时间:2023-05-29 16:17:28
导言:作为写作爱好者,不可错过为您精心挑选的10篇电子设备结构设计,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
随着电子设备使用频率越来越高,但电磁环境不断恶化,为了发挥电子设备的性能,提升抗干扰能力,避免受到电磁的干扰,这对电子设备电磁屏蔽性能提出了更高的要求和标准。因此,本文结合实际情况,针对电子设备电磁屏蔽的结构设计展开论述,并且提出合理化建议。
1 电子设备屏蔽设计标准
就目前而言,电子设备主要包括骨架、盖板以及前后板等,其中可拆连接的接触面具有一定的导电接触,因此,在实际设计过程中,电子设备内部的孔洞、缝隙要满足屏蔽的需要。在实际设计过程中,屏蔽设计要求不尽相同。
对电屏蔽而言,可以利用良导体隔离经电容性耦合传递的影响。电磁屏蔽主要应用在高频设计过程中,主要原理是利用金属反射和金属层内吸收来限制电磁的干扰,在实际设计过程中,具体包括以下要求:第一,要保C材料质量,因此,设计人员在进行电磁屏蔽分析过程中,会认为屏蔽体导体在理想运行状态下运行,导致在实际应用中,屏蔽体具有阻性,并且随着屏蔽体阻抗的增加,屏蔽的性能就会越差。因此,在屏蔽材料选择过程中,要选择性能良好的导体。对电屏蔽厚度而言,需要根据电子设备屏蔽结构进行设计,保证金属壳体封闭性,最大限度的减少孔洞和缝隙,并且采取必要的防护措施。屏蔽体要做好接地设计,根据行业标准,接触电阻要小于2m?@。
在进行屏蔽电子设备运行过程中,影响屏蔽效能的因素主要包括以下几个方面:第一,缝隙问题,在实际的屏蔽体中,导电体具有很多不连续点,就会在各个部分结合处,产生电磁泄漏问题,解决这种问题的方法,就是在缝隙的位置,填充一些弹性的导电材料,从根本上消除不导电点。但是在实际应用过程中,不是所有的屏蔽体的缝隙需要电磁密封衬垫防止电磁泄漏。因为对实际的设计而言,缝隙泄漏电磁波主要取决于电磁波波长的尺寸。如果遇到较高频率干扰的情况下,需要使用电磁密封衬垫。
第二,孔洞问题。在电子设备上,会包括很多开关、连接器以及保险丝等,设计人员需要在面板上,加工出相应的安装孔,为了提升机箱的散热效果,设计人员要在机箱上设置侧板孔、抽气扇进风孔等,对开孔的形状和周长要满足实际设计标准,在电子设备运行过程中,电流通过孔洞时,就会通过辐射的方式发射能量,并且与孔洞的大小周长有着密切联系。
2 缝隙电磁屏蔽设计
下面主要分析缝隙电磁屏蔽设计。
2.1 控制好螺钉的间距
在实际设计过程中,螺钉具有重要的连接作用,并且间距会直接影响了屏蔽的效果。螺钉能够有效缩小接件的缝隙,提升屏蔽的效果。但是一旦螺钉过密,就会增加设备安装的难度,增加了工作量和设计成本。因此,设计人员要从全局出发,结合电子设备的强度,确定科学合理的螺钉间距,在实际设计过程中,缝隙设计间距■/20。
2.2 采用簧片屏蔽设计
针对螺钉设计过密的情况,对需要经常拆卸的电子设备而言,还要从其它方面做好电磁屏蔽设计,在设备的两个接触面上,设置屏蔽簧片。其中EMI屏蔽簧片具有良好的导电性能,并且运行空间比较大,可以满足不同屏蔽要求。这种簧片材料主要以铍青铜、磷青铜为主,具有很强的耐磨性和耐压性,在高温的条件下,也能正常运行。
2.3 导电衬垫的屏蔽设计
这种设计方式主要实现屏蔽体的电接触,提升导电的连续性,有效的防止缝隙电出现泄露,具有良好的密封作用,就目前而言,通常主要包括以下两种形式:第一,平面安装式。就是在把衬垫的背面通过背胶把衬垫和屏蔽体连接起来,保证衬垫具有一定的压力,其中典型的C型导电布衬的平面安装模式得到了广泛的应用。第二,沟槽安装形式。在沟槽安装形式中,就是把衬垫装在沟槽中,可以利用D型导电布衬垫粘装到沟槽中,从而保证面板侧面之间的相互配合,提升衬垫的压力,保证通电正常。
2.4 凸包屏蔽结构设计
为了有效减少屏蔽体缝隙线性尺寸,设计人员可以结合实际情况,在屏蔽体设计凸包,并且应用在屏蔽区域内,从而形成一个弹性的变量,实现两个屏蔽体之间有效的连接,采用这种设计模式,能够有效减少螺钉的密度,节约设计材料,降低设计强度,具有很强的实用性。
2.5 深缝隙结构设计
在采用深缝隙结构设计过程中,深度越深,屏蔽的效果就会越明显,因此,设计人员要结合实际情况,不断加深缝隙的深度,从而提升电子设备电磁干扰性。
3 孔洞的电磁屏蔽设计
受到自身性能的影响,为了解决电子设备通风散热和接线问题,在实际过程中,需要设置孔洞,从而降低了电子设备的屏蔽效果。下面就针对孔洞电磁屏蔽设计展开论述。
3.1 通风口电磁屏蔽设计
3.1.1 在电子设备通风口架设金属丝网。在电子设备实际应用设计过程中,金属丝网是比较常用的非实壁型屏蔽体,这种材料主要包括铜铝等。电子设备通风口通常比较大,因此,可以采用钼数较高的金属丝网安装在窗口的位置,设计人员要把窗口分成细小的通风口,从而获得良好的屏蔽效果。对金属丝网可以直接焊接在屏蔽体上,保证金属丝与屏蔽体具有良好的电接触,但是在实际装配过程中,要做好金属丝网的保护,提升屏蔽的效果。
3.1.2 在屏蔽体上开通风孔。在实际过程中,装配金属网在设计过程中,很容易出现一些屏蔽的缺陷,很容易出现接触不良或者断丝的情况,针对这些问题,可以在屏蔽体设置风孔,从而优化设计工艺流程。在实际应用过程中,设计人员可以采用圆形结构,避免采用异型孔,从而增加设计难度。
3.1.3 介质波导通风蜂窝板屏蔽体应用。设计人员在设计屏蔽要求很高设备过程中,为了提升通风效果和抗电磁屏蔽效果,在实际设计过程中,可以采用波导通风蜂窝板屏蔽体,就可以有效减少空气阻力,降低风压损失,提升机械强度,发挥电子设备良好的性能。
3.2 穿心电容与屏蔽罩的应用
在电子设备设计过程中,需要设计人员做好开关、表头、指示灯等的设计,明确设计标准。为了有效防止在开口处形成电磁泄露,可以在点在设备元件后,装置屏蔽罩,加装穿心电容,并且传过屏蔽罩,连接元件,同时要保证屏蔽罩与面板良好的接触性能,实现电磁屏蔽。
3.3 屏蔽窗设计
对指示器、监视器等,设计人员可以结合实际情况,设计导电玻璃,然后连接到面板,对高频电磁屏蔽结构,可以使用金属夹丝层的导电玻璃。
4 结束语
综上所述,在进行电子设备屏蔽结构设计过程中,设计人员要结合实际屏蔽要求,采用合适的设计方式,针对设计不同的情况,选择合理的材料,从而提高设备抗电磁干扰性,获得良好的屏蔽效果,发挥电子设备的重要作用。
参考文献
[1]白宏兵.某型电子设备电磁屏蔽的结构设计[J].电子世界,2013(15):147.
[2]吕景峰,陈玲香.电子设备结构设计中的电磁兼容[J].电子世界,2013(12):163+165.
[3]史广伟,孙丽萍.电子设备的电磁屏蔽设计及复合材料屏蔽检测的应用[J].制造业自动化,2011(05):215-217.
