在厂房中,的确是有用砼柱和钢桁架组成的框架,但此时梁柱只能铰接,不能刚接。多高层建筑中,钢梁与墙的连接也是如此。因为混凝土是一种脆性材料,虽然构件可以通过配筋承受弯矩和剪力,但在连接部位,它的抗拉、抗冲切的性能很并,在外力作用下很容易松动和破坏。有些设计,在门式刚架设计好之后,又根据业主要求将钢柱换成砼柱,而梁截面不变。应当指出,砼柱加钢梁作成排架是可以的,但将刚架的钢柱换成砼柱,而钢梁不变,是不行的。由于连接不同,构件内力也不同,要的工程斜梁很细,可能与此有关。

4.檩条计算不安全

檩条计算问题较大。檩要是冷弯薄壁构件,受压板件或压弯板件的宽厚比大,在受力时要屈曲,强度计算应采用有效宽度,对原有截面要减弱,不能象热轧型钢那样全截面有效。有效宽度理论是在《冷弯薄壁型钢构件技术规范》(GB50018-2002)中讲的,有的设计人员恐怕还不了解,甚至有些设计软件也未考虑。但是,设计光靠软件不行,还要能判断。软件未考虑的,自己要考虑。再有,设计人员往往忽略强度计算要用净断面,忽略钉孔减弱。这种减弱,一般达到6-15%,对小截面窄翼缘的梁影响较大。刚架整体分析采用的是全截面,如果强度计算不用净截面,实际应力将高于计算值。《规范》4.1.8、9条规定:“结构构件的受拉强度应按净截面计算;受压强度应按有效截面计算;稳定性应按有效截面计算。变形和各种稳定系数均可按毛截面计算”。有的单位看到国外资料中檩条很薄,也想用薄的。国外檩条普遍采用高强度低合金钢,但我国低合金钢Q345的冲压性能不行,只有用Q235的。国外是按有效截面计算承载力的。如果用Q235的,又想用得薄,计算时还不考虑有效截面,荷载稍大时檩条就要垮。二。施工方面

1.柱子拔出

有的刚架在大风时柱子被拔起,这是实际中常出现的事故。主要原因不是刚架计算失误,而且设计柱间支撑时,未考虑支撑传给柱脚的拉力。尤其是房屋纵向尺度较小时,只设置少量柱间支撑来抵抗纵向风荷载,支撑传给柱脚的拉力很大,而柱脚又没有采取可靠的抗拔措施,很可能将柱子拔起。,因此,在风荷载较大的地区刚架柱受拉时,在柱脚应考虑抗拔构造,例如锚栓端部设锚板等。

2.没有柱间支撑

这种情况最近较多,这样肯定不行。目前没有任何一本规范允许不设支撑。特别是柱间支撑,受力较大,绝不能省略。

3.端板合不上

端板连接是结构的重要部位。由于加工要求不严,而腹板与端板间夹角又,有的工程两块端板完全对不上,合不起来。强行用螺栓拉在一起,仍留下很宽缝隙,严惩影响工程质量。

4.锚栓不铅直

框架柱柱脚底板水平度差,锚栓不铅直,柱子安装后不在一条直线上,东倒西歪,使房屋外观很难着,这种情况不少。锚栓安装应坚持先将底板用下部调整螺栓调平,再用用无收缩砂浆二次灌浆填实。

5.保温材吸水超重

篇2

中图分类号:TU391文献标识码: A

引言

从传统意义上来说,轻质钢结构都是一些小角钢和圆钢组成的钢架或小型或小跨度屋架结构,一般是用作仓库或小型的厂房。随着新型钢材的出现,相继出现了冷弯薄壁型钢和彩色压型钢板,这使得轻型钢结构发生了根本性的变革。这种新型的钢材不仅具有传统钢结构的优势,对于轻的优势很是明显,具体优势表现在:造型新颖,即外观造型轻巧美观,对于建筑的表现力强,对于一些单多层工业、民用建筑和大中小跨度尤为适合,同时可以配合间距柱网,使得布置更加灵活;劳动强度比较轻,即在施工时可以使用小型机吊装,这样降低了劳动强度,减少了施工时间;构件轻,即通过设计后,这种高强度钢材承受相同重量时截面积小,用钢量相对较低;恒荷载较轻,即由于钢材较轻,所以恒载荷和地震作用减少明显,同时对地基的要求也较低。

此外,轻型钢结构符合环保和可持续发展的要求,还可以代替砖石和木材结构。但是轻型钢材是一种技术新、科技含量高的材料,所以对于施工和设计人员的要求就相对较高,还要进行一些专业的培训。这样一来,在生产线的建立上就会投入很大。此外,这种刚才还需要防火和防腐的处理。

大概在20世纪初期才开始形成装配式轻质钢房屋体系,当时主要应用于车库的建设。到了20年代,定型化生产的厂房开始出现在人民的视野。在二战期间,轻质钢房屋的建设如喷井之势飞速发展,那是多用于军事飞机库的建设。二战结束后,面临着重建的问题,轻质钢房屋需求量更大,这进一步的刺激了轻质钢房屋的发展。到40年代时,门式钢结构开始出现,60年代得到了大批量的应用。就目前来讲,一些发达国家也是使用轻质钢结构进行建设。美国在门式钢架上的设计不仅在理论上,而且在制造工艺上都比较先进。

2.门式钢架房屋机构存在的问题

2.1 屋面活荷载取值

根据2008年《门式钢架轻型房屋钢结构技术规程》的规定:在使用压型钢板轻型房屋时,按照水平投影的面积来算,在屋内的竖向均布活载的标准值应为0.5kN/m2。但是并不是所有都是这个要求,当钢架构件的受荷水平投影的面积是60m2时,竖向均布活载的标准值为0.3kN/m2。对于载荷效应来说,必须符合以下原则:a、将雪载荷、积灰载荷或屋面均布载荷同时考虑,得到最大值;b、雪载荷和屋面均布载荷不能同时考虑,把两者比较选出最大值;c、当使用多台吊车时,应当符合《建筑结构荷载规范》的国家标准规定来执行;d、不能把地震作用和风载荷同时考虑;e、由施工或者检修带来的载荷不和屋面材料及檩条自重以外的其它荷载一块考虑。在应对各种载荷的计算时,应该把各种载荷按照载荷的组合原则进行计算,这样能够避免因重复计算带来的浪费问题。

2.2 斜梁设计时,计算长度取值的问题:

a、对于屋面坡度较小的情况,根据GB50018的规定,在钢架平面内计算其强度时,按照压弯构件计算。但是对斜梁轴力小的情况时,把钢架的计算长度近似为竖向支撑点间的距离。b、对于屋面坡度较大的情况,不论是在钢架的平面内还是在平面外,轴力的稳定性都不能被忽略;c、从原则上来讲,平面外计算长度一般是侧向支撑点间的距离。但是,钢梁的上下翼的边缘都会有约束,一般有以下约束:①屋面系杆的支撑系统对其的约束作用;②檩条和屋面板对上翼缘约束作用;③檩条和隅撑的共同作用对下翼边缘的约束。在计算时,我们一般把隅撑的设置作为钢梁平面外长度,并不是将檩条的间距作为钢梁平面外长度。然而,隅撑的位置设置又得根据钢梁平面外长度作为量度。然而有些设计师将钢梁的平面外长度定位3m,但是在制造的过程中却省去了隅撑位置,最终造成了整个设计具有安全隐患。

2.3 构件的挠度问题

根据门式钢架规程的规定,当钢架斜梁只用于支撑冷弯型钢檩条和压型钢板屋面时,则钢架构件的竖向挠度限制是L/180;对于有吊顶的构件,竖向挠度限制是L/240;对于有悬挂起重机的构件,竖向挠度限制取L/400。对于具有一定载荷并且跨度较大的轻型钢结构厂房的设计,挠度值将控制着构件的截面积的大小。很多的设计师在进行这方面的设计时,往往会忽略挠度对结构的控制,仅仅为了能够满足强度的设计做法是不对的。然而,在实际应用中,梁挠度的影响是非常大的,它不仅会影响到建筑物的正常使用,还会造成屋内积水,甚至出现漏水的情况,这些都会加大屋面的载荷,给整个结构带来很大的安全隐患。我们可以加设摇摆柱的方法来应对那些跨度大、挠度难控制的钢架,这样做可以使挠度起不到控制的作用,而且还能把因挠度控制造成的截面过大的问题降到最低。

2.4 钢梁高厚比问题

门式钢架一般都是全钢结构的,由于檐口位置和钢柱的连接位置的弯矩较大,所以一般将钢梁做成变截面型钢梁。由于使用了这种变截面的钢梁,所以在设计的过程中可能会造成高厚比招标的问题,所以对设计结构的就算需要最终检查。根据2008年版CECS102:第6.1.1条规定,对于腹板高度的变化高于60mm/m时,将不考虑受剪板幅屈曲后强度对腹板高度比的控制,所以计算时不能将幅屈曲后强度考虑进去。具体的解决办法如下:a、可以在构件的腹板设置一个横向加劲肋,这样做可以更加不考虑屈曲后强度,还可以提高其容许的高厚比;b、为了满足高厚比,可以增加腹板的厚度,但是这样可能会较大的使用钢量;c、通过调节构件端部的高度和调整梁的变截面长度来使腹板的高度变化不超过60mm/m。

