时间:2023-04-17 18:00:27
导言:作为写作爱好者,不可错过为您精心挑选的10篇建筑模型论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
2构建模型的分析与讨论
参数与参数之间的联系非常紧密,每个参数的设计和计算都需要严格的进行,如果其中的某个参数有所变化,那么其他的设计参数也会随之产生变化,从而对工程造价有所影响。例如在进行墙体设计时,虽然墙体的工程造价所占比重比其他工程造价所占比重高,但是也会受到其他参数的影响,如果在进行工程总造价的计算时单是将墙体的数据作为主要的造价因素进行考量显然是片面的、不合理的。因此根据对ISM模型进行分析发现,对造价影响越高的参数,往往都是最高层级的参数[4]。在整个工程项目的决策阶段,设计参数可以按照建设的施工规模利用分析模型进行预算,计算出设计方案后,得到结构形式、平面结构、建筑层数等方面的相关资料,这些资料可以帮助细化估算的内容,使其结果更为准确。
3对ISM的多元线性回归的分析以及计算
研究所使用的工程项目为十八个小高层住宅楼,其相关的价格信息都有具体的参考数值,住宅楼位于市区,楼层的结构多以钢筋混凝土剪力墙为主,楼层定为9到19层之间,因此可以选择2到18号住宅楼来进行研究分析,分析方式为多元线性回归分析,由该方法得多回归的方程式,然后利用1号住宅楼来进行方程式的检验。方程式中Y代表因变量,表示建筑安装单方造价,而X1到X6代表自变量,分别表示为X1:建筑规模,X2:建筑总高度,X3:建筑周长指标(平面形状),X4:楼层层数,X5:楼层层高,X6:户型;因此方式是可表示为:Y=b+b1X1+b2X2+b3X3+b4X4+b5X5+b6X6其中b为常量,b1、b2、b3、b4、b5、b6为系数。除此之外还需要用Excel表格对具体的数据进行详细的分析,如2到18号住宅楼的多元性回归分析,其中Y所代表的是工程单位面积造价,X所表示的是各类设计参数,如表1。由于F=9.59×10-8低于0.001,有比较明显的回归。经计算工程的估算造价为2173(元•m-2),实际造价为2221(元•m-2)。估算偏差为48元•m-2。由此可知,利用ISM和多元回归分析的措施建立估算模型非常容易,并且估算误差在5%以内。如果使用普通的方法造价误差只能控制在5%左右。因此,使用模型计算的到的造价估算偏差是合理的。除此之外,还需要注意的是对参数之间的客观分析。在进行多元回归模型的分析和研究时,可以将多一些的参数作为自变量进行参考,这种方法可以帮助工程进行详细的造价分析和研究,从而计算出更为准确的数值。应用回归分析方法的前提条件是保证每个自变量具有自己的独立性,但是在实际的工程施工过程中,各自变量之间是有联系的,不可能完全独立于其他自变量而存在,因此所要侧重的重点则改为对影响程度较大的自变量进行研究。在ISM模型的基础之上,研究、分析了影响工程造价的相关参数,这类参数的相互之间影响程度较小,不会产生严重的制约效果,因此在很大程度上保证了工程造价计算的精确性和稳定性,具有良好的估算效果,方便人们在工程前期使用。由于建筑各类设计参数之间的相互变化会影响到工程造价的结果,因此可以利用这一特点对参数进行系统化的分层,得出结论为处在越高层级的设计参数对工程造价的影响就会越高[5]。而经过实践证明,在整个住宅建筑施工中,包括建筑外观、建筑高度、建筑规模在内的很多参数都会对工程的施工成本造成较大的影响。结合解释结构模型与多元回归分析法进行参数的确定,通过实例证明,自变量的选择要想保证科学合理,就必须选择对工程造价影响大的参数,并且在估算模型上也要进行选择,这样做的目的是为了确保工程估价的精准度和效率。在进行参数确定时,需要对“解释结构模型+多元回归分析模型”中所有参数进行全面的分析、研究,明确参数之间的联系和不同,分清楚参数之间的先后关系和主次地位,整体设计原则也要符合客观实际。
