时间:2023-06-05 15:42:57
导言:作为写作爱好者,不可错过为您精心挑选的10篇电厂安全防护措施,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
中图分类号TM62 文献标识码A 文章编号 1674-6708(2013)92-0040-02
1 工程概况
元宝山发电有限责任公司位于内蒙赤峰市境内。一台300MW机组已关停,现准备对该机组的105m冷却塔等建(构)筑物进行拆除。
1.1待拆除冷却塔结构
本次工程计划拆除的冷却塔,为双曲线形钢筋砼结构。塔淋水面积4500m2,塔高105 m,基础面直径约84.97m;通风筒喉部直径43.8m,顶部出口直径约48.174m,冷却塔为高耸薄壳结构,钢筋混凝土环型基础,冷却塔下有44对钢筋砼人字柱支撑,人字立柱顶部标高为7.8m,人字柱混凝土设计强度300号,人字支撑0.55m×0.55m ,塔筒壁厚从下部的600mm至上部的160mm不等,设计混凝土强度300#。
1.2待拆除冷却塔周边环境
冷却塔正南方约30m处是架空管道;正西15m处为架空管道;正北26m处为2#冷却塔,东北侧19m处为循环泵房,东侧60m处为3#机组冷却塔,东偏南93m处为机房,东侧一条宽5m的水泥路距离冷却塔约10m。
2 大型冷却塔爆破拆除特点分析
1)电厂冷却塔由于其曲线结构和较好的高细比属于拆除爆破中不容易实施的高大建筑物,在设计时要充分考虑其重心较低、稳定性好等特点,结合塔身参数进行爆破缺口情况的估算;同时,预处理时应考虑塔基底部直径和倾倒方向;
2)由于冷却塔塔基面积较大,故建筑设计塔壁厚度都较小以利于节约工程量;在爆破拆除的过程中影响了打孔和装药质量,同时对爆破飞石的控制也是很严峻的考验;
3)本工程建筑物由于自重过大,会造成较大的触地振动和二次触地振动,而周边受保护建筑物较为密集;因此考虑使用技术措施对建筑物塌落导致的触地振动进行减振和隔离以保证受保护建筑物、设施的安全;
4)在冷却塔的拆除过程中,由于塔身的封闭性和空心结构会导致塌落过程中塔内空气从塔口喷出,形成空气冲击波对周边设施造成危害。因此计划采用在塔身背爆面打排气孔的手段减低塔内气压减少空气冲击波的方式来进行防护。
3 爆破拆除的技术措施
3.1爆破方案选择
鉴于待拆冷却塔高度、结构尺寸及环境条件和安全等要求,本次爆破冷却塔的总体方案是在塔体下方形成一个切口,自重作用下使冷却塔成功拆除。鉴于冷却塔周边环境复杂,受保护建筑物较多;考虑到爆破振动以及飞石的影响,计划在设计建筑物倒塌中心位置开设定向窗和减荷槽,通过预处理手段减少爆破起爆药量。
3.2爆破切口设计
爆破切口形状及大小,直接影响到冷却塔的爆破效果、爆破安全和经济性,冷却塔爆破切口设计的技术要求主要包括:1确保冷却塔按设计要求倒塌;2钻孔、装药工作量最小,工程成本低;3方便施工、便于防护,确保安全。考虑到工程清运的需要,本工程采用的是复合型切口。
冷却塔拆除爆破的开口长度计算应以建筑物偏心失稳为标准,切口过小可能会出现建筑物无法正常倒塌的情况,形成工程事故;而切口过大不能精确控制倒塌方向,甚至反向倒塌。本工程中结合国内类似工程参数,考虑冷却塔受力和结构进行如下设计:人字立柱缺口长度14m、支柱环1m、塔身1m。
4爆破危害控制手段
4.1飞石控制
拆除爆破中应该尤其注意爆破飞石对周边受保护建构筑物的影响。在爆破中,由于炮孔起爆和建筑物触地引起的碎块飞溅和爆破倒塌时撞击地面产生的飞溅碎片物。
控制爆破个别飞石最大飞散距离,按《爆破安全规程》中的经验公式计算:
式中:S——飞石最远距离;
V——飞石初速度;爆破作用指数n=1时,V=20m/s;
g——重力加速度;
经计算S=40m
爆破施工中对施爆的人字立柱及立柱环部位采用近体覆盖防护的方法,防止爆破飞石对周围建筑物的危害。
1)人字立柱采用包裹两层钢丝网和两层草帘覆盖,并用铅丝绑扎的方法进行防护。
2)立柱环爆破区域的外侧采用两层钢丝网和两层草帘子覆盖,并用铅丝绑扎牢固的方法进行安全防护。
3)地下管沟的安全防护
对于爆破倒塌方向上的需要保留的地下管沟,首先查清地下管沟的走向,然后在地下管沟的两侧堆土,使建筑物在倒塌的过程中,首先接触到管沟两侧的堆土,重量作于堆土上,能够有效的保护管沟。
4)门窗的安全防护
对于施爆部位附近建筑物的门窗采用铁丝网和草帘表面遮挡覆盖防护,主要防止爆破飞石对门窗的破坏。
5)架空管线的防护
施暴体附近有架空管线经过,对于架空管线主要受爆破飞石的危害。本工程采用对架空管线朝向爆破体一侧挂草帘子及铁丝网的方法来防止爆破飞石对管线的危害。
4.2触地振动减缓措施
冷却塔虽然与钢筋混凝土一样同属于高耸薄壁结构,当时由于冷却塔的长细比远小于烟囱,在倒塌过程中不会产生类似于烟囱筒体撞击刚性地面可能产生的大量飞溅碎片。从大量冷却塔爆破效果上看,由于冷却塔上部结构筒壁非常薄,在倒塌过程中,冷却塔均产生扭曲变形而使整个上部结构完全解体。因此冷却塔爆破倒塌时撞击地面产生的飞溅碎片非常少,同时塌落震动也非常小。但是为了确保万无一失,在该冷却塔爆破时,将冷却塔倒塌方向的地面高度降低,该部分土用于在倒塌方向前方15m长距离上堆积成一缓坡,以进一步减少产生二次飞溅的可能,以及削弱结构着地的塌落震动。
除冷却塔倒塌反方向以外,沿冷却塔倒塌方向左右两侧一圈均需开设减震沟,距塔体边缘外5m~8m,深2m~3m,宽1m~2m。爆破实施前抽排沟内积水,同时也能有效防止爆破振动效应。
4.3空气冲击波防护措施
为减少爆破时冷却塔内部压缩气体对周围建筑设施的危害,在冷却塔后方开一个高16m宽1m的排气孔,使冷却塔在倒塌过程中顺利将体内空气排出。减少压缩气体危害。
5爆破效果及防护情况
2013年4月11日成功爆破,整个冷却塔爆破倾倒时间约10s;正果过程未造成周边受保护建构筑物及人员的损伤,同时爆堆和爆破残渣较为集中,取得了很好的爆破效果;通过现场比对和对周边受保护设施的检查,发现本次拆除爆破施工中的防护措施起到了良好的效果和防护目的。此次高耸双曲线冷却塔拆除爆破在安全防护方面参考了国内类似工程经验,取得了良好的效果,具有一定的借鉴意义。
参考文献
[1]冯叔瑜.城市控制爆破[M].北京:中国铁道出版社,2000.
[2]王永庆,高萌桐,李江国.复杂环境下双曲线冷却塔控制爆破拆除[J].爆破,2007,24(3):49-51.
[3]瞿家林,谢兴博,王希之,徐刚,薛峰松.90m高冷却塔爆破拆除安全防护设计[J].爆破,2011,28(2):72~75.
[4]吕小师,罗运军.大型冷却塔控制爆破技术及危害控制措施[J].河南理工大学学报,2012,31(5):589~592.
[5]谭卫华,林临勇,庄建康.拆除爆破的飞石防护[J].爆破,2010,27(2):103~105.