2.5 结构形式及布置方面

对于门式钢结构房屋,冷弯薄壁型钢檩条和压型钢板屋面板作为屋盖和外墙最合适,而变截面实腹钢架作为主钢架最合适。同时我们还可以根据载荷、跨度和高度的不同,而采用等截面或变截面的焊接工字型或轧制H型的截面来设计门式钢架的柱和梁。在设计吊车梁时,最好把等截面作为门式钢架的柱。对于门式钢架的柱脚,我们通常采用支撑设计来铰接,一般用一对或两对螺栓作为平板支座。这样设计柱脚铰接,不仅可以避免弯矩过大的问题,而且还可以减少基础混凝土的造价问题。钢接柱脚通常用于有吊车的厂房,这样设计有利于吊车的平稳运作。采用一些隔热卷材作保温层和隔热层,还可以用具有隔热效果的板材做屋面来解决对房屋或厂房的隔热要求。

2.6 屋盖铰接问题

在进行钢结构屋盖厂房的设计中,有些设计人员会把钢梁和砼柱相连接的位置用刚接的计算方法来计算,所以在施工之后,连接处的受力是不是真正的刚接,这会带来很大的安全隐患。为了安全起见,我们把砼柱面和钢梁的链接用铰接的形式来计算。

2.7 抽柱问题

有时由于空间原因,在某些厂房的设计中往往采用抽柱的屋架形式,即通过一些托或支撑来架梁。有些设计人员在对抽柱进行计算时,认为抽柱榀屋架就是直接把标准榀屋架删掉柱子,然后加上托梁和铰接的接点这么简单。如此做法会出现梁截面严重不足的现象,这是由于弯矩是靠钢梁在檐口的钢柱约束传递的,而对于托梁,托梁和屋面梁是按铰接的形式受力的,所以这样会造成屋脊的弯矩最大,而截面却最小的问题。此外,在对抽柱屋架进行计算时,托梁对屋架的弹性约束是必须要考虑的,具体的说就是把托梁和屋面梁的连接作为弹性支座,然后计算其对钢梁的约束作用,并非是简单的按照铰接来进行计算。对厂房的抽柱计算时,建议从整体上把握,利用整体建模计算,结构的受力情况,最后选出最优截面。

2.8 有吊车设计图纸的标识问题

对于有吊车的厂房设计,设计的图纸中不仅要有构架的设计,还要表明吊车的型号、台数、吊重重量和跨度能数据。防止因为标注不明确带来安全隐患的问题。

2.9 其他

除以上问题外,可能还会有焊缝质量、涂装、保温隔热防水的问题。其中,《钢结构设计规范》中对焊缝质量做出了明确规定,值得注意的是要把评定等级,检验等级和焊缝质量等级区分开来。对于涂装,对于钢材都需要做一些防火或防锈涂层,《建筑设计防火规范》( GBJ16—87)第 7.2.8 条做出了规定。对于保温隔热防水问题,室内的温度要求可能会比较高,所以要对冷桥接点做一些处理,例如选用一些高档保温材料能够较好的减轻结露和冷凝的现象。

3. 结语

由于现阶段钢结构厂房的日益增多和广泛使用,对其安全问题提出了更高的要求。所以在门式钢架设计中要避免以上问题的同时,做到规范、实用和美观相结合。

参考文献

[1] 赵建成 ,周观根 ,鲁永贵.轻钢结构中屋面挠度对屋面防水影响[J].第三届全国现代结构工程学术研究会,2003,3.

[2] 仝迅 .抽柱门式钢架的设计计算[J].工程建筑与设计,2004,12.

[3] 陈章洪.建筑结构选型手册.北京.中国建筑工业出版社.2000.

篇3

中图分类号:TU37 文献标识码:A 文章编号:

工程设计是复杂并且艰巨的任务,作为设计人员应该做到:对工作认真,有强烈的责任心和精益求精的工作态度;熟悉操作与规范,了解规范的真正含义;在实际工作中的灵活运用,从而保证工程施工的安全性。而钢筋混凝土框架的结构作为一种广泛运用的结构形式,具有明确的传力、灵活的结构布置、整体性与抗震性等集聚一身的优点。已被广泛的运用在各种多层的工业与民用的建筑中。随着计算机不断的发展,框架结构也由人工的转为计算机来进行计算,凭着对高科技的依赖性,计算精度逐渐提高,设计人员工作的强度却在逐渐的降低,但框架结构的设计依然存在一些实际性或者理念性的重要问题,需要引起设计人员的重视,保证设计的质量得到提高。

一、设计构造时出现的问题

(一)对框架结构而言,柱是保证竖向承载和结构抗侧力工作的重要构件,其重要性远大于梁,在框架柱相对完整的情况下框架梁即使呈酥碎状态也不会引起恶性倒塌,要做到强柱弱梁,让框架的塑性铰首先出现在框架梁上,框架节点核心区的设计就尤为重要,在《建筑抗震设计规范》中(GB50011―2010第6.3.10中有明确的规定“一、二以及三级框架的节点核心区配箍的特征值分别不能<0.08、0.10、0.12,并且由体积配箍率不能<0.4%、0.5%、0.6%”。这样的规定常常被设计人员忽略,尤其在柱的轴压力比不大的时候,要求常常不得到满足。这样的规定能保证节点核心区的延性构造,应当严格遵守。

(二)底层的框架柱的箍筋加密区的范围应该满足《建筑抗震设计的规范》(GB50011―2011)中有明确的规定了:“净柱身高的1/3不能超过底层下端的身高”这是设计中的重点说明。

(三)框架梁纵向的配筋率应当注意遵守《建筑抗震设计规范》(GB50011―2010)6.3.3中有明确的规定:梁端箍筋的最大间距、最小直径以及加密长度的都必须使用表6.3.3中的数据,当纵向的钢筋配筋率>2%的时候,箍筋的最小直径应该增加2mm。这个问题在目前的设计中常常被设计人员忽略,造成梁端的延性不足。

(四)梁柱节点处框架梁上部纵筋伸入节点的锚固长度应满足《混凝土结构设计规范》(GB50010―2010)中9.3.4规定:“梁上部纵向钢筋也可采用90°弯折锚固的方式,此时梁上部纵向钢筋应伸至柱外侧纵向钢筋内边并向节点内弯折,其包含弯狐在内的水平投影长度不应小于0.4Lab,弯折钢筋在弯折平面内包含弯弧段的投影长度不应小于15d”。当截面的尺寸小于400×400mm的时候应注意上部纵筋直径的选择,否则这一项的要求极不容易得到保障。

二、结构抗震的等级

在工程的设计中,大部分的房屋建筑按其《建筑防震设计规范》的分类属于丙类的建筑,例如住宅以及办公楼等的一般建筑,其抗震的等级可以根据结构的类型和房屋的高度来按照《抗震规范》的6.1.2来确定。而电讯、能源和医疗、交通等类型的建筑物以及大型商场和体育馆等公共建筑,首先,根据《建筑抗震设防分标准》(DB50223―95)来确定哪些是哪一类的建筑。乙丙类的建筑按照本地区抗震的设防烈度进行计算。一般的情况下,当抗震的设防烈度在6~8度的时候,乙类建筑应符合本地区设防的烈度提高一度,应根据《抗震规范》表中6.1.2来进行抗震等级的确定。如:位于8度地震区的乙类建筑,应当按照9度由《抗震规范》确定抗震等级提高一级。当8度的建筑高度超过表6.1.2的范围时,应当进行针对性的研究后再采取措施,但在一般情况下,设计人员会错当成丙类建筑来进行设计,使其建筑的扛着能力下降,必须对设计计算做出修改。

三、框架计算简图的合理性

在没有地下室的钢筋混凝土多层框架房屋的情况下,独立基础应该埋置较深,为了减小计算高度和底层侧位的左移,应在标准以下的某个适当的位置设置基础拉梁。如果按三层的设计来进行计算,首层层高为3.6m,这样的简图是不合理的,假定房屋嵌固在基础拉梁的顶面,这样的底层的配筋就应该由基础拉梁顶面的截面进行控制,而实际上房屋底层的配筋是基础顶面出的截图所控制的。所以在计算时,应将基础层1输入,层高实际为3.2m。

四、基础拉梁的设计以及计算应符合实际的情况

(一)基础拉梁的设计:

