计算机工程导论论文模板(10篇)

时间:2023-04-26 16:10:35

导言:作为写作爱好者,不可错过为您精心挑选的10篇计算机工程导论论文,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

计算机工程导论论文

篇1

计算机工程与科学学院

XX年7月7日

教育与工作经历

教育

1994.9-1998.7 上海大学机械自动化系 本科

1998.9-XX.3 上海大学机械自动化系 硕士

XX.3-XX.9 上海交通大学图像处理与模式 识别研究所 博士

工作

XX.9-今 上海大学计算机学院 讲师

学术活动

兼职

中国计算机学会yocsef上海分坛学术秘书委员(XX.5~今)

ieee会员,ieee计算机分会会员(XX.1~今)

上海市计算机学会会员(XX.1~今)

主持中国机器学习邮件列表(XX.1~今)

活动

机器学习及其挑战研讨会,上海,参与,XX.11

第十届中国机器学习会议,上海,口头报告,XX.10

环太平洋人工智能大会,aucland,口头报告,XX.8

国际神经网络大会,大连,展板,XX.8

神经网络及其应用研讨会,北京,大会报告,XX.3

科研经历

参与国家自然科学基金四项

基于数据挖掘和综合模型的脑磁共振图像分析和诊断(30170274)已结题

面向钢铁生产的数据挖掘和数据融合信息处理平台及应用(50174038)已结题

纳米氧化铝材料设计的支持向量机方法 (20373040)进展顺利

分布式概念格数学模型及算法研究 (60275022)进展顺利

参与上海市高校网格技术e研究院一期项目

数据挖掘在生物医学网格中的应用 (XX.7-XX.6)

主持软件新技术国家重点实验室(南京大学)开放课题一项

机器学习中冗余特征问题的研究(XX.5-XX.6)

已申请国家自然科学基金

合作者:化学系 陆文聪教授

已申请上海市教委科技发展基金

正在申请上海市高校网格技术e研究院二期项目

研究方向

特征选择

结合学习器的研究

支持向量机

集成学习

多任务学习

偏最小二乘法

化学计量学

多元校正

药物构效关系

jcics,nsfc

学术成果

论文20余篇(第一作者9篇以上)

sci 收录5篇,其中第一作者4篇

ei收录10篇,其中第一作者3篇

其它核心杂志,第一作者5篇

sci收录源杂志录用2篇,正在出版

译著一本(第一作者)

支持向量机导论,电子工业出版社出版,XX.3

专著一本(算法部分,五万字以上)

support vector machine in chemistry,singapore, world scientific publishing company,XX.9

第一作者论文

************************************

学院工作

人工智能、软件工程等专业课

学术报告(二次)

计算机学院一次

化学系一次

本科生班主任(03级10班),优秀生导师(5)

****************

其它条件

全国大学英语等级考试cet-6

合格,1997.6

上海市职称计算机能力考试

合格,XX.4

篇2

中图分类号:G642文献标识码:B

1引言

软件学院软件工程硕士的培养目标是培养高层次、应用型人才,针对这个目标,其教学实施应着重体现出以下两个差异性:

(1) 软件工程学科领域和计算机学科领域间专业设置的差异性,这个差异应能够很好地体现培养应用型人才的目的;

(2) 工程硕士课程和软件学院本科课程的差异性,这个差异应能够很好地体现培养高层次人才的目的。

目前国内软件学院软件工程学科和传统的计算机科学学科在课程设置上差异还不显著,工程硕士的培养方案中甚至部分课程只是本科阶段的重复。虽然大都开始强调学生的软件项目实践,但普遍缺乏过程管理。本文在对IEEE的软件工程知识体系进行深入学习的基础上,针对软件学院软件工程硕士提出了实现开放式教学体系的教学改革方案。

2软件工程知识体系

2004版SWEBOK将整个软件工程知识体系分为11个知识领域(Knowledge Area,KA),其中前5个知识领域是按软件开发的生命期诸阶段排列的,即软件需求、软件设计、软件构造、软件测试和软件维护;后6个知识领域是软件开发中的支撑性或者辅的方面,可能覆盖软件开发的多个阶段,包括软件配置管理、软件工程管理、软件工程过程、软件工程工具与方法、软件质量、相关学科知识领域。这些知识领域SWEBOK并没有重新系统规定,而是直接套用已经成型的各领域知识体系,因此不可避免地存在重叠和不匹配。

在SWEBOK的基础上,IEEE与ACM又共同拟定了CCSE。其中的核心部分是软件工程教育知识(SEEK)。SEEK由十个知识领域组成,包括:计算机基础(CMP)、数学和工程学基础(FND)、职业实践(PRF)、软件建模与分析(MAA)、软件设计(DES)、软件验证(VAV)、软件演化(EVL)、软件过程(PRO)、软件质量(QUA)、软件管理(MGT)。

可以看出,SEEK和SWEBOK基本内容是相近的。总的来说,二者都是包含了软件工程核心类的知识领域、基础类或前导类的知识领域,以及其他相关领域的知识。

3高等教育教学改革研究状况

目前国内关于高等教育教学改革的论文很多,如翁敬农、刘云等在软件学院实践教学体系的内容与规划中提出了“一个目标”、“两种途径”、“三大环节”、以及“四级台阶”的具体步骤。王移芝、林艳琴提出基于“两段教学”的计算机基础课程的教学体系框架。谢芳清、闫大顺提出了以素质教育为目标的实践教学体系。王浩、胡学钢等提出计算机科学与技术专业实践教学体系的总体研究与建设。王志英以国家实验教学示范中心为例,提出实践是综合能力培养的基础,并以此构建计算机科学与技术专业实践教学体系。董玮、邱建华等以专业课“程序设计基础(C语言)”为例给出了建设实践教学体系的实践探索。然而目前还没有检索到专门研究软件学院工程硕士教学改革的论文。无论是从传统计算机科学与技术专业与软件学院软件工程专业的区别,还是本科生与研究生的区别来看,针对软件学院工程硕士的教学改革研究都是十分有必要的,同时也是迫切的。

4工程硕士的课程体系设计策略

我们以IEEE SWEBOK和CC2004SE的知识体系为主体,结合中国软件产业以及本院的具体实际情况,设计了中国科学技术大学软件学院软件工程专业的知识体系,作为我院工程硕士课程设置和教学计划实施的依据。以SEEK为基础,我们对软件工程的课程设置进行规划。整个课程设置可以分为三个层次,即导论性课程、软件工程核心课程和其他课程。如图1所示,该知识体系定义了7个知识体系子类。计算机基础和数学和工程学基础属于导论性课程、其他课程包含了职业实践、领域课程、软件工具、工程实践等四个子类。

其中计算机基础定义了软件工程作为计算学科所必需包含的计算科学基础以支持软件产品的设计与建设;数学与工程学基础提供了软件产品获得所需属性的理论和科学基础;职业实践则聚焦于软件工程师以职业行为从事软件工程实践所必需具备的知识、技能和态度;软件工程核心课程应该包含软件开发生命周期所涉及到的主要知识领域;领域课程包含了对于某个特定领域软件工程师应该接受的特定教育或经验;软件工具定义了从事软件工作所必需掌握的当前主流工具与软件产品等;工程实践则是学生使用所学到的知识从事实际开发活动,提供动手能力的重要环节。

对于工程硕士来说,大部分同学经过计算机本科专业的学习,已经具备了初步的计算机基础以及数学与工程学基础,因此目前其课程体系建设如图2所示,重点是完成软件工程核心课程教学,并结合IT界的最新技术趋势设计相关领域课程。教学改革的核心是如何设计软件工程的核心课程,并指导学生熟练掌握相应的软件工具,强化他们的实践动手能力。

5工程硕士开放式教学体系建设

对于如何设计软件工程的核心课程,我们的主要思路是打破原先各子知识体系间的界线,围绕专业培养目标,结合学生的工程实践,引入课程组的概念,实现一个完整的开放式教学体系。如图3所示,整个开放式学习体系包含三个部分:

(1) 设计课程组:在理论环节采用课程组的概念,集中讲授较高层次的、符合硕士生水平的软件工程的某些重要环节;

(2) 开设实践教学环节:在实践教学中采用做中学(Learning by Doing或LBD)理念,由指导教师讲述软件工具的具体操作过程,同学实际动手学习;

(3) 强化工程实践:在工程实践中由学生自主选题,并将LBD中讲述的工具在项目整个生命周期中贯穿使用。

5.1设计 课程组

目前我院开设的高级软件工程和本科的软件工程课程内容并没有太大差别,对于软件工程的各个环节面面俱到,但又都比较浅显,对于工程硕士的培养显然是不合适的。因此我们设计了软件工程课程组的理念,初步设计了以下课程:

(1)“软件开发管理”(Managing Software Development)

(2)“软件系统架构”(Architectures for Software Systems)

第一门课程主要针对以后立志从事软件工程管理方向的同学,课程针对IT项目集中阐述如何实现风险、资金、工期等各方面的管理;第二门课程主要针对以后立志从事软件高级开发方向的同学,课程主要讲述复杂软件系统架构层上的设计,介绍目前通用的软件系统结构、设计技术以及实现这些结构的模型、表述方法等。这两门课程对于软件工程硕士应该至少必修一门。除了这两门课程,其他软件工程类的课程包括了设计模式、软件测试、语言类课程如J2EE、.NET等等,学生可根据自己的实际情况进行选修。

5.2开设实践教学

针对该课程组,我们开设了实践教学环节,采用做中学理念,由指导教师(可以由助教担任)根据事先确定的主题,选用具体工具讲述如何使用该工具完成项目开发的某具体环节,工具涵盖了项目管理、架构设计文档化以及测试等软件项目开发的主要方面。

对于软件工具的选择,有两种思路。一种方法是对软件工程的不同环节分别选择不同工具,例如项目管理选Project、开发文档化选Rational、测试再选别的工具这样来做,但结构分散,不利于整体化考虑。另一种是采用套件,完成项目开发全程的所有操作,目前我们选择了两种套件,一是微软的VSTS,该套件和微软的Visual Studio开发平台绑定,适合学习.net开发框架的同学;另一种是IBM的RSA,该套件和Eclipse开发平台绑定,适合选择开源J2EE开发框架的同学。

5.3强化工程实践

大多数的软件学院目前都开设了专门的工程实践环节,但实际的效果并不尽如人意。因此我们将工程实践环节也纳入到开放式学习体系中,以前面所说的理论以及实践教学环节来指导学生更好地高质量完成整个工程实践。

从教学方法上,工程实践应尽可能地贴近现实项目,除了常见的软件工程文档,我们还要求学生提交过程管理类文档(软件开发合同、会议记录、工作日程记录、合同执行报告:财务报告和开发过程报告、个人总结、小组总结等)。

从技术上,学生可以自由选题,也可参考工程实践题库中的选题。选题涉及所有领域课程包含的内容。要求学生必须采用实践教学环节中介绍的工具全程介入项目开发的各个阶段。学院设立专门的工程实践网站提供学生选题及交流,以及指导教师的监督。

从教学形式上,则注重如何实现应用型软件人才的核心能力分析与培养,要求学生运用职业实践子知识体系中的相应内容,锻炼学生的口头表达能力、书面表达能力等。通过学生的开题演讲、采用各种工具完成相应的项目文档、结题答辩等环节来实现学生职业素质的培养。

从实践效果评价上,我们制定了一系列的成绩考核方法、管理考核信息、分析考核结果、评价教学质量等措施,实现完整的考核体系。

6结论

软件工程专业学生的培养,在学科教育与培养面向市场需求的人才方面有着事实上的矛盾。软件学院现有的实践教学体系存在着专业课程设置定位不准确、课程实验师资不足、实验教学内容质量不高、实验指导和管理落后等问题。根据软件工程专业教学所面临的挑战,在充分调研IEEE SWEBOK和CC2004SE知识体系的基础上,针对软件学院的工程硕士,我们提出了软件工程硕士开放式教学体系的建设,围绕专业培养目标,结合学生的工程实践,引入课程组的概念,制定了一套较为完整的开放式实践教学实施计划。

参考文献 :

[1] Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering [EB/OL]. [2004-08-25]. /ccse/SE2004Volume.pdf.