“电”是人们生产、生活中不可缺少的能源,在建筑施工现场中“电”也是一种重大危险源,而恰恰好多施工现场就是在“安全用电”上存在薄弱环节,从而引发了触电等生产安全事故。众所周知,施工现场临时用电工程是一个具有开放性、临时性、可变性、地域环境多样性等特点的特殊用电工程。可是,目前的一些施工单位以及工作人员对其不够重视或者是因为节省资金,往往忽略了这方面的重要性,所以导致了因为基建工程中的施工用电而引起的电气事故造成人体触电伤害和财产损失不断增加。
1 机电工程施工现场临时用电的特点
1.1临时性
在施工现场,由于临时用电具有临时性,这主要是由工程工期决定的,一般工程项目的施工周期 1~2 年,小的项目少则几个月,或者几天,工程竣工后临时用电马上拆除。所以,机电建筑工程施工现场的用电带有明显的临时性。
1.2 危险性
在机电建筑工程施工的过程中,施工现场的环境较差,电气设备、线路、工具等会变化频繁,具有移动性、共用性、周转性。配电线路、用电设备等极易因外界因素作用而受到影响和侵害。伴随着机电建筑工程进度的发展和工作面的拓展延伸,人员和设备的进出更加频繁,交叉作业的情况占大多数,很容易造成人身伤害发生触电伤亡事故。
1.3 复杂性
机电建筑工程的施工,常常要面对极为复杂的施工现场,而且施工现场的临时用电在建筑施工中面广、点多,加上施工用电负荷有着不稳定的不确定因素,导致复杂的施工现场用电在施工过程中极易发生安全事故。
2 施工现场临时用电的基本方案
施工现场临时《施工现场临时用电安全技术规范》规定:临时用电设备在5台及以上或者设备总容量在50KW及50KW以上者,应当编制临时用电施工组织设计。临时用电设备在5台以下和设备总量在50KW以下者,应当制定安全用电技术措施和电气防火措施。施工现场临时用电方案直接关系到用电人员的安全,一方面要严格执行《施工现场临时用电安全技术规范》,加强施工用电的安全教育,杜绝违章操作,加强现场日常检查和维护。另一方面还要采取切实有效的技术措施,使所有用电设备处于良好的工作状态及完善的保护状态。
3 现场临时用电的安全措施
3.1 接地保护
施工现场的变压器及外引电源一般为中性点直接接地的系统。接地线由变压器的工作地线或为总配电箱第一级漏电保护器电源侧地线引出,形成三相五线制(TN-S)系统。(1)保护地线在总配电箱、线路中端及末端做重复接地。每处接地电阻R≤10Ω。(2)重复接地的目的:①降低故障点的对地电压;②减轻保护零线断线后的危险性;③缩短故障的持续时间。(3)重复接地装置一般利用建筑物基础钢筋接地网做接地体,这样比较经济可靠。还有,接地线的选择也固然重要,(1)接地线一律采用截面积≥2.5mm2、绝缘颜色为黄绿双色多股铜线。(2)三相线路,当相线≤16mm2时,接地线与相线直径相等;当相线>35mm2时,接地线取相线的一半;单相线路,接地线与相线相同,但不得小于2.5mm2(铜线)。这样,一方面减小接地线电阻,降低设备漏电时的对地电压;另一方面可以保证当漏电开关失灵后,设备发生碰壳短路时足以使空气开关(或熔断器)跳闸(或熔断)。
3.2 漏电保护
《施工现场临时用电安全技术规范》要求,施工现场所有用电设备,除作保护接零外,必须在设备负荷线的首端处设置漏电保护装置。同时规定,开关箱中必须装设漏电保护器。就是说,临时用电应在总配电箱和开关箱中分别设置漏电保护器,形成用电线路的两级保护。漏电保护器要装设在配电箱电源隔离开关的负荷侧和开关箱电源隔离开关的负荷侧。总配电箱的保护区域较大,停电后的影响范围也大,主要是提供间接保护和防止漏电火灾,其漏电动作电流和动作要大于后面的保护。
4. 合理选择漏电开关的漏电动作电流
总配电箱内各分路漏电开关的漏电动作电流应根据线路长短、设备多少而定。可选100~300mA,动作时间≤0.1s,一般不应过小,否则会引起不必要的跳闸。开关箱内总漏电开关的漏电动作电流可选50~75mA,不应过小,否则会引起不必要的跳闸。开关箱内总漏电开关的漏电动作电流可选 50~75mA,动作时间≤0.1s,至用电设备的漏电开关其漏电动作电流应≤30mA,动作时间≤0.1s(特殊情况例外)。漏电开关的正确接线。漏电开关的上端电源相线及工作地线必须全部接牢,因为漏电开关的检测回路工作电压有的为220V,有的为 380V。
“一机一闸一箱一漏”就是指每台用电设备必须设置各自专用的开关箱,开关箱内要设置专用的隔离开关和漏电保护器。不得同一个开关箱、同一个开关电器直接控制两台以上用电设备。开关箱内必须装设漏电保护器。开关电器必须能在任何情况下都可以使用电设备实行电源隔离,其额定值要与控制用电的额定值相适应。开关箱内不得放置任何杂物,不得挂接其它临时用电设备,进线口和出线口必须设在箱体的下底部,严禁设在箱体的上顶面、侧面、后面或箱门处。动式电箱的进、出线必须采用橡皮绝缘电缆。施工现场停止作业一小时以上时,要将开关箱断电上锁。
5 综合故障
漏电开关完好时,与自然接地面直接接触的固定设备,人与设备接触地面的电阻要比设备与地面的电阻要大,当设备漏电时首先会引起漏电开关跳闸;当设备漏电时,人触摸设备在达到摆脱电流前也能引起漏电开关跳闸。设备保护地线漏接,1 个漏电开关失灵,当故障漏电时也会引起本回路其他漏电开关跳闸。极其恶劣的情况是:保护地线虚接或漏接,设备以上各级漏电开关全部失灵,并且这时设备漏电,这种情况概率极小,因为施工现场除了电工日常维修外,还有定期的安全用电检查,该种情况将会及时排除。
6 临电系统的验收与档案管理
专项临时用电施工组织设计要由电气专业技术人员进行编制,并经单位技术负责人审核、审批后方可施工。临时用电系统在施工完成后要经过编制人、项目经理、审批人及专职电工共同验收合格后方可投入使用。验收要履行签字手续。建立完善的用电档案,并设专人管理,主要包括:专项临时用电施工组织设计、接地电阻绝缘电阻遥测记录、电工巡视维修记录、临时用电验收记录等。
7 日常维护与检查
对现场的用电设备、供电设施、线路等进行经常性巡视、检查,发现问题立即整改。持证上岗,用电设备、闸箱等的接线、日常维护检查均须由取得相应资格的专职电工进行操作,并作好巡视、维修记录,严禁无证上岗。定期对用电设备、供电线路、设施等的绝缘进行检测,不能满足安全使用要求的立即停止使用进行维修或更换。定期对供电系统接地电阻进行检测,并做好记录。
8 小结
综上所述,我们得知机电工程施工现场临时用电具有临时性、复杂性、危险性的特点,它是一个易发生安全事故、危险性极高的行业。我们只要依照规定做好接地保护及漏电保护,就能有效地防止漏电、触电事故的发生,保证施工用电的安全、可靠。
参考文献
近年来,随着我国国民经济的快速发展与科学技术的不断进步,各种电气设备在建筑工地得到普遍应用,建筑施工的用电需求骤然增加。施工临时用电是建筑施工现场的主要动力载体,是整个工程项目高效稳定建设的重要保障。以笔者多年亲历的35KV~110 KV变电站和10KV~35KV线路的新扩建或增容改造等大小修工程,尤其今年有幸参与大西高铁张礼至襄汾西220KV输电线路新建工程,发现各类工程的施工现场临时用电是整个工程中最不起眼的一个环节,是建设单位、特别是施工单位与现场监理极易忽视的一个部位,它有以下几个特点:
由于受工程建设工期的决定,临时供电系统具有明显的临时性。一般电力建筑工程项目施工期大多一年内,有的则只有几个月,甚至只有几天,且安装安全用电要求,临时用电必须在工程竣工后马上进行拆除,也就是临时用电系统需随工程的竣工而从施工现场拆除;
临时用电还具有危险性,建筑施工现场周围环境复杂,各种电气设备工作和运行环境相对恶劣,作业人员综合素质良莠不齐,由于施工工种多、交叉作业面多、人员设备进场较为频繁,很容易接触到临时供电线路发生触电危险;
临时用电系统还是一个结构复杂的系统,随着工程建设的不断进行,建设工作面也在不断延伸拓展,各类供电线路、电气设备的增加和移动,使得整个供电系统结构复杂多变;
临时供电系统还是一个负荷时变的系统,不同建设阶段所需的机械电气设备也不一样,系统负荷容量变化范围波动较大,这就对供电系统调节能力提出更高的要求。
从以上特点可知,施工现场既是一个电气危险点较多的特殊场所,又是对安全技术水平要求十分高的特殊场所。施工现场临时用电不但直接影响着作业人员的生命财产安全,而且关系着工程质量和施工进度,需要引起我们的高度关注。因此,在施工全过程中,必须采取相应的防范保护措施,提高施工现场临时用电的安全水平,保障整个工程项目安全可靠、优质高效的建设[1]。
1、施工现场临时用电常见问题分析
1.1保护零线引出点不正确
根据建筑施工临时用电安全规范要求,在建筑施工现场,由专用变压器提供的临时用电TN-S保护系统中,各类用电设备的金
属外壳均必须与保护零线进行有效连接。临时用电系统中保护零线应由工作接地线、配电室总配电箱电源侧零线或馈电柜总漏电保护器的电源侧零线引出。在实际施工过程中发现,有的施工现场临时用电系统保护零线的引出方式不按规范要求进行,通常采取将临时用电保护零线从现场分配电的零线重复接地引出,有的或从总配电箱第一级漏电保护器的负荷端引出,这都可能导致有些用电设备保护零线达不到保护要求,当遇到安全故障时起不到应有的保护作用。
1.2用电设备与保护零线间连接不可靠
在施工现场发现,很多临时用电系统在初期架设过程中也按规范和设计要求布置了保护零线,且零线引出点也是正确的,且安装要求也做了重复接地,但在实际施工中,由于各种原因出现设备专用保护零线连接出现不紧密不可靠现象,如临时用电系统安装人员不仔细,只是简单将保护零线与设备接地体进行简单连接,并且没有经过严格的临时用电验收就投入实际运用过程中,就很容易造成设备保护零线接线不妥当,使设备外壳出现带电或当设备发生漏电时失去安全保护等现象发生,导致施工人员在施工用电过程中出现触电事故。