(2)工业建筑采用滑模工艺,能够减少模板及其支撑等周转材料的投入数量,便于合理安排材料加工及安装时间,便于施工现场空间上的合理利用,减少劳务操作人员,并能够缩短施工时间。
2柔性滑模系统
2.1柔性滑模系统组成
柔性滑模系统一般由模板及其提升支撑系统、液压动力系统及操作平台系统组成。模板系统又包括模板、围卷和提升架等。
2.2柔性滑模提升支撑形式
目前,柔性滑模采用的提升支撑形式主要有开字架和简易门架两种形式。开字架,内平台为不拉结中空式,一般适用于构筑物为矩形平面布置形式。简易门架,内平台采用辐射梁拉杆,一般适用于构筑物为圆形平面布置形式。
2.3柔性滑模系统操作平台
(1)柔性滑模系统操作平台在滑模施工过程中,作为主要施工操作面,承受施工人员、施工材料、液压控制台、电焊机、振动棒、手推车、施工工器具、施工安全防护设施、消防设施、季节性施工保温设施等施工荷载及其自身的质量,同时也承受施工过程中操作平台上设置的垂直运输设备运转时的额定附加荷载、卸料对操作平台产生的冲击力、向模板内倾倒混凝土时混凝土对模板的冲击力和侧压力、模板滑动时混凝土与模板之间的摩阻力以及风荷载等动荷载。
(2)柔性滑模操作平台宽度,一般根据构筑物规模、截面形式、施工组织方式等因素确定,但操作平台结构必须保证足够强度、刚度和稳定性,才能满足结构施工和安全施工要求。柔性滑模操作平台宽度可对称设置,也可不对称设置。
(3)柔性滑模操作平台支撑,采用型钢或钢管安装成三角桁架或三角悬挑架型式,根据建筑物的截面形式,平行或环向布置。和刚性滑模相比,构造相对简易,安装便捷,多采用角钢或钢管为材料,安装成桁架或格构式挑架形式,可以作为操作平台的支撑,其安装宽度及质量则是影响柔性滑模系统的整体平衡的重要因素。
3操作平台宽度对结构施工的影响
3.1有利影响
3.1.1对操作平台质量影响
操作平台宽度较小时,能够减轻操作平台自质量,减少千斤顶和管路数量,可以选择额定压力较小的控制台。操作平台宽度较大则系统自稳性相对较好。
3.1.2对施工操作影响操作平台宽度较小时,杆件尺寸较小,便于加工和组装;操作平台宽度较大,杆件尺寸较大,但施工操作空间大,便于材料的贮存和运输。
3.1.3对施工质量控制影响
操作平台宽度较小,模板滑升过程中,由于质量轻,平台系统变形易调控,根据每班次平台水平度、结构垂直度的观测数据进行分析,发现垂直、偏扭现象后可以及时调整。操作平台宽度较大,自质量大,变形小。
3.1.4对工程成本控制影响
操作平台宽度较小,不仅节约了机具材料和人工,而且还缩短了施工时间,对工程成本控制起到良好的效果。
3.2不利影响
3.2.1对操作平台水平度的影响
柔性操作平台,特别是井塔类矩形截面构筑物,平台宽度较小,由于自身质量轻,极易受堆料不均的影响,造成操作平台的不平衡。平台宽度较大,平台自身质量较重,自平衡能力相对较好,但对矩形截面构筑物,平台宽度较大时,四角外挑较宽,支撑结构受力在角部发生变化,矩形构筑物4个墙角成为模板滑升的薄弱点,模板滑升过程中,常会出现墙角部位拉裂现象,影响了工程质量,外观成形也不好。
3.2.2对结构垂直、偏扭的影响
柔性操作平台宽度较小,若受到平台面堆料不均、混凝土下料不均匀、振捣不规范或风载等的影响,平台水平度出现偏差,支撑杆受压不均,爬升高度不一致,导致操作平台偏扭,结构出现垂直偏差;严重时还会造成局部支撑杆失稳,甚至发生坍塌事故。平台宽度较大,平台自身质量较重,出现垂直、偏扭等偏差时,不易及时调整,需分层次调整平台的水平度,才能保证支撑杆受力均匀顶升;同时平台宽度较大时,平台自身构件增大,千斤顶和管路数量增多,施工质量和安全生产的控制难度相应增大。
4对操作平台造成的不利影响控制措施
4.1滑模操作平台水平度控制
(1)当操作平台宽度较小时,沿构筑物周长方向连续对称设置型钢,适当增加平台的自身质量。
(2)当操作平台宽度较大时,矩形截面平台在四角对称增加型钢支撑,将外操作平台内外边缘进行拉结,促使滑模过程中外操作平台内外边缘的同步滑升。
(3)合理安排内外操作平台上堆放的物品,在满足施工要求的条件下,尽量均匀堆放各种材料和机具,保证操作平台的水平度。
(4)砼采用泵送或塔吊提料时,应在操作平台上合理布置集中料斗的位置,手推车的行驶路线、砼下料和浇筑要对称,保证操作平台上施工荷载的平衡。
4.2滑模操作平台偏扭控制
操作平台宽度过小、过大,滑模都会出现平台偏扭现象,宽度过小时更易出现偏扭。滑模过程中做好平台水平度观测,分析平台产生偏扭的原因。平台发生偏差后,应调节平台水平度,对平台上的材料、设备、工器具等进行整理,对称进行砼浇筑,保持平台质量的均衡。分层次调平支撑杆限位器高度,增加平台水平度的观测次数,逐步使平台水平度达到要求。
4.3结构的垂直度控制
滑模过程中发生操作平台偏扭时,常伴随着结构垂直偏差的出现。垂直偏差不大时,常采用调整千斤顶行程进行纠偏,使操作平台逐步趋向水平;垂直偏差较大时,一般使用手拉葫芦施加外力对平台进行反向牵引,直到建筑结构垂直度达到正常水平。
5成功案例
圆形截面构筑物(煤仓类):山西华晋焦煤集团韩咀原煤仓工程(2联体),单仓直径22m;内蒙古马泰壕原煤仓工程,单仓直径22m;内蒙古朱家峁矿原煤仓,单仓直径22m。上述煤仓类工程均采用内平台宽度为1.8m、外平台宽度为2.0m的柔性滑模操作平台。矩形截面构筑物:甘肃金昌某主井井塔工程,框架剪力墙结构,平面轴线尺寸16.0m×21.0m,建筑总高度86.2m,共计10层;甘肃金昌龙首贫矿副井井塔工程,框架剪力墙结构,工程轴线尺寸为17.0m×14.0m,建筑总高度51m,共计6层;山东莱新铁矿副井井塔工程,框架剪力墙结构,平面轴线尺寸为18.0m×16.0m,檐口高度为44.8m,建筑高度5层,局部6层。上述塔类工程均采用内平台宽度为2.0m、外平台宽度为2.2m的柔性滑模操作平台。上述工程柔性滑模平台宽度的选择,既满足了施工空间,也保证了滑模系统的整体稳定性及工程质量和施工安全。
2建筑设计模型转化为结构设计模型
在建筑工程中二维图形应用较多,设计人员主要进行结构图和施工图的设计,采用图元识别方法获取建筑轴网及定位墙、柱等,采用IFC文件导出,基于结构的设计模型和孔壁的实体的对结构墙体进行描述。材料相关和实体相关能够建造墙体定义的多材料模型,基于识别材料实体实现本构模型的建立,除了实体墙如此建立之外,结构也可以用这种方法定义。
3结构设计模型转化为结构分析模型
结构设计完成之后就要进行结构分析,国际上常用的结构析软件结构一般采用的都是公开数据的模型格式,这样方法将国产简化了很多,但这种转化的前提是基于不同分析软件之间,而不是实现设计模型到分析模型的转化。为此,需要遍历结构设计模型,利用软件导出结构构件信息写入模型文件;然后定义模型的约束条件以及荷载的情况;然后把设计结果导出到数据库;最后将构件配筋信息及其结构构件建立相对比较完整结构施工图的设计模型。
4建筑结构施工图的设计模型转化
为工程算量模型由施工图设计形成结构施工图设计模式,包括工程模型中的所有计算的信息量算工程量直接的数据源的模式,国内计数的当前应用的三维图形软件的数量尚未实现,现在的国际金融公司(IFC)等国际标准进行数据交换的支持,实现模型数据转换功能只能通过开发了一个专用接口。基于更广泛的取样的国内应用广联达钢筋软件,XML映射模型的结构模型的方式进入施工图设计的工程计算该模型的量来实现的。元语言定义了XML语言提供的XML模式的机制,可以通过文档类型定义有两种方法来定义和模型模板用于XML模式定义。可以以替代方式的文档类型定义文件的方式相比,由于元语言的具有XML文档法律的一致性、可扩展性、灵活的出来数据等优点,所以利用现替代文档类型方式定义XML文档类型的模型模板。
2采集点云数据
为了完整采集古建筑物的建筑信息,通常需要分站多角度进行扫描。首先根据需要扫描的范围和三维激光扫描仪的扫描参数,设计扫描控制网,布设扫描站点时应有利于减少测量误差,提高点云数据拼接的质量。为确保整体扫描质量,相邻两站之间数据应有30%左右的重合度,同时相邻两站间至少应有三个不同线的公共靶标。实施扫描过程中,在设定站点上架设三维激光扫描仪时,应注意避免扫描激光束与物体间夹角过小而造成扫描精度下降,同时扫描仪不要被其他物体过度遮挡。扫描时应根据扫描对象的复杂度选择不同的扫描参数,如表面细节丰富的物体应采用高分辨率扫描,表面特征平滑物体宜采用低分辨率扫描,以加快扫描速度。因目前三维激光扫描仪还没有办法直接获取颜色信息,每站扫描结束后,可根据需要对扫描区域进行拍照存档,以获取物体的色彩和纹理信息。
3点云拼接
随着测量距离的增加,三维激光扫描的扫描精度受环境影响呈下降趋势,因此复杂的建筑物需要多站扫描,每站扫描数据均是独立坐标,需要进行拼接,统一到同一坐标系。拼接时,以其中任一站作为控制网坐标的基准点云,其余测站点云与基准点云两两配准。为了提高拼接精度,通常采用靶标拼接,点云间的拼接精度可达1毫米,如图1所示。但由于扫描过程中可能出现靶标遮拦或测量角度过大的情况,无法使用靶标进行拼接,此时需要利用两站点云中公共区域的相同特征点配准。
4三维模型的建立
利用三维点云重构三维模型,通常有两种方法:(1)模型匹配法:此方法自动程度较高,从点云抽取出模型部分,与常用的三维模型组件(如柱体、锥体、长方体等)进行自动匹配处理,达到建立三维模型的目的。这种自动匹配方法适用于具有规则形状的对象。(2)古建筑多为不规则形状,需要先对点云数据进行去噪、重采样等处理,生成高精度三角网格模型,利用Nurbs等拟合算法生成建筑的曲面模型。本方法可生成高精度模型。最后利用映射功能可将照片中的颜色、纹理信息投影至三维点云数据上,生成具有真实纹理的三维模型。
5三维模型的修复
古建筑因为年代久远,会造成部分损坏,利用三维网格模型,根据周围网格信息,对其进行修复、调整,可以得到较准确的数字模型。由于古建筑物结构复杂、表现特征丰富,难以实现网格的自动化修补。针对点云数据的修复主要采用两种方法:(1)如果损坏出现在较平滑区域,如墙体时,可采用线性插值法填补缺乏数据;(2)如果损坏出现在非平面区域,首先根据周围网格信息计算缺失部分的曲率,再利用二次曲面插值方法进行插值,并使用周围点的颜色信息采用双三次插值算法计算新生成网格点的颜色信息,达到较好的修复效果。