[2] 翁敬农,刘云. 北航软件学院本科生实践教学体系的研究与实践[J]. 计算机教育,2007(11).

[3] 王移芝,林艳琴.“计算机基础课程”实践教学体系的研究与实践[J]. 实践教学,2008(8).

[4] 谢芳清,闫大顺. 计算机工程专业实践教学体系的研究[J]. 中国科技信息,2008(9).

篇3

伊利诺伊大学香槟分校是“十大”盟校(The Big Ten)之一,建立于1867年,一直是全美最优秀的大学之一,理工科在“十大”中更是排名第一。该大学排名全美前10名的研究生专业有物理学、化学、计算机科学、心理学、教育学、工程学、会计学、大众传播学、图书馆科学、音乐、数论、代数、逻辑学、微生物学。工程学院在全美闻名遐迩,其电子工程、计算机工程、土木工程、材料科学与工程、机械工程、原子工程、农业工程、环境工程等系科都排在全美前五位,化学工程、航空航天工程排在全美前十位。

该校的教授和校友有不少知名人士,比如历史上第一次在同一领域(固体物理学)中两次获得诺贝尔物理学奖的发明了晶体管并提出了低温超导理论(BCS理论)的巴丁教授;哈肯教授与阿佩尔合作在计算机完成了四色定理的证明;网络神童马克・安德森(Mark Anderson)在伊利诺伊大学厄巴纳-香槟分校设计了因特网浏览器软件Mosaic及Netscape;身价一度超过比尔・盖茨成为世界首富的甲骨文公司(Oracle)董事长兼首席执官拉里・埃里森(Larry Ellison)曾在伊利诺大学香槟分校读书;AMD创始人兼首席执官杰里・桑德斯(Jerry Sanders)是伊利诺大学香槟分校电子工程学士;通用电气(GE)董事长兼首席执官杰克・韦尔奇(Jeck Welch)是伊利诺大学香槟分校化工博士。截至2003年,该大学共有二十位教授及校友荣获过诺贝尔奖,两位校友荣获过图灵奖,一位教授荣获过菲尔兹奖,二十一位教授及校友荣获过普利策奖,十一位教授荣获过美国国家科学奖章,现任教授中有两位普利策奖得主、二十六位美国国家科学院院士、二十九位美国国家工程院院士。

该校的计算机系创建于1972年,多年来在全美排名一直保持在Top5之内,一些事实也无可争辩地捍卫着这一地位:世界上最早的计算机Eniac诞生在这里;世界上第一个网络浏览器Mosaic诞生在这里;其毕业生所建立的公司(Netscape、YouTube、PayPal、Lotus和Sieble Systems)在计算机界赫赫有名;其国家超级计算机应用中心(NCSA)是全美国五大计算机研究中心之一。

课程设置

该校计算机系的课程设置乍一看上去和国内大学似乎没有什么大的区别。对本科生来说,“1”开头的系列基础课程,主要是包括计算机导论,离散数学等计算机基础课程;“2”开头的是更专业一些的课程,比如类似国内操作系统的System Programming、计算机体系结构和数据结构;“3”开头的目前仅有两门课:397 Individual Study和398 Special Topics in CS,主要是扩展学生的学习兴趣和能力。研究生的课程都是以“4”开头的专业基础课程和以“5”开头的专业课程,其中以598开头的为前沿学科讨论课程。学生也分为硕士和博士,但对硕士的要求不高,所以很多直接跟随教授做研究的学生都是博士。课程的要求也是作业、项目和最后的考试。但实质上,由于管理、研究水平等原因,这些设置还是有所不同。

该系目前提供三种类型的本科学位,一种是五年的本科和硕士生打通的学位,五年毕业后取得本科和硕士两个学位;另两种是计算机科学本科学位和软件工程学位。每一种根据对学生都有不同的学分和课程要求。比如对于第一种学位,要求选够120学分,其中理论(473 Algorithms或者475 Formal Models of Computation)、结构(431 Embedded Sys Arch and Software或者433 Computer System Organization)和软件(421 Programming Lang and Compilers或422 Programming Language Design或423 Operating Systems Design)必须按研究生学分选修。

研究生分论文和非论文两类。论文学位中和国内一样分硕士生和博士生。普通论文硕士要求28个课程学分和4个论文学分。博士生的总学分要求是96个课程学分,包括课程学分和论文学分,其中至少要求32个论文学分;学士直读的博士生要求96个课程学分。目前注册的研究生人数近450人。

从课程设置方面看,该系的课程分得很细,从和国内相类似的专业基础课,比如计算机导论、数据结构、软件体系结构、数据库系统、操作系统、软件工程;到很专业的课程,比如算法、密码学导论、程序验证、自主信息系统、形式化软件开发方法以及以598打头的带有主讲教师名字代号的扩展课程。尤其以研究生的课程设置最为细致。数一下他们的课程可以发现,学生有很多方向可以选择,本科生的课程多达77门,研究生的更是多达102门。当然有不少课程是两者都可以选修的。一般一门课程3~4个学分(根据是否完成Project区分),每周两次,一次75分钟。

讲授该课程的教师基本上都是该校专门从事这一方面研究的权威,有着多年的研究经验。比如我所选修的“程序验证”课程属于该系的研究生基础理论课程,任课教师Meseguer教授已经在这方面从事了近三十年的研究,而且目前也是这方面的权威。“数据挖掘”课程的教师是Han教授,也是数据挖掘的世界级权威。这保证了任课教师在讲授课程的同时贯穿了该课程在学科中的领先技术和知识。同时,比较明显的一点是课程结合实际动手的项目比较紧密。比如我所选修的“程序验证”课程虽然有很强的数学背景,介绍了等式逻辑和重写逻辑,但该课程辅以该实验室的Maude系统作为实践工具,所以所介绍的理论可以实实在在地在计算机上看到其作用和结果。“程序设计原理”这门课也使用了Maude系统作为高级程序语言的规格说明语言,这立刻就让本来很抽象的两门课有了感性认识的平台,学生可以立刻通过工具感受逻辑在计算机中的作用,可以使用该工具立刻设计出自己的新的程序语言。相比而言,国内类似的课程都缺乏相应的辅助工具,学生学理论不知道怎样用到计算机中,学程序语言设计多是看看别人设计的语言是怎样的,难以在短时间内自己动手设计一个。

开放性

这半年中我感受最深的当数该系信息资源的开放性。从课程上来说,每学期的每一门课程都能在系里的网络上找到相应的讲义、作业、项目以及阅读的参考资料。和课程相对应,每位教授都开设一个甚至多个专题讨论会,这些讨论会都有相应的MailList可以让学生或是研究人员加入。根据我的研究兴趣,我参加了Maude、Runtime Verification以及软件工程讨论小组。每一个讨论组由教授主持每周定时讨论一至两个小时,同时维护一个网站公布每次讨论的主题或是论文。所以,和国内的例会不同,这些讨论会除了教授自己的学生,往往会有一些感兴趣的学生或是像我这样访问学者参加。通过这样的方式,也有教授的介绍,我和目前我感兴趣的几个教授都交流过,他们都很细致地介绍自己的研究,包括介绍实验室开发的软件工具。而这些软件工具都放在他们自己实验室的网站上,有的是可以免费使用的,有的甚至是源码公开的,同时有他们公开发表的论文。有两位教授的实验室研究内容我比较感兴趣,但他们还没有源码,经过两次讨论后,他们都表示可以提供源码以便进行进一步的研究。同时,我找他们的学生询问相关工具的一些细节技术,他们都详细解答,有时甚至花费两个多小时。

其实这一点在我联系访问的Host Professor时就感受颇深:每一位教授都可以在他们的主页上找到非常详细的资料,他们的研究概况、发表的论文、教授的课程、所做的研究项目、学生、联系方式等等。对比国内同行,很多都没有自己的主页,有一些由于单位组织倒是有,但所找到的基本上都是仅仅一页的概述而已。这导致国内很多信息无法交流。当然,我想这也有一点客观原因,就该系的项目情况而言,纵向课题的资助就已经足够教授们完成研究,所以他们并不在乎把研究成果转化为实际产品,而是公开这些研究成果,让其他人尽量多地使用,让其他人或公司完成产品的转化工作。反之,国内很难找到根据研究成果完成的软件工具,因为一般如果做到工具,都希望更进一步做到产品化,能以此争取到横向课题的支持,以便弥补纵向课题经费的不足。由于横向课题讲求实用,有很多非前沿性,非研究性质的工作需要完成,直接影响了研究的深度。

开放性还反映在该系的研究领域交叉之中。该系的研究领域分为:算法和理论;人工智能;体系结构、并行计算机和系统;复杂生物及计算生物;数据库及信息系统;图形图像和人机界面;系统和网络;程序语言、形式化系统和软件工程;以及科学计算。但在我所参加的讨论中,经常可以看到多个实验室的教师和学生相互参与讨论。比如我上上周参加的形式化小组的讨论会上,就有体系结构实验室的学生;上一周的软件工程讨论会上,报告者是一个数据库实验室的学生,因为他的工作内容涉及到用数据挖掘和统计的方法进行软件调试,同时与会的还有该实验室的两位教授以及其他实验室的学生。同一个研究领域内的合作就更多,比如我所访问的教授专注于程序语言、形式化系统和软件工程领域,他自己的实验室和另外该领域的另一位教授Rosu的实验室相连,两人合作过多篇文章,Rosu的程序设计语言以及形式化软件开发方法课程中应用了Prof. Meseguer的形式化工具,甚至有一些讲义。我大致看过该系教授们的简历,非常少有本校毕业的学生,这说明相关合作并不是以前师生关系的继续。同时,这里常常有一些前沿讲座是由斯坦福、剑桥、伯克利和爱丁堡大学的教授和博士生开设(应聘的博士生都要公开做一个面试形式的讲座),也有微软和IBM这样的大公司的研究院或是一些著名公司的学者的讲座,这些讲座频率很高,常常可以在该系每周的日历上看到这些通知。

其实,访问学者这样的一个制度本身就是很开放的。半年一年的互访,带来了很多交互的信息。相比而言,国内有不少实验室虽然也设有客座教授、开放项目等,但是很难落到实处,很难有人真正是在实验室里交流这么长时间,更多的仅仅是每年几次的互访而已。不过,为每一位访问学者提供一间宽敞明亮的办公室,提供所有办公服务恐怕也是目前高校难以提供的紧缺资源。