1.3配电箱系统选型设计不合理
在建筑施工临时用电安全规范中明确规定,施工临时用电系统应按照总配电箱、分配电箱、以及开关箱三级设计为三级配电两级保护系统。总配电箱应设在靠近供电电源附近,分配电箱应设在施工现场用电设备相对集中的区域,而分配电箱应按照各用电负荷开关箱位置布置,且其与开关箱的水平距离应在30m以内,用电设备开关箱与现场固定式用电设备控制箱间的水平距离应在3m以内。但在实际施工过程中发现,很多建筑工地现场除总配电箱设置较为合理外,其它如分配电箱、开关箱等很多没有按照规范要求进行设计布置,根据现场用电情况随意布置性强,且没有在箱体周围设置明显的警戒标识。有的甚至将开关箱、分配电箱进行混用,这样很容易导致发生漏电危险后,由于分配电箱额定剩余动作电流较大,通常在50~100mA,而起不到跳闸保护的作用。同时用分配电箱当开关箱直接控制用电设备,这样就可能导致某一设备出现漏电故障后,分配电箱跳闸保护直接影响其它开关设备正常用电,大大降低临时用电供电可靠性,同时还可能危及到电气设备操作人员的安全。
1.4漏电保护器失效
漏电保护器是临时用电系统安全可靠供电的重要保障系统,按照相关规范要求,需要至少每天按动一次漏电保护器的试验按钮,以提高其动作可靠性和及时发现漏电保护器故障。但在现场施工过程中,大多数电工操作人员由于抱有侥幸心理等,没有严格按照要求对漏电保护进行日常校验检查,导致已有故障的漏电保护器依然在现场继续使用,给临时用电系统埋下巨大安全隐患。有的工作人员在安装漏电保护器时,不按要求接好工作零线,导致漏电保护器只能充当一个简单的负荷控制开关,在发生漏电故障时,漏电保护器不能发挥出安全保护作用。
1.5临时施工设备电源线搭接混乱
在建筑工程实际施工中,由于施工现场的需要,经常会出现一些施工机械临时搭接用电电源进行短时工作的情况,而在现场操作的电工往往会认为短时接线布置麻烦,忽视这类施工设备临时用电安全。在施工现场经常会看见将刀闸开关外绝缘胶盖直接取下,然后将设备电源线直接挂在保险丝上的违规用电现象,因为这样不仅造成了刀闸内部保险丝在外面,增大了触电危险率;同时还会由于临时不规范搭接点出现剧烈发热氧化,严重时还会引起火灾等事故。建筑施工现场临时用电系统除上述问题外,还存在供电线路没按规范要求进行穿管敷设、金属丝代替刀闸保险丝、配电箱没有采取防雨措施等,严重危险到建筑施工临时用电安全。
2、提高临时用电安全水平综合措施
2.1按照规定进行详细临时用电组织设计
按照规范要求,施工现场临时用电电气设备总数在5台及以上或设备负荷总容量在50kW及以上时,应该根据施工现场条件,编制详细的临时用电施工组织设计方案。在临时用电施工组织设计中要确定临时用电的电源进出线路径、配电房地址、总(分)配电箱和开关箱安放位置、供电线路的走向;统计用电负荷、选择变压器容量、供电导线截面、以及配电箱(开关箱)的类型规格;绘制现场施工临时用电总配电平面布置图、立面图,以及馈电柜、配电箱、开关箱的接线系统图;并制定详细的安全用电技术措施和施工现场电气防火措施。建筑工程临时用电施工组织设计方案应由专业的电气工程技术人员进行综合分析详细编制,并经现场施工企业电气专业负责人和技术总监理工程师共同审批后方能实施。
2.2按照组织设计要求认真组织现场施工
应按照临时用电施工组织设计和相关规范要求,对临时用电线路和配电箱进行规范安装施工。临时用电中室外架空裸导线的最
大弧垂点与地面的安全距离应在4.0m以上(电缆线路应在2.5m以上),室内线路敷设距地面安全高度应在2.5m以上。临时用电电缆埋地敷设深度应不小于0.6m,在经过道路、结构缝等易受外部损伤的场所应加设直径为电缆外径3/2以上的电缆套管,且在电缆和电线敷设前,要认真检查电线及电缆外绝缘层是否完好[2]。
2.3采取多等级保护
在进行临时用电系统设计、施工时,要确保整个系统具有三级配电两级保护整体结构,并严格按照总配电箱-分配电箱-开关箱逐一配电结构,杜绝配电箱与开关箱混用等不规范现象发生,并严格按照“一机一箱一闸一漏”综合保护进行临时用电配置,同时要严格根据负荷总量进行详细计算总配电箱和分配电箱漏电保护器的额定漏电动作电流,并设置合理匹配的动作保护时间,防止漏电保护开关出现“误动”、“拒动”等状况,提高系统供电可靠性。现场设备开关箱内漏电保护器的额定漏电动作电流应不大于30mA,且其额定漏电动作时间应不大于0.1s。构筑完善的零线保护系统,保护零线除了必须在配电室或总配电箱电源侧作重复接地外,还必须按规范要求在配电箱供电线路中间和末端分别作重复接地,且要用对应仪器核查每一处重复接地电阻是否小于10Ω,若接地电阻不满足要求应采取相应降阻措施。
施工现场,必须严格按照建设部制定颁发的《施工现场临时用电安全技术规范》(JGJ46-2005)进行管理和作业,严格落实上。
述提高施工现场临时用电安全水平的综合措施。同时,还需要按照设计和相关规范要求,采取选用合格材料进行配电箱(开关箱)等施工配电设备制造、认真进行漏电保护器定期试验复核、构筑完善接地与接零保护系统等措施,并通过不断完善用电安全责任制度,加强现场作业人员安全用电知识的培训,提高现场工作人员安全用电水平,监理单位尤其现场监理应着力提升现场安全用电的关注与监管力度,有效防止或减少触电事故的发生,促进整个工程项目安全可靠、高效有序的顺利建设。
[论文摘 要] 在分析了建筑施工现场临时用电存在的一些安全隐患后,对提高施工现场临时用电安全水平的综合技术措施进行了详细分析研究。
施工临时用电是建筑施工现场的主要动力载体,是整个工程项目高效稳定建设的重要保障。在施工现场,由于受工程建设工期的决定,临时供电系统具有明显的临时性,一般工程项目施工期大多在几年内,有的则只有几个月,甚至只有几天,且安装安全用电要求,临时用电必须在工程竣工后马上进行拆除,也就是临时用电系统需随工程的竣工而从施工现场拆除。临时用电还具有危险性,建筑施工现场周外环境比较复杂,由于施工工种多、交叉作业面多、人员设备进场较为频繁,很容易接触到临时供电线路发生触电危险。临时用电系统还是一个结构复杂的系统,随着工程建设的不断进行,建设工作面也在不断延伸拓展,各类供电线路、电气设备的增加和移动,使得整个供电系统结构变得复杂多变。临时供电系统还是一个负荷时变的系统,不同建设阶段所需的机械电气设备也不一样,系统负荷容量变化范围波动较大,这就对供电系统调节能力提出更高的要求。从临时用电以上多个特点可知,建筑施工现场即是一个电气危险点较多的特殊场所,又是一个对安全技术水平要求十分高的特殊场所。因此,在建筑施工全过程中,必须采取相应的防范保护措施,提高施工现场临时用电的安全水平,保障整个工程项目安全可靠、快速高效的建设[1]。
1、施工现场临时用电常见问题分析
1.1保护零线引出点不正确
根据建筑施工临时用电安全规范要求,在建筑施工现场,由专用变压器提供的临时用电TN-S接零保护系统中,各类用电设备的金属外壳均必须与保护零线进行有效连接。临时用电系统中保护零线应由工作接地线、配电室总配电箱电源侧零线或馈电柜总漏电保护器的电源侧零线引出。在实际施工过程中发现,有的施工现场临时用电系统保护零线的引出方式不按规范要求进行,通常采取将临时用电保护零线从现场分配电的零线重复接地引出,有的或从总配电箱第一级漏电保护器的负荷端引出,这都可能导致有些用电设备保护零线达不到保护要求,在出现用电安全时起不到应有的保护作用。
1.2用电设备与保护零线间连接不牢
在施工现场发现,很多临时用电系统在初期架设过程中也按规范和设计要求布置了保护零线,且零线引出点也是正确的,且安装要求也做了重复接地,但在实际施工中,由于各种原因出现设备专用保护零线连接出现不牢固现象,如临时用电系统安装人员不仔细,只是简单将保护零线与设备接地体进行简单连接,并且没有经过严格的临时用电验收就投入实际运用过程中,就很容易造成设备保护零线接线不妥当,使设备外壳出现带电或当设备发生漏电时失去安全保护等现象发生,导致施工人员在施工用电过程中出现触电事故。
1.3配电箱系统选型设计不合理
在建筑施工临时用电安全规范中明确规定,施工临时用电系统应按照总配电箱、分配电箱、以及开关箱三级设计为三级配电两级保护系统。总配电箱应设在靠近供电电源附近,分配电箱应设在施工现场用电设备相对集中的区域,而分配电箱应按照各用电负荷开关箱位置布置,且其与开关箱的水平距离应在30m以内,用电设备开关箱与现场固定式用电设备控制箱间的水平距离应在3m以内。但在实际施工过程中发现,很多建筑工地现场除总配电箱设置较为合理外,其它如分配电箱、开关箱等很多没有按照规范要求进行统计设计布置,根据现场用电情况随意布置性强,且没有在箱体周围设置明显的警戒标识。有的甚至将开关箱、分配电箱进行混用,这样很容易导致发生漏电危险后,由于分配电箱额定剩余动作电流较大,通常在50~100mA,而起不到跳闸保护的作用。同时用分配电箱当开关箱直接控制用电设备,这样就可能导致某一设备出现漏电故障后,分配电箱跳闸保护直接影响其它开关设备正常用电,大大降低临时用电供电可靠性,同时还可能危及到电气设备操作人员的安全。
1.4漏电保护器失效
漏电保护器是临时用电系统安全可靠供电的重要保障系统,按照相关规范要求,需要至少每天按动一次漏电保护器的试验按钮,以提高其动作可靠性和及时发现漏电保护器故障。但在现场施工过程中,大多数电工操作人员由于抱有侥幸心理等,没有严格按照要求对漏电保护进行日常校验检查,导致已有故障的漏电保护器依然在现场继续使用,给临时用电系统埋下巨大安全隐患。有的工作人员在安装漏电保护器时,不按要求接好工作零线,导致漏电保护器只能充当一个简单的负荷控制开关,在发生漏电故障时,漏电保护器不能发挥出安全保护作用。