关键词:
电子设备;结构设计;电磁兼容设计
1前言
电子设备结构设计构成比较复杂,它是由PCB、屏蔽系统、滤波、接地系统组合而成的综合设备。随着技术创新发展,综合性能更为强大,功能更加多元化,内部结构也更加复杂。但不能否定的是,如果忽视设计和管理工作,往往容易出现故障,不仅影响工作进度,还可能引发安全事故,降低电子设备的工作效率和综合效益。文章结合电子设备结构设计和运行作业的基本情况,探讨常见的不足,并有针对性的提出设计对策,希望能为实际工作提供指导与借鉴。
2电子设备电磁干扰源分析
电子设备运行过程中,往往受到内部和外部干扰,影响设备的正常运行,需要提高设计水平,促进设备作用的充分发挥。
2.1内部干扰
内部各元器件之间相互作用,进而产生干扰现象,对设备运行带来不利影响。常见形式如下:元器件发生漏电现象而引起干扰,无线电信号出现耦合,导线之间出现互感现象引起内部干扰。元器件工作时间过长导致发热,影响元器件运行的稳定性。公共地线上汇集电流,当电子设备在运营时,会出现电压降低现象,对设备产生不必要的干扰。
2.2外部干扰
外部电源及高电压出现绝缘漏电现象,对电子设备产生干扰。功率大的外部设备产生较强的磁场,出现耦合进而导致干扰现象发生。外部空间电磁波干扰电子设备正常运行,设备在温度不稳定的环境下工作,导致设备参数改变,也会干扰电子设备正常运行。
3电子设备结构设计电磁兼容设计的不足
电子设备结构设计中,有些设备存在质量缺陷,操作人员的综合技能不高,存在违规违章操作现象,可能导致电子设备出现相应的故障,制约设备综合性能的发挥,常见故障体现在PCB设计、屏蔽设计、滤波设计、接地设计等方面。
3.1PCB设计的不足
例如,PCB尺寸设计不合理,忽视对其综合性能的考虑,PCB板和元器件布局设计不到位,未能对各项参数全面考虑,难以提高设备的抗干扰能力,也制约电磁兼容性能提升。
3.2屏蔽设计的不足
组合体之间的电接触设计不合理,屏蔽材料选择不到位。设备机箱缝隙的屏蔽设备设计不到位,制约屏蔽设计水平提升,也难以提高电子设备的抗干扰性能。
3.3滤波设计的不足
设计过程中忽视对设备性能进行全面考虑,未能采取有效措施切断电磁干扰源,出现电磁干扰现象。
3.4接地设计的不足
接地点位置不合理,忽视考虑接地工作需要。电路组合接地方案不科学,抑制接电干扰措施不到位,降低接电设计水平,对设备运行也带来不利影响。
4电子设备结构设计电磁兼容设计的对策
为避免结构设计中可能出现的故障,提高施工作业效率,更好处理作业中遇到的问题,结合实际工作需要,笔者认为今后应该采取以下处理措施。
4.1PCB设计对策
首先,合理进行PCB尺寸设计。考虑抗噪音和抗串扰性能,提高尺寸合理性,避免出现尺寸过大或过小情况,使其更好发挥作用。其次,PCB板布局设计。尽量缩短高频元器件之间的连线,合理布置电路各功能单位的位置,确保信号流通性良好,尽量让信号流通方向保持一致。合理确定元器件参数,提高设备性能,并让元器件平行排列,增强抗干扰能力。最后,元器件布局设计。采用集成电路元器件,增强其抗干扰性能,提高电磁兼容性能。
4.2屏蔽设计对策
合理设计屏蔽组合体各部分之间的电接触,将接触电阻降到最小。屏蔽材料选用导磁率和导电率较高的材料,可在高导磁材料表面增加一层高导电率材料,促进材料的抗干扰能力增强。采取相应措施,提高设备机箱缝隙的屏蔽效果。将带背胶的铍青铜簧片粘贴于机箱缝隙结合面处,促进屏蔽效果提升。机箱制作时,应该合理采用焊接措施,确保焊缝平滑和连续,让接缝处和金属板的射频电阻尽可能相等,有效提升屏蔽效果。
4.3滤波设计对策
切断沿导线传播的干扰源,从而有效落实电磁兼容设计方法。采用两个电容器和一个电感器组成π型滤波器,作为滤波形式,并消除电路间的耦合,促进电磁兼容设计水平提升。将差模和共模滤波单元组合起来,抑制电流,降低高频段噪声衰减,提高兼容设计水平,促进设备综合性能提升。
4.4接地设计对策
合理选择接地点,提高电路组合接地方案科学性。采用多点就近接地方式,让接地点间的电位差尽量接近,避免相互之间产生干扰。要确保接地线和接地面的直流搭接阻抗小于2.5mW,确保电气连接的可靠性。注重接地面处理,提升抗氧化和抗腐蚀性能,促进接地设计水平提升。
4.5电子设备结构其他设计对策
重视接电保护工作,当电子设备出现损坏现象时,要检查各项设备,掌握设备的综合性能,确保满足要求。结构出现损失时,应该及时更换新的设备,保证设备运行的安全。还要提高电子设备设计和维修人员素质,完善设计措施和管理制度,加强电子设备的性能监测,及时排除故障,确保电子设备性能良好。
5结语
电子设备在日常运行中,由于受到自身质量状况、所在环境、工作人员操作技能等因素的影响,可能出现相应故障。如果未能及时处理,会影响作业顺利进行。实际工作中应该认真分析形成原因,有针对性的采取控制和完善措施,将故障及时排除,提高电磁兼容设计水平,促进电子设备有效运行。
参考文献:
[1]张敏.电子设备的电磁兼容设计[J].科技风,2016(5),86.
[2]刘丽平.电子设备电磁兼容设计研究[J].信息与电脑,2013(1),16~17.
当今社会作为一个信息化时代,科学技术与电子产品也是日益更新,电子设备的种类和形式也是千变万化,从而质量和功能就成为评断电子设备优劣的标准。电子设备在人们生活和生产中发挥着很大的作用,也得到了越来越多的使用,所以对于电子设备的运行也提出了更高的要求。电子设备想要在电磁环境中正常运行就一定要避免受到电磁的干扰,否则就会影响整个电子设备运行的效率。所以在电子设备结构设计和实际运用中要确保电磁兼容,这样才能保证电子设备的正常运行,从而对电子设备的质量和功能进行完善。
1电子设备结构设计中的电磁兼容
1.1电磁兼容的概念
所谓电磁兼容就是指在电子设备正常运行状态下,电子线路产生的电磁对电子设备产生电磁干扰。电子设备结构设计中良好的电磁兼容就是表示电子设备和电子系统,以及电子线路等在电磁环境中都不会受到各自的影响,对电子设备的质量和功能都不会产生影响。要确保电子设备安全、正常运行,就要在电子设备结构设计中充分考虑电磁兼容的问题,这样才能够提高电子设备运行效率,从而为电子行业以及相关单位的良好发展作贡献。比如一些军工事业应该要高度重视对电磁兼容的设计,在飞机上就存在着许多电子设备,其电磁环境也是十分复杂,所以也就会产生很大的电磁干扰,一旦这些问题没有处理好就会造成很严重的后果。由此可见,电子设备结构设计中的电磁兼容是一定要引起高度重视的。
1.2对电磁兼容进行设计的必要性
现阶段人们生活和生产中,电子设备的正常运行是与电磁兼容密切相关的。由于当前社会中各个行业都会频繁使用各种电子设备,所以一旦电子设备中出现了问题,就会造成整个行业的经济受到严重损失,甚至会影响行业的稳定发展。所以电子产业在设计电子设备时要充分考虑电磁兼容的相关因素,对于那些电磁不兼容的电子设备进行及时的改进。因此,电磁兼容设计的主要目的就是要研究如何有效控制并消除电磁干扰,让电子设备在与其他设备共同工作时不会受到影响。作为理想的电磁兼容的设计,应该是要使电子设备在正常运行时不受到那些不好的影响。对于电磁兼容的设计应该通过合理的接地和搭接以及屏蔽等方式,将外部对电子设备的干扰进行减弱并消除。
2电子设备结构中电磁兼容的设计措施
2.1电磁兼容设计中要考虑电磁滤波的应用
电磁滤波是一种常见的压缩信号回路以及影响电磁兼容的方法,电磁滤波在使用时可以有效抑制干扰因素,也能控制相关干扰源谱分量对其他电子设备的影响。所以说电磁滤波就是能够对信号中一些特定的波段频率进行过滤,通过这样的形式就能够有效抑制电磁的干扰。因此,在对电子设备中电磁兼容进行设计时要考虑电磁滤波的应用。由于电子设备在正常运行中电路会产生一部分较强的干扰信号,而这些干扰信号就会通过电源线及信号线等途径,从而对整个设备的电路产生极大的干扰。而在当前社会中,电磁滤波已经被广泛应用于各类电子设备中,这也是能够保证电子设备安全稳定的重要方法。当然电磁滤波的设置也是需要一定的方法和技巧的,对于改善电路过程中通常会使用到穿心电容、三端电容等重要元件。除此之外,在对电磁滤波进行设置时也要确保所有滤波器装置是与电子设备连接好的,只有正确、合理地设置了电磁滤波,才能有效提高电磁兼容的成效,从而改善电子设备的运行状态。
2.2电子设备结构设计中电磁屏蔽的作用
电磁屏蔽就是指对两个不同的空间进行金属隔离,使整个电磁场以及电磁波都能得到有效控制,并且对区域之间的辐射和感应也能相应的控制。所以在进行设计时要充分利用电磁屏蔽的作用,利用屏蔽物将整个电路以及电子设备都控制起来,从而阻止干扰源的影响。目前在电子设备中解决此类影响的方法是电磁屏蔽技术,利用电磁屏蔽的作用可以有效促进电磁兼容,从而提高电子设备的质量和效率。另外,在进行电磁屏蔽时也要注意电磁屏蔽设备的放置,放置时要尽可能地靠近被屏蔽的电子设备,这样才完全发挥其作用。并且电磁屏蔽板的形状也会影响电磁屏蔽的效果,通过实践表明,最有效的电磁屏蔽板应该是全封闭的金属盒电场。这种金属盒的材质也要特别注意,只有良性的导体材料才能真正起到屏蔽的作用,比如一些铜、铝等金属,其金属材料的厚度也需要根据实际应用情况来灵活改变。