风气

另一个让我感受比较深的地方是该系的学习风气。由于课程设置很细,很多课程选课的人并不多,一二十个学生的课堂是很常见的,有的课程仅仅4~5个学生。当然也有上百人的大课,这一般是本科和研究生共同选修的课程。我上学期选修的program verification课程共有12个学生,这学期选修的formal method software development也不过十七八个学生。但给我印象很深的一点是,从开学到学期末,学生数目基本上保持不变,可见很少有人缺课。上课的气氛很活跃,课堂上几乎没有见过学生打瞌睡,讲课中间学生随时提问,教师也是当时就回答。对于教师提出的问题,也几乎没有冷场没有人回答的情况,当然也不是每一次回答都正确。相比而言,国内大学目前缺课的现象相当严重,有的必修课程都有三分之一缺课的,选修课就更不用说了。这当然有教师的原因,目前教学普遍不受重视,所有职称的评定基本上由科研决定,这从前年上海交大的倍受学生欢迎的教师始终仅仅是一个讲师就可见一斑。而教学显然是很需要花费时间和精力的。

也不是说这里的教授上课都很好,也有底下学生反映讲课不好的,但无论是从教师的授课还是学生的学习,你可以明显感受到两个字:认真。研究生自己决定上什么课,一个学期一般也就选修2~3门。相比而言,国内硕士研究生一学期的课程多达七八门,其中不少都是必须选修的,学生的学习相对比较被动,很多学生就为拿学分,课堂上打瞌睡,学Tofel和GRE,复习考研的学生大有人在,课堂上很少看到学生主动提问。在我的一门电子商务的选修课上我就问过学生,他们是否愿意做我以项目的方式提供的考试,很多学生说很有兴趣,可是却没有时间。必修课和学位课的项目、作业已经让他们穷于应付,还要复习考研、考Tofel和GRE,实在是心有余而力不足。为此我还调整过项目完成时间,允许学生在第二个学期开学时交,可以看到效果要好一些,有一些学生利用假期完成了自己感兴趣的内容。可是随着教学管理的正规化,要求课程结束后一周内必须给成绩,刚开放一些的项目只好又恢复原状。

篇4

伊利诺伊大学是“莫里尔法案”(由林肯总统在1862年签署)生效最初十年期间通过公用土地赠与方式创立的全美37所高校之一,于1868年正式开学。其座落于美国伊利诺伊州南部安静幽雅的姊妹城镇-厄巴纳和香槟,占地1458英亩,拥有272座主要建筑。此外,学校还拥有一个机场、433英亩森林保留地以及占地1765英亩的阿勒顿公园。

经过近140年的发展,伊利诺依大学已经是全美国最好的大学之一,位居全美公立大学的前五位。该校拥有仅次于哈佛大学和耶鲁大学的美国第三大大学图书馆,图书资料达一千七百多万册。此外,学校还有自然史博物馆、世界传统文化博物馆以及一个美术馆和一个表演艺术中心。该校能提供一百五十多个专业方向领域的四千多门课程,每年授予一万五千多个学位,其中每年授予的博士学位获得者人数稳居全美前五名。目前,该校拥有近两千名教授和四万余名学生。其中,学生由近三万名大学生和一万一千余名研究生组成,含外国留学生近五千名。

伊利诺伊大学以理工科尤称翘楚,稳居全美大学排名前六位。进一步讲,有十余个本科专业位列全美前二十五名,其中会计学、材料学、农业工程、土木工程、环境工程、计算机科学、核工程、机械工程等并位居前五位;有超过六十多个研究生专业位列全美前三十名,其中图书馆学、土木工程、材料学、微生物学、计算机科学、计算机工程、无机化学、分析化学、冷凝物质、逻辑学、数论等并高居前五位。该校共有11位教师及校友荣获过诺贝尔奖,18位教师及校友荣获过普利策奖。其中,该校教授巴丁因发明晶体管和提出低温超导理论而成为历史上在同一领域(固体物理学)两次获得诺贝尔物理学奖的第一人。另外,尼龙的发明者卡罗瑟斯、集成电路的发明者杰克科勒比、第78届奥斯卡金像奖最佳导演获得者李安等均为该校毕业生,我国前著名科学家竺可桢早年也曾在该校攻读农学。

非常幸运和特别值得一提的是,此番留学团队组成成员的研究兴趣或主攻方向均属伊利诺伊大学的优势学科方向,这为各位老师的学习和提高创造了非常重要的基础和前提条件,同时也从侧面反映了国家教育部留学基金委的工作非常到位和值得肯定。

2计算机学科课程设置的比较

我是北京交通大学计算机学院的一名专业基础课程任课教师,主要讲授本科“操作系统”和研究生“安全操作系统”,有幸被分派到久负盛名的伊利诺伊大学计算机科学系进行访问学习。网络神童马克・安德森曾在那里设计了互联网浏览器软件Mosaic及Netscape,著名的微软IE浏览器至今还是构建在Mosaic的基础上。留学期间和回国后,我曾对伊利诺伊大学计算机学科课程设置进行了较为粗浅的分析和对比性研究。

伊利诺伊大学计算机科学系可提供三种不同的大学学位教育(即工学院的计算机科学专业理学学士以及文理学院的数学与计算机科学理学学士、统计学与计算机科学理学学士)、五年制本硕连读学位教育、辅修计算机科学专业学位教育及软件工程学历证书。本科学位教育主要由校院教学要求和专业教学要求两部分构成。前述计算机科学专业理学学士、数学与计算机科学理学学士、统计学与计算机科学理学学士的主要区别就在于学院要求和专业要求的不同。例如,工学院要求物理与化学,而文理学院则不要求,同时两个学院的一般教学要求也略微有所不同。不同专业间的教学要求区别在于数学与计算机科学专业要求多上三门不同的数学类课程,同时又比计算机科学专业少上五门计算机科学类课程。统计学与计算机科学专业和数学与计算机科学专业的要求大致相同,只是用统计学类课程替代了某些数学类课程。对于三个专业来讲,有15门数学类或计算机科学类课程是相同的,所以共性大于不同。需要指出的是,计算机科学类课程由计算机科学系负责开设和讲授,课号、名称及要求完全一致。这和国内的大学是不一样的,至少北京交通大学是如此:和计算机专业较为相似的理学院的信息与计算科学专业的某些计算机类核心课程(如“操作系统”)的要求和讲授就与计算机学院无关。此外,国内大学本科培养方案则由通识教育、学科门类教育、自主教育三部分教学要求构成,它们与伊利诺伊大学的学院级或专业级教学要求间的对应关系并不明晰。其中,通识教育由综合基础和基本技能组成,为面向全校本科生的公共要求(伊利诺伊大学在这点上似乎不太明确或较弱);学科门类教育由学科门类基础课程、大类专业基础课程和专业课程构成;自主教育包括全校通识教育与各学科门类教育课程与实践、系列讲座、竞赛、证书、科研论文、自主和开放实验、就业实践、科研实践等,是我国高校为加强实践环节和推动就业竞争力而引入的具有中国特色的课程学分组成,国外自然无等同物。

具体以计算机科学专业培养方案为例对比来讲,伊利诺伊大学总共要求128学分,含学院级要求39-51学分、专业要求76-85学分(参表1所示);北京交通大学总学分要求为190学分,含通识教育必修40学分和选修20学分、学科门类教育必修97.5学分和选修22.5学分以及自主教育选修10学分(参表2所示)。后者比前者高出62学分,主要包括必修类的英语16学分(国外对外语的要求为0-12学分,注意其并未指定特定语种)、选修类的自主教育10学分。国内通识教育综合基础部分(必修22学分、选修14学分)近似等同于国外的人文社会科学类课程(18学分),但多出18学分的教学要求。另外,国外大学专门设立写作课程(含4学分写作I、3学分高级写作)来传授和培养学生的写作技巧与能力,国内大学则主要通过毕业设计环节的论文写作(毕业设计共16学分)来达到相同的目标。国外大学把普通化学I和普通化学实验I(共计4小学分)作为工科专业的公共基本要求,而国内大学如计算机科学专业在内的工科专业则可以不选修化学类课程;同时,国内大学设定数学、物理类课程同为学科门类基础课程,而国外大学则把其中的微积分、概率论或统计学作为计算机科学专业的专业要求。

表1 伊利诺伊大学计算机科学本科专业培养方案

注:表中大类专业基础理论与实践(必修)主要包括计算机科学技术导论、电子技术类课程(电路分析基础3学分、模拟电子技术3学分、模拟电子技术实验1学分、数字电子技术3学分、数字电子技术实验1学分)、计算机数学类课程(离散数学8学分)、计算机软件类课程(数据结构4学分、高级语言程序设计4学分、操作系统4学分,编译原理3学分)、计算机硬件类课程(计算机体系结构2学分、计算机组成原理3学分、计算机组成原理实验1学分)等;专业主修(必修)课程主要包括数据库系统原理、接口技术、计算机网络原理、接口技术实验、计算机网络原理实验、毕业设计等。专业特色课程(选修)则划分为四个方向给出可选课程:1、计算机软件类(软件测试、统一建模语言、高性能计算导论、软件工程、Web程序设计、Unix/Linux环境下程序设计、XML程序设计、软件类综合实践);2、计算机硬件类(计算机控制技术、硬件类综合实践);3、计算机网络类(计算机安全保密、网络安全与管理);4、计算机应用技术类(人工智能、人机交互技术、计算机辅助造型与动画设计、数字图像处理)。

伊利诺伊大学要求学生学习和掌握数字计算机的理论、设计和应用的广博深厚的知识。前两年主要学习数学与物理以及入门性计算机科学基本原理。第三年完成基本的计算机科学课程,并要求选修和拓展学生的理论基础。第四年鼓励学生就自己感兴趣的方向和课题进行学习和深入的理解(均为选修课)。进一步说,国外大学计算机科学专业关于计算机专业特色课程的公共要求简单明晰,仅包括计算机科学导论、数据结构与软件原理、计算机体系结构I/II、系统编程、大程序设计项目、计算理论入门,等,而多达24-27学分允许学生可按计算机科学、科学计算(计算机科学与工程)、数学三大方向分轨选课(参表3所示);而其中在计算机科学方向并给出系统、数据库、图形学、人机交互、编程语言、人工智能、信息安全、网络等八个子方向,在科学计算方向上并给出航空宇宙工程、应用数学、天文学、大气科学、生物学、生物医学仪器、生物分子工程、化学工程、化学、控制、电子工程、工程机械学、环境工程学、遗传学、地质学、制造工程、材料科学、机械工程、建模与仿真、神经系统科学、原子工程、运筹学、优化、物理学、等离子工程、心理学、放射学工程、机器人学、信号与图像处理、统计学、结构工程等三十多个子方向上给出细化且较为明确的各6-分的选课指导和教学要求。

表3 伊利诺伊大学计算机科学专业按方向分轨选课

相比较之下,国内大学计算机专业设立的公共特色专业课程则较多,有时即便划分出一些方向,要么方向太大,要么选课思路和教学要求不太明确。

3教学科研、学生素质培养及其他

在伊利诺伊大学,我主要选择了三门与我在国内所授课程及研究方向关系密切的计算机科学专业课程(包括CS 423 Operating System Design“操作系统设计”,CS 523 Advanced Operating Systems“高级操作系统”和CS498DM Software Testing“软件测试”)进行旁听学习。