多层框架的房屋单独的柱基埋置较深,或者柱基承受重力荷的能力差别较大,或着在受力层范围之类,根据抗震的要求,应该沿主轴看、两个不同方向设置基础拉梁。基础拉梁的设计应该要大一些,梁的高度应在柱中心距的1/10~1/15,截面的宽度应取梁高1/2~1/3.这样可以使底柱弯曲的距离平衡,减少底层的位移。

(二)基础拉梁的计算应符合实际情况:

用TAT或者SATWE等电算程序进行框架整体的计算时,在基础拉梁层无楼板的情况下,楼板厚度应取零,并且定义弹性节点,采用总刚分析的方法进行分析以及计算。虽然楼板厚度取零,也定义为弹性节点,但未使用总刚分析,程序的分析会自动按照地面假定来进行计算,与实际的情况不符合。

五、框架梁、柱箍筋的间距处理

《抗震规范》第6.3.3条以及6.3.8条对不同抗震等级的框架梁,柱箍筋加密区的最小值以及最大值都做出了明确的决定。根据规定,工程在习惯上取梁、柱箍筋加密区的最大间距是100mm,非加密区的为200mm。从电算程序信息中得知内定梁、柱箍筋加密区的间距是100mm,并以此条件算出加密区箍筋的面积,再由设计人员根据箍筋的直径与数量。但在程序的内定条件下,框架梁跨中的部位有次或者有较大的集中荷载作用却用来支配两肢箍筋的情况下,非加密区的间距采用200ram会导致非加密区的配箍不足,为此建议改成间距为200mm,这样不但可以保证非加密区的抗剪承载力,还能增加梁端箍筋加密区的抗剪能力。

六、结构周期折减数数值的问题

框架结构因为充墙的原因,使结构的实际的刚度大于计算的刚度,计算是周期大于实际的周期。得出了地震剪力偏小,使结构不安全。因此对结构的周期进行折减是必要的。当采用砖砌体作为填充时,周期折减系数一般取0.6~0.7,当砖砌填充墙较少的情况下或使用轻质空心砌块的时候,周期折减系数应该在0.7~0.8,当采取全部用轻质空心砌块的时候,周期折减系数可取0.9。

七、结构方面需要注意的问题

(一)当雨篷梁、楼梯平台梁的过梁支撑在框架上的时候容易形成短柱,所以应把短柱全长的箍筋进行加密。

(二)当纵向受拉筋的框架梁端的配筋率大于2%的时候,按照规定应该使其直径增加2mm。

总结:

本文主要讲述了钢筋混凝土框架结构设计中存在的基本问题,设计框架结构,设计人应首先判断实际工程中结构方案的可行性,以及可能碰到的所有问题,提前采取预防措施给予解决,并对计算的结果进行认真的分析、判断,等处准确无误的答案后方可用于实际工程的建设中去。

参考文献:

[1] 刘双庆.钢筋混凝土结构设计常见问题解析[J].四川建材,2009,35(4):124,126.

[2] 杨新.浅谈钢筋混凝土高层结构设计常见问题[J].中华民居,2011,(6):46-47.

篇4

2停车场主要单体结构设计总结

停车场内房屋结构安全等级为二级,结构设计使用年限为50年。根据《建筑工程抗震设防分类标准》GB50223-2008,除变电所为重点设防类外,其余均为标准设防类建筑[7]。根据《建筑抗震设计规范》GB50011-2010,本实例工程属于抗震设防烈度为6度,设计基本地震加速度0.05g,地震设计分组为第一组[8],结合地方管理规定和场地地震安全性评价报告,场区特征周期0.35s,地震影响系数最大值0.0765,场地土类别为Ⅲ类。工程材料选择:主体结构混凝土等级采用C30,地下室结构采用P6抗渗等级防水混凝土,二次浇捣构件(如构造柱和圈梁等)混凝土等级采用C25,钢梁钢柱采用Q235B钢材。主要建筑单体结构布置和基础选型如下:综合楼建筑面积约7000m2,总高度为22.35m,五层钢筋混凝土框架结构,局部有地下室,柱网布置开间7.8m,进深7.2m,抗震等级四级,主要柱截面600×600,主要梁截面300×700。选用直径500预应力混凝土管桩桩承台基础,持力层粉质粘土。

运用库建筑面积2万平方米单层工业厂房,采用门式刚架结构,钢柱钢梁抗震等级四级,柱网跨度15m+28m+26.4m+26.8m,柱距离6m,主要柱截面H600×350×8×16,主要梁截面H(1000~700)×350×12×20。柱下基础选用直径400预应力混凝土管桩桩承台基础,轨道道床基础选用直径400预应力混凝土管桩桩筏基础,持力层粉质粘土。洗车库和污水处理站为一层钢筋混凝土框架结构,局部两层,抗震等级四级,主要柱截面500×500,主要梁截面300×800。选用直径400预应力混凝土管桩桩承台基础,持力层粉质粘土。变电所为两层钢筋混凝土框架结构,其中一层为半地下室电缆夹层,抗震等级三级,主要柱截面400×400,主要梁截面300×900。选用直径400预应力混凝土管桩桩承台基础,持力层粉质粘土。人行天桥独柱钢筋混凝土框架结构,柱网布置跨度7m+13m+12m+8.5m,抗震等级四级,主要柱截面500×1200,主要梁截面400×1200。选用直径600钻孔灌注桩桩承台基础,持力层粉质粘土。

3结构设计难点分析

(1)根据场地地质概况的描述,本场地淤泥及淤泥质土较厚,新填土达4m深,场地地面沉降不稳定,柱下基础和库房内无砟整体现浇道床,对基础沉降极其严格,选用何种加固处理措施,是结构设计难点之一。

(2)运用库为大跨度工业厂房,采用何种结构体系,是本工程结构设计难点之二。考虑施工周期和经济指标,本工程采用钢梁钢柱门式刚架结构体系。

(3)刚架梁梁连接节点计算时,高强螺栓计算中和轴位置的确定是本工程结构设计难点之三。查阅相关资料,中和轴位置的确定有两种假定:①中和轴在受压翼缘中心,假定模型:在弯矩作用下,把梁根部截面弯矩简化为作用于梁上、下翼缘的力偶,同时把梁受拉翼缘和端板作为独立的T形连接件看待,忽略腹板的扶持作用。此假定螺栓受力与端板厚度关系很大,设计计算较为繁琐;②中和轴在端板形心,假定模型:高强螺栓外拉力总是小于预拉力,在连接受弯矩而使螺栓沿栓杆方向受力时,被连接构件的接触面一直保持紧密贴合,认为中和轴在螺栓群的形心轴上。根据《端板连接高强度螺栓群中和轴位置研究》试验论文结果,螺栓群中和轴介于其端板形心与受压翼缘内侧中心线之间,当所受弯矩越小,则中和轴越接近端板形心轴,越大则越接近受压翼缘[9]。

4配合施工遇到的问题分析

(1)围墙开裂。分析原因:新填土4m高,围墙距离护坡边仅1m,施工工期较紧,施工单位无法用大型机械分层碾压,填土密实度达不到设计要求。解决措施:①围墙基础选用刚性较大条形基础,防止不均匀沉降,此方案施工较快,造价便宜。②选用换填处理或水泥搅拌桩加固围墙基础下新填土,减小不均匀沉降量,此方案施工周期较长,造价偏贵。综上所述,本工程选用第一种解决措施。

(2)运用库库内柱式检查坑,轨道下混凝土短柱出现偏柱、歪柱等现象。分析原因:短柱设计由结构和轨道两个专业,施工也分别由两家单位施工。解决措施:①混凝土短柱设计为钢柱,直接安装。②混凝土短柱由一家施工单位施工。建议日后设计采用第一种解决措施。

(3)人行天桥柱下管桩无法施工。分析原因:人行天桥跨轨道设置,场地内轨道区域下被地路专业设计水泥搅拌桩加固。解决措施:①天桥柱下基础改为钻孔灌注桩;②检验水泥搅拌桩加固后地基承载力,如不够采用,采用CFG桩加固后采用柱下独立基础。结合现场工期需要,本工程采用钻孔灌注桩基础方案。综上所述,结构设计时,充分运用结构设计难点分析结果,指导结构设计;配合施工时,遇到以上问题,经分析原因,采取我们选用的处理措施,得到明显改善效果,保质保量,按时完成土建施工。目前,本工程已投入使用2年,没有出现任何问题,得到业主单位一致认可。

5结构设计建议

(1)运用库库房内轨道道床为无砟整体现浇道床,对基础沉降极其严格,铁路规范要求控制在20mm以内,如果道床下地质情况不好,建议采用预应力混凝土管桩桩筏基础。

(2)运用库为一层钢结构工业厂房,采用何种结构形式,需根据结构计算和经济比较。结合本工程实例,试算比较后,得出如下经验:柱跨28m,采用混凝土柱+钢梁排架结构和钢梁钢柱门式刚架结构较经济,综合考虑施工工期,选钢梁钢柱门式刚架较适用。