2.3电磁兼容设计时要运用接地技术
在对电子设备结构设计中的电磁兼容也要合理运用接地技术,要将电源与信号提供的回路以及电位进行结合。电子设备中电磁兼容的核心目的就是为了利用接地技术来控制电磁干扰的发生。在运用接地技术过程中也要具有一定的规则和标准,要确保接地的安全性,并且接地的方式以及选择等因素也会对电子设备的正常运行产生一定的影响。电子设备中使用的金属外壳要与地面相接,这能够充分保障人们的经济效益以及人身安全,从而也能保证电子设备运行的效率。在电子设备正常运行过程中,有时会发生静电相关的情况,而接地技术能够有效避免这类问题的发生。如图1所示,电磁兼容设计中运用接地技术时,要考虑整个电路系统中的单元电路有一个公共的参考电位,这是确保电路正常运行的前提。由于接地技术能够防止外界电磁场产生的一些不良干扰,所以为了避免电荷形成的高压而引起电子设备内部漏电以及起火等现象,可以选择将电子设备的机壳接地,利用这样的方式可以有效控制电荷的释放,从而减少电磁的干扰。除此之外,接地技术还能避免雷电等电磁感应的影响,可以对电子设备进行有效的保护。
3结语
随着电子设备的不断进步,而电子设备中的电磁兼容也成为电子行业的核心工作。由于电磁兼容作为电子设备正常运行的基础条件,所以在对电子设备进行设计时要充分考虑电磁的兼容性,要尽量提高电磁的兼容,从而提高电子设备的质量和效率。当然,现阶段电子设备结构设计中的电磁兼容性还有许多复杂的问题有待解决,解决过程中也存在着一定局限性,但是提高电子设备的电磁兼容性有许多技术方法,所以在实际操作中要将这些渗透到各个行业中,从而使电子设备中的电磁兼容得到更完善的设计。电子行业在生产中要根据实际情况和需求来对电磁兼容选择最合适的方法,旨在提高电子设备运行的效率。
[参考文献]
[1]陈灿雄.论电子设备结构设计中的电磁兼容设计[J].科技展望,2016(30):286.
[2]刘兴俊.电子设备结构设计中的电磁兼容[J].中国新技术新产品,2015(6):2-3.
中图分类号:TN02 文献标识码:A 文章编号:1674-098X(2017)02(c)-0071-03
结构设计是为了满足电子产品的各项功能和电性能,使设备在各种既定环境下都能正常工作所进行的设计。它可以把产品的外观直接展现出来,在一定程度上决定了产品的可靠性、寿命及性价比。好的设计应合理满足整机的性能要求,在市场上具有竞争力。
产品的工艺性能直接影响到产品性能和战术技术指标的实现。工艺设计的最高原则是以最少的社会劳动消耗创造出最大的物质财富,这个原则也是企业赖以生存和发展的基础。
无论哪类电子设备的设计都离不开结构,整机结构设计水平的高低和工艺技术的好坏对于产品质量至关重要。电子设备的故障或失效大都可归结为设计上没有想到或没意识到某些细节或约束,一些通用设计的技术、准则、理念和方法必须被予以重视并深入贯彻到产品研发中去。
1 某系统电子设备结构设计
1.1 概述
某系统主要由多路耦合器、终端机和信号分配器组成,采用19英寸标准机柜上架安装方式。各设备遵循标准化、系列化、通用化设计原则,颜色、标识、铭牌、把手和接口连接器选择均符合系统设计规范要求。
根据研制方案确定电气功能、性能及使用环境要求,经研究分析整机结构形式和尺寸约束后,初步进行元器件布局、布线和组装设计,合理选用材料、涂镀、加工手段,采用通用件和标准件,简化制造工艺,积极运用成熟技术。后通过软件进行三维实体建模、装配仿真、应力应变分析、热流分析,进一步优化零部件结构。
1.2 多路耦合器
机箱箱体及内部隔板全选用铝合金板,铣削成型,并通过相互搭接、螺钉拧紧固定。选用铝合金板,是因其具有重量轻、加工定位准确、易开沟槽安装固定屏蔽材料、装配拆卸简便、外形美观等优点。
多路耦合器采用模块化设计理念,将防雷电路、放大电路和功率分配电路分别安装在铝合金板铣削成型的屏蔽盒内,构成单独的防雷模块、放大模块和功率分配模块。为便于器件散热,将散热器紧贴机箱左侧板,电源模块紧贴机箱右侧板,放大模块和功率分配模块固定在散热器上,并分别在安装贴合面涂敷导热硅脂。由于电源模块较重,为满足冲击、振动试验要求,设计固定架使其一侧与底板连接,另一侧包住电源与右侧板。防雷模块安装在前隔板预设位置,并与中隔板和后隔板一起组成隔板部件,组装时将其整体插入机箱。各模块用隔板隔开,分别安装在3个相对封闭独立的隔段内,尽可能避免电源与模块、模块与模块间的电磁互扰。多路耦合器结构形式如图1所示。
1.2.1 终端机
箱体是机箱结构的主体部分,是设备功能模块的安装载体,也是机箱结构的集中受力体。根据安装器件的尺寸、重量和位置,同时考虑振动、冲击对结构强度的影响,参考压铆螺钉、压铆螺母柱的铆接装配要求,核算确定各面板材料及厚度。终端机结构形式如图2所示。
终端机由16个解调模块组成,外部线缆通过航空插座进入机箱并通过双绞塑胶线与母板欧式插座连接。由于结构尺寸的限制,一个航空插座需通过8路音频信号或8路串口数据,为避免设备内部多路信号互相串扰,走线及母板设计尽量将多路同类信号线分开。另外所有解调板都安装了背板进行电磁屏蔽隔离、安全防护和固定,以提高电气连接的可靠性。
导轨支撑部件由托板、导轨和连接条构成,主要起约束解调模块自由度的作用,模块的插拔、固定简单方便。
终端机前面板左、右两侧各开设一个进风口,出风口安在后面板中部,风扇装在机箱外侧向外抽风。由于风扇转动把箱内的热空气强制抽出,使机箱内产生负压,吸引机箱外的冷空气由进风孔口进入,从而形成空气交换。为避免导轨支撑部件阻挡、妨碍空气在箱内流通,导轨上设计有导风孔,冷空气经导风孔流过带走解调模块散发的热量。其基本任帐窃谌仍粗寥瘸林间设计一条低热阻的通道,保证热量迅速传递出去,以便满足可靠性要求[1]。另一方面,设计导风孔还起到减轻设备重量的作用。兼顾电磁屏蔽和良好通风的双重要求,通风开口处分别安装了屏蔽通风窗,为进一步提高屏蔽效果,屏蔽通风窗与箱体固定贴合面还粘结橡胶密封丝网组合衬垫。终端机风道设计如图3所示。
1.2.2 信号分配器
以前设计的机箱大多采用零部件搭接、螺钉拧紧固定的结构形式,为满足强度和电磁兼容性要求,完成箱体组装往往要使用很多螺钉,这使得设备拆卸、装配十分繁琐,维修性不好。为解决此问题,信号分配器设计采用插装结构形式,如图4所示。
根据装配顺序将底板插入前面板、后面板、左侧板和右侧板底部对应的沟槽,推动左、右侧板使其与前、后面板互相卡住,然后用螺钉进行固定。把隔板插入箱内使其与底板和后面板配合,分别将滤波器、电源模块和主板模块安装在隔板分开的两个封闭隔段内,尽可能避免电源对主板模块的电磁骚扰。将盖板榫齿插入前面板顶部后面的沟槽中,往前推动盖板使其后端向下插入左、右侧板卡槽,用螺钉将盖板与箱体固定。信号分配器全部零部件共计12个,结构简单,组装方便。
2 某系统电子设备工艺设计
2.1 概述
某系统电子设备环境适应性要求比较苛刻,设计人员不仅要将“六性”设计理念融入、贯彻到研发工作中去,还需清楚产品的工艺流程。电子设备环境适应性主要取决于所选材料、构件、元器件的耐环境能力和结构设计、工艺设计采取的耐环境措施是否合理和有效[2]。装联工人应积极主动地提出合理化建议,配合工艺人员共同完善产品设计,这样才能使设备满足低温、高温、湿热、盐雾、霉菌、振动、冲击、颠震等环境试验要求。
装配、组装质量不仅影响设备外观,而且影响系统的性能,可以说系统的质量直接体现在焊接和组装上。应合理安排装配顺序,注意前后工序的衔接,连接应牢固可靠,安装方向、位置要正确,不损伤设备单元和零部件,不损伤面板等机壳表面涂覆层,确保电性能稳定和机械强度足够。
2.2 通用工艺技术
根据各种材料在实际应用中的表现,内部设计规范应明确禁止使用预镀锌钢板。以前钣金件多采用冷轧钢板,加工后进行镀锌工艺处理,但其防护能力还是偏弱,长时间使用时会产生锈斑腐蚀,相关零件要求全部换成奥氏体不绣钢,新产品设计不再使用冷轧钢板。除钝化处理外,奥氏体不绣钢零件可不再做其他表面处理。
电磁兼容设计应采取主动预防、整体规划、“对抗”与“疏导”相结合的方针[3]。某系统电子设备的箱体材料全部选用铝合金板材,机加工后进行导电氧化处理,使机箱内表面形成理论上连续的导电面。
箱体搭接缝隙处全部安装橡胶芯金属丝网屏蔽条,这种屏蔽条既有很好的弹性,又抗永久压缩形变,在潮湿及盐雾环境中具有很强的抗电化学腐蚀性能。由于屏蔽条有弹塑性,按设计尺寸截取时不要用力拉伸,可先从一端塞入沟槽并顺着按压到另一端再截取,剪切屏蔽条时应使其端头的橡胶芯微缩在丝网内,切忌安装后屏蔽条端头的橡胶芯露出金属丝网很长。