从专业课程教学内容组织安排及教学环节课堂组织可以看出,国外大学始终贯彻教学过程以“学生”为主体的宗旨和理念,强调学生的自主学习,要求学生在课前完成充分的预习准备、课后完成复习思考或上机作业,否则课堂根本就是听天书,学不会是学生自己的事情且归因于其自身的问题);授课教师在课堂上主要扮演组织者的角色,引领学生在操作系统设计概念原理或软件测试基本理论与技术的知识海洋中畅游,或快速前行或停下来慢慢品尝,或提出问题让学生分组讨论和自己给出答案,或启发式般把教学话题引向研究前沿进而开阔学生的课程视野和激发学生的学习兴趣与热情。相比较之下,国内课程教学则把更多的责任赋予教师,要求教师关于课程教学内容组织的科学性并深入浅出地讲清楚、讲彻底,对学生的要求不是非常强调。

同时,国外大学授课教师关于课堂组织的自主性更为灵活多样。其间,软件测试授课教师并邀请了知名计算机软件开发公司的资深测试师就软件测试的公司组织运作方式和软件测试技术及实用技巧,使学生实现了与社会公司及实用技术的零距离接触;操作系统设计授课教师并委托她的两个研究生分别就他们当前所作科研课题项目阶段成果的主题报告,使学生对操作系统领域的研究前沿及自己将来可以利用本门课程所学知识在实业界有所作为的方向有了感性和更为明确的认识;高级操作系统授课教师更是针对研究生授课对象、采取自己在课程前后把关、指定不同主题和分发文献资料由所有学生依次轮流课堂汇报的形式,既完成了课程内容的深度挖掘拓展及学生关于课程内容全面掌握的教学任务,又培养了学生的自主学习意识和锻炼了学生的自主学习能力,还提高了学生的科研文献阅读水平、科研调研能力和演讲报告能力。另外,我还在伊利诺伊大学强化英语学院参加了教学术语与教育学(Professional Language and Pedagogy, 简称PLP)和美国文化与交流( American Culture and Communication, 简称ACC)等两门课程的学习,其课堂组织形式和授课方式则更为多样化,或让学生自己走上讲台实践和体验课堂讲授和组织技巧,或实地参观访问当地图书馆、校园问路、到餐馆点菜用餐、到咖啡屋品尝咖啡,甚至安排了与当地居民配对、每周定时交流谈话一次的环节,这对于日益国际化的国内大学的语言教学的开展无疑具有非常重要的借鉴作用。

从课程评分环节而言,国外课程强调实践环节并以较高权重计入课程最终成绩,鼓励分组协作但应通过团队演讲或逐个交流等来细化组员得分等级,课程最终成绩由期中考试成绩、平时成绩(考勤与平时作业)、实践环节成绩和期终考试成绩综合构成从而避免单纯依靠期终考试成绩计分机制可能造成的期末突击风与无法真正掌握知识等弊端,其中平时成绩、实践环节得分和期中成绩的计算充分利用和信任研究生助教,当然,从另一方面讲也起到了培养研究生工作态度和能力的效应。国内大学特别是计算机专业关于课程实践环节的教学要求也在逐步增强,但课程成绩更多地取决于期末成绩,大多数课程不在设立期中考试(这在一定程度上可归因于近年来一直不断扩招的客观现实及由此引发的庞大工作量、教学资源等条件的限制),学生当中抱有凭借期末突击过关心态的现象较为普遍,对教学质量和教学效果的负面影响不可忽视。

当然,这并不是说国外大学不重视课堂教学质量;相反,国外大学对课堂教学和成绩考评的重视程度较之国内大学有过之而无不及(只不过其更遵循“学生”作为主体的客观教学规律并据此开展课堂教学活动而已),这从其在各门课程最后一节课给学生分发和要求填写课堂教学评价表、学年末由学生自主推选产生“我最敬爱的老师”以及学校专门常设有考卷测评研究机构等可见一斑。国内也有类似的课堂教学评测手段,只不过基于校园网在网上展开而已,同课堂分发为听课者有份的评价机制相比,网上硬行要求每一位同学参与测评的方法存在部分不听课同学随意评价的问题。

另外,我觉得伊利诺伊大学同一专业课程(主要指本科高年级专业课程,如CS 423和CS498DM)在本科生和研究生之间打通的做法非常值得借鉴。一方面,研究生本来就存在跨专业报考和录取的现实,自然而然地某些专业课程需要补修;另一方面,即便是本科和研究生读的是同一专业,也可能由于兴趣或研究方向的改变而使得需要选修某些本科阶段就曾开过但不曾选修的专业课程。况且,国内为研究生和本科生开设的同一类型课程的教学内容往往也是大同小异,只是掌握深度和难度有所区别而已;而从实际技能与水平而言,本科高年级学生与课程学习阶段的研究生本来就没有什么大的区别。如果专业课程在本科和研究生之间打通,则可以节省教学资源并便于统一专业课程体系与教学安排。至于相关专业课程的本科与研究生要求的区别对待,则可采取补充针对研究生的课程要求、增强研究生实践动手环节或论文演讲环节等措施。同样地,硕士研究生和博士研究生的专业课程(如CS523)同样可以打通。

如前所述,伊利诺伊大学的科研实力是非常强的,科研氛围自然也非常浓厚。另外,从整个校园、工学院乃至计算机科学系层出不穷、从不间断的各种类型的学术报告、研讨会或研讨班,大厅或楼道里相关单位最新科研成果的展示、科研项目或相关人员的获奖快报以及包括微软研究院、谷歌、摩根斯坦利等参与的主题活动日与信息技术讲座中也验证和说明了这一点。

现今美国社会有其好的一面,也有其不好的一面,我们在改革开放的过程中应该学习其好的地方,但同时必须坚持自己好的方面。换句话说,应该在坚持自己的好的方面的基础上吸收世界文化的精髓,而非完全抛弃自我和全盘吸收他国的无论精华还是糟粕。我国从古至今一直赋予教育机构道德教育的责任,这是非常重要和必要的,应予坚持、加强。“十年树木,百年树人”,无论家庭,学校还是社会,要关注青少年的道德教育,付出再大也不为过。

另外,我们还利用春假参观了著名的哈佛大学和麻省理工学院,给我的深刻影响是哈佛校园(建设)非常一般,草坪光秃秃的居多,难道真的是老牌名校不在乎这些?不过,其诺贝尔获奖者人数又是非常之多。果真是“山不在高,有仙则灵;水不在深,有龙则灵”吧!国内高校是否应该由此得到启发,把本不富足的经费优先用于人才引进和真正的科研资助上,而非老是富丽堂皇的表象第一。

三月份的一个周末,伊利诺伊大学曾举办了一场规模庞大、全校各单位甚至外联单位一并参与、面向全社会(老少与年轻人皆有“节目”可看)的学术活动节,展示了该校相关的科研学术成果、学生科技成果及与日常生活紧密相关的科普演示实验等,活动节全体总动员和面向社会开放的举措值得国内高校借鉴,这其实是拉近市民与高校距离,并向社会宣传学校的一次大好机会。

参考文献

篇5

中图分类号:TP316 文献标识码:A 文章编号:1672-3791(2014)05(b)-0013-02

计算机的操作系统对于计算机本身是至关重要的,同时它也是精确的管理计算机软件和硬件设施,统一合理的协调计算机的各个工作流程,管理着系统的各个部件,起着协调沟通用户与系统,用户与用户的关系,对计算机的本身起着很强的控制性作用。本篇论文通过揭示计算机操作系统的各个重要的作用,对计算机操作系统的新功能做了阐述与研究,并且通过参考各个文献也对计算机操作系统进行了分类,方便读者了解与参考研究。

1 计算机操作系统的重要性

计算机系统中的一个非常重要至关重要的部分就是计算机的操作系统。科学家们为了追求计算机的完美和高速,人性化,就一直不断地对计算机操作系统进行研究和创新,计算机系统的挑战性和实用性一直是科学家们追求的最终目标。计算机操作系统的不同导致了计算机需要不同的环境和各式各样的应用环境。计算机的操作系统的重要性体现在不同的地方与领域上,例如,不管是个人的微型计算机还是大型的高智能的计算机,是小型化的企业应用还是大型企业工厂的自动化经营和控制,都不可以缺少计算机操作系统的应用,由此可以看出计算机操作系统有多么的重要。计算机操作系统的职能也体现了它的关键性作用。由于时代的发展和科技的进步,计算机系统结构得到不断的完善和发展,计算机的硬件设施也得到不断的更新,这些现象的出现推动了计算机操作系统的进步,使操作系统能够高效率的运用,满足了人们的各种需求。但是由于计算机操作系统技术的不断提高,也使计算机的各个硬件系统得到不断的完善,提高了硬件设施的速度。由此看来计算机操作系统是非常重要的部分。

2 计算机操作系统的功能

计算机操作系统的一个重要功能体现在计算机操作系统掌管着计算机系统的硬件资源和软件资源,并且掌控计算机系统各项数据。从而达到避免人工分配出现的误差,减少外界因素对计算机的干预,提高计算机的工作效率,发挥计算机智能化的作用。计算机操作系统的另一重要的功能就是计算机操作系统能够充分调动和协调各个资源的相互关系,使各种资源在使用的过程中能够相互的协调,同时也使得计算机的资源的调配达到最优化的效果,使低高速设备相互协调高速的运行。计算机的最重要的功能就是能够良好的沟通用户与计算机,达到人机协调共处的良好效果。计算机操作系统通过掌控计算机系统的各个部件,协调计算机系统的各个资源,运用着用户安装的程序,形象生动的展现计算机系统的操作环境,使用户能够方便快捷高效的使用计算机。计算机的操作系统就好比我们的家是一个大的外部环境,只有家的温馨舒适,生活在家里面的人们才会感到幸福和恬静。所以只有计算机操作系统的完善,用户才能更好的体会到计算机的便捷与高效。总而言之计算机的操作系统是为广大用户而服务的。

3 计算机操作系统的发展历史

3.1 手工操作阶段

要想了解计算机的功能及分类,我们首先要了解计算机系统的发展历史。计算机操作系统最初是进入手工操作阶段,这个阶段的主要特征是它的元器件就只有电子管,没有操作系统,没有软件资源的支持,运算运行的速度是非常的慢。在计算机的操控方面上,只有拥有相应专业技术的高科技人员才能操作,计算机的程序语言的编写与设计都是通过手工操作的方式,所以使用起来是极其的复杂与困难的,当时更没有多少人把计算机运用到日常生活与工程上来,一般都是使用于复杂的数学计算中。

3.2 多道程序系统阶段

随着科技的进步,计算机系统的更新,计算机的操作系统发展到了多道程序系统阶段。这个阶段的主要特征是中小集成电路被广泛的运用到了计算机中,计算机的运行速度得到了大大的提高。

3.3 现代操作系统阶段

现在的计算机的操作系统正处于大规模和超大规模的集成电路时代,微处理器的应用使得了计算机的速度得到了质量的提高,计算机的体积也朝着小型发展,计算机更便于携带,功能更多,更人性化的发展使得越来越多的人被电脑所吸引。

4 计算机操作系统的分类

4.1 计算机的操作系统

计算机的操作系统是计算机非常复杂的组成部分,从操作系统的用途来看它可以分为通用和专用这两大部分。从单机的方面来研究可以得知计算机操作系统可以分为单机操作系统和网路操作系统。从功能的不同这一方面来看,计算机操作系统分为批处理系统,网路系统,分布式系统,实时系统等。