1.5临时施工设备电源线搭接混乱
在建筑工程实际施工中,由于施工现场的需要,经常会出现一些施工机械临时搭接用电电源进行短时工作的情况,而在现场操作的电工往往会认为短时接线布置麻烦,忽视这类施工设备临时用电安全。在施工现场经常会看见将刀闸开关外绝缘胶盖直接取下,然后将设备电源线直接挂在保险丝上的违规用电现象,因为这样不仅造成了刀闸内部保险丝裸露在外面,增大了触电危险率;同时还会由于临时不规范搭接点出现剧烈发热氧化,严重时还会引起火灾等事故。
建筑施工现场临时用电系统除上述问题外,还存在供电线路没按规范要求进行穿管敷设、金属丝代替刀闸保险丝、配电箱没有采取防雨措施等,严重危险到建筑施工临时用电安全。
2、提高临时用电安全水平综合措施
2.1按照规定进行详细临时用电组织设计
按照规范要求,施工现场临时用电电气设备总数在5台及以上或设备负荷总容量在50kW及以上时,应该根据施工现场条件,编制详细的临时用电施工组织设计方案。在临时用电施工组织设计中要确定临时用电的电源进出线路径、配电房地址、总(分)配电箱和开关箱安放位置、供电线路的走向;统计用电负荷、选择变压器容量、供电导线截面、以及配电箱(开关箱)的类型规格;绘制现场施工临时用电总配电平面布置图、立面图,以及馈电柜、配电箱、开关箱的接线系统图;并制定详细的安全用电技术措施和施工现场电气防火措施。建筑工程临时用电施工组织设计方案应由专业的电气工程技术人员进行综合分析详细编制,并经现场施工企业电气专业负责人和技术总监理工程师共同审批后方能实施。
2.2按照组织设计要求认真组织现场施工
应按照临时用电施工组织设计和相关规范要求,对临时用电线路和配电箱进行规范安装施工施工。临时用电中室外架空裸导线的最大弧垂点与地面的安全距离应在4.0m以上(电缆线路应在2.5m以上),室内线路敷设距地面安全高度应在2.5m以上。临时用电电缆埋地敷设深度应不小于0.6m,在经过道路、结构缝等易受外部损伤的场所应加设直径为电缆外径3/2以上的电缆套管,且在电缆和电线敷设前,要认真检查电线及电缆外绝缘层是否完好[2]。
2.3采取多等级保护
在进行临时用电系统设计、施工时,要确保整个系统具有三级配电两级保护整体结构,并严格按照总配电箱-分配电箱-开关箱逐一配电结构,杜绝配电箱与开关箱混用等不规范现象发生,并严格按照“一机一箱一闸一漏”综合保护进行临时用电配置,同时要严格根据负荷总量进行详细计算总配电箱和分配电箱漏电保护器的额定漏电动作电流,并设置合理匹配的动作保护时间,防止漏电保护开关出现“误动”、“拒动”等情况,提高系统供电可靠性。现场设备开关箱内漏电保护器的额定漏电动作电流应不大于30mA,且其额定漏电动作时间应不大于0.1s。构筑完善的零线保护系统,保护零线除了必须在配电室或总配电箱电源侧作完善重复接地外,还必须按规范要求在配电箱供电线路中间和末端分别作重复接地,且要用对应仪器核查每一处重复接地电阻是否小于10Ω,若接地电阻不满足要求应采取相应将阻措施。
提高施工现场临时用电安全水平的综合措施,除了上述的几条技术措施外,还需要按照设计和相关规范要求,还需采取选用合格材料进行配电箱(开关箱)等施工配电设备制造、认真进行漏电保护器定期试验复核、构筑完善接地与接零保护系统等措施,并通过安全培训等提高现场工作人员安全用电水平,加强监理单位现场安全用电监管力度,有效防止或减少触电事故的发生,促进整个工程项目安全可靠、高效有序的顺利建设。
【 Keywords 】 power plant; monitoring information system; network security; prevention and control
1 引言
水电厂监控信息系统的运行中,必须采用网络安全防控的措施,确保监控信息系统能够适应水电厂的应用环境,维护水电厂的安全运行。由于监控信息系统内承载着发电厂的多项信息,所以水电厂非常关注监控信息系统的网络安全防控,规避信息系统中潜在的风险隐患,加强水电厂信息化的监控力度,进而提高系统网络应用的安全水平。
2 水电厂监控信息系统中的网络安全问题
国家电力企业在监控信息系统的网络安全方面,应该遵循相关的规范标准,以免干预电力信息的安全分配。结合某水电厂监控信息系统(SIS),在水电厂中的应用现状,例举典型的网络安全问题。
2.1 网络连接问题
该水电厂中的网络数据,采用的是单向传输的方法,禁止向实时监控系统的服务器内写入数据,主要是因为SIS连接了水电厂的运行设备,一旦连接中出现安全问题,即会影响水电厂的安全运行,很容易引起黑客入侵,所以网络连接是一项常见的安全问题,导致SIS连接中出现了网络缺陷。
2.2 网络通讯问题
SIS通过交换机连接水电厂的通信服务器,网络通讯的安全级别,要高于管理、操作等网络系统。虽然SIS网络通讯中使用了安全防护措施,但是网络通讯同样需要遵循单向传输的规定,站在网络结构的角度上分析,网络通讯仍旧存在一定的安全问题。例如,SIS中通讯访问的过程是透明的,其可实现任意编程的访问,表明任何身份的计算机,都可访问SIS通讯网络,获取水电站的通信监控信息,由低到高的级别网络中,不存在安全保护的措施,威胁了网络通讯中的数据交流。
2.3 防火墙问题
该水电厂SIS中的防火墙设计,比较注重软件防火墙,利用软件操作,提高SIS的安全性。例如,SIS在监控水电厂电网调度信息时,软件防火墙处于被动防御的状态,该水电厂没有升级软件防火墙,只能阻挡常规病毒,对新型的攻击起不到任何作用,此时软件防火墙处于停滞状态,没有完全保护电网调度的信息,导致信息丢失,严重影响了该水电厂的调度过程。
3 水电厂监控信息系统网络中的安全设计
水电厂监控信息系统网络运行较为复杂,设计安全防控的方案,以此来规范监控信息系统的实践运行。
3.1 系统网络安全设计原则
水电厂监控信息系统网络安全设计的原则:(1)实践性原则,网络安全设计必须以监控信息系统在水电厂中的实际情况为主,尽量不出现冗余设计;(2)安全接入原则,水电厂的运行规模大,监控信息系统的接入频率较高,维护接入过程的安全,才能提高安全防护的水平;(3)适用性原则,网络安全防控设计,要适用于水电厂的运行环境,符合水电厂监控信息系统的需求;(4)技术性原则,安全防控本身是一项技术,其在水电厂监控信息系统内,积极落实安全技术,改善水电厂监控的环境。
3.2 系统网络边界隔离设计
水电厂监控信息网络中的边界隔离设计,主要是防护外部攻击和干扰。边界隔离设计的基础是防火墙,需要物理隔离进行配合,提高边界安全隔离的水平。防火墙设计的过程中,考虑系统防火墙中出现的风险隐患,实行综合化的防火墙隔离设计,防火墙设计中,注重控制水电厂监控的信息流,采用成熟的技术控制,弥补安全漏洞的不足之处,防火墙边界隔离时,要注重升级和更新操作,抵御复杂的病毒攻击。系统网络边界的物理隔离,集中在硬件防护方面,水电厂在监控信息系统中,利用具有隔离作用的硬件设备,连接运行主机,通过硬件设计隔离主机之间的运行,而且硬件设备在系统中的隔离,既可以控制数据流向,又可以支撑安全防护,提供标准的隔离方式。
4 水电厂监控信息系统网络的安全防控措施
根据水电厂监控信息系统对网络安全的需求,提出三点防护的措施,用于提高监控信息系统在水电厂中的安全水平。
4.1 硬件防护措施
水电厂在设置监控信息系统时,提出了硬件防护的措施,在监控信息系统中设置专有的硬件隔离,保护监控系统的安全性。例如,水电厂的监控信息系统接入MIS时,安装了单向传输装置,规范硬件中的信息流向,促使监控信息系统的数据能够安全的传送到MIS模块中,主动阻断MIS回传的所有数据信息。比较常用的硬件防护装置是南瑞SYSKEEPER 2000,按照“2+1”的模式构建硬件防护系统。硬件防护措施可以保障水电厂数据信息准确的穿过网闸,规避数据传输中潜在的协议负荷,净化监控信息系统中的数据传递。
4.2 入侵防护策略
入侵防护策略偏重于水电厂监控信息系统的软件构成,根据病毒入侵的等级,设计标准的防护策略。例举水电厂监控信息系统网络安全防护中,比较常用的入侵防护策略:(1)依照水电厂监控信息系统的运行周期,规划病毒查杀的周期,实行全面的病毒查杀,查杀完成后检查病毒定义码,设计查杀软件的配置,促使其跟上病毒演变的速度;(2)水电厂网络防护人员定期修复病毒入侵造成的漏洞,针对漏洞安排测试方法,科学的安排修补措施,弥补病毒造成的缺陷、漏洞;(3)积极引入先进的防病毒软件,病毒更新的速度非常快,增加了水电厂监控系统网络运行的风险,先进的软件在配置、设计上有一定的优势,其对病毒的防护能力相对比较强。
4.3 软件系统的可靠性
水电厂监控信息系统网络中的软件,既可以落实监控和监督功能,也可以发生不稳定的漏洞,干预了信息系统的安全运行。水电厂必须使用正规的操作系统和软件,如Windows Server 2003,尽量不使用试点软件,以免影响监控信息系统的整体稳定性。水电厂加强软件系统的可靠性控制,预防监控的过程中的软件卡死情况,严谨控制运行软件的安全使用。
5 结束语
水电厂的运行规模比较大,其对监控信息系统网络安全防护的要求比较高,根据监控信息系统中常见的风险问题,提出安全设计的方法,同时落实安全防护措施,优化监控信息系统在水电厂中的应用,强化网络安全防控的应用力度。水电厂监控信息系统运行中,积极深化网络安全防控的应用,致力于为水电厂提供优质的监控方式。
参考文献
[1] 侯加兵.厂级监控信息系统信息安全关键技术研究[D].南京理工大学,2011.