(3)刚架梁梁连接节点设计时,综合考虑各种因素,高强螺栓群计算中和轴宜选端板形心。

(4)场地平整有大量新填土,新填土下有较厚的淤泥和淤泥质土,计算单桩承载力时一定要考虑桩侧负摩阻力。

(5)结合配合施工中的问题,建议结构设计时改进以下措施:①场地内高填方区围墙应做刚性较大的条形基础,以避免围墙不均匀沉降开裂;②运用库库内柱式检查坑,轨道下混凝土短柱出现偏柱、歪柱等现象,影响传力和结构安全,建议混凝土短柱设计为钢柱,直接安装即可;③被其他专业加固的场地区域,柱下基础结构设计时,建议选用钻孔灌注桩。

篇5

中图分类号:S611文献标识码:A 文章编号:

1 工程概况

某工业厂房位于湖南长沙星沙经济开发区东二路,厂房长度144 m,跨度为26+26 m,两侧檐口高分别为12 m和15 m,建筑面积8414 m2。两台15t中级工作制吊车,吊车轨顶标高为7.93 m和11.3 m(详见图1)。柱脚采用刚接,采用门式刚架结构,主刚架采用热轧H型钢, Q345级。屋面坡度采用1/10和0.85/10,基础选取PHC预应力管桩。计算软件采用钢结构STS软件和广厦GSCAD。

图1

2 基础设计

2.1 地质条件及单桩承载力计算

本工程地质条件及PHC管桩系数详见表1。

表1

单桩承载力根据《建筑大家基础设计规范》(GB50007-2002)第(8.5.5-1)公式:Ra=qpaAp+up∑qsiali和《预应力混凝土管桩基础技术规程》(DBJ/T15-22-98)第(5.2.8)公式:Uk=∑ξsiλiqsikuli进行估算。

2.1.1桩侧阻力特征值计算(选取PHC壁厚90 mm,桩径400 mm预应力管桩) 桩端端阻力特征值qpaAp=502kN;单桩竖向承载力特征值Ra=1297kN;总拔极限承载力标准值Uk=448kN;再根据《预应力混凝土管桩基础技术规程》(DBJ/T15-22-98)第(5.2.9)公式Rpl=σpcA=328kN

2.1.2分析

根据工程地质条件及电算结果,由于业主工期要求快,故采用PHC预应力高强管桩,取单桩竖向承载力特征值R=1200kN,由于柱脚固接,吊车作用下,柱底弯矩较大,桩可能会现拉力,而形成抗拨桩,因此必须采用双桩,而且需要验算桩抗拨力,由于Uk>Rpl,故应按Rpl考虑桩的抗拔力。本工程边柱最大轴压力N=621kN, M=-444kN, V=-21kN。根据广厦计算结果,桩距取3.5d:桩最小反力Nmin=-15kN

3上部结构设计

本工程为两跨26m,两台15t重级工作制吊车,柱距8m,共有18跨固接的门式刚架,为保证吊车正常运转,厂房稳定,满足位移变形要求加强支撑设计和吊车制动桁架来增加厂房的整体空间刚度,全长144 m,墙体采用压型钢板。选用热轧变截面H型钢经STS电算定下,用钢量最低的刚架尺寸(详见图1)。

3.1柱间支撑设计

若支撑设置不当,吊车行走时,就会造成刚架晃动,存在安全隐患,因此支撑的设置非常关键,又因选用用钢量小的窄翼缘H型钢,因此柱平面外计算长度仅能取4m,在高4m处设置一道焊接钢管侧向水平支撑。交叉支撑采用角钢,在厂房的头、尾跨设置柱间支撑,中间跨每隔4跨设置一道。在设置柱间支撑的同一跨并设屋面支撑,为能更好传递风荷载在屋面每隔4m设一道水平钢管刚性系杆。

3.2抗震措施

工程地处设防烈度6度区,房屋自重小,承载力不受地震作用效应组合控制,可不进行抗震计算。仅针对轻钢结构的特点采取抗震构造措施。构件之间的连接均采用螺栓连接,斜梁下翼缘与刚架柱的连接均加腋,柱脚底板设抗剪键。增设吊车制动桁架。

3.3隅撑的设计

隅撑可以用来提高屋面梁式柱的受压翼缘稳定能力,因此在檐口位置,刚架斜梁与柱内翼缘交接点附近的檩条和墙梁处,各设置一对隅撑。在斜梁下翼缘受压区隔一檩条设隅撑,并使其间距不大于相应受压翼缘宽度的16倍(详见图2)。

图2

3.4高强螺栓连接设计

由于屋面荷载很轻,在设计荷载作用下,斜梁与柱的连接部位主要承受弯矩作用,剪力很小,高强螺栓以受拉为主。剪力由连接构件间的摩擦力传递剪力。本工程建筑大量采用阳光板,开窗面积少,风顺力大减少,相应剪力也小,选用摩擦型高强螺栓,因此表面可不作专门处理。不必进行摩擦而抗滑移试验,这有助于提高效益和降低成本。

3.5檩条设计

檩条的设计计算是最为困难的。首先,在目前设计规范或规程中尚无简单实用的计算公式供设计人员采用,其次,为节省钢材,轻钢结构中的檩条除用于承担梁的功能外往往兼作支撑体系中的压杆,同时还通过隅撑对门式刚架的梁和柱提供侧向支承。如果考虑门式刚架房屋中的蒙皮效应,则檩条的构造和受力计算更为复杂。檩条通常由薄钢板冷弯成型,计算中还需考虑屈曲后的有效截面等问题,因此,精确计算檩条的承载力非常困难。在竖向荷载作用下,檩条的自由翼缘受拉,受压翼缘由于和屋面有可靠的连接面不存在稳定问题。

由于Z型连续檩条是拱接而成的连续檩条,其内力分布较均匀刚度大,能节省用钢量,同时在制作、运输、安装诸方面都很便利,因此本工程采用Q345Z型檩条,内力计算按如下一种简单通用的模式考虑:按等截面连续梁计算模式,考虑活荷载按不利分布作用,光按50%活载均匀满布得到一个效应值S1,再用50%活荷载按最不利隔跨分布得到一个效应S2。两者相加即为最不利活荷载所产生的效应S。另外再考虑在支座处因搭接嵌套松动所产生的弯矩释放10%。

在风吸力作用下,檩条的自由翼缘受压。因此,当檩条下翼缘无面板侧向支撑时,必须对檩条的下翼缘进行稳定性验算。开平地区基本风压为0.6 kN/m2,按门式刚架技术规程附录E公式计算结果得知,是风吸力作用下稳定计算起控制作用。选用Z220×75×20×2.0 Q345,檩距1.2m,可以满足要求。

4采用预应力门式钢架的构想

为了进一步提高门式钢架轻钢结构的刚度和承载力,降低钢耗,笔者认为可在门式钢架的不同部位,有针对性的施加预应力。如通过强迫上升或下降中间柱的柱脚标高,可调整跨中弯矩和中柱负弯矩的峰值。施加预应力的方法,可通过预先计算好的提升量,用千斤顶升高中柱或边柱,再塞垫板,进行锚固。

在门式钢架横梁上的中下部位置,直接布置预应力索,并在跨中四分之一的位置,以一对栓钩拉住钢索,拧紧栓钩螺母,下拉钢索,索内产生拉力(预应力),栓钩处产生上压力,是附加的卸载力,栓钩处可视作钢架横梁的中间弹性支点。这种横向张索法用于钢架立柱,立柱则视为增加了中间支座,改变立柱边界条件,提高临界荷载力。

对于屋面檩条,可在檩条中间二分之一处,先将檩条与蒙皮固定,再在檩条与檩条连接处,强力钉入碶块,拉伸蒙皮,引入预应力,再栓接固定檩条 ,最后将蒙皮与檩条固定成整体。

5结语

门式轻钢结构的优点是节材高效,耗钢少,自重轻,制造安装运输简便,工期短,可拆迁,定型批量生产易于实现商品化等。近年来发展迅速,应用领域日益广泛。本工程采用刚接柱脚和Q345钢使用钢量减少了许多,经对比验算采用Q345钢的用钢量比采用Q235钢的用钢量下降16%左右,采用较平缓坡度(1/10)的门式刚度也可节约钢材。

在本工程的设计实践中,未能充分引入预应力技术,但笔者认为在门式钢架轻钢结构中应用预应力技术以加强结构刚度和承载力,提高结构稳定性,若能在檩条中张拉板材可以防止风吸力下的局部失稳和提高弹性受力幅值,将可大大减少檩条的用钢量,这也是完全可行的。为此,在谋求改进方面希望本文能起到抛砖引玉的作用,期待着与专家同行的合作,请大家共同关注与探讨并指正。

参考文献

篇6

中图分类号:TU33+7文献标识码:A 文章编号:

Abstract:Frame instability has two modes, respectively, lateral instability and no lateral instability. Correct understanding of lateral displacement and lateral instability, is the application of member effective length method conditions. At present domestic to frame instability mode comparison across studies, put forward a variety of relevant frame stability concept, especially in the lateral shift problems. This article briefly summarizes the stability of rigid frames in sideway questions related concepts, the lateral displacement and lateral displacement were compared systematically. The full text of the understanding of rigid frame instability have a very good help.