4.2 批处理系统

在众多计算机操作系统中非常重要的一个系统就是批处理系统。批处理系统的具体内涵是批量的处理系统即通过对计算机的多个作业成批列队的分配给计算机,让计算机自动的按照特定的顺序进行排列组合。它主要包括单道批处理和多道批处理这两个部分。

4.3 分时系统

分时系统也是计算机系统的常用组合。它的概念很容易理解。即在计算机处理或使用某一资源时,按照特定的规则轮流的划分或使用计算机的某一资源。简单来说就是在同一系统的使用过程中有多个用户共同分享某一资源就称分时系统。在一个分时系统中往往沟通若干个电脑终端,由此看来它有多么的重要。

4.4 实时系统

实时系统被运用的最为广泛。根据实时的字面意思来看我们可以清楚的知道实时系统能够马上快速的根据指令得出处理的结果。实时系统的最大的特点就在于它的快捷性,系统能够对随机发生的各种事情做成及时的回复并高速的运行和处理。这种系统通常应用于各个领域,比如在军事方面,工业领域和日常生活当中。人们也经常运用实时系统来订购机票和航班的查询等。

4.5 网络操作系统

操作系统是随着计算机技术的迅速发展而诞生的,它通过多个计算机的相互联系形成了一个具体的网络,通过它我们可以实现网络资源的共享,它的技术也随着计算机技术的革新日益的完善,它的共享性备受人们瞩目。

5 结语

随着科技的革新,人们对计算机技术要求的转变,现在的计算机操作系统朝着越来越完善的趋势发展。但是计算机技术不能止步不前,而应该有新的进步。所以我们还是要通过了解计算机操作系统的发展,来完善计算机技术,这样才符合时代的发展。

参考文献

篇6

电子商务是利用计算机技术、网络技术和远程通信技术来实现整个商务(买卖)过程中的电子化、数字化和网络化。随着信息技术的不断发展,围绕Internet技术的日见成熟,公众上网人数在成倍增长、上网意识逐渐加强,电子商务的应用也开始广为普及。随着时间的积累,电子商务数据库中会保存着大量的信息,这些信息包括过去、将来和现在的,并且是同等重要的[1]。

传统数据库很难体现这些数据的时态性,数据处理的时空效率无疑受到局限。为此人们提出了多种时态数据库TDB(TemporalDataBase)的理论模型,这些模型大都是以传统关系数据模型为基础的[2]。下面对时态数据模型进行讨论,并且通过具体实例说明如何利用TimeDB实现对电子商务时态信息的数据处理。

1时态基本元素

在现实世界中,时间无时不有,客观世界中的所有事务都带有时间的属性,这些随着时间变化的信息称为时态信息,描述现实世界中带有时间属性的信息系统,称为时态信息系统。时态信息需要基本的时间元素来表示,可以是基于点、基于区间、基于跨度时间元素,也可以是一个时间集合。时态数据库所定义的描述时间数据的最小时间单位称为时间粒度,其大小受到时间量子的约束,而时间量子是由计算机系统所支持的最小的时间单位决定。在时态数据库系统中可以采用单一粒度和多粒度两种形式,必要时两种时间粒度可以互相转换。

Allen在其论文《MaintainingKnowledgeaboutTemporalIntervals》中描述了13种时态区间before(<),equal(=),meets(m),overlap(o),during(d),starts(s),finishes(f)及其反运算(>,mi,oi,di,si,fi),见图1,其中A、B表示时态区间。如果将时间点视为延续时间为0的时间区间,可以更简单地表示基于时态区间与时间点之间的时态关系、基于时间点之间的时态关系[3]。。

2时态数据模型

时态数据库在处理时间问题时,最重要的两种时间是事务时间和有效时间。其中有效时间(ValidTime)是指一个对象在现实世界中发生并保持的时间,是可以反映过去、现在和将来的时间。事务时间(TransactionTime)是指一个数据库对象进行操作的时间,它记录着对数据库进行修改或更新的各种历史[4]。

传统的关系型数据库是两维的,一为属性维,二为元组维,如合同的关系模式为:(合同号,合同名称,签约单位,签约金额,签约日期)(见表1),而时态数据库则是在传统的关系数据库的基础上加入了时间维的概念。按Spipada和Snodgrass的意见,时态数据库按功能可分为三类∶

①历史数据库。被管理对象的生命周期称为有效时间(ValidTime),对象历史由DBMS内部机制处理。②事务数据库。其中,数据库本身被查删改的时间称为事务时间(TransactionTime),其历史由DBMS内部机制处理。③双时态数据库,既能管理对象历史,又能管理数据库本身的历史[5]。

针对合同的有效性问题,在合同信息中添加有效时间字段构成表2所示的N1NF信息结构,作为合同关系的历史数据库模型[6]。

3时态查询语言

3时态查询语言

时态数据库使用的语言有多种,目前还没有形成较完整的国际标准,大部分时态数据查询语言只是扩展当前的查询语言,有13种被收入时态数据库专著《TemporalDatabase—Theory,DesignandImplementation》中[7]。其中TSQL2语言是时态数据库模型、时态数据查询语言的研究成果与SQL-92的结合,是当前最具代表性的时态数据库查询语言[5]。TimeDB是AndreasSteiner等人开发的一个支持双时态数据库的软件,可以支持ATSQL2--时态查询语言,下面介绍如何利用TimeDB实现合同关系的时态查询。

1)创建合同关系

CREATETABLE合同(合同号integer,

合同名称varchar(30),

签约单位varchar(30),

签约金额integer)ASVALIDTIME;

2)插入数据

VALIDTIMEPERIOD[2006.3.10-2006.5.10]INSERTINTO合同VALUES(00003,‘ZZZ合同’,’C公司’,20000);

3)查询合同有效期在2002.5.1~2003.5.1间有效的合同

VALIDTIMEPERIOD[2002.5.1-2003.5.1]

SELECT合同,合同名称,签约单位,签约金额

FROM合同;

则显示结果如下:

lidtime合同号合同名称签约单位签约金额

---------------------------------------

002.6.1-2002.10.1]00001AAA合同A公司10000

003.1.10-2003.2.10]00002BBB合同B公司12000

以上一个简单的带有有效时间信息的数据库的创建、插入数据以及查询数据,可以看出ATSQL2在标准SQL语句中加入时态关键字VALIDTIME,这样的语句可以处理时态信息,也可以和标准SQL语句兼容,也就是标准SQL语句可以继续在支持ATSQL2的TDBMS中应用[4]。

4结束语

本文分析了电子商务信息中的时间因素,指出目前电子商务数据信息处理中的不足。针对目前的这种不足,结合时态信息处理技术和数据库技术,提出一种解决方法。本文提出的解决方法不局限于电子商务应用,可以拓展到电子政务等其他领域。

参考文献

[1]许伟权,汤庸.电子政务信息的时态属性研究[J].计算机工程与应用,2004,4:58-60

[2]丁益祥.时态数据库的时态代数分析[J].武汉科技学院学报,2005,18(1):48-51

[3]JamesFA.Maintainingknowledgeabouttemporalintervals[J].CommunicationoftheACM,1983,26(11):832-843

[4]汤庸.时态数据库导论[M].北京:北京大学出版社,2004

篇7

中图分类号:G642文献标识码:A 文章编号:1009-3044(2007)05-11445-01

1 引言

根据《高等学校计算机科学与技术专业发展战略研究报告暨专业规范(试行)》数据库系统原理课程是计算机科学与技术、计算机工程、软件工程及信息技术专业方向的核心课程,主要研究信息模型与信息系统、数据库系统、数据建模、关系数据库、数据库查询语言、关系数据库设计、事务处理等核心内容。其中还包括分布式数据库、物理数据库设计、数据挖掘、信息存储与信息检查、超文本和超媒体、多媒体信息与多媒体系统、数字图书馆等选修内容。关系数据库理论与设计是整个数据库系统原理课程中核心中的核心内容。根据笔者近二十年对数据库课程的讲授经验,从关系数据库原理课程的教学内容出发研究数据库课程的教学方法。

2 认真分析研究教材,注重学科联系

数据库是研究数据处理技术的一门综合性的学科,它涉及到离散数学、数据结构、操作系统、软件工程、计算机原理及其它应用领域的知识和方法相结合的学科。在关系代数和关系演算中,用到离散数学的理论;在研究数据的物理组织时,用到数据结构的相关知识;在研究事务的并发时,用到操作系统的理论和方法;在进行数据库设计时,用到软件工程的原理和方法;在讲授数据库系统的组成时,用到计算机原理等方面的知识。由于学科的交叉性,突出了数据库课程在整个计算机学科中的重要地位。

由于大部分学校在讲授数据库系统原理前开设了Visual Foxpro 6.0程序设计课程,它属于原理的应用部分,是关系数据库的产品之一。教师在进行课程讲授时,要结合理论讲清Visual Foxpro6.0应用了数据库的哪些原理。如数据表来源于规范化理论或者模式分解理论,Visual Foxpro6.0讲的数据表、记录、字段(数据项)和原理中讲的关系、元组、属性是同一个概念的不同名称等。

3 注重基本概念教学,为理论学习打好基础

3.1 弄清概念之间的区别与联系

在数据库课程的教学中,掌握好基本概念对理论课程的学习很有帮助,数据库中的有些概念贯穿在课程的始终,这些概念的掌握对整个课程的学习有很重要的作用。如数据库、数据库系统、关系、元组、实体、属性、事务、完整性约束等。有的概念联系比较紧密,弄清概念之间的联系与区别,对概念的掌握有较大帮助。如实体和属性的概念,实体是客观存在并可以相互区别的事物,属性是对实体特征的描述,它们之间有必然的区别,但是也有一定的关系。实体和属性不是绝对的,如果属性需要进一步描述,则属性就作为实体,反之如果实体不需要再进一步描述,则实体也可以作为另一实体的属性。如在考虑学生管理数据库时,政治面貌如果只考虑现在的情况(党员、团员等),则政治面貌就是学生实体的属性,但是如果考虑学生何时入团、何时入党,则政治面貌就是一个实体。再如事务和程序的概念等都有较强的联系。

3.2 掌握概念定义的前提和层次性

数据库中的概念由渐入深,随着课程教学内容的逐渐深入一些基本概念也更加具体和完善。例如在课程中,有四个地方都定义了码,在介绍概念模型时,码定义为:唯一标识实体的属性集。在研究关系模型时,码定义为:表中的某个属性组,它可以唯一确定一个元组。给出了码的粗略描述,没有实质性的量化定义。而在关系数据库中,讲授关系的形式化定义时,码定义为:若关系中某一属性组的值能唯一的标识一个元组,则称该属性组为候选码,若一个关系有多个候选码,则选中一个为主码。在讲授规范化理论时,学习了函数依赖后,利用函数依赖的概念定义码为:设K为R中的属性或者属性组合,若KU则K为R的候选码。若候选码多于一个,则选定其中的一个为主码。从理论上来说,这四个概念都是正确的,但一个比一个更具体、更严密、更准确。