[2] 庞占洲.电厂监控信息系统的网络安全问题[J].电力安全技术,2006,01:13-16.
[3] 季金付.发电厂厂级监控信息系统的网络安全防护[J].安徽电力,2013,04:66-69.
[4] 孟春艳.厂级监控信息系统(SIS)的网络设计与实施[J].山东农业大学学报,2013,04:572-575.
作者简介:
DOI:10.16640/ki.37-1222/t.2017.03.138
0 引言
在我国电力系统是由发电、输电、变电、配电、用电和调度组成。其中发电企业是整个电力系统中起始环节,是整个能源闭环系统中最主要的生产环节。发电企业通常情况下,主要的发电形式为火力发电、水利发电和核能发电。其中火力发电占据整个发电企业发电量的比重最高。而新型的火力发电控制系统已向数字化、智能化、网络化和人性化进行转变,这势必会将更多的IT技术应用到传统的逻辑控制和数字控制中。相比互联网信息安全领域的热络,工控安全作为信息安全的重要领域却一直“备受冷落”。直到近期国外发生多起因黑客网络攻击导致工控系统瘫痪的事件,才引起人们对工控系统信息安全得以重视。
2015年国家能源局下发36号文《电力监控系统安全防护总体方案》,通过认真学习发现安全防护的总体原则与之前的电力二次安全防护原则增加了“综合防护”。而“综合防护”是对工控系统从主机、网络设备、恶意代码防范、应用安全控制、审计、备用及容灾等多个层面进行信息安全防护的过程,目前在绝大多数火电厂都是未开展的工作,主要原因有两个,一是:国内工控安全产品研发刚刚起步,火电厂也没有成功实施的案例;二是:投资费用较高,风险预控把握不大。
1 工控系统信息安全方案的解决思路
在开展工控系统信息安全解决方案之前,有两件准备工作需要做,即定期进行安全意识培训和安全评估。
1.1 安全意识
生产系统的安全是建立在人员安全意识之上,一线生产人员应该保持一个良好的网络安全防范意识和和安全操作习惯,这需要借助工控网络安全培训来形成安全意识。
1.2 安全评估
在充分了解和掌握现场工控系统存在的风险和安全隐患之后,才能制定符合现场实际的防护措施。电力生产安全防护评估工作要贯穿整个电力生产系统的规划、设计、实施、运维和废弃阶段。
1.3 结构安全
“横向隔x、纵向认证”在火电厂工控系统结构已经做的很好了,即在生产大区与管理信息大区采用单向隔离装置,安全一区与安全二区之间有逻辑隔离的防火墙,而此防火墙只是基于四层以下进行访问控制,对于报文负载部分没有进行过滤,现实中的APT攻击完全可以利用防火墙的不足,在一区、二区之间进行传播。
2 火电厂工控系统信息安全现状及应对措施
2.1 火电厂工控系统安全及现状
典型的火电厂工控系统通常由控制回路、HMI(人机接口)、远程诊断与维护工具三部分组件共同完成,控制回路用以控制逻辑运算,HMI执行信息交互,远程诊断与维护工具确保出现异常的操作时进行诊断和恢复。与传统的信息系统安全需求不同,工控系统设计需要兼顾应用场景与控制管理等多方面因素,以优先确保系统的高可用性和业务连续性。在这种设计理念的影响下,缺乏有效的工业安全防御和数据通信保密措施是很多工业控制系统所面临的通病。
2.2 火电厂工控系统安全风险分析及应对措施
(1)安全风险一:操作系统与外接设备交互的风险性。追求可用性而牺牲安全,这是很多工业控制系统存在普遍现象,缺乏完整有效的安全策略与管理流程是当前我国工业控制系统的最大难题,很多已经实施了安全防御措施的工控网络仍然会因为管理或操作上的失误,造成系统出现潜在的安全短板。应对措施:制定关键设备信息安全的评测制度,防范关键设备中的预留后门及多余功能。对工控系统的设备、系统进行评测和检测,确保关键设备、软件没有预埋的、不为我们所知的一些功能。落实工控系统的信息安全检查制度,定期进行自查,这是加强信息安全工作的常规手段。加强工控系统病毒防治工作,落实工控系统防治病毒管理规定,控制系统访问权限严格控制,移动存储介质的使用应当符合管理规定。
(2)安全风险二:工控平台的风险性。随着TCP/IP等通用协议与开发标准引入工业控制系统,开放、透明的工业控制系统同样为物联网、云计算、移动互联网等新兴技术领域开辟出广阔的想象空间。理论上,绝对的物理隔离网络正因为需求和业务模式的改变而不再切实可行。目前,多数工控网络仅通过部署防火墙(隔离网闸)来保证工业网络与办公网络的相对隔离,各个工业自动化单元之间缺乏可靠的安全通信机制。应对措施:传统的IT防火墙已无法满足工业控制系统的需求,但越来越多的控制系统厂家注重网络安全,在控制层面就加装了防火墙。工业级防火墙的出现可以针对控制层的网络协议作出相应的防护,对Modbus和OPC的协议内容进行检查和连接管理。不管是控制系统本身自带的防火墙还是专业的工业级防火墙,都可以针对工控平台的风险性起到弥补作用。
(3) 安全风险三:网络的风险性。通用以太网技术的引入让工控系统变得更智能,也让工控网络愈发透明、开放、互联,TCP/IP存在的威胁同样会在工业网络中重现。当前工控网络主要的风险性集中体现为:边界安全策略缺失;系统安全防御机制缺失;管理制度缺失或不完善;网络配置规范缺失;监控与应急响应制度缺失;网络通信保障机制缺失。应对措施:针对TCP/IP存在的威胁只用运用原有的防火墙及防护方法采取应对措施,而工控网络的专属控制协议防护则应更加有针对性:控制层和数据层的隔离防护,控制层网络的冗余化等,都是可以有针对性的起到保护作用。
3 结语
其实不管是火电厂工控企业还是传统企业,随着信息化的深入,企业或多或少会遇到信息安全的问题,而随着数据价值的不断提高,这种影响对于企业来说也会越来越明显。所以保护企业的核心数据安全是未来所有企业面临的同样问题,而面对不同企业不同的防护需求,采用灵活而具有针对性的安全防护设施或许才是最好的选择。
Study of SIS Security Protection in Power Plant
Chen Yu
(Shanxi Datang International Yungang Thermal Co., Ltd. ShanxiDatong 037039)
【 Abstract 】 With the fast development of information technology, most power plants to implement the SIS, SIS for production management of power plant to provide a convenient, but also brought some problems of network security. If the SIS security protection measures are not in place, will affect the safe and stable operation of DCS, and even cause damage to the production equipment of power plant. This article from the practical application of SIS in power plant, analyses and discusses the influence of SIS system faced security risk, study of SIS security protection measures.