在设备通风开口处安装屏蔽通风窗,利用截止波导原理解决通风和屏蔽这对矛盾。具体设计可参考GJB 1046-1990《舰船搭接、接地、屏蔽、滤波及电缆的电磁兼容性要求和方法》(6.2.2.3截止波导通风孔)。
电源线穿过箱体会使机箱整体屏蔽效能降低,为提高设备电磁兼容性,电源输入接口采用将航空插座与电源滤波器做成一体的结构形式。在滤波器与后面板安装固定面粘接扭角铍铜簧片或导电衬垫,使壳体和机箱贴合并保证接触良好,输入输出线不能靠得太近,引线尽量短且不能交叉,电源线不要与其他电缆捆绑走线。电源输入接口旁边就近设计安装安全的螺栓,并将电源线安全地连接。
带有螺纹连接、压合、搭接、铆接、点焊、单面焊接等组合件,原则上不允许进行电化学处理,不同金属材料组合在一起的部件不能进行溶液处理,这些组合件应尽可能采用涂漆,或分别进行电化学处理后再组装。所有电化学处理都应在零件状态(即非组合件)下进行。
钢铁件在喷涂前应进行磷化处理,铝件喷涂前应进行氧化处理(铸铝合金可采用喷砂处理),以增加涂层附着力。
体积和质量较大的模块、晶振、线圈可用硅橡胶封装或加固管脚。尽量降低元器件的安装高度,缩短其管脚引线。导线穿过金属孔或靠近金属零部件时需用绝缘套管将导线套住,线束的安装和支撑应当牢固,以免使用期间绝缘材料因磨损而短路。电路GND通过金属化螺钉以及对应的阻焊亮铜带和结构件良好搭接,对应的结构件不作喷漆处理。使用不锈钢错齿弹垫、棘爪弹垫、止退螺母等紧固件防止装配松动。
3 结语
随着社会发展及加工技术的进步,产品的结构形式有了很大变化,从单机到系统,从最初主要使用型材、钣金结构发展到数控铣削成型的零件实现形式,精密加工技术已开始影响电子设备的设计和生产。
电子设备的结构及工艺设计是项目研制过程的重要组成部分,直接影响到产品的可靠性、稳定性和品质指标,并不仅是为硬件平台做个外壳那样简单,需考虑多方面的约束因素以选择最合理最可靠的设计技术。综合某系统装备介绍,可了解电子设备的结构形式及设计方法和在工程实际应用时采取的具体措施,对其他电子产品的结构及工艺设计具有一定的指导意义。
某系统电子设备装配拆卸简单,生产维护方便,具备较高的标准化、系列化、通用化程度,符合国家标准有关要求。系统通过公司内部功能、性能测试和第三方电磁兼容试验、环境试验、信道试验验证,所有设备均满足研制方案要求。
⒖嘉南
中图分类号:TH136 文献标识码:A 文章编号:1007-9416(2017)02-0094-02
随着现代电子产品的高度集成化和小型化,以及用户对设备的可靠性、环境适应性等提出的越来越严格的要求,使得电子设备结构复杂程度不断提高,也使产品的装配面临越来越多的困难,导致出现装配质量下降、装配效率降低等一系列问题。在这一环境下,引入面向装配的设计(DFA)这一产品开发模式,在电子设备结构设计阶段即充分考虑产品的装配环节以及各种相关因素的影响,采用简化产品设计、减少零件数量、使用标准件、零件装配模块化和减少装配过程中的调节、装配防错等方法,并利用分析、评价、规划、仿真等各种技术手段,不断地完善设计和改进装配性能,确保装配工序简单、效率高、质量高、不良率低和成本低[1]。
1 基于SolidWorks的DFA应用方法
将SolidWorks功能和DFA方法相结合,在SolidWorks的环境下,主要可以进行以下三方面的应用方法研究。
1.1 简化设计
简化设计就是在设计中遵循KISS原则。简化设计过程往往是对已有的产品结构进行提炼和优化的过程,可以充分利用CAD的数据存储和规划优势,建立各种库文件,选择和调用成熟设计和模块,构建具有较高装配性能的产品。
1.2 标准化模块化设计
在电子设备结构设计过程中,运用标准化和模块化的设计方法,能大幅提高装配质量的可靠性,使装配问题能更早、更容易被发现,从而提高产品装配效率和装配质量。
1.3 虚拟装配
以产品设计为中心的虚拟装配,是在虚拟环境下对CAD模型进行装配性能分析的一项计算机辅助设计技术。基于DFA虚拟装配的基本任务是寻求产品装配结构的最优解,即通过CAD模拟产品装配、进行定量或定性分析,找出结构设计中装配性差的结构特征,进行设计修改和完善的过程。
使用SolidWorks 等CAD软件,可对产品的三维模型进行虚拟装配,并利用CAD提供的分析模块,进行包括静态干涉、运动干涉分析以及装配公差分析等装配性能分析、判断和改进。
2 DFA应用步骤
产品概念设计阶段的主要任务是根据用户要求、设计输入定义产品的架构,并将产品进行模块划分;在此基础上,建立产品装配模型,将各类库文件引入建模过程中,贯彻标准化、模块化设计理念;完成装配模型建立之后,开始虚拟装配,即对模型进行装配性能分析,运用 DFA简化设计等方法对装配体及零部组件进行简化、合并等设计改进,并且进行装配相关检查,直到得到优化模型。
根据DFA的应用方法,制定出在SolidWorks环境下产品设计的流程,见图1所示。
3 DFA装配建模
主要需要建立两类模型,一类是建立一系列库模型,一类是对产品本身结构的建模,而前者是后者的基础。在对产品建模的过程中贯彻标准化模块化思想,为产品的简化设计提供良好的土壤。
3.1 产品装配建模
CAD装配建模有自下而上和自顶向下两种方法。自下而上设计法即首先完成零件设计建模,然后在装配文件中逐一插入零部件,组合成装配体模型,零部件之间无关联;自顶向下法为在装配文件中直接建立零部件模型,零部件之间往往存在几何关联以及配合限制。
综合两种设计方法的优势,在方案设计阶段,采用自顶向下的设计思路,首先规划产品装配体的框架,划分模块类型,在此基础上,将产品主体零件在装配图中进行初步建模或者将通用模块装入装配体中,使产品具备基本的模型架构,然后进入自下而上的模式,对构成装配体的零件模型作细化处理以及建立相关的零件,将生产的零部件装入装配体中并进行配合限制,逐步装配形成产品最终的装配模型。
3.2 库文件建模
库文件泛指CAD软件可调用的所有子组件和模块,它是构建新研制产品的基础,也是面向装配的设计中标准化和模块化设计原则实施的基础。
库文件建立的原则是:
(1)库文件归属文件夹应层次分明,库文件名应简洁明确地表示出库集合的特征,以方便选用;
(2)库文件中固化的组件和模块,如紧固件、外购件等,尽量以零件形式建模,以便存储和调用;
(3)分析同一系列模块的主要安装尺寸,形成尺寸系列表,以方便建模和扩充;
(4)同一系列化零件的建模尽量采用一个模型、多个配置;
(5)模块应尽量包含安装基准、安装尺寸等装配信息,有助于选用和避免装配加工错误。
根据库文件存放的位置和模块的类型可分为两类库,一是存放于计算机本地的本地资源库;另一种需要通过网络管理可上传和下载的ODM电子仓库。
3.2.1 本地资源库
根据电子设备的特点,在CAD环境中主要建立紧固件库(螺钉、螺母等)、电子器件库(连接器、显示屏、键盘、滤波器等)、机械成品库(风机、减震器等)、材料库(屏蔽材料、密封材料、铝型材)以及通用件库(机柜、机箱、控制台、把手、导轨、走线架等)。建立各种库后,将其存放地址添加到SolidWorks系统选项中的设计库中,即可开始在CAD界面中直接调用设计库文件。库文件的设计、编辑、修改等较容易实现, 技术人员可以通过改变某些参数而不必改动元件设计的全过程来更新设计。
3.2.2 PDM电子仓库
SolidWorks Workgroup PDM作SolidWorks的插件,主要用于工作组的产品数据管理,可以将本地成熟产品的数据检入到电子仓库,同时也可以分享工作组内其他成员上传到电子仓库并共享的数据,以实现设计资源的充分利用,并且能确保设计版本和复杂的结构件挂接关系得到有效管理。
根据电子设备结构面向装配的设计需要,以便于选择和调用为建库原则,电子仓库可主要划分为公用资料库、设备资源库和工艺资源库等。将设计相关标准、规范、资料放入公用资料库中;将工艺相关规程、工具资料等放入工艺资源库;设备资源库可以根据电子设备使用的工作环境,如地面、车载、舰载、星载、机载等进行分类,也可以按照结构形式、密封性、抗冲击振动性和电磁兼容性等产品结构特点设置有利于搜索的关键词。
4 装配性能分析
4.1 直观检查
SolidWorks软件界面中提供了装配统计、对称性检查、质量特性以及间隙检查等命令,可以很方便、直观地对已建立的产品模型进行相关的统计和检查,根据检查结果对装配体作进一步简化、合并、调整等减少装配错误、提高装配效率的设计,直观检查一般包含以下几项:
(1)考虑把相邻、相似、对称的零件合并成一个零件;(2)设计多功能零件,减少零件数量;(3)合并减少紧固件的种类、数量;(4)调整装配体及主体零件重心,避免装配时失稳;(5)通过间隙检查,避免零件过约束;(6)进行防错设计,避免非对称零部件具有一个以上的装配位置。
4.2 干涉检查
对产品装配体的干涉检查主要包括静态干涉检查和运动干涉检查两种方式。
SolidWorks命令项中的干涉检查,能够直观、明确、定量地给出装配体静态情况下干涉的零件、部位和干涉几何尺寸,有利于对干涉的零部件定位、定向进行设计修正。
对实现机械运动的产品,采用虚拟仿真工具SolidWorks Motion插件,对虚拟装配体进行运动学和动力学状态的仿真,模拟产品的不同运动状态,检验产品的运动性能及设计计算结果的正确性,对运动部件进行运动干涉检查,查看限位运动的干涉情况以及装配情况和零部件模型的精确程度,有助于在设计中发现产品结构空间布置的干涉和运动机构的碰撞等问题。
更好地完成干涉检查的关键点是完善装配体模型,尽量详尽真实地建模,特别是应注重建立自制件以外的外购件、紧固件、附件等的真实几何模型,往往一些看似微不足道的省略处会在实际装配时出现干涉问题。
4.3 公差分析
SolidWorks有 DimXpert和TolAnalyst两项与公差相关的插件。DimXpert可以直接在3D图形中按照标准生成标注,还可以帮助用户查找图形是否缺少尺寸;TolAnalyst主要作用是解决公差设计的问题。
将公差分析的结果与装配体的简化设计原则相结合,简化装配关系、减少尺寸链数量、减小累积公差,才能够降低尺寸公差等级,实现宽松且合理的公差设计,提高装配质量和装配效率。
4.4 动态装配
SolidWorks的爆炸视图和animator插件可提供静态和动态装配拆分效果图,按需要对虚拟装配体进行拆分、分组,通过爆炸路径和键码对动画进行编辑,生成各虚拟装配体各部分的动画和图样文件。可以用于电子设备结构设计方案评审中,提供直观生动的产品效果;也可以直接应用于实际装配生产,特别是对于复杂的产品的装配具有指导作用。
5 结语
通过基于SolidWorks软件及其插件对电子设备结构面向装配的设计作了一些研究和尝试,体会到无论对软件强大功能的应用,还是对先进的产品设计模式的理解和运用,都需要更加深入地探索。新的设计方法和设计思路在不断涌现,CAD软件的功能也在与时俱进,设计师如何将两者更好地结合进而提升设计水平,是结构设计人员面临的一项艰巨任务。
参考文献
随着经济增长以及电子科学技术的发展,人们对自身健康意识也有所增加,这也在一定程度上推动了医疗电子的发展。医疗电子产品从发展前景上看应当满足三方面要求:便携、节能、安全。这些特点均符合嵌入式产品的特点,因此使用嵌入式系统作为医疗监控设备的平台是一个符合设计思路的方案,同时也是一个符合当前电子产品发展趋势的方案。当今国际形势日趋复杂,医疗电子市场也在此形势下备受冲击,因此发展国产医疗电子就显得势在必行。
1. 嵌入式系统
1.1嵌入式系统的介绍
嵌入式系统,是一种“完全嵌入受控器件内部,为特定应用而设计的专用计算机系统”,国内普遍认同的嵌入式系统定义为:以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等严格要求的专用计算机系统。通常,嵌入式系统是一个控制程序存储在ROM中的嵌入式处理器控制板。事实上,所有带有数字接口的设备都使用嵌入式系统,有些嵌入式系统还包含操作系统,但大多数嵌入式系统都是由单个程序实现整个控制逻辑。嵌入式系统的核心是由一个或几个预先编程好以用来执行少数几项任务的微处理器或者单片机组成。与通用计算机能够运行用户选择的软件不同,嵌入式系统上的软件通常是暂时不变的;所以经常称为“固件”。
1.2对嵌入式的应用
对于 Windows CE操作系统下的串口驱动程序,微软公司提供了一套比较成熟的设计方案。但经过对该套串口驱动方案进行稳定性测试后,从数据上反映出该串口驱动方案并不适合做高速大数据量的接收处理,因此并不能满足医疗监控设备用于接收从医疗监测仪器传送来的高速串口数据。笔者采用了DMA通道技术,该方案用于使用DMA在串口控制器和内存储器之间建立映射,并实时控制其数据传输,这样便将 CPU 解放出来,接收效率也将得到大大提高。笔者根据医疗监控设备的需求,定制了一套具有SDRAM、外部存储器、串口设备、以太网控制器、音频设备、显示设备等功能模块的硬件解决方案,并将其制作成集成电路并调试成功。笔者根据医疗监控设备的需求和硬件上具有的各功能模块制作了基于各模块的驱动程序,并将这些设备驱动整合到操作系统中,使得操作系统能够正确识别并正确操作这些设备模块。 根据医疗监控设备的需求使用C++语言在Visual Studio 2005 集成开发环境上开发了一款应用软件,该应用软件能够根据医疗监测仪器采集的心率、血氧、体温参数信息绘制出图像显示在操作界面中,给用户以直观的显示。
2. 医疗设备的架构
2.1硬件电路
医疗监控设备需要 128MB 的内部存储器,使用了两片 32M×16 位的SDRAM。需要将两片 SDRAM并联医疗监控设备使用了非易失性的Flash作为其存储设备,并用到了两种Flash,即NOR Flash和 NAND Flash。NOR Flash与 CPU 连接的接口与标准SRAM完全相同,因此NOR Flash不但能够存储数据,而且能够支持程序在芯片内运行。NOR Flash 是用来存储启动引导程序和操作系统镜像等受保护数据的一个比较好的选择。而相对于NOR Flash,NAND Flash的读取速度略慢,但擦写速度要远快于NOR Flash,并且由于其成本远低于 NOR Flash,因此 NAND Flash 非常适合作为用户存储设备使用。NAND Flash与 CPU的连接接口与SRAM截然不同,因此不支持片上运行,而且读写操作需要转换电路对其接口进行转换。Pxa270电路相对比较简单,适合用在医疗监控设备中。其主要功能包括:充分支持全双工交换式以太网,支持突发数据传输,支持总线8位、16位、32 位的 CPU访问;提前发送和接收。医疗监控设备使用了市面上主流的 Wolfson 公司生产的 WM9713 作为其音频控制芯片,该芯片具有音质清晰、输出功率大、功耗低的特点。医疗监控设备使用 RS485 接口协议作为串行通信方式与外部设备进行通信。RS485 具有信号传递距离远、抗干扰能力强等优点,但全双工特性较弱。但功能需求上来看,RS485 接口更适合于医疗监控设备。 在硬件连接上,CPU自带的串口 TTL电平信号引脚被连接到 RS485 转换芯片上进行电平转换,经过转换的 RS485 信号被连接到插座上与外部设备进行连接。医疗监控设备使用的显示屏为夏普LS037V7DW01 液晶屏。该部分功能信号也具有传输距离远、抗干扰能力强的优点。不过需要在CPU 的液晶控制器和液晶显示屏之间加入 LVDS 转换芯片对其信号进行转换。
2.2数据转送,采集通道
普通串口驱动是分层结构的,分为 MDD 层和 PDD 层。流式驱动的函数接口决定了用户对串口的操作主要分为三类:发送数据、接收数据、其它IO 操作。通过分析可发现,制约串口接收效率的最关键的一步也是 IO 设备和内存之间传送数据不可避免的效率问题。算法停留时间相对较长造成的影响便是影响了 CPU 对中断数量的判断,造成丢失中断响应的可能,进而就会产生丢失数据或者数据错乱的结果。由于Windows CE操作系统是多进程系统,因此还要考虑到在串口接收高速大数据量的同时不影响用户进行的操作,而这些操作同样会占用 CPU 和内存资源,使得本就不堪重负的串口接收变得更加更加困难。DMA 相当于一个控制 IO 设备与内存传送数据的协处理器,其具体工作方式为:DMA在 IO 设备和一段事先申请好的一块内存空间之间建立一个映射,当 IO 设备接收到数据时,DMA 控制器会将接收到的数据传送至映射好的地址空间上,当该快内存空间收满数据之后会向CPU产生一个DMA请求,由 CPU决定该如何处理接下来的工作。使用了DMA通道的串口驱动与普通串口驱动的工作方式完全不同,不再是每收到一包数据便产生一次中断,而是当一整快内存存满数据后才产生一次DMA 请求,而且复制数据的速度也要明显快于从 IO 设备中读取数据。由于医疗监控设备的工作方式是将串口接收到的数据处理之后以图象的形式显示到屏幕上,因此,串口驱动程序的重点便放在了串口的初始化、打开和接收数据上。 在串口驱动的初始化中完成了以下几项工作:申请了四块大小为 7992 字节的内存空间,同时建立了四套内存描述符与申请的空间相关联。然后再对它进行稳定性测试。
2.3功能模块的设计
关于启动引导程序,医疗监控设备的启动引导程序Ethernet Bootloader的核心部分包含 3 个文件,分别为 startup.s,main.c,blcommon.c,其中 startup.s 为汇编代码,是设备上电之后由硬件引导执行的部分,main.c为 Eboot运行的主要执行部分,直接与硬件平台相关,由Eboot开发人员根据项目实际需求进行开发定制,blcommon.c 为 Eboot公有代码,不需要再修改。关于液晶显示驱动,医疗监控设备的CPU Pxa270 内部带有液晶控制器,能够根据开发人员的配置在引脚上输出需要的标准RGB信号,而 LVDS 信号转换器能够将输入的标准RGB 液晶信号转换成为 LVDS 信号输出,不需要软件支持。因此,液晶显示驱动在做好图像处理输出到液晶控制器的数据帧缓冲区中的同时,更重要的便是配置液晶控制器的输出RGB信号的时序,使其能够正常、清晰地显示图像。