同样在对函数依赖讲授时也采用了同样的手法,在关系数据理论中函数依赖定义为:设R(U)是属性集U上的关系模式,X、Y是U的子集,若对于R(U)的任意一个可能的关系r,r中不可能存在两个元组在X上的属性值相等,而在Y上的属性值不等,则称X函数确定Y或者Y函数依赖于X,记作XY。为了便于Armstrong公理的证明,对函数依赖又给出了定量的描述。定义为:若对于R(U)的任意一个可能的关系r,t和s是r的任意两个元组,X、Y是U的子集,若对于任意一个t[X]=s[X],必然有t[Y]=s[Y],则称X函数确定Y或者Y函数依赖于X,记作XY。教师要讲清楚对同一概念为什么这样处理,这些概念层层的描述有什么好处。掌握了同一概念的不同定义,便于对这些概念的深入理解。

4 注重理论与实践的结合

4.1 注重动手能力,搞好课程实验

学习数据库课程的主要目的是为了应用,结合所学的数据库语言搞好每一章的课程实验,以便验证所学理论是很重要的。如在讲授SQL语言时,让学生建立一个数据库,并结合所学内容做查询、插入、删除、修改等实际操作,真正理解和掌握SQL语言的应用环境。在讲授数据库安全性和完整性时,利用实际系统让学生对系统做数据控制。提高学生对数据库课程的认识,激发学生的学习欲望。

4.2 加强课程设计,提高学生综合能力

数据库设计理论主要是为了指导数据库实践,通过系统的理论学习和部分单元训练,通过课程设计让学生掌握数据库设计的全过程,并进一步掌握数据库课程。课程设计是数据库中必不可少的,我采取将学生分组的方式每5-6名同学一组,为每组同学拟定一个题目,如图书管理系统、学生档案管理系统、销售管理系统、能源管理系统等,教师提出要求让学生深入图书馆、学生管理部门或者企业进行系统调查,进行需求分析设计出数据流图,编写数据字典,然后进行概念结构设计,从数据流图和数据字典中提炼出E-R图,再进行逻辑结构设计、物理结构设计、数据库实施和维护的设计。让每一位同学明确数据库设计的过程,使每一组同学进行上机调试,使所有功能进行程序实现,最后让同学们进行设计答辩。

通过课程设计和设计答辩,学生巩固了理论知识,丰富了课程实践,掌握了如何运用理论指导实践,也对今后其它课程设计以及毕业设计和毕业论文的书写打下了基础,收到较好的效果。

4.3 扩展学生思路,向学生传授新知识

由于课本的出版周期长,更新也较慢,也由于课本编写的一些要求,所以课本上有些内容是陈旧的,对有些问题也不可能全面的介绍,有些新知识也很难溶入到教材中。我在讲授课程时,除了给学生有意补充新知识外,又给学生开设了“数据库中的空值问题”、“数据仓库和数据挖掘技术”、“目前数据库的研究方向”、“数据库的查询优化问题”等专题讲座。扩充了学生的视野,激发了学生的兴趣,为他们今后的学习和研究打下了一定的基础。

5 结语

数据库系统原理课程是计算机专业的核心课程,随着计算机科学的发展,数据库系统原理课程也在不断的发展,教学内容不断更新,教学方法也在不断改革,所以课程教学改革是一个永恒的课题。只有不断的改革教学方法和教学手段,才能使教学更加丰富,使学生学到更多的知识。

参考文献:

[1]教育部高等学校计算机科学与技术教学指导委员会编制.高等学校计算机科学与技术专业发展战略研究报告暨专业规范(试行)》[M].北京.高等教育出版社,2006.

篇8

Abstract: the article discusses the geographic information system (GIS) function, characteristics and development, exploring the application of GIS in the urban construction and the development direction.

Keywords: GIS; The spatial data; System application

中图分类号:G623.45文献标识码:A 文章编号:

测绘技术

0.引言

GIS(Geographic Information System),地理信息系统,是随着地理科学、计算机技术、遥感技术和信息科学的发展而发展起来的一个新兴技术,是采集、储存、管理、分析、描述和应用整个或部分地球表面与空间和地理分布有关的计算机系统。它的独特之处就在于能够把地理位置和相关属性信息有机地结合起来,其操作对象是空间数据,在计算机软硬件支持下,它可以对空间数据按地理坐标或空间位置进行各种处理、对数据的有效管理、研究各种空间实体及相互关系。通过对多因素的综合分析,它可以迅速地获取满足应用需要的信息,并能以地图、图形或数据的形式表示处理结果。随着GIS技术在国民经济建设各领域、各部门的应用日益普及和深入,GIS的潜在价值正在不断地发现和挖掘。GIS系统作为国民经济重要基础设施之一的重要性和不可替代性正在被广泛认识和接受。GIS正在逐渐成为各种各样基于IT的信息系统和应用系统的公共平台。GIS需要发挥的已不仅仅是其传统同时也是最基本的作为空间查询检索和专题制图辅助工具的那些功能和作用,更重要地,GIS正在逐步成为一种与我们的工作、学习、生产和生活密不可分的重要因素。

1.地理信息系统在国内的研究应用。

虽然目前地理信息系统软件很多,但对它的研究应用,归纳概括起来与两种情况。一是利用GIS系统来处理用户的数据;二是在GIS基础上,利用它的开发功能进行二次开发,成为用户的专用的地理信息系统软件。目前已成功地应用到了包括资源管理、自动制图、设施管理、城市和区域规划、人口和商业管理、交通运输、石油和天然气、教育、军事等九大类别的一百多个领域。近年来,随着我国经济建设的迅速发展,加速了地理信息系统的应用进程,在城市规划管理、交通运输、测绘、环保、农业、制图等领域发挥了重要作用,取得了良好的经济效益和社会效益。

1.1 GIS的技术特点

GIS的数据输入是将现有资料按照统一的参考坐标系统、统一的编码输入到数据库中的过程。常规做法有地图上手扶跟踪数字化、图形扫描等,目前GIS的输入越来越多地借助非地图形式,如利用RS(遥感技术)数据和GPS(全球定位系统)数据作为数据源;GIS的数据处理重要包括数据编辑、数据综合、数据变换等,最终形成具有拓扑关系的空间数据库。GIS中的数据分为栅格数据和矢量数据,大多数GIS系统采用了分层技术,即根据地图的某些特征,把它们分成若干图层分别储存,重要可以根据需要选定不同的图层叠加以形成各种专题地图。

在空间分析和统计方面GIS帮助确定地理要素之间新的关系,为用户提供一个解决各类专门问题的工具。GIS的空间分析分为两大类:矢量数据空间分析和栅格数据空间分析。矢量数据空间分析包括:空间数据查询和属性数据分析、缓冲区分析、网络分析等。栅格空间数据分析包括:记录分析、叠加分析、统计分析。

1.2 GIS系统与其它系统的区别

GIS有别于DBMS(数据库管理系统)。GIS具有以某种选定的方式对空间数据进行解释和判断的能力,而不是简单的数据管理,即使存贮了图形,也是以文件形式管理,图形要素不能分解、查询,没有拓扑关系。管理地图和地理信息的MIS不一定就是GIS,MIS在概念上更接近DMBS。

GIS有别于MIS(管理信息系统)。GIS要对图形数据库和属性数据库共同管理、分析和应用。MIS则只有属性数据库的管理,即使存贮了图形,也是以文字形式管理,图形要素不能分解、查询,没有拓扑关系。管理地图和地理信息的MIS不一定就是GIS,MIS在概念上更接近DBMS。

GIS有别于地图数据库。地图数据库仅仅是将数字地图有组织地存放起来,不注重分析和查询,不可能去综合图形数据库和属性数据进行深层次的空间分析和提供辅助决策的信息,它只是GIS的一个数据源。

GIS有别于CAD系统。二者虽然都有参考系统,都能描述图形,但CAD系统只处理规则的几何图形,属性库功能弱,更缺乏分析和判断能力。

2.GIS对城市发展的影响

2.1 GIS在城市建设的应用

空间规划是GIS的一个重要应用领域,城市规划和管理是其中主要内容。利用GIS技术可进行城市规划的辅助设计、工程选址等工作,也可进行城市管理的规划控制、辅助决策等工作。在大规模城市基础设施建设中,根据区域地理环境特点,综合考虑资源配置、市场潜力、交通条件、地形特征、环境影响等因素,在区域范围内选择最佳位置,充分体现了GIS的空间分析能力。

2.2 GIS在城市规划中的作用

在GIS中,由于所获取的地图数据详尽、可靠、准确,大大提高了城市规划的科学性。同时,计算机的高速运算和具有极强的逻辑判断功能,可在短时间内提供多方案比选,增加了规划设计方案的合理性。而且,计算机可以自动地生成各种规划用图、表格和报告,利用数据库又易于删补、更新,因而还可以实现城市规划的动态监控和动态设计。通过对GIS的研究和使用,充分发挥数字地图在城市规划设计中的作用,使信息的获取和使用臻于统一,促进城市规划工作。

2.3对城市GIS的展望

随着城市信息化进程的快速发展,城市GIS将会在政府宏观决策、城市建设的各个领域中发挥出越来越重要的作用,城市GIS发展将面临许多方面的挑战。城市地理信息系统建立后,有条件进行小范围的局部更新,要坚持通过竣工验收的方式,进行竣工测量,保证地理信息数据的质量和观势性。同时,充分利用信息科学、计算机技术和网络技术,不断完善城市地信息处理数据系统,加强城市地理信息服务系统功能的开发和城市地理信息网络交换系统的建设,从而实现地理信息的快速获取与更新、智能化处理和一体化管理、网络化生产管理与分发服务,相信城市GIS必将迎来一个迅速发展的崭新阶段。

3.结束语

地理信息系统是一个非常全面而又非常基础的应用系统,优秀的地信息系统可为许多专业领域提供基础的信息情况,并通过多种计算机技术进行分析及辅助觉得,本套系统中实用功能按照人们日常生活、工作、出行的需求进行设计,以人们的最熟知的操作习惯入手,可为公众提供更多更全面的服务。GIS的发展速度和规模空前。它正在与GPS(全球定位系统)、RS(遥感系统)、DPS(数字摄影测量系统)、ES(专家系统)和多媒体技术进一步融合,扩展其功能。一旦更全面地解决了数字地图信息的自动采集问题,加强了空间技术的研究,将空间数据库与方法库、知识库联接起来,GIS又将向集成化、智能化方向发展。将有力地推动城市规划管理的严格性,决策的科学性和设计的高效率。

参考文献:

[1]郭仁忠.空间信息[M].武汉:武汉测绘科技大学出版社.2000.

[2]黄杏元.地理信息系统概论[M]. 北京:高等教育出版社.1990.

[3]李志伟.地理信息系统及其应用[J].计算机工程与应用,1995.

[4]陈述彭.地理信息系统导论.北京:科学出版社,1999.

[5]边馥苓.地理信息系统原理和方法.武汉:武汉测绘科技大学出版社,1996.