【 Keywords 】 sis; network security; data security; protection measures
1 引言
火电厂SIS(Supervisory Information System in Plant Level,厂级监控信息系统)自上世纪末产生以来得到了迅速的发展。国内火电厂为提高电厂的现代化管理水平,以适应电力市场发展的需要,加大电力生产的安全性和经济性,优化生产过程,降低生产成本和设备损耗,大部分火电厂实施了SIS系统。SIS系统给生产管理带来了方便,但也带来了一些安全问题。如果SIS系统与DCS系统安全隔离措施不到位,SIS系统的病毒传入到DCS系统,进而影响DCS系统的正常运行,甚至造成DCS系统的失控,影响火电厂主设备的安全稳定运行。如何做好SIS系统的安全防护,在SIS系统建设需要按照规范进行。
2 SIS安全现状
当前火电厂在建和已投运SIS系统已达到相当数量,但很多企业对SIS安全性影响认识不足,使SIS与MIS、SIS与DCS之间缺乏有效的安全防护措施,不仅极大地影响了SIS的可靠性、可用率,更严重的是使现场控制系统暴露在公共网络之中,造成很大的安全隐患,特别是一些基于微软操作系统平台的DCS受到严重威胁。比较常见的SIS安全问题:(1)DCS与SIS、SIS与MIS之间未采用安全隔离设备,导致MIS网络中的病毒传入到SIS系统,甚至传入到DCS系统;(2)SIS系统未设置杀毒软件,随意接入移动存储设备;(3)SIS系统单向物理隔离器不符合规范要求,例如使用未经安全机构认证的隔离设备。
另外,随着电力改革的推进和电力市场的建立,要求在调度中心、电厂、用户等之间进行的数据交换也越来越频繁,存在黑客采用“搭接”的手段对传输的电力控制信息进行“窃听”和“篡改”,进而对电力一次设备进行非法破坏性操作的威胁。
SIS系统的安全性必须引起足够的重视,按照公安部制订的《计算机信息系统安全保护等级划分准则》国家标准(GB17859-1999),总装机1000兆瓦及以上发电厂SIS(不含控制功能)安全等级应定为三级。
3 SIS安全防护重点
随着SIS系统应用的逐步广泛,SIS系统的安全问题引起各方面的关注。国家经贸委于2002年6月8日颁布了《电网与电厂计算机监控系统及调度数据网络安全防护规定》第30号令,在其别提出了电力系统安全防护的基本原则:电力系统中,安全等级较高的系统不受安全等级较低系统的影响。电力监控系统的安全等级高于电力管理信息系统及办公自动化系统,各电力监控系统必须具备可靠性高的自身安全防护设施,不得与安全等级低的系统直接相连。
作为安全性要求较高的SIS系统,SIS安全问题需要全方位多层次地考虑。应该主要包括几项内容: (1)SIS系统安全网络结构;(2)SIS系统防计算机病毒策略;(3)防黑客非法攻击策略;(4)SIS系统可靠性;(5)SIS系统电源冗余;(6)SIS系统数据备份。
3.1 SIS系统安全网络结构
国家电力监管委员会2005年颁布了《电力二次系统安全防护规定》。这里所说的电力二次系统,包括电力监控系统、电力通信及数据网络等。其中电力监控系统,是指用于监视和控制电网及电厂生产运行过程的、基于计算机及网络技术的业务处理系统及智能设备等。电力二次系统安全防护工作坚持“安全分区、网络专用、横向隔离、纵向认证”的原则,保障电力监控系统和电力调度数据网络的安全。发电企业、电网企业内部基于计算机和网络技术的业务系统,原则上划分为生产控制大区和管理信息大区。生产控制大区可以分为控制区(安全区I)和非控制区(安全区Ⅱ);管理信息大区内部在不影响生产控制大区安全的前提下,可以根据各企业不同安全要求划分安全区。
目前,火电厂划分安全区域如图1所示。DCS系统属于安全Ⅰ区、SIS系统是生产控制大区中的安全区Ⅱ区,它与DCS等直接控制系统相连,自身不参与控制,但与DCS系统有数据交互。MIS网络中的业务平台,如OA、邮件等属于安全Ⅲ区,互联网络属于安全Ⅳ区。在每个分区之间通过硬件防火墙或物理隔离器进行隔离,提高网络安全性,防止每个分区之间相互影响。
在DCS、辅控系统、脱硫系统等出口处,一般加装硬件防火墙,设置数据传输规则,保证只有可控的端口号、可控的数据在SIS系统与控制系统之间传输。为进一步提高安全性,也可以在DCS等系统出口处加装单向物理隔离器,这样DCS系统只往SIS系统发送数据而不接收来自SIS系统的数据。
设置防火墙可达到的效果:(1)有效将非法攻击、病毒等控制在一个区域内,不会造成DCS系统之间的互相干扰;(2)对单套的DCS系统,阻击来自SIS侧潜在的风险攻击,保证DCS系统的正常运行。
安全Ⅱ区与安全Ⅲ区之间加装物理隔离器,其网络逻辑拓扑如图2所示。此种方式下,需要在安全Ⅲ区设置一台MIS服务器,同时,SIS系统的数据通过物理隔离器装置发送至MIS服务器,MIS服务器将数据保存至当地,并对外提供访问。
利用上述图1、图2所示网络区域图,能够较为安全地做好各区域的隔离,防止各区域在网络安全上面相互影响。但需要注意的是,一般火电厂SIS系统与火电厂DCS系统、火电厂辅助控制系统之间都有网络连接,他们之间的连接最好使用各自的隔离装置,防止DCS主控制系统与辅助控制系统出现网络直连的现象。
在SIS与DCS之间的网络连接中,尽量采用简单的网络连接,可以采用直连的网络,尽量不使用交换机等设备,即减少了故障环节,也减少了其它设备接入的可能。例如,SIS接口机与DCS工程师站用双绞线直连,中间不采用交换机连接,不存在交换机故障引起数据传输中断的问题。
3.2 SIS系统防计算机病毒策略
在安全Ⅱ区各接口机及数据服务器上安装杀毒软件,杀毒软件病毒库定期更新,由于安全Ⅱ区杜绝与外部网络连接,病毒库可以通过与互联网连接的安全计算机进行下载,下载完毕后用杀毒软件对病毒库进行病毒查杀,查杀无问题后将病毒库刻录到光盘,刻录完成后再对光盘病毒情况进行扫描,再次扫描确认光盘无问题后方可接入安全Ⅱ区各计算机设备。对于从安全Ⅱ区设备进行数据拷贝,不应该使用移动U盘等设备,尽量使用光盘进行导入导出,防止病毒通过移动U盘进入安全Ⅱ区。对SIS系统的病毒防护应该下发相应的管理制度进行约束,对SIS系统的管理必须设立专责人,外来技术服务人员对SIS设备进行操作时必须有专人进行陪同。
3.3 SIS系统防黑客非法攻击策略
为防止SIS系统受到黑客攻击,进而影响到DCS系统,必须按照图1所示,在安全Ⅰ区与安全Ⅱ区间设置硬件防火墙,必要时可以设置单向物理隔离器,在安全Ⅱ区和安全Ⅲ区之间设置单向物理隔离器,在安全Ⅲ区和安全Ⅳ区间设置硬件防火墙。
在防火墙设置过程中,要保证不使用的端口全部关闭,按需打开所需要使用的端口,根据DCS系统与SIS系统之间数据传输要求,开放相应端口。防火墙及隔离器产口应该使用国内经过国家安全机构认证审核的产品,必须使用国外产品,必须经过国家安全机构认证审核,不建议使用进口产品。
SIS系统如果与调度网络等其它网络有连接,也必须做好安全隔离措施,使用防火墙或物理隔离器进行隔离。
3.4 SIS系统可靠性
数据的可靠性和完整性对系统分析、优化控制非常重要,因此,SIS不仅要保证实时数据准确、可靠,同时也要保证历史数据连续、完整。SIS数据服务器可以采用双机方式,利用自动切换程序,当主服务器发生故障时,自动切换至备用服务器,也可以采用群集技术,主备服务器与磁盘阵列相连。
SIS网与DCS或PLC网、SIS网与MIS网的数据传送通过接口机实现,一定要充分利用接口机的数据缓存功能对故障时的数据进行保存。当数据服务器或网络出现故障时,接口机可以继续工作,把从DCS系统采集的数据先保存到本地硬盘上。同时,接口机不断地测试数据库服务器或网络,一旦恢复正常,接口软件能把前段时间的数据发送到数据库服务器中,确保数据在时间坐标上的完整性。
3.5 SIS系统电源冗余
为了保证SIS系统数据及设备的安全性,SIS系统最好使用双重电源供电,用户应确保所使用的电源可以自动无扰地从主设备切换到从设备,防止因失电造成设备的损坏及数据的丢失。SIS系统所使用的服务器、网络交换机等设备也最好采用双电源,这样提高了设备运行的可靠性,某一电源损坏设备仍能正常运行。
SIS系统使用的电源最好通过UPS供给,这样提高了电源的稳定性。为减少成本,两路电源可以共用一组UPS,在UPS前,两路电源设置一自动切换开关,当某一路电源失电时,自动切换到另一路电源。虽然电源有切换时间,但由于通过UPS供电,SIS系统在电源切换时通过UPS电池组供电,保证了SIS系统供电正常,不发生业务中断。
3.6 SIS系统数据备份
SIS系统作为火电厂的一个重要信息系统,其存储的生产数据为火电厂生产管理提供了有力的支持,尤其很多设备运行参数为分析设备运行状态很有帮助,一旦数据发生丢失,对火电厂是很大的损失。
SIS系统数据备份主要包括接口机数据备份及数据服务器数据备份。对于防火墙及物理隔离器的配置也有必要进行手动备份。
接口机最主要的是备份测点数据,每次发生测点数据变化,可以手动备份出来,或者备份至其它接口机。接口机可以准备一备用机,一旦某一接口机故障,可以将测点数据导入到备用接口机替换故障接口机。
数据服务器数据备份主要备份测点数据和历史数据。数据服务器最好采用双机冗余,两台服务器实现数据同步,某一台出现故障不会影响SIS系统运行,又实现了数据的备份。有条件的话,也可以将数据服务器中的数据用光盘刻录出来进行保存。
4 结束语
SIS安全涉及网络结构、病毒防治、访问控制、安全隔离等多个层面,本文对SIS关口的安全防护进行分析和探讨。核心是在切实保障电力监控系统安全的前提下,遵循科学的理念,根据企业实际条件和系统内容合理定位、组合设计,实现安全性与开放性的统一,力求安全与投人的平衡。通过对火电厂SIS网络的合理分区及隔离,SIS系统能够实现安全运行,为火电厂生产管理提供有力的支持。
参考文献
[1] 侯子良.再论火电厂厂级监控信息系统[J].北京:电力系统自动化,2002.