结语:在电子技术迅猛发展的今天,医疗设备的种类日益繁多,功能也变得日益齐全,本文研究的医疗监控设备只是众多医疗监控设备中的一种,实现的功能相对简单。主要总结了当前医疗设备和嵌入式设备发展的现状,针对医疗设备领域的各方面需求,利用 Windows CE嵌入式操作系统和设备驱动的科研成果,实现了一个基于嵌入式系统Windows CE平台的医疗监控设备。在许多方面还有不足。■
1.Introduction Fibre-reinforced polyurethane composites renders a high potential for serial production of adaptive lightweight structures. Processing of highly reactive, two-component polyurethane sets in fully massive investment is needed processes enables short cycle times and thus the production of composite components for high-volume applications. In examine to other plastics and composite manufacturing technologies, polyurethane processing methods are characterized by moderate process conditions that favor the integration of additional functional elements like sensors and electronic components.
2.Basic technology Long Fiber Injection various factors in the automotive sector have combined to create a favourable climate for the development of materials and fabrication techniques for polymer-based composite body panels and structures as the case in LFI. [3]. It is specially connivance for high-amount production of large lightweight components, which are applied mainly in automotive industry, modern concepts introduce intelligent parts by integrating sensor networks into the composite. [4-5].
3. Development of the novel Multi Fibre Injection process: For the high-amount making of fibre-reinforced polyurethane combination with combined piezoelectric purpose elements, new multi Fibre Injection spray coat application based on the LFI process is applied. This technology is particularly characterized by the process-prevent generation of integrated piezoelectric functional elements.
3.1General requirements and preliminary studiesFor the generation of a piezoelectricfunctional layer, first suitable piezoceramic components are specified. For thegeneration of a piezoelectric functional layer, first suitable piezoceramiccomponents are spell out. A method for manufacturing a cofired multi-layerpiezoelectric transformer device includes forming first and second greenshapes of a sinterable ceramic composition and applying metallizationlayer there between [7].the sensors have been spoiled mechanically in dynamicthree-point bending and compression tests at a frequency of 1 Hz. The resultingvoltage signals before and after polarization have been quantified. In fig. 4the voltage signal of a piezoelectric sensor with PZT fibres and electrodesmade of tin- bronze is drawn.
Fig.4.electric current (voltage)signalofaprototypicpiezoelectricfunctionalelementduringdynamicthree-point-bending,(a) earlier polarization;(b)afterpolarization
3.3Handlingof electrode structures: The machine automatedhandling, especially gripping and positioning of the specified porous electrodestructures, requires an appropriate handling system. Among different handlingtechnologies, holding by cleaner has been favoured due to its processing flexibilityand gentle handling. In preliminary studies, different vacuum grippers weretested and suitable suction pads have been identified. These holders werespecifically designed for the handling of composites and thin films. Thecomposite holders are operated with pressed air and generate an internalvacuum. Due to a special design utilizing the Coanda effect, gentle handling ofthin- walled structures is given. The chosen suction pads have been tested inextensive studies, using the specified electrode structures. At first, thedistance at which picking of the respective electrodes is possible wasquantified as a function of the applied pressure. Fig. 6 shows the determinedvalues.