篇9

热爱是最好的老师

7年前,作为电子信息与电气工程学院的新生,我踏入了交大的校园。入学的第一周,我通过面试转入密西根学院,成为了密西根学院的第一届本科生。密西根学院在大二的时候进行了专业的选择,在电气信息工程和机械工程两个选项中,我选择了后者。我的选择在当时有很多人难以理解,一个从电子信息与电气工程学院转过来的学生为什么没有选择本专业?为什么选择机械工程?其实答案很简单。大一时候,我们有一门课,名叫《工程导论课》,授课老师是一名外教,名叫Jason Daida,老师说,医生一次辛勤的努力只能挽救一个生命,而工程师的辛勤工作却能拯救千万人,使我们生活得更加美好。有了工程师的辛劳,才有了高耸入云的大楼,才有了跨越大江大河的坚固大桥,才有了通达世界各地的信息网……工程师所创造的产品已成为我们每日必备的生活用品,深入我们生活的每一个角落,彻底地改变了世界。这番话让我受到了强烈的震撼。而现在,谈及我最喜欢的电视节目,莫过于美国国家地理频道的《空中浩劫》。这个节目记录了全球重大的空难事故以及工程师们对这些空难的调查,从中人们吸取教训,不断改善和发展航空工程。正是有了这许许多多工程师不懈地努力和调查,才有了我们今天最为安全可靠的交通工具,缩短了人们之间的距离。这是工程师的伟大之处,也正是我选择机械工程的重要原因之一。

出于对机械工程的热爱,我的学习生活变得轻松快乐。平时,我总是学院里最早完成课程作业的,因为我把课程学习当成一种快乐的生活方式,课程学习给我的生活增添了无尽的乐趣。也正因如此,我在平时便掌握了课程知识,考试之时,我无需突击,便可轻松地取得优异的成绩。这也使得我本科的课程成绩排名学院机械工程专业第一。同时,我也获得了许多殊荣,从学院颁发的院长奖和杰出学术成就奖,到学校颁发的交大优秀奖学金,再到上海市颁发的上海高校优秀毕业生和国家颁发的国家奖学金等。在轻松快乐的本科学习生活之余,我积极投身科研活动中。我本科时设计的供血管内微型手术机器人使用的微型电动机获得了密西根学院设计展示金奖。正由于我本科优异的学习和科研表现,我顺利地直升本学院硕士研究生,继续着我轻松快乐的学习生活。

一支笔和一张纸的科研

谈到科研,人们总是首先想到硕大无比的实验台架和实验室里忙忙碌碌的实验人员。然而,科研并不仅仅局限于此。实验固然重要,然而,人们对科研问题的思考和探索却更为关键。我的导师Robert G.Parker教授曾经说过,我们科研所需的其实并不太多,一支笔和一张纸足矣。机械工程虽然是工科学科,但是进入了更专业的硕博学习阶段,同样需要大量的理论研究,我所从事的就是机械工程专业理论研究。每当有人问起我的科研方向,我总会回答他,我的科研就是数学加上物理。Parker教授所做的科研项目大量地应用了数学和物理知识对机械系统的动力学和振动问题进行推导研究,这正是我所喜爱的科研方向,也正因如此,我在三年前选择了留在学院读硕,在Parker教授的指导下进行我的科研工作。

我并不像许多刻苦工作的人那样起早贪黑,相反的,我总是工作日才来到实验室,而且每天总是“朝九晚五”。在同学们眼中,我的学习和科研生活是轻松的。这样轻松的科研生活得益于我一根笔和一张纸的科研。正因为我的科研无需笨重的实验器材,我可以随时随地进行着我的科研,即使我不在实验室中。

据说英国牛津大学的洗手间里放置着许多的纸张。这些纸张不仅是为了人们使用卫生间所用,同时也让大家在想到一些新的想法时能够写下来,据说有不少科研问题就是在这样的纸上解决的。研一的时候,也曾听其他学院的一位学姐说过,她曾经被+错误的推导结果困扰了很久,却在一次梦中推导出了正确的结果。梦中推导结果虽然有些夸张,但我却真曾躺在床上想通了一个困扰了我一周的科研问题。思考是科研最为关键的步骤,而思考随时随地皆可,正因有了思考,我们的生活才充满了乐趣,科研也因而融入我们的生活中,使我们得以享受科研的快乐。只要我们身边有一支笔和一张纸,我们可以随时随地拿起笔,写下我们思考的问题,推导出我们思考的结论,解决我们所遇到的科研问题。

篇10

【中图分类号】G40057 【文献标识码】A 【论文编号】1009―8097 (2008) 09―0120―05

一 教育软件

我国的教育软件,其外在形式一直紧跟技术发展的方向,追踪着最新的系统平台和开发技术,并已完成了从文字到图像,再到多媒体的转变[1], [2],以Web方式的远程教育产品也有很多应用[3]。教育软件以其交互性强、信息量大,能进行快速检索,具有多媒体功能而备受教师、家长、学生的关注。关于教育软件的概念国内外对此一直没有清晰的定义和分类。随着教育软件领域逐渐成熟和普及发展,其基本定义越来越明确,本研究通过对我国教育软件的归纳和文献对比,对教育软件进行了详细的归纳定义并进行了分类。

从广义上讲,教育软件是基于计算机多媒体技术以服务于教育为目的的软件产品,包括计算机知识教育软件、语言教育软件、科普教育软件以及与学生课本内容紧密结合的学生教育软件等。此外,还包括为实现教育信息化、数字化开发制作的校园管理教学软件、学校行政办公软件等与教育行业相关的各类软件产品的总称。

狭义上的教育软件是指根据教学目标设计的,表现特定的教学内容,反映一定教学策略的计算机教学程序。它可以用来存贮、传递和处理教育的信息,当教师用这些程序进行教学时,称为教学辅助软件;当学习者使用它来达到学习目的时,称为自学辅助软件,如图1所示。狭义教育软件是一种具有特定教学内容和教学策略的计算机教育程序,是广义教育软件的子集。本研究是狭义教育软件的概念,是指可以提供知识教学功能的软件及相关的系统,包括支持课堂学习和自我学习的各种软件。这就是本研究界定的研究目标,即教育软件(Educational Software,简写为ES,以下所提到的教育软件均指狭义教育软件的概念)。

教育软件有三种属性:第一,软件的属性,包括软件的构造性和可靠性等各种软件特性;第二,教育的属性,即具有教育策略。是对学生、孩子和成人进行教育的工具,是信息智能化的工具,特别是那些与教材相配套的教育软件;第三,意识形态的属性,即具有教育内容。就是要有意义、要用正确的思想去教育人、用高尚的思想去陶冶人,教育软件是完成这种任务的载体。因此,教育软件不仅仅是一个普通计算机软件,还必须是具有教育内容和策略的适应现代教育体制和教学模式的软件产品,是为教育过程提供服务(包括学习、管理、评价、工具等)的计算机软件或软件产品总称。

有些研究认为课件(Courseware)就是教育软件[4],九十年代的研究把教育软件和课件统一为相同的概念来进行研究[5]。课件有下列几种解释:是为进行教学活动,采用计算机语言、写作系统或其他写作工具所产生的计算机软件以及相应的文档资料,包括用于控制和进行教育活动的计算机程序,帮助开发维护程序的文档资料以及与软件配合使用的课本和练习册等[6];是指根据教学目的、教学内容,利用程序设计语言,由教师编制的程序[7]。总之,课件是根据教学目标和教学内容而设计的反映计算机策略的计算机程序,通常称作计算机辅助教学软件[4]。随着互联网的发展,产生了网络课件(Network Courseware)的概念,网络课件是在网络环境下让不同地域、不同年龄、不同阶层的人通过网络途径在任何时段获取教学内容的教学工具,也是学生自主学习和获取信息的一种手段,其本质上是课件的范畴。

教育软件一般指软件开发者开发的或商业发行的用于教育的软件,它是可运行的程序,而课件一般是由教育工作者自己制作的用于课堂教学的程序或文件。有些课件以可执行文件呈现,脱离运行环境单独运行,也可以称作教育软件;而有些是需要运行环境的文件,如制作doc文档需要Word支持,ppt文档需要PowerPoint支持,avi和mpg文件需要媒体播放类软件支持,网页式课件需要有IE类的浏览器等。因此,课件是教育软件中的教学辅助软件中的一种形式,通常说教学辅助软件包括了课件。

另外一方面,教育软件与CAI的概念也不能混淆。CAI(Computer Assited Instruction),被译为“计算机辅助教学”,目前已基本得到教育界的认可[3], [8], [9], [10]。CAI是以计算机为中介,模拟教学活动中教师和学生之间的信息交流过程。关于CAI的定义有多种认识,希克(Hicks)和海德(Hyde)认为:CAI是一种直接运用计算机交谈模式来呈现教材,并控制个性化学习环境的教学过程。西柏(Sipple)的定义则是:CAI是一种将学生安置在已编写完成的计算机互动模式课程中的教育观念,计算机依照学习者先前的学习反应,选择下一个适当的主题或单元,并允许学习者按照自己的学习能力调整进度。应该说,计算机辅助教学是一个典型的依靠各种媒介传导信息,并帮助学习者对日益增长的知识进行条理化的过程。

当前,“计算机辅助教学”包含的范围为:计算机辅助教(CAI);计算机辅助教育(CBE);计算机辅助学(CAL);计算机化教学(CBI);计算机教育应用(IAC)。因此,CAI是计算机辅助教学中的一部分,教育软件则是对“计算机辅助教学”进行支撑的软件产品的界定。当前,教育软件发展的具体表现形式为:⑴ 基于Intemet网络环境的教育体制与教学模式;⑵ 多媒体化;⑶ 多媒体电子出版物;⑷ 教育技术理论基础的研究;⑸ 人工智能在教育中应用的研究;⑹ 教育技术应用模式的多样化。

结合知识管理(Knowledge Management,即KM)的层次模型还可以把教育软件归纳为三类:数据库类(Topic Database Software),教学辅助类(Assistant Teaching Software)和智能教育类软件(Intelligent Educational Software),如图2所示,从知识管理的方面对学习空间进行层次的数据(Data)、信息(Information)和知识(Knowledge)的转化过程,对应到教育软件方面则是三类对学习空间不同程度化的软件产品。此外,根据我国现有的教育软件产品的功能可以分为六大类:资源库类教育软件;教学课件类软件;教务类软件;题库类软件;平台类软件;个人学习类软件;而按照课程形式可以分为四类:学科课程,个别化学习,合作学习,网上学习。虽然对教育软件的分类不同,但是对教育软件进一步的功能抽象和特征提取,可以抽象为一种软件模型进行软件质量和价值的评测。

教育软件不同于其他软件,它除了可以商品化外,更为重要的它还是教育信息的载体。教育软件的设计思想,其核心是教学思想,外延则是信息化的表现手段,调整传统的教学模式,实践现代教学思想,最终达到“教”与“学”这对基本矛盾的和谐统一。现代科学研究表明,人在学习过程中的不同阶段对信息媒体有不同的需要。一般来说,文本擅长表现概念和刻画细节;图形信息擅长表达思想的轮廓,以及那些蕴含于大量数值数据内的隐性信息;视频媒体则适合于表现真实的场景;声音与视觉信息可以共同出现,用于进行效果的烘托。教育软件是上述元素的选择性集成,要能准确反映用户直接的交互意图和系统所做出的反馈,这则是软件的质量关注的问题。

二 教育软件价值

如图3所示为本研究基本概念的关系图,描述了教育软件质量和价值转化关系:软件质量和软件价值建立在教育软件基础上,通过对教育软件的使用,教育软件的质量转化为软件的价值,其转化的程度由用户的满意度具体体现出来。下面结合我国情况,对图中所示的基本概念进行详细阐述。

用户作为软件质量和价值的最终检验者和交付者,其核心地位已经为现代软件工程所确定[11]。生产者需要分析如何提高用户满意度的途径,抽取用户需求的属性特征,更有效地在现有资源约束下增强软件可用性的用户满意度,提高软件质量。目前,用户满意度(User Satisfaction)的研究主要局限于建立用户满意度评测指标体系和评测模型,用于客观地针对特定行业、开发者和软件进行用户满意度调查和评测[12]。

用户满意度研究的基本目的是创造满意的用户交互环境。增进的用户满意度可以提高未来的利润,降低软件开发方向错误造成的成本,增加软件用户的意愿和忠诚度[13], [14], [15]。Howard和Sheth(1969年)认为,满意是消费者对所付出与所获得收益是否合理进行评测的心理状态;Pfaff(1977年)认为,满意是产品组合的理想与实际差异的反映;Kotler(1995年)则认为,满意是一种人的感觉状态的水平,它来源于对产品或服务所设想的绩效或产出与人们的期望所进行的比较,Kotler进一步将这种心理性能用用户期望与用户感知之差的一个函数来表示。2000年版ISO 9000族标准的基本原理和术语中定义了用户满意:用户对某一项已满足其需求和期望的程度的意见[16]。用户的满意程度是软件质量的集中反映。对于以用户交互操作为特征的软件(如教育软件),用户更多的侧重需求是软件的可用性,软件可用性已经被更多的开发者和使用者所研究,面向用户的可用性作为软件质量的研究核心是切实可行的。

以软件的质量为基础,通过对用户满意度的刻划,进一步可以探讨教育软件对于用户所创造和实现价值。价值理解是评价的基础,对教育软件进行评测的基础是理解什么是教育软件价值,则需要首先了解价值。只有对价值和教育软件价值有深入的了解,才能建立对教育软件测试和评价有深层次研究的基础。

牛津词典把价值定义为“某个事物的品质、被渴望性和作用”(the worth,desirability or utility of a thing)。“价值”的概念与“需要”有着紧密的关联。“需要”(Need)指的是人脑对生理需求和社会需求的反映。它是主体在生存和发展过程中,由某种缺乏而引起的摄取状态,这种状态形成了主体生存和发展的客观依据。而客体在某种程度上满足了主体的需要,这就形成了客体对于主体的价值。所以,离开主体的需要去谈客体的价值是没有根据的,客体的价值即是由主体的满意度直接体现出来的。

价值(Value)是一个有多重含义的概念,每一个含义都可以在某种特定的或者独特的环境下适用。从经济学的角度看价值,价值是与其有用性或者说是效用相关的,是对某事物有用性衡量的标准;从政治学角度看,价值是个人的价值体系/道德规范;从企业管理看,价值又取决于组织外部环境的性质和程度,例如:竞争性、个体利益等,以及与组织有关的因素,如组织文化、经营模式、个体素质等[17]。很多时候对一个物品价值的正确衡量需要把这多个方面相结合,才能更加接近其实际价值。同时价值又是相对的,某物品的价值主要取决于要使用该物品的人员或组织机构的需要。

社会对教育的需要是一种特殊的需要,是社会在发展过程中由于人才或才能的缺乏而引起的摄取状态,这种摄取状态是教育的动力因素,也是推动教育发展的动机力量。这种需要有个体以及地区、国家对教育的需要组成。个体对教育的需要是人的基本需要中引起受教育动机的那部分,研究结果表明,这种需要几乎覆盖了人的基本需要的全部方面,这就形成了教育的个体价值;同样,国家和地区对教育的需要形成教育的社会价值。因此,教育相关因素和活动满足社会群体或个体需要的程度就是教育价值。

近年来,众多研究者纷纷给出了软件价值(Software Value)的定义[17], [18], [19],软件价值就是最终用户对软件效用的一种主观判断,不同的情境、不同的理解都会导致完全不同的价值,并不是所有的价值都可以为最终用户所理解和感觉。软件价值并不是某个特定的软件系统所产生的局部范围的短期影响,其重心正渐渐向组织用户群体层面转移,正如Marguerite[20]定义的:软件价值是从整个组织的角度出发,考虑到所需要的资源耗费后,软件或系统为组织创造的持续价值。

因此,本研究强调从整个组织群体的角度来定义软件价值,在一个较高的层次上看某一软件系统所带来的价值与组织战略、以及群体原有的信息基础进行匹配之后所带来的综合价值。所以,教育软件的价值可以从相关干系组织(Stakeholders,如教育软件的开发商、学校、教师和学生)对教育软件价值综合理解来研究,这样也反映了教育软件在教育软件生存周期中与相关干系组织组成的体系中的综合地位。

三 教育软件价值统一模型ESVUM

当前应用教育软件的教学的方式主要有六类:传统教学软件模型;多媒体教学模式;虚拟大学模型;网络大学模型;移动教育模型;游戏教育模式。把不同教育模式下的软件价值干系群体进行分类和角色定位,如表1所示。

教育软件由生产者(如企业、厂商、开发机构等)根据用户需求和定义进行开发和生产,生产者保障软件产品质量,软件作为产品提交给交付者(如学校、家庭、软件决策机构等);交付者作为决策参与者,通过价值收益进行决策判断,决定是否采用软件产品;交付者再把软件产品转移给使用者(如教师、学生等),使用者操作和使用软件产品,对工作效率进行提高,发挥软件产品的价值,对受用者(如学生、被培训目标等)进行教学工作;受用者接收教育并产生教育效果。需要特别说明的是,我国教育软件陡生产者除了企业等,还包括一些教育机构(包括教育信息化部门、中小学、高校和研究机构)。

基于ESHTri模型[21]和教育软件价值的分析,结合表1对教育软件价值干系组织的统一描述,本研究得到以软件价值链为主线的总体视图模型,即教育软件价值统一模型ESVUM(Educational Software Value Unique Model),如图4所示。ESVUM模型从四个维度对教育软件价值进行了全面地分析:生产;交付;使用;受用。生产者关注软件产品的生产过程,软件质量的保障和生产成本的控制是提高此阶段软件价值的途径;交付者关注软件产品的采购过程,软件购买的模式和投资收益是提高此阶段软件价值的途径;使用者关注软件产品的使用过程,提高工作效率和降低工作量是提高此阶段软件价值的途径;受用者关注软件产品的教育过程,内容的控制和教育效果是提高此阶段软件价值的途径。教育软件的使用过程本质上的目标是完成软件教育的过程,因此软件使用者和软件的受用者在应用教育软件的教学过程中达到价值的统一,作为一个整体进行研究。

四 基于ESVUM的ES价值评测框架

在图4中上层的矩形链式结构代表教育软件的价值链,也是教育软件生存周期中的四个角色,四个角色之间的关系不是各自分离的,而是相互连接的。每个角色对软件价值的侧重方面与其它角色交汇在教育软件产品上,互相为基础、互相支撑,构成一个完整的系统。基于ESVUM模型,可以建立对教育软件产品价值评测的基本框架,如表2所示。各个不同群体角色有其各自可选择测试过程和可选择评价过程,支持各自的价值评测过程。

1 面向受用者的教育软件价值

教育软件的受用者是以传统教学模式中的学生为基础延伸出来的群体,是教育软件传递教育信息的受动目标群体。对于受用者而言,教育软件的价值体现在软件所包含的思想和内容的约束上,其内容是否对认知学习规律具有更广泛的支持直接影响到受用者的学习效果。受用者关注软件产品的教育过程,内容的控制和教育效果是提高此阶段软件价值的途径。

2 面向使用者的教育软件价值

教育软件的使用者是以传统教学模式中的教师为基础延伸出来的群体,是教育软件传递教育信息的施动群体。对于使用者而言,教育软件的价值体现在软件对工作效率的约束上,其工作量和操作简单程度直接影响到使用者的工作效率。使用者关注软件产品的使用过程,提高工作效率和降低工作量是提高此阶段软件价值的途径。同时,由教育软件的受用者和使用者构成了基于教育软件的教学过程,作为一个共同整体进行分析。

3 面向交付者的教育软件价值

教育软件的交付者是以传统教学模式中的学校为基础延伸出来的群体,是教育软件购买的施动群体。对于交付者而言,教育软件的价值体现在软件对价值收益的约束上,其投资利用和购买方式直接影响到交付者的投资收益。交付者关注软件产品的采购过程,软件购买的模式和投资收益是提高此阶段软件价值的途径。

4 面向生产者的教育软件价值

教育软件的生产者是以传统教学模式中的软件开发者为基础延伸出来的群体,是教育软件研发和生产的施动群体。对于生产者而言,教育软件的价值体现在软件属性的约束上,其生产过程和生产成本直接影响到生产者的软件价值。生产者关注软件产品的生产过程,软件质量的保障和生产成本的控制是提高此阶段软件价值的途径。

五 总结

本研究基于ESHTri模型和教育软件价值的分析,综合不同教育模式中对教育软件价值干系组织的统一描述,提出了以软件价值链为主线的教育软件价值统一模型ESVUM。对不同教育模式中模型中各角色进行了归类。然后,基于ESVUM模型,提出了教育软件价值的评测框架,分别提出面向受用者、使用者、交付者和生产者的教育软件价值,对于提高教育软件的质量,评测教育软件的价值具有建设性指导意义。

参考文献:

[1] 陈莉. 我国中小学教育软件资源建设的现状分析与建议[J]. 中国电化教育. 2002, (3):46-49.

[2] 郑永柏. 中国教育软件发展的过去、现在和未来[J]. 中国远程教育. 2001, (4):61-62.

[3] 李克东, 费玉珍. 美国中小学生远距离教育和计算机辅助教学考察报告[J].中国电化教育. 1997, (1):9-13.

[4] 胡礼和. 现代教育技术学[M].武汉:湖北科学技术出版社,2000.

[5] 李昭智, 于长云. 教育软件开发的基本原理与准则的探讨[J]. 微小型计算机开发与应用. 1996, (6):7-10.

[6] 师书恩.计算机辅助教育.北京:北京师范大学出版社[M].1995.

[7] 李运林,李克东. 电化教育导论[M].北京:高等教育出版社.1986.

[8] 何克抗. 计算机辅助教学研究与发展[M].北京:高等教育出版社. 1996.

[9] 师书恩. 计算机辅助教育基本原理[M]. 电子工业出版社.1995.

[10]桑新民. 当代信息技术在传统文化--教育基础中引发的革命[J]. 教育研究.1997, (5):18-23.

[11] Edvardsson B, Johnson M, and Gustafsson A. The effects of satisfaction and loyalty on profits and growth: products versus services[J]. Total Quality Management.2000, 11(7):918-928.

[12] Stephen H Kan著.,吴明晖, 应晶等译.软件质量工程-度量与模型 (第二版) [M].电子工业出版社, 2004.

[13] Fornell and Claes. A National Customer Satisfaction Barometer:The Swedish Experience[J].Journal of Marketing. 1992, 56(1):6-21.

[14] Anderson, Eugene W, and Mary W Sullivan. The Antecedents and Consequences of Customer Satisfaction for Firms[J]. Marketing Science,.1993, 16(2):129-145.

[15] Bolton and Ruth N. A Dynamic Model of the Duration of Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction[J].Marketing Science.1998, 17(1):45-65.

[16] Cosmann R. The Evolution of Educational Computer Software[J]. Education.1996, 116:619-623.

[17]卢向华. 基于评价的信息系统价值促生模式研究[D].上海:复旦大学, 2003.

[18] Ned Chapin. Trends in Preserving and Enhancing the Value of Software[A].16th IEEE International Conference on Software Maintenance (ICSM'00), 2000.