前言
计算机网络技术的发展促使网络信息管理系统数据传输效率不断提升,推动了火力发电企业数据集中处理、数据共享、生产自动化的进程,在发电厂生产管理过程中信息系统成为必不可少的管理工具,而随着黑客恶意入侵、网络攻击等现象的频繁出现对火力发电厂生产经营信息管理系统、生产控制信息系统的信息安全造成了极大的威胁,因此网络信息安全体系的构建成为现阶段火力发电企业生产经营过程中的重要任务。
一、火力发电厂基本情况
火力发电厂是国家循环经济的典型项目之一,其为了进一步提高经济效益,加强了信息化技术在电力生产管理工作中的应用,主要包括发电设备网络控制系统、管理信息系统,信息技术在发电厂生产经营管理中的应用极大的提高了电力生产与管理的效率,但同时也为其带来了一定的安全威胁,如遭遇黑客恶意攻击会很大程度上影响发电厂的发电机组、经营管理系统等方面的正常运行,从而影响发电厂正常的生产经营活动。
二、火力发电厂面临的网络安全威胁
火力发电厂面临的网络安全风险包括管理信息系统、生产控制系统、设备设施控制系统等几个方面[1]。其中由于电力生产控制系统主要用于电力生产过程,其虽然具有一定的安全防护能力,但是其结构、管理、技术等方面的安全漏洞很容易在受到攻击够造成大范围的用电事故。根据相应的信息管理结构可以从两个方面进行分析,首先来自该火力发电厂内部的网络安全风险,如系统管理工作人对其工作不够了解,在工作过程中的不规范行为导致信息管理系统出现故障;另一方面来自该火力发电厂外部的网络安全威胁,主要有外来人员的网络病毒入侵、网络攻击等,如在生产控制系统受到攻击时会首先导致相应的发电系统发生跳机故障,随之影响整个发电系统的正常运行。在内部与外部两个方面的共同作用下,再加上管理制度不够完善、网络缺陷、软件漏洞等行为通过病毒传播、伪装、恶意代码、非授权操作、特权滥用、调试不强等行为导致电力系统的正常运行受到了阻碍,火力发电厂网络安全风险的发生在影响相应发电机构的经济效益的同时,也会影响用户的正常用电的过程,从而影响社会生产生活的平稳进行。
三、火力发电厂信息安全体系的构建
1.安装防火墙。
防火墙的安装可以提高火力发电厂整体信息管理系统的防护性能,其主要是在整体信息网络出口进行硬件防火墙的安装,该火力发电厂可根据实际需要选择性能较高的防火墙,然后在防火墙安转的过程中为了保护数据的稳定性,可将该火力发电厂信息管理系统中的所以数据包进行关闭操作,同时进行防火墙包过滤配置的设计,如未经许可不允许其他IP越过防火墙进入该火力发电厂信息管理系统内部,提高该火力发电厂信息管理的安全性。此外为了保证不同信息管理系统的独立性,可建立相应的安全控制点,如在生产控制系统与管理信息系统之间设置一个安全控制点通过相应的指令对进入或者流出内部网络服务进行控制,如拒绝、重新定向、允许等[2]。通过相应指令的控制提高管理信息系统的安全性,降低安全风险对火力发电厂生产管理信息系统的安全威胁。
2.建立相关防护系统。
为了进一步维持火力发电厂信息系统管理的可靠性、先进性及实用性,可依据《信息系统-布线标准》等技术规范进行相关防护系统的构建,然后根据信息系统的整体布局,可设计从音频信号集中控制传输,并在特殊情况下将系统内部的扬声器设置为语音广播模式,促使网络信息安全事故可以及时发现处理,减低人员误操作为整体信息系统造成的安全威胁。而在数据的传输过程中可利用计算机信息系统进行全数字化传输模式,且在其配置安装时应不采用网线、光纤装换器等网络设备的应用。为了保证安全防护系统的稳定运行,可设置视频监控中心为主控制机构,然后在相应管理人员的办公室内部进行分控制机构的设置,如IP网络寻呼话筒等。
此外,由于火力发电厂信息管理区域的区别,可根据具体需求的区别进行生产管理信息防护系统的分区设置,结合机架式IP网络系统,促使相关防护系统在火力信息系统管理维护中发挥最大的效能。发电厂管理人员需提高对相关防护系统的关注力度,然后加强科学技术在相应防护系统中的应用,在这个前提下,可将企业实时防护系统安置在火力发电厂网络系统的出入口处,同时在核心的交换机上也加设企业实时防护系统,促使火力发电厂网络信息管理系统风险的及时发现、处理。
3.完善信息安全组织体系。
完善的信息安全组织体系是信息安全体系顺利运行的前提,首先可根据发电厂实际管理结构组织专门的人员建立信息安全管理组织,并在相应的部门建立相应的管理小组,然后可采用分级负责机制进一步细化各信息管理人员的工作职责,并依据制定规范的信息安全管理要求,进行严格的管理,组织专门的人员进行信息安全管理工作的监督审查,同时为了促使该火力发电厂内部人力资源的更充分的应用,可要求各业务机构的人员兼任网络信息管理监督人员,促使整个厂区内部形成全方位的信息安全管理,促使信息安全管理体系切实提高该火力发电厂信息管理系统的安全性。
4.系统安全分区防护。
系统安全分区防护主要在横向隔离、纵向认证、网络专用、安全分区的指导下进行相应的实施措施,[2]然后根据实际生产经营状况及电力信息系统安全分区工作规范系统制定安全分区方案,可根据信息管理系统应用性能的区别对其进行安全等级的划分,并采取相应的区域的安全防护措施,一般来说可将安全防护工作的重点放在实时控制区域,如生产控制系统、设备设施监控系统等,而安全防护等级较弱的为二级控制区域,如管理信息系统等。脱硝控制系统、化水控制系统、生产信息管理系统、辅助控制体系等安全防护一级区域的防护主要可在物理单向隔离装置安装的基础上,对数据网络进行优化调度,并将其与厂区内部的实时控制系统进行有机整合,如在管理信息系统、生产控制系统间依据相应工作需求进行电力横向单向安全隔离装置的设计安装,而在管理信息系统内部也可以进行安全分区措施,如根据设备、设施的功能、类型的区别对其访问权限进行一定的控制。此外在一级安全防护区域还具有自动电压控制系统、远程终端单元系统等各级管理系统,而机组录波、故障信息处理、线路母线录波、电力采集等在二级安全区域,为了保证系统安全分区信息处理的及时性,可采用纵向虚拟专用网络进行两者的连接,并采取加密认证措施。
四、总结
综上所述,计算机网络技术在电力生产管理中发挥着越来越重要的作用,提高电力生产管理效率的同时,也为电力生产管理信息管理带来了一定的安全隐患,因此电力企业管理人员应提高对安全信息的重视,对威胁自身发展的网络安全风险进行详细分析,然后采取防火墙安装、相关防护系统构建、安全信息组织体系、系统安全分区防护工作等措施,保障电力生产经营过程中信息安全,推动电力企业更加稳定、安全的发展。
作者:关东祥
中图分类号:TP393 文献标识码:A 文章编号:1009-2374(2013)24-0111-02
甘井子热电厂新建2×300MW等级供热机组,综合自动化水平达到国内同类机组先进水平,计算机网络信息系统层次复杂。众多不同安全等级的系统相连,外网接入,内网开放,出现了系统安全问题。如果系统安全没有保障,特别是生产网络和生产数据没有保障,重要的信息会面临丢失、被篡改的危险,影响企业的正常生产经营。这一问题伴随着企业信息化的发展显得越来越突出。因此必须制定一套更加严密可靠的防御体系,来确保网络系统的安全。本文主要探讨电厂MIS与RPMS之间网络安全防护的问题。
1 MIS的网络结构和配置
MIS为生产和管理、维护人员提供大量可靠的信息,提供大量业务处理流程,提高电厂的管理效率,使电厂能够在优化控制和优化管理软件的支持下,实现全厂管理体制一体化。
1.1 MIS的体系结构
采用“客户机/服务器”与“浏览器/服务器”相结合的体系结构。电厂内部的生产信息、工程信息、管理信息的资源共享,与电网调度及其相关部门的信息交换,与Internet的连接,并实现远程用户通过VPN上网。
1.2 MIS的系统结构
主要包括五个子系统:资产管理子系统、运行管理子系统、物资管理子系统、系统维护子系统、人力资源子系统等。
1.3 MIS的系统配置
网络系统布置:以MIS数据中心为核心,采用星型结构向外展开连接。主干网为1000Mbps光缆连接,主干网到桌面采用1000Mbps双绞线连接。网络使用核心层、接入层的架构设计。根据业务特点划分,主要分为核心区、服务器区、办公接入区、广域网区。每个区域都直接与核心区相连,以保证各区域业务流量高速的数据转发。核心区内配置两台核心交换机组成集换机系统。
网络服务器:采用双小型机和存储共同组成SAN网络。其他业务处理采用2U和1U服务器。
网络操作系统:小型机使用UNIX操作系统,其他服务器使用Windows 2008 Server。
数据库管理系统:采用关系型数据库,数据库管理软件具有较大的容量。
数据备份系统:系统硬件采用大容量的磁盘阵列,配备NBU备份软件,关键数据采用实时备份,一般数据采用定时备份的方式。
2 RPMS的网路结构和配置
RPMS采集机组DCS、DEH、ECMS等控制系统的数据,实现实时数据采集和监视、负荷调度分配优化,厂级性能计算分析等,对实时过程进行优化管理。
2.1 RPMS拓扑结构
2.2 RPMS的系统配置