中图分类号:TP391.7文献标志码:A文章编号:1002-2333(2016)01-0119-03
作者简介:董伟(1986—),男,工程师,主要从事机载电子设备结构设计
0引言
随着各类飞机各项性能的提升,对机载电子设备的指标也越来越高,例如机载电子设备的体积越来越小,重量越来越轻,功耗却越来越高,机载电子设备的环境越来越恶劣,其内部的元器件能够正常可靠地工作,是机载电子设备在设计之初着重考虑的内容。随着设计仿真技术的不断创新,在热设计方面,技术也日趋成熟,通过合理地运用热分析工具,对产品设计进行多轮迭代改进完善,充分论证产品的各项性能,使得产品的设计符合需求,以期达到后续生产制造和使用方面风险最小,减少资源浪费,降低成本,提高产品的可靠性,延长使用寿命[1]。本文采用热仿真分析,从散热效果方面对某机载电子模块的两种设计方案进行评估,根据两种方案的几种工况,进行对比分析,确定最优的结构设计方案。
1热仿真分析背景
1.1方案介绍
根据电气功能设计要求,某机载电子模块安装于某机箱内,机箱采用自然散热,模块拟采用子卡实现其一部分功能,但是由于空间有限,该子卡可以采用一个单独元器件进行替代,所以该模块有两种方案:方案一是采用基板和子卡结构,即基板和子卡分别安装在散热板两侧。其中基板功耗为20W,主要由4个5W的元器件组成。而子卡功耗为5W,其中子卡上有3个主要元器件,分别是1.5W、1.5W和2W;方案二是采用基板结构,子卡的功能集中到一个单元器件上,基本功耗为25W,主要由5个5W的元器件组成。两种方案中,元器件都是通过散热板进行散热,散热板再与机箱通过传导散热,将热量导出。各元器件的最高允许工作温度为105℃。
1.2两种方案的对比说明
方案一的基板模块大小为174mm×170mm,子卡大小为74mm×74mm。子卡采用独立印制板形式,与基板分别安装于散热板两面。其中子卡上的元器件通过导热垫与散热板紧贴安装,基板的元器件从另外一面通过导热垫与散热板紧贴安装,这样所有元器件的热量将首先传导至散热板,散热板再将热量传导至机箱,机箱作为热沉,为模块提供冷却路径。此种方案有以下优缺点:子卡元器件通过散热板、子卡印制板传导热量,子卡有独立的印制板辅助散热;基板元器件通过散热板、基板印制板传导热量;散热途径相对独立,互相影响小;可以根据基板的功耗布局,调整子卡的位置。如图2所示。方案二是采用独立元器件形式,基板上的元器件通过导热垫与散热板紧贴安装,另一面则设计有散热翅,加速热量传导至机箱。方案二将方案一中装子卡的位置设计为散热翅,可以增大导热路径。此种方案有以下优缺点:所有元器件通过基板印制板和散热板传导;散热板传导面积大;热量较为集中,各元器件导热会受到周围元器件影响;单个元器件热流密度大[3]。
1.3两种方案的四种工况
在上述两种方案中,子卡的安装方式和散热板的厚度将影响到元器件散热,为了更详细地论证这两种方案的优劣,分别设计有以下4种工况[4],具体细节如下:
1)工况一:a.采用方案一;b.基板与子卡分别安装于散热板两面;c.子卡位于中部;d.散热板壁厚7mm;e.子卡镶嵌于散热板中。仿真模型如图5所示。
2)工况二:a.采用方案二;b.基板安装于散热板一侧;c.替代子卡的元器件位于中部;d.散热板壁厚7mm。3)工况三:a.采用方案一;b.基板与子卡分别安装于散热板两面;c.散热板壁厚2mm;d.子卡安装在散热板之上。4)工况四:a.采用方案二;b.基板安装于散热板一侧;c.散热板壁厚2mm。仿真模型如图8所示。
2仿真计算
针对以上4种工况,分别进行热仿真分析,设置环境温度为70℃,设置机箱温度为90℃,机箱为模块提供热沉,计算各模块的最高温度,各工况具体仿真结果如图4所示[5]。经计算,工况一中元器件最高温度为99.7℃,工况二中元器件最高温度为101℃,工况三中元器件最高温度为104℃,工况四中元器件最高温度为106℃。3仿真结果分析通过以上仿真计算可以看出:工况一中因为子卡上的元器件与基板上的元器件分别位于散热板两侧,避免了热量过于集中;子卡上的元器件还可以通过子卡的边缘传导部分热量,为元器件热量提供了更多的导热路径;厚度为7mm的散热板为模块的导热提供了更好的途径,进而加速了模块的导热。所以综合以上结果,最终确定方案一的工况一为最优方案。4结语通过对两种设计方案的若干工况进行热仿真分析对比,综合考虑散热效果、安装方式和可靠性,并以此为依据选择了最优方案,并开展后续的设计工作,该模块采用此种方案已完成了相应的机械结构设计和电气设计,并进行了环境试验,其中温度试验可以满足要求,产品顺利交付用户,使用情况良好,为项目的顺利开展提供了保障。另外,本文中提出的几种工况,对同类型的机载电子模块具有较大的参考价值,可以进一步指导设计人员开展热设计工作。
[参考文献]
[1]曲行柱.Flotherm软件在电子元器件系统热设计中的应用[J].电子元件与材料,2014,33(10):101-102.
[2]张娅妮,胡清.某机载电子设备热设计[J].现代电子技术,2013,36(3):151-153
[3]邱成悌,赵惇殳,蒋全兴.电子设备结构设计原理[M].南京:东南大学出版社,2005:56-58
一、前言
现如今,各行各业运用的电子产品越来越多,电子产品的安全性和使用寿命受到越来越大的重视。而为了保障电子产品的安全性和更长的使用寿命必须保障电子产品的设计原理合理,同时保证结构设计的准确性。本文重点的分析了电子产品结构设计的要求,原则以及影响因素。通过电子产品结构设计要求,原则及影响因素的分析,为以后的电子产品结构设计提供有力的帮助,保障设计出结构更加合理,安全性更高,使用寿命更久的电子产品。
二、电子产品结构设计的要求
第一,功能要求。电子产品归根结底是一件商品,对于使用者来说,满足其功能是其基本的要求。所以,电子产品必须在设计中体现自身的价值。第二,质量要求。电子产品要想有更好的效率和更高的效益,必须质量可靠,同时在结构上必须更加合理,外观美观。第三,结构更加优化。合理优化的电子产品结构主要是从其尺寸,工艺,使用材料等方面体现,通过这些方面的考虑和选择,找到最优化的结构设计方案。第四,结构设计上要满足创新性的要求。现如今,电子产品都能满足自身的功能要求,但要体现其创新性才能有更好的市场,比如多功能的电子产品,外观设计独特,更加吸引人的注意力等等。只有电子产品的创新性做好,产品安全性高,实用性强,外观设计美化,才能有更好的市场。
三、电子产品结构设计的原则
第一,各部分功能满足设计要求的原则。电子产品的基本原则就是设计的各部件,各部分的功能得以满足预先设计,能够满足基本的使用。第二,产品的强度和刚度满足要求的原则。电子产品作为一件商品,其强度和刚度必须满足要求,达到该产品的规范标准要求,只有满足这个原则,才能有更大的使用寿命。第三,工艺和装配上满足要求的原则。电子产品在工艺设计和装配上必须满足电子产品装配的要求,在这个原则满足后,产品才能更好的进行装配使用。第四,满足用户的审美要求的原则。电子产品最终作为商品使用,在满足使用者基本功能需求的基础上,要更加美观,这样才能更好的吸引使用者。
四、电子产品结构设计的影响因素
1、生产和维修方面的因素。电子产品结构设计的过程中,必须考虑后续的生产和维修因素。在设计中必须保障后续的生产更加合理,方便后续的生产,保障后续生产更加流畅合理。同时,在设计时,就必须考虑电子产品的后续维修。因为,一个电子产品不可能在使用中不出现问题,而出现问题后,就必须进行维修,所以在维修上更加方便的电子产品更容易满足要求。这需要设计者在结构设计上就必须考虑好。合理的结构设计,可以在电子产品出现问题进行维修时,能够方便的进行维修,而不破坏电子产品的本体。
2、零部件材料选择方面的因素。电子产品在设计中,零部件材料的选择会直接影响电子产品的使用寿命以及电子产品的安全性。所以,选择合适的材料是非常必要的。这就要求在电子产品零部件材料选择上,必须考虑环保,安全,可回收利用等等因素。在选择材料的时候,不能贪图便宜,要认真选择生产厂家,选择资质齐全,口碑好的材料生产厂家。
3、功能实现方面的因素。功能实现方面因素考虑是保障后续电子产品后续投入使用良好的关键。为了满足功能要求,必须考虑元器件布局、电路板布线、组件部件布局方面的相互影响。保障三者合理的实现功能,同时元器件布局、电路板布线、组件部件布局三者方面不会产生干扰的现象。
4、产品使用寿命方面的因素。电子产品结构设计必须考虑使用寿命的因素。用户购买电子产品首先考虑的就是能够长久使用。所以提升使用寿命,是电子产品设计者必须考虑的重要问题。而为了保障使用寿命更久,就必须设计更加合理,零部件参数选择更加优化,材料选择更加安全等等。
总结:总之,在以后的电子产品设计中,在保障其设计原理合理的基础上,注重其结构设计是非常有必要的,保障结构设计满足国家标准要求,并且根据其应用环境来设计合理的结构,来满足人们的需求,同时保持产品的安全性,保障电子产品使用寿命更长。
参 考 文 献
[1]曹伟智,田野. 产学研背景下的自行车产品设计研究[J]. 美苑. 2015(06)
[2]李晓明,姜红明,任召. 某高密度电子设备结构设计与解析[J]. 科技风. 2016(01)
1.引言
随着科学技术的迅速发展,现代各种电子、电气、信息设备的数量和种类越来越多,性能越来越先进,其使用场合和数量密度也越来越高。这就使得电子设备工作时常受到各种电磁干扰,包括自身干扰和来自其它设备的干扰,同时也对其它设备产生干扰[1]。在这种情况下,要保证设备在各种复杂的电磁环境中正常工作,则在结构设计阶段就必须认真考虑电磁兼容性设计。如果忽视了这一问题,到新产品使用时,干扰问题就会暴露出来。因此及早地解决电磁干扰问题是电子设备机箱结构设计时必须考虑的重要环节。
2.理论基础
电子设备结构中常见的电磁干扰方式主要有传导干扰和辐射干扰两种,因此电磁兼容(EMC)设计的主要方法有屏蔽、滤波、接地等。
2.1屏蔽
电磁屏蔽是利用金属板、网、盖、罩、盒等屏蔽体阻止或减小电磁能量传播所采取的一种结构措施。常用的方法有静电屏蔽,磁屏蔽和电磁屏蔽。电子设备结构设计人员在着手电磁兼容性设计时,必须根据产品所提出的抗干扰要求进行有针对性的电磁屏蔽设计。屏蔽通常有静电屏蔽、磁屏蔽和电磁屏蔽三种。
2.2滤波
电路中的干扰信号常常通过电源线、信号线、控制线等进入电路造成干扰,所以对公用电源线及通过干扰环境的导线一般均要设置滤波电路。
2.3接地
接地问题在电磁兼容性设计中也是一个极其重要的问题,正确的接地方法可以减少或避免电路间的互相干扰。根据不同的电路可用不同的接地方法。通常组合单元电路接地有串联一点接地、并联一点接地和多点接地三种方式。整机接地方式也是保障产品电磁兼容性的主要措施之一。由于其功能不同,故电路差别甚大,接地状况也不大相同。一般常用的方法是:将模拟电路、数字电路、机壳分开,各自独立接地,避免相互间的干扰,最后三地合一接入大地,这种方式较好地抑制了电磁噪声,减少了数字信号和模拟信号之间的干扰。
3.机箱EMC的结构设计
一电子设备中的机箱,机箱有电源线、信号线、控制线等的穿入及穿出以及散热用的通风孔、调节用的调节孔、显示窗等,同时机箱也是由多个零件组合而成,各部分的连接处难免有泄漏。如何抑制电磁能从上述因素中泄漏,就成了电磁兼容性的关键。在这里仅介绍几种结构设计中比较简单可行的方法:
3.1缝隙的屏蔽
缝隙指的是连接后要拆卸的,如机箱上下盖、前后面板和箱体的连接缝,这类连接通常用螺钉来紧固。这类情形增加屏蔽效能的途径有如下:
(1)增加缝隙深度,也就是增加箱体与盖板的配合宽度。
(2)在结合处加入导电衬垫或者提高结合面的加工精度,即减少缝隙长度。一般比较经济的办法是在接合面安装导电衬垫。这样既可以减少缝隙泄漏,又不要求接合面有很高的加工精度。
(3)接合面上涂上导电涂料:在用螺钉、铆钉紧固的交叠接缝处,由于配合表面微观上是凹凸不平的,接合面上只能是部分点接触;而导电涂料是一种呈流体状的液体,极易流入缝隙,填补结合面上的不平部位,可显著地改善接合处金属之间的电接触使用时应先把接合面上的不导电物质清除干净。对于那些易遭腐蚀的接缝也可用这种涂料来减小腐蚀。如果接缝的配合表面过于粗糙,孔隙很大,应先用导电填隙料把孔隙填平。导电填隙料具有如同油灰的粘稠性,可像刮底漆那样嵌撵。
(4)缩短螺钉间距:接合面不加导电衬垫时,应在结构可能的条件下尽量增加连接螺钉数量,减小螺钉间距,使缝隙长度相应减小。
3.2通风孔的屏蔽[3]
为了满足机箱内部通风散热的要求,有时必须在箱体上开设通风孔。因此,也必须对通风孔进行电磁屏蔽,这类情形增加屏蔽效能的途径有如下:
(1)窗口上覆盖金属丝网:金属丝网覆盖在通风孔上的结构形式有两种,一种是采用焊接方式安装,这种方法使金属网与屏蔽体之间有良好的电接触,但工艺复杂,金属网性能变坏以后又难以更换,且焊接时易破坏周围的保护层,所以很少采用这种方法。另一种是采用环形压圈通过紧固螺钉把金属网安装在屏蔽体的通风孔上。安装之前,应把配合面上的绝缘层、氧化层、油垢等不导电物质除去,并应安装足够数量的螺钉以获得连续的接触。这种安装方式,只要在结构和工艺上仔细考虑,即可使金属网与屏蔽体之间获得良好的电接触,所以应用比较广泛。
(2)用穿孔金属板作通风孔:用许多小孔代替大口径的通风孔是提高屏蔽效能的有效方法,它可以直接在屏蔽体上开许多小孔,亦可单独制成穿孔金属板安装到屏蔽体的通风孔上。与金属网相比,穿孔金属板的特点是屏蔽体性能稳定,因为它不存金属编织网固有的网丝交叉点接触电阻不稳定的问题。在屏蔽壁上直接开小口径通风孔,具有结构与工艺简单、成本低等优点,实际应用已较普遍。
(3)采用截止波导式通风窗:金属丝网和穿孔金属板在较高频下屏蔽效能都要下降, 特别是当孔眼尺寸与电磁波波长可比拟时,则孔眼将引起严重的泄漏。在较高频以上,欲有高的屏蔽性能,且通风良好,可采用截止波导式通风孔板(如蜂窝状通风孔板),它与金属丝网和穿孔金属板相比有如下优点:工作的频段宽,即便到微波频段仍有较高的屏蔽性能;对空气的阻力小,风压损失少;机械强度高,工作可靠稳定。
3.3表头孔的屏蔽
电子设备的机箱面板上往往装有指示电参数的表头,安装表头需在面板上开相应尺寸的孔。为防止从表头孔中泄漏电磁能量,结构上有两种方法可供选用:
(1)在表头背面进行附加屏蔽,且在面板和屏蔽体之间加入导电衬垫以减少缝隙,改善电接触,穿入屏蔽体的表头引线由装在屏蔽体上的穿心电容引入,使引线感应的干扰信号旁路到地。
(2)表面上覆盖导电玻璃:表面覆盖导电玻璃盖时,必须确保导电玻璃的导电层与面板有良好的电接触,通常在连接处加入导电衬垫。由于导电玻璃主要对电场和高频电磁场有屏蔽作用,所以表头本身最好具有屏蔽作用,或者采用带有细金属网夹层的导电钮子开关和指示灯的附加屏蔽玻璃,这样对磁场也有一定的屏蔽效能。
3.4开关、指示灯的屏蔽
电子设备的机箱面板上均装有电源开关或工作状态的转换开关。较常用的有两类,一是钮子开关,二是按钮开关。它们都可以泄漏电磁能量。钮子开关的防泄漏安装结构是在面板与开关端面间衬入导电衬垫。按钮开关和指示灯的防泄漏可采用附加的屏蔽罩。引线的穿入处应采用穿心电容或插针式滤波连接器,防止电磁能量通过引线泄漏。较简单的指示灯屏蔽可在灯罩上覆盖导电玻璃。并使导电玻璃与面板保持良好接触。
3.5显示屏的屏蔽
带有阴极射线管的电子设备,如示波器、计算机终端监视器等,在阴极射线管的开口处电磁能量很容易泄漏,把阴极射线管的屏蔽罩与机箱连成一个整体,并保持电气上的连续性。若阴极射线管屏蔽罩采用铁磁性材料,则能有效地实现磁屏蔽,使显示的图像不受周围杂散磁场的影响。对于信息处理设备的终端显示器而言,由于它的主要目的是防止信息的泄漏,采用上述屏蔽措施是远远不够的。对于信息设备的显示器,防止周围干扰磁场不是主要目的,关键是要防止信息从显示器屏幕的开口处向外界泄漏,所以必须对显示器屏幕进行屏蔽。它还要求屏蔽层有一定的透光性,不影响观察。常用的方法有两种:
(1)屏幕上覆盖导电玻璃或导电塑料,使导电玻璃的导电层与机箱有连续的电接触。这种方法对屏蔽电场和平面波场较为有效,但对磁场几乎没有屏蔽作用。
(2)屏幕上覆盖金属丝网或导电玻璃与金属丝网的复合层。要求金属网不影响观察,为了提高屏蔽效能,最好把交叉点都焊上。采用金属网与导电玻璃复合层既能屏蔽磁场(交变的),也能屏蔽电场和平面波场。
3.6电源线的处理
屏蔽机箱的电源线必须通过电源滤波器才能引入机箱,滤波器应有良好的屏蔽。安装时要注意两点:
(1)滤波器应安装在电源线的入口处。
(2)电源滤波器的安装不能破坏机箱的屏蔽,因此滤波器屏蔽罩必须与机箱壁板有连续而良好的电接触。
3.7保险丝座的屏蔽
单个保险丝座的屏蔽用金属帽盖把保险丝座覆盖起来,帽盖内装弹性簧片使其与机箱有良好的电接触。多个保险丝座的屏蔽把设备的所有保险丝集中起来,用附加屏蔽罩将其屏蔽,附加屏蔽罩的结构和安装与表头孔的附加屏蔽相似。
4.总结
电磁兼容性(EMC)是系统设计中不可忽略的问题,直接影响到系统设备工作的可靠性、稳定性和品质指标。本文所述的方法是从设备结构设计方面考虑的,涉及到屏蔽、滤波、接地等有关的问题,与电路设计相辅相成,缺一不可。在实际设计中,应根据各干扰源的性质及设备所处的工作环境,与电路设计人员一起采取相应的措施。同时,在结构设计中要充分注意采取措施的稳定性与持久性,避免代价昂贵和费时的返工,从而取得最佳设计效果。
参考文献