Key words:Frame stability; Lateral instability; Strong support frame; Sway frames

1引言

目前在刚架稳定设计中,国内外应用比较广泛的方法就是构件计算长度法。就是先将作用有荷载的刚架按一阶弹性分析的方法确定内力,再利用按照弹性理论得到的刚架柱的计算长度系数,把柱转化为具有如此计算长度的压弯构件作弯矩作用平面内的稳定计算[3]。显然,在刚架稳定设计中,确定构件的计算长度非常重要,在规范中对有侧移失稳和无侧移失稳采用不同的计算公式,得出的计算长度系数相差很大,那么如何确定刚架失稳是无侧移失稳还是有侧移失稳就显得首当其冲了。本文介绍刚架失稳问题中有关侧移问题的概念解析,清晰明了的阐述刚架侧移问题。

2有侧移失稳和无侧移失稳

2.1 基本概念

刚架稳定分析中一个很重要的问题就是确定刚架的失稳模态,这对于计算刚架的稳定承载力是很重要的。同一个结构在相同的荷载作用下发生不同形式的失稳,其稳定承载力存在巨大差异[1]。

设计工作所用的单层刚架柱计算长度,是以荷载集中于柱顶的对称单跨等截面框架为依据的[2]。我们以单层单跨刚架为例说明刚架的失稳形式。

图1 刚架的失稳形式

图1 (a)所示单跨对称刚架,受两相同的柱顶集中荷载,可能发生图1 (b)所示的对称性变形失稳,也可能发生图1 (c)所示的非对称性失稳。发生对称性失稳时,变形大致呈左右对称形状,刚架节点无侧移但有转角,通常称之为无侧移失稳;发生非对称性失稳时,变形大致呈左右反对称形式,刚架同层节点向同一个方向发生相等侧移并有转角,这种失稳形式称为有侧移失稳。

3有侧移失稳和无侧移失稳的判断

3.1 判断失稳模式的框架分类

目前国内在判断刚架失稳形式时,都是将框架分为无支撑的纯框架和有支撑框架,其中有支撑框架根据抗侧移刚度的大小分为强支撑框架和弱支撑框架[4]。在文献[4]中,框架的定义如下:

纯框架:依靠构件和节点连接的抗弯能力,抵抗侧向荷载的框架。

强支撑框架:在支撑框架中,支撑结构(支撑桁架、剪力墙、电梯井等)抗侧移刚度较大,可将该框架视为无侧移的框架。

弱支撑框架:在支撑框架中,支撑结构抗侧移刚度较弱,不能将该框架视为无侧移的框架。

这样的定义比较模糊,而且没有和刚架稳定联系起来。而在文献[5],[6]中对这种分类给出了直接与稳定相关的定义。其中分类的前提是当内力采用线性弹性分析,采用计算长度法计算框架柱的稳定性时,才采用上述分类。即

(1) 强支撑框架:当框架―支撑结构体系中,支撑的抗侧刚度足够大,使得框架以无侧移的模式失稳时,这个框架称为强支撑框架。

(2) 弱支撑框架是支撑架的抗侧刚度不足以使框架发生无侧移失稳的框架。

(3) 纯框架是未设置任何支撑的框架结构,它的整体失稳是有侧移失稳[6]。

3.2 强支撑框架和弱支撑框架的判断

文献[4](钢结构设计规范)中5.3.3给出了设计中判断强支撑框架和弱支撑框架的判断公式。内容总结下来就是,当支撑结构的侧移刚度 满足公式

(1)

式中 , ――第i层层间所有框架柱用无侧移框架和有侧移框架柱计算长度系数算得的轴压杆稳定承载力之和,则为强支撑框架。框架柱的计算长度系数 按规范中的无侧移框架柱的计算长度系数确定。

当支撑结构的侧移刚度 不满足公式(1)的要求时,为弱支撑框架,框架柱的轴压杆稳定系数 按公式(2)计算。

(2)

式中 , ――分别是框架柱用文献[4]的附录中无侧移框架柱和有侧移框架柱计算长度系数算得的轴心压杆的稳定系数。

上述的判断方法是在实际应用中的简化方法,当考虑到实际结构的支撑体系(剪切型支撑、弯曲型支撑、弯剪型支撑)不同时,强支撑框架的判定准则会产生变化。文献[5],[6]对双重抗侧力体系的框架进行了全面的分析,也给出了更全面的强弱支撑框架的判断准则。

3.3 有侧移失稳的本质

结构(构件)失稳表示其不再能承受附加的水平力或竖向力,代表了其水平抗侧刚度或竖向抗压刚度的丧失(刚度=0)[10]。轴心压杆受压失稳的本质是压力使受压构件的弯曲刚度减小,直至消失的过程[2]。这是稳定分析中一个很重要的概念。那么对于框架有侧移失稳,就是表明框架的抗侧刚度消失。

框架每一层的抗侧刚度可以从结构的线性分析直接得到。例如 是第 层的总剪力, 为这一层的层间位移,得到的层抗侧刚度为

是什么使这个框架层从抗侧刚度 变为等于0?显然是竖向荷载,竖向荷载就像是一种负刚度的因素,抵消了框架的正刚度[6]。怎么得到框架竖向荷载的负刚度呢?

我们从最简单的结构受力情况说起。

图2 竖向荷载的负刚度

如图2(a)所示杆件没有抗侧刚度,作用了压力P之后,因为竖向荷载是负刚度,杆件很快就会垮掉(几何可变)。必须给以侧向支撑才能保持稳定(图2(b))[10]。侧向支撑的刚度 时才能使杆件稳定。反过来可以推论:P的负刚度为 。侧移失稳时

即负刚度+抗侧刚度=0.

对于悬臂柱,临界荷载为 ,当作用的竖向荷载 时,抗侧刚度 ,记 为P的等效负刚度,要求 得到 。参照 的形式可以假定:

得到 ,此时。

再对如图2(c)的柱上下端均为弹性转动约束的情况,可以推导出 式中 在1.0~1.216之间变化,绝大多数在1.1~1.16之间变化,偏安全可以取 [10]。

应用到多层多跨框架中,文献[6]给出了说明。根据规范查表得到框架柱的计算长度系数,求得各柱子的临界荷载 之后,从而得到竖向荷载的等效负刚度,即

(3)

因此框架有侧移失稳时

(4)

式中, 即层间抗侧刚度, 是第 层的总剪力, 为这一层的层间位移,通过线性分析可以得到。 是这一层的第 个柱的轴力; ,这个系数变化非常小,从工程实际的角度来看,取1.1的情况下,得到的临界荷载最大值误差为10%,如果换算到计算长度系数,则最大的误差只是5%[6]。

这样得到的公式(4)有非常重要的实际应用价值,在帮助我们理解框架爱有侧移失稳本质的基础上,能解决框架中各柱子轴力分布不均时的临界荷载及计算长度,也能分析框架各层的稳定性。

4有侧移框架和无侧移框架

文献[3]中在4.1节中提到:按规定,对于有支撑的刚架,当其抗侧移的刚度大于或等于同类无支撑刚架抗侧移刚度的5倍时,方认为支撑系统有效,否则仍按无支撑刚架计算其稳定性。但又在4.9节中抛弃了这种说法,采用了文献[4]的规定。这里面涉及到一个概念性的问题,就是有侧移框架和无侧移框架到底指的是什么?它们与框架有侧移失稳和无侧移失稳有什么区别和联系?

4.1 有侧移框架和无侧移框架的概念解析

《钢结构设计规范》(GBJ17-88) [7] 第5.2.2条最末尾有这样一个注释:无侧移框架系指框架中设有支撑架、剪力墙、电梯井等支撑结构,且其抗侧移刚度等于和大于框架本身抗侧移刚度的5倍者。有侧移结构系指框架中未设上述支撑者,或支撑结构的抗侧移刚度小于框架本身抗侧移刚度的5倍者。

这样的概念让人困惑。因为稍有结构常识的人都清楚的知道,所有的结构及框架-支撑结构中的框架在水平风力或地震力作用下,都会产生侧移。那么文献[7]中的分类又是什么意思呢,或者具有什么用途呢?

实际上,文献[7]中的准则是对国外规范误解的结果。5倍关系最早由欧洲钢结构协会于1977年提出,提出5倍关系的最早本意是对支撑部分和框架部分分担水平力的比例进行界定,当支撑抗侧刚度大于纯框架抗侧刚度的5倍时,框架分担的水平力可以忽略不计,框架因不承担水平力而无侧移,并不是框架发生无侧移失稳[8]。

那么,对于有侧移框架和无侧移框架的定义,其实是针对双重抗侧力结构体系中的框架,根据其水平力的分担比例来划分的。

(1) 在双重抗侧力结构中,框架承受的总水平力小于等于总剪力的20%,则可以以足够的精确度假设所有的水平力都由支撑架(剪力墙)承受,框架本身不承受水平力,从而这个框架可以看作无侧移框架。

(2) 不满足上述规定的框架―支撑结构体系中的框架,是有侧移框架。

这样的区分,在没有计算机的时代,可以带来计算上的简化,在计算机时代,实用上已经没有必要。但是仍然可以根据这个分类,对结构的受力特性有一个初步的总体上的了解:有侧移框架是要承担水平力的,而无侧移框架依靠其他刚度更大的子结构来承担水平力[6]。

4.2 两种框架分类的区别

有侧移框架和无侧移框架的区分,不涉及到框架的稳定性计算,只是通过了解建筑物各子结构在承受水平力上的相对比例,对框架进行一个分类。在框架分担的水平力小到一定程度时可以进行简化的力学分析。

强支撑框架和弱支撑框架的区分是用于判断双重抗侧力结构中框架部分的失稳模式的。根据框架结构是发生有侧移失稳还是无侧移失稳,或者介于两者之间,选择和计算对应的框架柱的计算长度及承载力。

5结语

本文从整体上对刚架稳定中侧移问题进行了阐述,据此可以更好地学习刚架稳定内容,理解钢结构稳定性设计的有关规定,更准确地选择钢结构稳定计算的图表或公式。

参考文献:

[1] 郭耀杰.钢结构稳定设计[M].武汉:武汉大学出版社,2003.

[2] 陈绍蕃,顾强.钢结构上册:钢结构基础(第二版)[M].北京:中国建筑工业出版社,2007.

[3] 陈骥.钢结构稳定理论与设计(第三版)[M].北京:科学出版社,2006.

[4] 钢结构设计规范(GB50017-2003)[S].北京,2003.

[5] 童根树.钢结构平面内稳定[M].北京:中国建筑工业出版社,2005.

[6] 童根树.钢结构设计方法[M].北京:中国建筑工业出版社,2007.

[7] 钢结构设计规范(GBJ17-88)[S].北京,1989.

[8] 季渊.多高层框架-支撑结构的弹塑性稳定分析及其支撑研究[D].浙江大学博士学位论文,2003.

篇7

1.工程概况。此工程位于烟台市某地,根据市交通局规划和城市人行地道的交通流量,本设计采用单孔5m框架桥结构。施工时采用暗挖施工主通道,出入口和主通道净空2700mm另加装修层50mm,底板厚度为500mm,顶板厚度500mm,侧墙厚度500mm,出入口底板厚30cm。箱涵主体结构和洞门混凝土强度等级为C35,基础垫层混凝土强度等级为C15,支护结构锚喷混凝土为C20,防水保护层混凝土为C30,主要受力钢筋为HRB335.地基为粘土。主通道荷载等级为城-B级,出入口设计荷载3.5kN/m2.

2.恒载计算

2.1材料特性。根据《城市人行天桥和人行地道技术规范》本地道桥框架结构采用C35混凝土,材料特性依据《混凝土结构设计规范》(GB 50010--2002):

2.2 桥跨自重。计算尺寸: 计算宽度 L=5.0m+0.50m=5.5m,计算高度 H=2.7m+0.05m+0.50m=3.25m

2.3 结构荷载

2.3.1板顶均布恒载

2.3.3混凝土收缩影响

根据《城市人行天桥和人行地道技术规范》规定,对于刚架结构,混凝土收缩的影响系假定用降低温度的方法来计算。对于整体灌注的钢筋混凝土结构,相当于降低温度15?莓,线膨胀系数?琢=0.00001,顶板收缩t′=(?琢·l·t)

\3.活载计算3.1汽车活载标准值

3.2人群荷载标准值

4.截面弯矩检算

根据《混凝土结构设计规范》(GB 50010-2002)规定,按照极限状态法进行框架结构截面检算,取框架单位宽度1m作为计算单元。分别取跨中,钢筋弯起点和端部进行计算。

计算参数:

式中:M --弯矩设计值;?琢1 --系数取1;fc --混凝土轴心抗压强度设计值; A?琢、AS′--受拉区、受压区纵向钢筋的截面积; b--矩形截面的宽度;h0 --截面有效高度; ?孜b--界限相对受压区高度; ?琢′--受压区钢筋合力点至截面受压边缘的距离。

对于边墙的截面计算,由于受力钢筋截面没有变化,所以取弯矩绝对值最大的截面进行计算,采用了与底板和顶板相同的计算原理,其中上侧钢筋指相对于左侧,下侧钢筋相对于右侧。经计算各截面均符合要求。

5.截面剪力检算

根据《混凝土结构设计规范》(GB 50010-2002)规定,矩形截面受弯构件,其受剪截面满足条件。

参考文献:

篇8

中图分类号:C35文献标识码: A

引言:

轻型门式刚架房屋结构在我国的应用大约始于20世纪80年代初期,以其质量轻、柱网布置比较灵活、工业化程度高、施工周期短、综合经济效益高等特点,近年来得到迅速的发展,已广泛应用于轻型的厂房、仓库、体育馆、展览厅及活动房屋、加层建筑等工程。但因忽视支撑设置以及安装质量不规范等因素,导致质量事故甚至失稳破坏的案例时有发生,因此,本文针对轻型门式钢架支撑系统的种类、布置和作用,以及该体系常见问题作一系统归纳与分析。

1、轻型门式刚架结构的特点

1.1、质量轻

轻型门式刚架结构的围护结构一般都采用轻型材料,屋檩和墙檩一般采用冷弯C形钢或Z形钢,屋面板和墙面板多采用压型金属板,因而结构自重较轻。即使是在工业厂房中,因为《门式刚架轻型房屋钢结构技术规程(2012年版)》(CECS102:2002)中规定轻型门式刚架结构中仅可设置起重量不大于20t的A1-A5工作级别的桥式吊车或3t的悬挂式起重机,结构所承受的总荷载相对也较小。根据国内工程实例统计,单层轻型门式刚架房屋承重结构的用钢量一般为10~30kg/m2,自重约为同等条件下钢筋混凝土结构的1/20~1/30。由于荷载较小,基础所用材料也较少,地基处理难度相应降低,结构地震反应也较小。

1.2、工业化程度高,施工周期短

轻型门式刚架结构的主要构件和配件均为工厂制作,质量更能够保证。将构件运到施工现场后,构件间的连接多采用高强度螺栓连接,安装迅速。

1.3、结构布置灵活,不受模数限制

传统的钢筋混凝土结构由于受屋面板等尺寸限制,柱距多为6m,当采用12m或其他柱距时,需设置托架等,较为麻烦。而轻型门式刚架结构的维护体系采用压型金属板,故柱网布置灵活,一般仅需考虑使用要求和用钢量。

1.4、综合经济效益高

轻型门式刚架结构设计周期短,原材料种类单一,构件采用自动化设备成批量生产,单位价格相对较低,且门式刚架结构施工周期短,资金周转率高,发挥投资效益快。

2、轻型门式钢支撑系统概述

2.1、支撑布置及作用

横向水平支撑一般设置在房屋两端或横向温度伸缩缝区段两端的第一柱间的屋盖系统上,有时也可设在第二个柱间;一般由十字交叉斜腹杆(拉杆)和竖腹杆(压杆)组成;横向支撑的间距不宜大于60m。所以,当温度区段较长时,在区段中间尚应增设横向水平支撑作用以承受地震荷载或由山墙传来的纵向风荷载,保证屋盖系统的整体性,提高空间刚度,是构成空间稳定结构体系的基础之一。

2.2、柱间支撑

2.2.1、布置

设置部位同横向水平支撑,一般与横向水平支撑对应地布置在同一柱间距内;可分为柔性(圆钢)和刚性(型钢)两种,当设有起重量不小于5t的桥式吊车时,应采用刚性柱间支撑;当钢柱高度相对于柱距较大或设有吊车时,柱间支撑应分层设置。

2.2.2、作用

它的主要作用是与横向水平支撑共同形成稳定的空间结构体系,提高厂房纵向刚度和稳定性,可承受和传递厂房纵向的各种荷载与作用。

2.3、刚性系杆

布置刚性系杆一般设置在刚架转折处(边柱柱顶、屋脊及多跨刚架的中柱柱顶),应沿房屋全长设置;当端部横向水平支撑设在端部第二个开间时,在第一个开间的相应位置也应设置刚性系杆。刚性系杆一般采用钢管或型钢。

作用主要有两个方面:①承受山墙传递到屋面上的水平荷载(风载或地震荷载);②形成一个稳定空间结构体系的重要支撑之一。

3、轻型门式刚架结构设计中需注意的问题

由于轻钢结构自身的特点与普通钢结构有较大区别,设计中应采取一些有针对性的措施,以保证结构的受力性能。已有许多专家、学者和工程技术人员对此问题进行过分析研究,因此,本文仅对一些设计中常出现的问题进行总结。

3.1、应合理设置支撑体系

单榀门式刚架在刚架平面内刚度较大,能有效抵抗水平荷载,但是在刚架平面内刚度则较差,需通过设置支撑来保证纵向水平荷载的传递。支撑设置时需注意将屋面横向水平支撑和柱间支撑布置在同一跨间,以构成稳定的空间结构体系,既可承受和传递房屋纵向的各种荷载和作用,又便于结构的施工和安装。在房屋的各温度区段内,均需设置能独立构成空间稳定结构的支撑体系。屋面横向水平支撑一般布置在温度区段端部第一开间,也可以布置在第二开间,但此时需在第一开间相应于屋面横向水平支撑竖腹杆位置布置刚性系杆。屋面横向水平支撑的竖腹杆需按刚性压杆设计,才能组成几何不变体系。屋面横向水平支撑的节点应与抗风柱布置相协调,将节点布置在抗风柱处,以直接传递抗风柱柱顶反力,避免刚架斜梁受扭。在刚架转折处,如边柱柱顶、屋脊处、多跨房屋中间柱柱顶等位置,需沿房屋纵向全长设置刚性系杆,既可承受和传递纵向水平荷载,还能在安装过程中增加刚架的侧向刚度,保证结构安全。支撑的常见布置见图1。

图1支撑布置

3.2、柱脚

柱脚部分未采用混凝土包裹防护,容易钢材锈蚀而产生安全隐患;柱脚锚栓未采用双螺帽;柱脚与基础顶面二次灌浆未采用灌浆料填实。

3.3、 梁柱节点常见问题有:①摩擦面涂漆;②顶紧接触面积偏小(小于75%);③边缘最大间隙过大(大于0.8mm);④高强螺栓丝扣未外露;⑤端板厚度偏小(小于16mm)。上述存在问题可能会导致节点不能有效形成刚性连接而产生安全隐患。

3.4、屋面

为钢结构斜梁、立柱为混凝土排架结构该结构体系与门式刚架不同;由于主钢架斜梁与混凝土柱很难形成刚接,立柱存在水平推力,可能导致结构严重不安全。

3.5、隅撑缺失

主刚架斜梁下翼缘和刚架柱内侧翼缘未设置与檩条或墙梁相连接的隅撑,可能会导致钢梁平面外失稳。钢梁变截面处钢梁在翼缘转折处(变截面处)未设置横向加劲肋;由于该处应力复杂,设置横向加劲肋主要对腹板予以加强。

3.6、锚栓不铅直

锚栓不铅直会严重影响房屋的外观。由于框架柱柱脚的水平度差锚栓又不够铅直经常使柱子安装后东倒西歪不在一条直线上。影响外观的同时还容易造成安全隐患使房屋经不住长时间的考验。最近国对轻钢施工的验收规程进行了讨论许多专家都强调了一种比较严谨的方法。就是在安装锚栓时坚持先将底板用下部调整螺栓调平再用无收缩砂浆二次灌浆填实。这种方法的应用将明显减少锚栓不铅直对房屋构架的影响。25门式刚架的安装。有些刚架在大风时柱子被拔起因此在风荷载较大的地区刚柱受拉时在柱脚更应考虑抗拔构造例如锚栓端部设锚板等。另外预埋地脚螺栓与混凝土短柱边距离过近在刚架吊装时经常不可避免的会人为产生一些侧向外力而将柱顶部混凝土拉碎或拉崩。在预埋螺栓时钢柱侧边螺栓不能过于靠边应与柱边留有足够的距离。同时混凝土短柱要保证达到设计强度后方可组织刚架的吊装工作。另外施工时遗忘抗剪槽的留置和抗剪件的设置柱脚螺栓按承受拉力设计计算时不考虑螺栓承受水平力。若未设置抗剪件所有由侧向风荷载水平地震荷载吊车水平荷载等产生的柱底剪力几乎都由柱脚螺栓承担从而破坏柱脚螺栓。有些工程地脚螺栓位置不准确为了方便刚架吊装就位在现场对地板进行二次打孔汪意切割造成柱脚底板开孔过大使得柱脚固定不牢螺栓最小边距不能满足规范要求。

3.7、模条计算不安全

《冷弯薄壁型钢构件技术规程》中提到有些设计软件并没有考虑到与檀条相关的有效宽度理论。因此在进行设计时不能单纯依赖软件软件没有考虑到的内容要自己考虑。如檀条特有构件应采用有效宽度理论计算强度,这就需要自己熟悉理解规范结合规范和软件做出正确判断后在计算。《规程》封7条规定结构构件的受拉强度应按净截面计算受压强度应按有效截面计算稳定性应按有效截面计算变形和各种稳定系数均可按毛截面计算。而实际设计中常常会忽略掉应用净截面计算强度如果不用净截面进行计算,实际应力将高于计算值。也容易忽略针孔减弱。而当这种减弱达到6%一巧%时就会对对小截面窄翼缘的梁产生较大影响。14钢柱换硷柱。为了节省钢材降低造价肩少数单位在设计门式刚架时将钢筋混凝土柱和轻钢斜梁组成斜梁用竖放式端板与硷柱中的预埋螺栓相连形成刚接。但厂房中符合设计的框架的梁柱不能用刚接只能用铰接。因混凝土是一种脆性的材料抗拉、抗冲切的陛能很差在外力作用下容易出现松动和破坏。在实际施工中采用硷柱加钢梁作成排架是可以的但由于连接不同构件内力不同可能造成工程斜梁过细安全隐患增加可见将刚架的钢柱换成硷柱而钢梁不变是不可以的。

3.8、注意风吸力的影响

轻型门式刚架结构由于采用了轻型屋面材料,自重较轻,当屋面坡度在一定范围时,风荷载的作用方向会向上,即为风吸力。在普通钢结构中,风吸力会抵消部分重力荷载,起有利作用,因而不考虑。但对于轻型门式刚架结构来说,风吸力的大小可能超过屋面结构自重,叠加后产生向上作用的荷载,使结构构件中产生反向内力,如不考虑风吸力,可能导致结构不安全。2.4不得随意改变结构材料和体系部分设计人员在设计门式刚架结构时,根据业主要求或其他考虑,将刚架柱改为钢筋混凝土柱,刚架斜梁仍为钢梁,仍按照门式刚架结构体系进行设计,这样做可能会产生工程事故。因为门式刚架结构中刚架斜梁与刚架柱必须做成刚接,而钢结构斜梁与钢筋混凝土柱较难实现刚接,做出来更接近与排架结构,与刚架结构是完全不同的两种结构体系,这样设计出来的结构可能会严重不安全。

4、结论

①应充分重视支撑系统的设置,合理完善的支撑系统是形成稳定的空间结构体系的重要保证。②应严格按照规范标准精心施工,以消除因细节重视不够而导致工程质量事故的发生。

参考文献:

[1]张亚江.门式钢刚架火灾升降温作用全过程响应分析[D].长安大学,2012.

篇9

中图分类号:S611文献标识码:A 文章编号:

1.建筑设计与结构设计的概念

1.1建筑设计的概念

建筑设计指的是建筑工程在建造之前,建筑设计师充分按照工程任务,把可能在工程施工过程中或者使用过程中出现的问题作好通盘的设想,并拟定好解决问题的方案。建筑设计的主要内容包括:初步方案、初步设计、搜集资料、技术设计施工图、技术设计施工详图等。随着科学技术的不断发展,建筑设计中越来越深入广泛的利用各种科学技术的成果。

1.2结构设计的概念

结构设计指的是建筑工程的结构设计,主要包括建筑工程的基础设计和上部结构设计。建筑工程的上部结构设计的主要内容和步骤包括:(1)根据建筑工程设计来确定建筑物的结构体系和结构的主要材料;(2)建筑物的结构平面布置;(3)初步筛选建筑材料的类型和强度等级,并根据以往经验初步确定建筑物构件的截面尺寸;(4)建筑物的结构内力分析、各种荷载作用分析、结构荷载计算;(5)建筑物结构荷载效应组合;(6)建筑物构件的截面设计。

2.现代建筑设计与结构设计存在的问题

2.1现代建筑结构设计中的扭转和共振问题

在现代建筑工程的结构设计中要求建筑三心要尽量汇于一个中心点,建筑三心指的是建筑物的结构重心、刚度中心和几何形心。现代建筑结构设计中的扭转问题主要是指在建筑物的结构设计过程中没有做到三心汇于一点,在建筑物的水平荷载作用下建筑结构出现了扭转振动效应。所以,为了避免建筑工程因水平荷载作用而出现的扭转破坏,就必须在对建筑物的结构设计时尽量选择合理的平面布局和结构形式,让建筑物的三心尽量汇于一点。还有现代建筑结构设计中出现的共振问题,如果发生地震,而建筑场地的特征周期与建筑物的自振周期又很接近,那么建筑物和建筑场地就有可能发生共振。所以,在设计建筑工程方案时,必须要针对预估建筑场地的特征周期,选择合适建筑结构体系和结构类型,并通过调整建筑物结构的层数,扩大建筑场地特征周期与建筑物的自振周期之间的差别,从而避免共振问题的发生。

2.2现代建筑结构的水平侧向位移问题

现代建筑工程设计的水平侧向位移即便能够满足建筑工程结构规程的要求,也不能代表该建筑结构设计是合理的,因为这其中还要充分考虑到地震力的大小和周期等因素。在对建筑工程进行抗震结构设计时,建筑物的结构刚度和地震力的大小有着直接的关系。当建筑物结构刚度小,而建筑工程的结构设计并不合理,但由于地震力比较小,所以结构位移也比较小,位移也就控制在规范允许的范围内,但是这并不是合理的结构设计。因为地震力小、结构周期长是很不安全的,并且位移的曲线变化应该具有连续性,除了沿着竖向发生刚度突变之外,不能够有其他明显的折点或者拐点。在一般情况下位移曲线有三种类型:(1)剪力墙结构的建筑工程发生的位移曲线应该是弯曲型;(2)框架结构的建筑工程发生的位移曲线应该是剪切型;(3)框一筒结构和框一剪结构的建筑工程发生的位移曲线应该是弯剪型。

3.建筑设计与结构设计的关系

3.1建筑设计与结构设计的相互配合

在建筑工程的建设过程中,无论是公共建筑、工业建筑还是民用建筑大致可以分为分为两类:(1)拥有完善的使用功能,优美的建筑造型,通过专业化的施工工艺和制造技术与先进的结构体系有机地结合,创造出经济适用的、新颖的、技术先进的建筑物;(2)主要追求新奇的艺术效果为主,没有合理的建筑结构方案,创造出奇特的建筑物。在现代建筑物中主要实施和提倡第一类建筑。以具体的工厂厂房设计来谈结构设计和建筑设计相互配合。工厂厂房的设备较大,车间要求十分宽敞,防火要求比较高,并且不改隔墙。以往的设计大都采用的是排架结构,厂房的墙体为240砖墙,厂房的屋盖为薄腹梁钢筋混凝土大板结构,这样的厂房才能满足使用要求。但这种排架结构的设计不足之处施工周期长、跨度受限制、不经济。

根据结构设计必须要考虑到厂房施工方便和经济合理的条件,在现代的工厂设计中可以采用门式刚架轻型房屋钢结构,在标离1米以下的地方为砖砌体,而墙体则用压型彩钢板,屋盖也一样。这样的设计不但能克服上述厂房结构形式的不足,而且还满足了厂房的使用要求。比如在对棉花加工厂这类厂房进行结构设计时,要充分满足厂房的生产工艺要求,在厂房的功能布局上要充分考虑运输活动和生产活动的方便,要为工厂创造良好的工作环境,这是这类厂房的设计原则。所以,在满足基本要求的前提下,施工最方便、最经济、施工周期最短的设计方案必然成为首选方案。对于公共建筑来说,建筑的设计不能离开具体的设计对象。一个优秀的建筑必然是结构设计和建筑设计之间密切配合的结果,同时还要分清配合的侧重点。一个好的建筑设计能够将建筑物完善的使用功能和优美的建筑造型与结构设计充分地结合在一起。

3.2建筑设计与结构设计之间的密切联系

在建筑设计过程中,有少数的建筑设计师把结构总是放在第二位,并一直强调结构必须服从建筑,这种观念不但忽略了最基本的力学规律,还分割了科学的完整性。这种最大满足使用功能和片面地追求建筑艺术与建筑技术结合的要求,往往会给建筑工程的质量带来严重的隐患。在建筑设计过程中,任何一个建筑设计方案都会对建筑具体的结构设计产生一定的影响,并且建筑结构设计的技术水平也制约着建筑设计得层次。所以,在建筑工程的设计过程中,建筑设计师必须要具备一定的结构方面的基础,并且能够与结构设计相互协调,适当的结合,让二者互相统一,从而创作出优秀的、完美的建筑设计作品。

有的建筑设计师在设计中过分强调创作的标新立异、新颖、美观,从而不能与结构设计有效的结合。而建筑物本身承受着巨大的地震力、自重荷载与活载、扭矩力、水平风力等,要是建筑设计师不按照建筑的结构受力特征和基本的结构技术原理进行竖向设计和平面设计,也不征询结构设计师的意见,这样就会导致结构设计师不能合理的选择结构体系,从而出现建筑结构不稳定问题发生。比如可以讲建筑物的截面设计成为三角形,这样建筑物的抗侧能力和抗弯矩力就会小很多。还有些建筑设计师经常忽视结构力学的基本规律。比如:对于需要抗震设防的地方,建筑的高层电梯设置在建筑物的一侧,不能与建筑物的刚度中心相互重合,电梯筒就会受到很大的刚度,从而造成结构偏正,产生扭转。

结束语:

从建筑结构效益的角度来看,片面追求建筑物的艺术表现,忽视结构原理,设计出来的建筑作品往往只能作为雕塑作品或者是虚假的造型。只有符合正确的结构逻辑的建筑,充分发挥结构本身造型特点,充分融合结构设计构思和建筑设计构思去实践个性的建筑,才能算得上是成功的建筑作品。同时,建筑设计师要不断提高自身的艺术修养,勇于创新,充分利用结构设计原理来完善建筑设计。而建筑结构设计师也要充分了解建筑设计师的意图,促进结构设计和建筑设计的有机融合和密切配合,从而设计出更高水平的建筑作品。

参考文献:

[1]霍小董.综论建筑设计与结构设计的关系问题[U].四川建材,2007

[2]王立新,王立轩.浅谈建筑设计与结构之间的关系[J].中华民居,2010,(12):31-31.

篇10

金属结构故障诊断成为工程机械领域的一个重要的研究课题,对大型化、老龄化的门座起重机而言,其金属结构的故障时有发生,严重地影响生产的安全。本论文以SDMQ1260/60E型门座起重机为研究对象,采用大型有限元结构分析软件ANSYS对其模态进行分析,得出相应的结果。为今后的维修提供可靠的数据。

1. 门座起重机建模

该起重机的转柱、门架和起重臂等构成一空间杆系结构,可简化成刚架结构,主要用梁单元进行分析计算;大平衡架为钢板焊接而成的箱体结构,应采用三维实体单元进行分析计算。

1.1 有限元网格

门座起重机结构主要是由无缝钢管和钢板组成,根据SDMQ1260/60E型门座起重机的结构特点和受力特点,可把起重机的转柱结构、门架结构和起重臂一起简化成空间杆系结构,采用ANSYS提供的空间梁单元BEAM188进行离散化,整个结构共划分了9920个单元,18717个节点。

1.2 材料物理参数

该起重机的型材选用两种材料,分别为Q235-A和16MnR,这两种材料在常温下的屈服极限分别为235MPa和325MPa,弹性模量为2.1×105MPa,材料的泊松比取为0.3,密度为7800kg/m3。

1.3 载荷工况

根据该起重机的运行状况,在考虑自重的情况下,研究起重臂处于起吊重量为60t的位置,但是空载的工况。取重力加速度g=9.8m/s2:

1.4 边界条件

门架上四个与大平衡架相连的绞点采用固定端约束形式,即6个自由度全部约束。

2. 模态分析

模态分析,也叫特征值的提取,用以求解多自由度系统自由振动的固有频率和相应振型。模态分析用于确定设计中的结构或机器部件的振动特性(固有频率和振型)。它是承受动态载荷结构设计中的重要参数,同时也可以作为其它更详细的动力学分析的起点。

本文通过分析计算,得到了起重机在工况位置时的固有频率和模态振型。表1为起重机起重臂处于起吊重量为60t的位置(工况1)时整机的固有频率,由考虑篇幅问题,出图1~图3,其分别为在工况1时整机的前三阶模态振型。

图1 起重机工况1第一阶模态振型图

图2 起重机工况1第二阶模态振型图

图3起重机工况1第三阶模态振型图

表1 在工况1时起重机的固有频率(Hz)

3.总结

1.通过上述 模态分析结果可知,其整体结构动刚度较好,各阶振型主要表现为塔式起重机的塔臂上下、水平和转扭运动的耦合。

2.本文计算所得结果可以为进一步研究门座起重机的动力响应分析和使用条件的合理选用奠定了技术基础,也为今后的维修提供可靠的数据。

参考文献:

[1]黄大巍,李风,毛文杰,等.现代起重运输机械[M].北京:化学工业出版社,2006.

[2]徐克宁,束志明,徐克晋,等.起重运输机金属结构设计[M].北京:机械工业出版社,1995.

热门文章