网络系统:堆叠交换机,主干网采用网络介质采用光缆,各信息集中区域内采用六类1000Mbps双绞线连接。
服务器:配置数据库服务器和应用服务器。
系能维护:设置性能维护分析站。
数据备份系统:配置磁盘阵列。
3 MIS与RPMS的联接
按照安全和保密的要求,MIS与RPMS建立各自独立的网络环境,用网络隔离网闸实现MIS与RPMS两个网络间的隔离和链接。设置不同层次的授权传输权限,确保DCS内部数据与外部传输的安全性,避免实时控制系统受到来自MIS系统不确定因数的攻击。把MIS和DCS隔离开来,故障时互不影响,提高两者的可靠性。
在DCS控制系统中经过采集处理的生产过程实时信息,向RPMS系统单向传送实时数据。MIS系统只接收来自RPMS系统数据,而不参与系统的控制。
4 MIS与RPMS联网安全隐患分析
国家电监会在2006年34号文《电力二次系统安全防护总体方案》,关于发电厂二次系统安全防护的总体要求中,要求发电厂的生产大区与管理信息大区间相连必须采取接近于物理隔离强度的隔离措施;如以网络方式相连,必须部署电力专用横向单向安全隔离装置。生产实时数据与管理信息系统之间只能进行单向数据传输,任何计算机终端,任何系统不能向生产实时控制系统的服务器、控制装置、数据采集等设备写数据。一方面,这是由于RPMS与生产系统息息相关,管理信息区需要的生产数据全部来源于RPMS,DCS、NCS、ECMS等重要生产控制系统,唯一的外联系统即为RPMS,一旦遭到入侵,势必影响企业的正常生产甚至造成恶性事故,所以其安全性要求更高;另一方面,管理信息系统包含许多不定因素:用户不固定,通信量不固定,使用的软件不固定,甚至可以VPN远程访问,安全管理也不容易落实,极易受病毒感染,并传播病毒。为保证实时系统的安全性,RPMS与MIS之间必须采用单方向的数据通讯。
目前常见的组网方案为MIS与RPMS分别独立组网,并配置各自的服务器,两网络之间用单向横向隔离装置连接。这样,RPMS和MIS只需与各自的服务器交换数据,通信简单,提高了两个网络的独立性,为RPMS子网提供了高度的网络安全。
5 MIS与RPMS联网安全防护措施
为处理MIS与RPMS之间数据传递的安全问题,按照电监会34号文件要求,应该采用专用硬件设备和软件相结合的解决方案。
5.1 采用物理隔离装置
针对防火墙在防病毒方面以及双向传输的局限性。采用电力专用横向单向安全隔离装置,将该装置布置在生产控制区与RPMS网络之间,以及RPMS与MIS网络之间,能够从物理上保证数据只能够由RPMS单向传递到MIS,而不会有数据从MIS传递到RPMS。
5.2 病毒防范
MIS网络应用面广泛,不可控因素众多,布置在MIS管理信息区的RPMS镜像服务器及应用服务器非常容易受到病毒攻击。虽然在MIS与RPMS网之间用单向安全隔离装置从物理上切断了病毒的传播,但是常常由于操作系统的漏洞和管理人员的疏忽,在RPMS网出现病毒,比如实施工程师或者维护人员调试系统时接入的笔记本,即为不可控因素。因此,在提高RPMS维护人员的防病毒意识的同时,应该在RPMS侧布置独立的防病毒服务器。
5.3 网络安全测试
随着网络安全防护技术不断提高,网络的攻击手段和技术也是层出不穷,所以在系统投入使用前,应邀请专业部门对网络结构进行严格的安全测试。模拟各种攻击手段,从RPMS内外网测试网络系统的抗攻击能力,检查是否存在网络安全漏洞,及时完善和修补各种漏洞,最终有效阻止病毒及非法入侵对RPMS整个系统以及生产控制系统的破坏。
5.4 网络安全维护
系统建好后,日常的维护极为重要,及时发现隐患,及时排查,防患于未然,让RPMS系统真正成为企业生产经营的助手。
火力发电作为现代电力生产的主要形式,我国与20实际90年代初投入发电机组,由于自动投入率低,仪表准确性差和保护动作正确率低等,使得机组所需运行人员较多,负担过重。为了保障其热工自动化设备的安全,提高机组工作的技术,成为防范事故的所采取的有效措施。
1、火电厂热工自动化内容及意义
火电厂热工自动化,是发电厂实现自动化过程控制,为居民、商业和住宅小区等实现电力供应的创新性设备。由于现代中小型发电厂的取缔,使得大型火电厂的自动化技术在不断的革新。火电厂热工自动化能对电力生产过程实现系统范围内的监督和控制,当设备出现运行不正常时启动自我保护装置,自动操作生产设备并进行周期性操作,将操作人员从重复性劳动中解放出来。
热工化自动的意义:在机组正常运行过程中,自动化系统能根据机组运行要求,自动将参数维持在要求值,以期取得较高的效率和较低的消耗。在机组运行异常时,自动化装置除及时报警外还能提供有效方法解决操作人员的麻烦。保证了正常的机组运作,减少了机组停运对生产造成的损失和影响。同时自动化装置能适时采取果断措施跳闸保障设备和人身安全。
2、火电厂热工自动化的必要性
二次工业革命后,电力的广泛使用,给人们带来了无限便利。电力作为我国国民经济的重要组成部分,近年来更是得到了飞速发展。尽管现代利用太阳能风能发电,来满足人们日常所需,然而由于受多方面技术限制,所产出的电能仍然不能满足人们的需求,电力的使用仍然需要依靠火电厂来实现。自动化技术对于提高火电厂机组的安全经济运行水平是一种行之有效的方法,大型火电机组最初运行时需要大量操作人员监视,一旦防范措施不力,就会给发电厂带来难以估价的损失,这就使得热工自动化应用在生产设备中成为了必要。
但近年来,由于我国用电量需求的不断增加,参数间的相关性也越来越复杂,这就使得发电机组启停和事故阻碍了正常情况下的供电。火电厂热工自动化技术的广泛应用,发电机的族能安全和经济运行已成为威胁操作员和发电厂的安全隐患。因而观察生产过程中热工自动化的运行情况,检查自动化回路工作是否正常,采用自动化控制方式对生产过程干预,以保障操作现场设备的安全。能够迎合火电厂供电要求。
火电厂热工自动化的应用,可以更好的对电机组的工作情况进行准确的判断,自动地进行控制和操作,在保障其来良好的运行状态下,只需监视人员提高安全防范意识。相应的。也可以降低发电成本和燃料浪费率,同时对于延长设备机组的使用寿命,具有极为重要的意义。在提高劳动生产率,改善劳动条件和减少运行人员,保障电厂正常运行方面,都有极为重要的作用。
近年来,随着计算机技术的进步,也使得火电厂热工自动化成为大势所趋。火电厂的自动化整体综合进步将有利于减少我国与国际上先进国家在火力发电技术中的差距。而电站热工自动化技术体现在管理、运行、设计、设备制造、系统调试和维护等多方面的进步,将整体上提升自动化的技术,这种新型的防控技术应用于我国发电厂领域,将必然对我国火电厂的发展迎来更为广阔的舞台。
3、火电厂热工自动化事故预防措施
事故防范措施可从以下几个方面努力:规章制度措施、安全教育措施、安全防护措施和激励措施四个方面努力。在消除事故隐患的基础上,安全生产规章制度时保障火电厂热工自动化安全管理的基础。作为对火电厂管理的约束力,消除违章指挥、违章作业这种人为因素引发的安全隐患。健全和落实规章制度,是预防事故的必需条件。对于火电厂管理体系的制度化和标准化进行研究,在火电厂为市场经济和国民生活带来巨大的便利,在此基础上使工厂安全生产有了可供参考的范例。
对于火电厂热工自动化操作员工来说,违章事故的发生,都是源于内部员工安全意识的淡薄。教育是安全之本,首先要对热电厂管理高层进行安全管理培训交教育,并对其能力进行考核。领导班子整体安全素质的提高,能有效增强火电厂领导、安全员、管理人员的安全管理知识和安全意识。对于火电厂日常的安全教育,也不能忽视。在具体的安全防范措施中,必须要求火电厂热工自动化操作小组一线操作工人每周进行安全知识学习,积极拓展电厂专业化生产技能和安全防范意识,从而从根本上让生产小组员工形成深刻的安全意识。对于已引发的安全事故,在事后要积极调查处理,对事故现场做好妥善的分析,使事故责任人和相关安全操作技术员充分从现有事实中吸取教训。对事故提高警觉,克服侥幸和麻痹心理。
对火电厂热工自动化的安全防护措施,应从根本上挖掘事故引发的最直接原因,加强火电厂热工自动化机械设备的安全性能,有效控制操作者冒险作业的不安全行为。在设备运营前,首先检测热工自动化的配置是否达标,保险装置和制动装置是否处于正常和受控的状态。减少因一切主观和客观因素造成的事故安全隐患。
对于热电厂热工自动化安全防护事故的一项最重要措施是,激励措施。在对管理高层次和对操作工的高标准要求下,也要有一定的奖励措施,这样才能将安全生产更好的落实到安全生产之中。“安全承包责任制”和经济江帆直接挂钩,能有效激发职工对安全生产的自觉性和积极性。在热电厂的内部形成一个安全工作层层落实、人人有责良好安全局面,能有效遏制事故的发生。在生产操作过程中,要树立安全第一的原则。
4、总结。对于火电厂热工自动化操作过程中,能引起事故的原因,要做出有效防范措施。在日常的操作中,要时刻把安全生产作为第一部,认真加强安全管理工作,控制违章作业等等各项不安全因素,不断提高自动装置的可靠性。将安全工作落实到热电厂生产的方方面面,有效的遏制事故的发生。
参考文献: