风险评估方法论模板(10篇)

时间:2023-06-07 15:56:09

导言:作为写作爱好者,不可错过为您精心挑选的10篇风险评估方法论,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。

风险评估方法论

篇1

    0、引言

    电力作为高风险产业,不仅源于其公用事业属性,以及技术资金密集、供求瞬时平衡、生产运行连续等特征,同时电力项目投资额巨大、建设周期长、沉没成本高,而且,随着电力体制改革和电力市场建设进程的深入,市场主体越来越多,电力交易关系复杂,不同主体之间协调困难,电力行业规划建设、生产经营的不确定性加大、电力市场风险增加。根据“十一五”期间电力体制改革的任务,面对我国电力市场化发展的现状,增强风险意识,树立风险观念,加强风险管理将是电力企业的重要任务。本文在阐述了企业风险管理基本框架流程及其主要内容的基础上,提出电力企业定量风险评估的主要内容及方法,以期推动电力系统风险管理工作的开展。

    1、风险管理的主要内容

    风险作为客观存在,要求人们考察研究风险时,要从决策角度认识到风险与人们有目的活动、行动方案选择及事物的未来变化有关。风险的形成过程和风险的客观性、损失性、不确定性特征共同构成风险形成机制分析和风险管理的基础。

    人们一般对风险持厌恶态度,都想减小风险损失,追求风险与收益的均衡优化。风险管理的提出与发展与企业发展状况、社会背景密不可分。风险管理作为一门管理学科,首先在美国应运而生,之后传到西欧、亚洲、拉丁美洲。美国大多数企业都设置专职部门进行风险管理,许多大学的工商管理学院都开设风险管理课程。风险管理作为一门科学与艺术,既需要定性分析,又需要定量估计;既要求理性,又要求人性;不但需要多学科理论指导,还需要多种方法支持。

    源于风险意识的风险管理主要包括风险分析、风险评价与风险控制三大部份。根据风险形成的过程,风险分析需要进行风险辨识、风险估计。风险估计需要进行频率分析与后果分析,而后果分析又包括情景分析与损失分析。通过风险分析,可得到特定系统所有风险的风险估计,对此再参照相应的风险标准及可接受性,判断系统的风险是否可接受,是否采取安全措施,这就是风险评价。风险分析与风险评价总称为风险评估。为进行风险定量化估算,要进行定量风险评估(Quantitative Risk Assessment—QRA)。在风险评估的基础上,针对风险状况采取相应的措施与对策方案,以控制、抑制、降低风险,即风险控制。风险管理不仅要定性分析风险因素、风险事故及损失状况,而且要尽可能基于风险标准及可接受性对风险进行定量评价。对于以盈利为目的的工业企业也希望将风险损失价值化并给出货币衡量标准。风险管理就是风险分析、风险评价、风险控制三者密切相联的动态过程,见图1。

    2、风险管理的组织实施与基本流程

    为有效实施风险管理,企业应由专门的组织及相关人员按一定程序组织实施风险管理工作。据《幸福》杂志对美国500多家大公司的调查知,84%的公司由中层以上的经理人员负责风险管理。风险管理的趋势是董事会下属设立风险管理委员会全面负责公司风险管理,组织实施的流程是:①制定风险管理规划;②风险辩识;③风险评估;④风险管理策略方案选择;⑤风险管理策略实施;⑥风险管理策略实施评价。

    3、电力企业定量风险评估(QRA)

    电力企业QRA的建立与发展从内部来看,不仅已有可靠性分析、安全分析、质量管理、项目管理等各专业分析作基础,从外部而言有电力用户、政府与社会公众、咨询机构等众多相关主体的关注。电力企业QRA对企业的作用主要体现在:通过QRA有利于企业将风险水平控制在规定标准的风险水平之内,并符合最低合理可行原则;通过开展QRA可帮助企业全面识别风险,并按轻重缓急排序,以有助于管理者将精力、财力、物力集中于风险控制的重要紧急领域,使风险管理决策更为合理、效果更好、成本最小;通过对各种风险控制方案或安全改进措施进行QRA,使决策者对方案措施进行优劣选择,为公司提出决策支持。电力企业的风险将对其它企业和主体带来连带影响,并产生放大效应,电力系统安全、可靠、高效、优质是各行各业和政府管理部门共同的愿望。电力企业实施QRA具有现实意义。

    3.1  电力企业QHA的基本框架模式

    电力企业QRA是指在工业系统QRA的基础上,考虑电力系统的技术经济特点及运行规律,结合电力体制改革及电力市场化进程而以概率模型表征的全面风险管理理论方法。为便于实施风险管理,保证风险评估质量,满足风险评估过程各阶段的不同要求,构建如图3所示的适用于电力企业QRA的基本框架模式。在具体实施时,允许依实际情况而有所改变。

    3.2  电力企业QRA的主要工作内容

    (1)确定目标及范围。包括风险管理的目的与意义,待分析系统的设备配置、工作流程、资金、人员、管

    理、信息、地区、人文环境等,即确定QRA实现目标和实施条件等。

    (2)风险辨识。即找出待评价系统中所有潜在的风险因素,并进行初步分析,通过安全检查看系统是否达到规范要求。风险辩识的基本途径有历史事故统计分析、安全检查表分析、风险与可操作性研究(HZOPS)、故障模式与影响分析(FMEA)、故障模式影响及危急分析(FMECA)、故障树分析(ETA)、事故树分析(ETA)、风险分析调查表、保单检视表、资产风险暴露分析表、财务报表、流程图、现场检查表、风险趋势估计表等。为配合保险公司对出险事项的处理,可采用从下至上的归纳法、从上至下的演绎法及两者综合运用。针对特定风险,可选用基于系统平面布置的区域分析、隐含事件分析、德尔菲法及基于事故树分析的风险事故网络法等。风险辩识不只局限于系统硬件,还应考虑人为因素、组织制度等系统软件。  风险综合集成是指对所有风险按其特性类型分门别类加以汇总整理。因电力工业特点及电力市场化改革特点,把电力系统风险按厂网分开的行业结构进行分类。

    对于发电企业而言,主要有电源规划风险、报价竞价上网风险、供求平衡风险、市场力抑制风险、备用容量风险、信用风险、法律风险、项目风险、中介机构风险等。对于电网企业而言,主要有电网规划风险、电网融资风险、购电电价风险、电力交易转移风险、辅助服务风险、成本分摊风险、输电阻塞风险、输电能力风险、备用率风险、电力监管风险等。另外,电力企业还将面临电力可靠性、安全性、稳定性风险及电能质量风险等。

    风险综合集成后的初步风险分析是对已辩识出的风险进行初步分析评估,确定风险的等级或水平。风险水平低的可忽略不计或仅作定性评估,风险水平高的要在定性分析基础上,进行定量评估。

    (3)频率分析。即确定风险可能发生的频率,其方法主要有历史数据统计分析、故障树分析与失效理论模型分析。历史数据统计分析是根据有关事故的历史数据预测今后可能发生的频率。因此要建立

    风险数据库,既作为QRA的基础,又作为风险决策的依据。故障树分析作为一种自上而下的逻辑分析法,把可能发生的事故或系统失效(顶事件)与基本部件的失效联系起来,根据基本部件的失效概率计算出顶事件的发生概率。失效理论模型分析是在历史数据与专家经验的基础上,采用某种失效理论模型来计算风险发生频率。

    (4)风险测定估计。根据风险特性及类型,运用一定的数学工具测定或估计风险大小。常用方法主要有主观估计法、客观估计法、期望值法、数学模型法、随机模拟法和马尔可夫模型法等。

    (5)后果分析。即分析特定风险在某种环境作用下可能导致的各种事故后果及损失。其方法主要有情景分析与损失分析。情景分析通过事件树模型分析特定风险在环境作用下可能导致的各种事故后果。损失分析是分析特定后果对其它事物的影响及利益损失并归结为某种风险指标。

    (6)风险标准及可接受性。风险标准及可接受性应遵循最低合理可行(ALARP)原则。ALARP原则是指任何系统都存在风险,而且风险水平越低,即风险程度越小要进一步减少风险越困难,其成本会呈指数曲线上升。也就是说,风险改进措施投资的边际效益递减,最终趋于零,甚至为负值。因此,必须在风险水平与成本间折衷考虑。如果电力企业定量风险评估所得风险水平在不可接受线之上,则该风险被拒绝,如果风险水平在可接受线之下,则该风险可接受,无需采取风险改进措施;如风险水平在不可接受线与可接受线之间,即落人ALARP区(可容忍区),这时要进行风险改进措施投资成本风险分析或风险成本收益分析。

    分析结果如果证明进一步增加风险改进投资对电力企业的风险水平减小贡献不大,则该风险是可接受的,即允许该风险存在,以节省投资成本。ALARP原则的经济学解释类似投入要素的边际收益递减规律一样,风险与风险措施投入间的风险曲线也呈边际收益递减规律。  3.3  电力企业QRA常用方法

篇2

0、引言

电力作为高风险产业,不仅源于其公用事业属性,以及技术资金密集、供求瞬时平衡、生产运行连续等特征,同时电力项目投资额巨大、建设周期长、沉没成本高,而且,随着电力体制改革和电力市场建设进程的深入,市场主体越来越多,电力交易关系复杂,不同主体之间协调困难,电力行业规划建设、生产经营的不确定性加大、电力市场风险增加。根据“十一五”期间电力体制改革的任务,面对我国电力市场化发展的现状,增强风险意识,树立风险观念,加强风险管理将是电力企业的重要任务。本文在阐述了企业风险管理基本框架流程及其主要内容的基础上,提出电力企业定量风险评估的主要内容及方法,以期推动电力系统风险管理工作的开展。

1、风险管理的主要内容

风险作为客观存在,要求人们考察研究风险时,要从决策角度认识到风险与人们有目的活动、行动方案选择及事物的未来变化有关。风险的形成过程和风险的客观性、损失性、不确定性特征共同构成风险形成机制分析和风险管理的基础。

人们一般对风险持厌恶态度,都想减小风险损失,追求风险与收益的均衡优化。风险管理的提出与发展与企业发展状况、社会背景密不可分。风险管理作为一门管理学科,首先在美国应运而生,之后传到西欧、亚洲、拉丁美洲。美国大多数企业都设置专职部门进行风险管理,许多大学的工商管理学院都开设风险管理课程。风险管理作为一门科学与艺术,既需要定性分析,又需要定量估计;既要求理性,又要求人性;不但需要多学科理论指导,还需要多种方法支持。

源于风险意识的风险管理主要包括风险分析、风险评价与风险控制三大部份。根据风险形成的过程,风险分析需要进行风险辨识、风险估计。风险估计需要进行频率分析与后果分析,而后果分析又包括情景分析与损失分析。通过风险分析,可得到特定系统所有风险的风险估计,对此再参照相应的风险标准及可接受性,判断系统的风险是否可接受,是否采取安全措施,这就是风险评价。风险分析与风险评价总称为风险评估。为进行风险定量化估算,要进行定量风险评估(Quantitative Risk Assessment—QRA)。在风险评估的基础上,针对风险状况采取相应的措施与对策方案,以控制、抑制、降低风险,即风险控制。风险管理不仅要定性分析风险因素、风险事故及损失状况,而且要尽可能基于风险标准及可接受性对风险进行定量评价。对于以盈利为目的的工业企业也希望将风险损失价值化并给出货币衡量标准。风险管理就是风险分析、风险评价、风险控制三者密切相联的动态过程,见图1。

2、风险管理的组织实施与基本流程

为有效实施风险管理,企业应由专门的组织及相关人员按一定程序组织实施风险管理工作。据《幸福》杂志对美国500多家大公司的调查知,84%的公司由中层以上的经理人员负责风险管理。风险管理的趋势是董事会下属设立风险管理委员会全面负责公司风险管理,组织实施的流程是:①制定风险管理规划;②风险辩识;③风险评估;④风险管理策略方案选择;⑤风险管理策略实施;⑥风险管理策略实施评价。

3、电力企业定量风险评估(QRA)

电力企业QRA的建立与发展从内部来看,不仅已有可靠性分析、安全分析、质量管理、项目管理等各专业分析作基础,从外部而言有电力用户、政府与社会公众、咨询机构等众多相关主体的关注。电力企业QRA对企业的作用主要体现在:通过QRA有利于企业将风险水平控制在规定标准的风险水平之内,并符合最低合理可行原则;通过开展QRA可帮助企业全面识别风险,并按轻重缓急排序,以有助于管理者将精力、财力、物力集中于风险控制的重要紧急领域,使风险管理决策更为合理、效果更好、成本最小;通过对各种风险控制方案或安全改进措施进行QRA,使决策者对方案措施进行优劣选择,为公司提出决策支持。电力企业的风险将对其它企业和主体带来连带影响,并产生放大效应,电力系统安全、可靠、高效、优质是各行各业和政府管理部门共同的愿望。电力企业实施QRA具有现实意义。

3.1 电力企业QHA的基本框架模式

电力企业QRA是指在工业系统QRA的基础上,考虑电力系统的技术经济特点及运行规律,结合电力体制改革及电力市场化进程而以概率模型表征的全面风险管理理论方法。为便于实施风险管理,保证风险评估质量,满足风险评估过程各阶段的不同要求,构建如图3所示的适用于电力企业QRA的基本框架模式。在具体实施时,允许依实际情况而有所改变。

3.2 电力企业QRA的主要工作内容

(1)确定目标及范围。包括风险管理的目的与意义,待分析系统的设备配置、工作流程、资金、人员、管理、信息、地区、人文环境等,即确定QRA实现目标和实施条件等。

(2)风险辨识。即找出待评价系统中所有潜在的风险因素,并进行初步分析,通过安全检查看系统是否达到规范要求。风险辩识的基本途径有历史事故统计分析、安全检查表分析、风险与可操作性研究(HZOPS)、故障模式与影响分析(FMEA)、故障模式影响及危急分析(FMECA)、故障树分析(ETA)、事故树分析(ETA)、风险分析调查表、保单检视表、资产风险暴露分析表、财务报表、流程图、现场检查表、风险趋势估计表等。为配合保险公司对出险事项的处理,可采用从下至上的归纳法、从上至下的演绎法及两者综合运用。针对特定风险,可选用基于系统平面布置的区域分析、隐含事件分析、德尔菲法及基于事故树分析的风险事故网络法等。风险辩识不只局限于系统硬件,还应考虑人为因素、组织制度等系统软件。

风险综合集成是指对所有风险按其特性类型分门别类加以汇总整理。因电力工业特点及电力市场化改革特点,把电力系统风险按厂网分开的行业结构进行分类。

对于发电企业而言,主要有电源规划风险、报价竞价上网风险、供求平衡风险、市场力抑制风险、备用容量风险、信用风险、法律风险、项目风险、中介机构风险等。对于电网企业而言,主要有电网规划风险、电网融资风险、购电电价风险、电力交易转移风险、辅助服务风险、成本分摊风险、输电阻塞风险、输电能力风险、备用率风险、电力监管风险等。另外,电力企业还将面临电力可靠性、安全性、稳定性风险及电能质量风险等。

风险综合集成后的初步风险分析是对已辩识出的风险进行初步分析评估,确定风险的等级或水平。风险水平低的可忽略不计或仅作定性评估,风险水平高的要在定性分析基础上,进行定量评估。

(3)频率分析。即确定风险可能发生的频率,其方法主要有历史数据统计分析、故障树分析与失效理论模型分析。历史数据统计分析是根据有关事故的历史数据预测今后可能发生的频率。因此要建立

风险数据库,既作为QRA的基础,又作为风险决策的依据。故障树分析作为一种自上而下的逻辑分析法,把可能发生的事故或系统失效(顶事件)与基本部件的失效联系起来,根据基本部件的失效概率计算出顶事件的发生概率。失效理论模型分析是在历史数据与专家经验的基础上,采用某种失效理论模型来计算风险发生频率。

(4)风险测定估计。根据风险特性及类型,运用一定的数学工具测定或估计风险大小。常用方法主要有主观估计法、客观估计法、期望值法、数学模型法、随机模拟法和马尔可夫模型法等。

(5)后果分析。即分析特定风险在某种环境作用下可能导致的各种事故后果及损失。其方法主要有情景分析与损失分析。情景分析通过事件树模型分析特定风险在环境作用下可能导致的各种事故后果。损失分析是分析特定后果对其它事物的影响及利益损失并归结为某种风险指标。

(6)风险标准及可接受性。风险标准及可接受性应遵循最低合理可行(ALARP)原则。ALARP原则是指任何系统都存在风险,而且风险水平越低,即风险程度越小要进一步减少风险越困难,其成本会呈指数曲线上升。也就是说,风险改进措施投资的边际效益递减,最终趋于零,甚至为负值。因此,必须在风险水平与成本间折衷考虑。如果电力企业定量风险评估所得风险水平在不可接受线之上,则该风险被拒绝,如果风险水平在可接受线之下,则该风险可接受,无需采取风险改进措施;如风险水平在不可接受线与可接受线之间,即落人ALARP区(可容忍区),这时要进行风险改进措施投资成本风险分析或风险成本收益分析。

分析结果如果证明进一步增加风险改进投资对电力企业的风险水平减小贡献不大,则该风险是可接受的,即允许该风险存在,以节省投资成本。ALARP原则的经济学解释类似投入要素的边际收益递减规律一样,风险与风险措施投入间的风险曲线也呈边际收益递减规律。

3.3 电力企业QRA常用方法

篇3

关键词:风险 共振 集合

风险评估概述

(一)风险概述

风险的定义。一些学者把风险定义为损害发生的可能性。与上述意见不同,另外一些经济学家把风险定义为损失发生的不确定性,还有一种意见,把风险定义为预期与实际结果的偏离。在本文中,将风险定义为对企业的生存、发展造成损害的可能性,对其控制不当的结果是预期与实际结果的偏离。

风险的分类。风险按其来源分类,可以分为来自企业内部的风险和来自企业外部的风险,简称为内部风险和外部风险。内部与外部的划分,是以企业为界限的。

内部风险。内部风险是指来源于企业系统内部的会对企业的生存、发展造成损害的可能性,如果对内部风险控制不当,会造成企业运行结果与预期目标的偏离。

外部风险。外部风险是指来源于企业系统之外的宏观市场环境中会对企业的生存、发展造成损害的可能性,即宏观环境风险。虽然这些风险发生于企业系统之外,但仍然会对企业产生影响,如果没有及时地发现和应对这些风险,仍然会造成企业目标的偏离。

(二)风险评估

风险评估是对影响企业目标实现的现有的和潜在的风险进行识别和度量并进行评价的过程。广义的风险评估涵盖风险管理的各个要素,而狭义的风险评估仅指对风险的识别和度量。本文所指的风险评估是指狭义的风险评估,即仅包括风险识别、风险衡量和风险评价,重点关注导致风险发生的潜在风险因素、风险发生的可能性大小和风险发生后对企业的影响程度。

基于共振理论的风险评估方法的提出

(一)共振理论的启示

共振理论概述。共振理论是指两个或两个以上的物体具有相同的振动频率,一个物体振动会引起另一个物体的振动,并且在共振情况下的振幅要比单个物体自己振动的振幅要大。由此可见,共振发生的条件是频率相同。共振具有传递性,一个本来静止的物体,可以由另一个物体的振动引起自己的振动。而共振的结果很重要,它的振幅要比单个物体自己振动的振幅要大,具有更强的破坏性。

用共振理论解释企业风险的爆发。本文把企业内、外部的各种风险都进行细分为单个的风险因素,对于各风险因素来讲,其频率就是导致风险因素爆发的根本原因,那么包含了所有内部风险因素频率的集合将其定义为内部风险频率集。同理,将包含了所有宏观环境风险因素的频率的集合称为宏观环境风险频率集。再对这两个集合求交集,即得出风险频率交集,在这个集合中的频率就是将会发生共振的频率。

基于共振理论的定义,在这个交集中的频率是内、外部风险共有振动频率,满足共振的基本条件。而共振具有传递性,本来在企业中处于静止状态的内部风险因素,可能由于宏观环境中风险的振动而随之振动起来,使企业的风险加剧。特别值得关注的是,内、外部风险因素共振造成的破坏力要远大于其单个振动时的破坏力,所以具有这样频率的风险因素是需要重点关注的。

这就可以解释为什么市场环境不好时,失败的企业数量大幅上升,就是因为宏观环境风险频率集变大,与内部风险频率集发生共振的机会就大,而共振产生的破坏力强,一旦超过了企业的承受能力,企业便会走向失败。通过这一理论也可以解释企业的成败是内外部共同作用的结果,如果内部控制系统完美,宏观环境风险没有作用的切入点,那么再坏的环境也不会影响企业。但是,企业没有静止的,只要运动就会伴随着风险。为了更好地应对风险,就要求企业做好风险评估工作。

(二)基于共振理论的风险评估方法概述

1.现有的风险评估方法的缺陷,表现为:

没有系统的评估方法。目前,风险评估的方法虽然多种多样,但其着眼点仅是风险评估中的某一个具体环节,并没有形成完整、系统的评估体系,各个环节各自为战严重地削弱了评估方法的系统性。

忽视外部因素的影响。现在的评估方法,几乎将全部评估重点都放在企业内部因素上,即使有涉及到外部环境因素的,也只是赋予少部分的权重,没有考虑内外因的相互关系。外因是通过内因起作用的,所以不仅要考虑到外部环境因素的作用,也要研究它和内部因素的相互作用关系。

2.基于共振理论的风险评估方法。针对现有风险评估方法的不足之处,本文提出基于共振理论的风险评估方法,力求形成一套贯穿风险识别、风险衡量和风险评价的完整的风险评估体系,并在重视内部因素的同时,考虑外部环境因素的影响。通过分析外部环境因素与内部因素的相互作用关系,对内部风险因素进行修正。通过共振矩阵系统的反映风险评估的各个环节。在重视内部风险的同时,通过共振系数和相关系数显示出环境对于企业的影响作用,力求使评估结果更加准确和切合实际。

基于共振理论的评估方法的具体操作

(一)识别内、外部风险

企业内部风险及其识别。企业内部风险是指来自于企业内部的,由于经营不善或者管理疏漏而形成的风险。它是企业风险的直接来源。企业内部风险由于产生于企业内部,所以企业具有主动权,能够对这类风险施加控制和影响。主要包括营运风险、组织风险、财务风险、人事风险、信息系统风险等。

企业可以以现有的风险清单为基础,从中找出企业中存在的风险因素,但这只有标准化的风险因素。而每个企业都有自己特定的内部环境,许多特有风险因素没有出现在风险清单里。针对这些特有风险,可以运用控制自我评估的方法将其识别出来,以使企业的风险识别工作更加全面。

宏观环境风险及其识别。企业宏观环境,是指那些会给企业带来市场机会或环境威胁的主要社会力量,直接或间接地影响企业的管理。主要包括政治和法律环境、经济环境、科技环境、社会文化环境及自然环境等。宏观环境风险就是在这些环境中存在的对企业构成威协的风险。

在对宏观环境风险进行识别时,可以借鉴战略管理中的PETS分析法并结合企业实际按照政治和法律环境风险、经济环境风险、科技环境风险、社会文化环境风险和其他环境风险进行识别。

(二)构建共振矩阵

首先将整个风险系统分为内部风险系统和宏观环境风险系统,将内部风险系统再向下细分为若干个风险子系统,如营运风险子系统、信息风险子系统、销售风险子系统等。进一步把风险子系统再细分为具体的内部风险因素,记作Ii(i=1,2,3…)。同理,让宏观环境风险系统细分为若干个风险子系统,如政治环境风险子系统、经济环境风险子系统、科技环境风险子系统等,再将各风险子系统中的宏观环境风险因素识别出来,记作Oj(j=1,2,3…)。在此基础之上,构建共振矩阵(如图1)。

共振矩阵是用于列示企业的所有内、外部风险因素的矩阵,其横坐标为内部风险因素,纵坐标为宏观环境风险因素。这样矩阵中各交叉点显示的都是内外部风险的相互作用系数,即后述的共振系数和相关系数。风险矩阵的最大优点在于可以把任何一对内外部风险因素结合起来,评估其相互作用关系,也就是将内外部风险统筹考虑。

(三)进行风险衡量

衡量风险因素的变异程度。本文使用变异程度测定的方法,用变异系数衡量指标的偏离程度。值得注意的是,有一些风险因素是指标形式的,便于量化考核。但有一些指标是定性的,难于量化,这时可以使用专家打分的方法,将这些风险因素量化。变异系数的计算公式为:

其中,V是风险因素的变异系数,用于衡量风险因素与预期指标的偏离程度;S是该风险因素的标准差;X是期望值,在这里可以使用企业的理想指标作为期望,这样计算出的变异系数即是实际与预期的偏离程度,也是风险爆发后的结果。

计算共振系数。如前文所述,那些具有出现在风险频率交集中的频率的风险因素是重点要关注的风险因素。由于共振的破坏力远大于单个风险因素振动时造成的影响,所以那些内外部共振的风险因素的变异系数要以乘数倍增加,这个乘数称之为“共振系数”,记作Gij。但是,在物理学上尚没有计算共振产生的振幅的计算方法,通常都是通过测量得出。之于风险评估工作来说就要依据行业和企业历史数据,利用风险评估人员的经验和个人素质进行评估,估算出一个共振系数,但可以肯定的是共振系数一定大于1。

计算相关系数。相关系数是用于说明两个风险因素间相互作用关系的系数,它的取值范围为[-1,1]。取值为正说明内外部风险正相关,即宏观环境对内部风险因素有放大作用;反之,取值为负,说明内外部风险负相关,即宏观环境对内部风险因素有抵销作用。

(四)风险评价

在进行风险评价环节,首先将所权重分配给各风险子系统,即Wi使之和为1,再在各风险子系统内进行分配权重,分配至各风险因素,即wi,风险子系统内的权重之和也为1,并在风险矩阵中注明。之后,将在风险衡量环节得出的变异系数Vi填入风险矩阵,wi与Vi的乘积即为没有进行修正时的评价结果。但这是不准确的,接下来对这一结果进行修正。所有的相关系数有正有负,其取值范围为[-1,1]。若计算出的相关系数为负数,即表明宏观环境对内部风险因素有弥补作用,则用变异系数Vi乘上(1+相关系数);反之,如果相关系数为正且不为1时,说明宏观环境对内部风险因素有扩大作用,也用变异系数Vi乘以(1+变异系数);而当相关系数为1时,即产生了共振效应,为了与之区别,用共振系数Gij表示。而Gij的取值大于2,其具体数值由评估人员估计产生。由此,可以推出Vi'=[∑(1+Rij)+∑Gij]Vi。最后,得到最终评价结果∑wiVi'。这个结果数值越大,说明与预期偏离越远,说明企业的风险越大;反之,数值越小,说明越与预期值相符,企业面临的风险越小。

参考文献:

1.刘钧.风险管理概论.清华大学出版社,2008

2.James Roth,Ph.D. 郑桓圭译.最佳内部控制评估实务―自我评估与风险评估.中国内部审计协会,1999

3.徐二明.企业战略管理.中国经济出版社,2006

篇4

中图分类号:X937 文献标识码:A文章编号:1672-3791(2012)03(A)-0000-00

1 石化企业危险化工工艺概述

1.1 石油化工工艺的危险性

化工工艺是指通过原料处理、化学反应、产品精制等化学生产方法,将原材料转变为产品的过程,这些过程通常需要相应的操作条件要求,并需使用特定的仪器和设备,使材料发生物理学上或化学上的变化,而危险化工工艺就是指在化工生产过程中,可能导致中毒、火灾或爆炸等安全事故的工艺。石油化工企业的生产过程主要是将石油、天然气等原材料,通过相应设备使其进行一系列的物理变化或化学反应,其工艺普遍具有连续性强、操作复杂的特点,原料、产品中包含大量有毒、有害、易燃、易爆、高腐蚀性的物质,且反应多是在高温、深冷、高压等特殊环境下进行的,因此反应装置的运行、检修、运输、安装等环节也普遍存在危险性。

1.2 石化工艺危险源的具体分析

(1)危险化学品。国务院颁发的危险货物品名表与危险化学品名录中,将危险化学品分为爆炸品、压缩与液化气体、易燃液体、易燃固体及自燃固体、氧化物及过氧化物、以及毒害品和感染性物品等几大类。可以说,这些化学品在石化生产中都有所涉及,其中一些还是重点石化工业的主要原料与产品。以其中的主要危险气体而言,最为常见的就包括液化石油气、氢气、氨气和硫化氢气体等,液化石油气作为一种从油气田或石油炼制中获得的碳氢化合物,可以作为重要的化工原料或燃料使用,但它同时也是一种易燃易爆气体,并具有很强的挥发性且极易受热膨胀,在大量被吸入人体后,还会导致窒息中毒等问题;氢气作为工业原料广泛应用于石化工业的各个领域,生产中需加入氢气通过去硫和氢化裂解来提炼原油,但气体具有无色无味、燃烧火焰透明等特性,因此发生泄漏时,通常很难被察觉,一旦液氢外泄至空气中,就有可能与空气混合引发燃烧爆炸事故;而其他常见的氨气、硫化氢气体等,也各具可燃性、腐蚀性等危险,必须妥善管理,加强预防控制。

(2)反应装置的危险性。石化生产设备的危险性主要来自其生产原料、产品、以及相关工艺条件,催化裂解、常减压蒸馏、延迟焦化以及汽油加氢等工艺中,设备的安装、运行,及维护都面临一定的安全风险。以催化裂化装置为例,该装置主要包括反应器和再生器、加热炉和辅助燃烧室、裂解余热锅炉、油气分离器、气分装置等。生产过程主要包括原料油催化裂化、催化剂再生和产物分离3个主要工艺流程,以原油蒸馏所得的馏分油为原料,在热和催化剂的作用下发生裂化反应,以获得轻质油品和液化气等产品,其原料与副产品、产品均易于与空气形成爆炸性气体,在生产过程中产生的硫化氢有毒,且易泄漏,具有中毒危害。故整个装置具有易燃、易爆、有毒等危害特性。此外,工艺中的高温、高压等工艺条件和装置自身的缺陷等也构成了生产过程中的危险性因素。

2 重视风险评估加强安全管理

要全面控制石化企业化工工艺中的危险性因素,就必须建立安全生产数据库,以计算机技术、通信技术等现代科技手段为支撑,通过完善的风险评估系统实现生产全过程的危险源辨识、风险评价、安全方案设计、费用计算等一系列高效管理工作。

2.1 危险源辨识

应根据不同企业的具体生产过程对其工艺中各物质与装置的固有危险性、危险物质容量、温度、压力、操作方式、反应放热与腐蚀性等多个项目分等级赋值并进行累计计算,所得的危险程度再结合其风险指标、危害程度及后果、控制方案等建立完备的资料数据库。以危险物质容量为例,该指标是针对工艺装置中各种反应物的含量,参考《危险化学品重大危险源辨识》或《压力容器中化学介质毒性危害和爆炸危险程度分类》等标准进行分级,含量的计算应以反应物的反应形态为标准,有触媒的反应还应去掉触媒层所在的空间。在计算机的自动识别和控制程序设计中,还应完善系统中的查询、保存、修改等功能。

2.2 安全评价

石化生产的安全评价具有多目标、多属性的特点,单一的评价方法并无法全面反映评价对象的特征、危险程度,因此应根据不同的评价对象,提供多种评价方法再进行优化。评价方法包括定性评价和定量评价,预评价、中间评价和现状评价,工厂设计的安全性评价、安全管理的有效性评价、人的行为安全可靠性评价、作业环境和环境质量评价以及物质的物理化学危险性评价等,实践中应将多种方法相结合,并引入行为矫正技术,模糊数学理论、层次分析法、风险指数法等,提高评价的科学性。

2.3 其他管理内容

其他管理内容包括方案设计与评估、数据管理、预算管理等。要确保安全辨识与评价的可靠、实用,必须对包括生态环境污染等内容在内的危险辨识及控制、工艺路线的科学性、作业的安全性、以及工程进度计划等方案进行综合评估;而针对企业的未来发展规划,数据库应具有运行稳定、更新快、可扩充的性能,预算管理则应根据实际风险特点,合理配置安防费用,降低企业的经营成本。

3 结语

能源需求量的增大带动了我国石油化工产业的快速发展,但也同时促使企业在激烈的竞争中不断扩大规模、提高技术工艺水平和自动化水平,但由于这些行业涉及的危险物品与危险装置种类多、范围广,并广泛分布在石化生产全过程的各个环节中,因此也带来了重大的安全风险。目前我国的危险化工工艺的安全保障系统在风险辨识方面仍处于起步阶段,且未形成通用性的评价方式,因此相关工作人员必须在不断总结经验教训的基础上,结合理论分析,参考专家的咨询意见,建立有针对性的评估指标体系,以科学的管理方法,实现石化企业的安全生产。

参考文献

[1] 赵来军, 吴萍, 许科. 我国危险化学品事故统计分析及对策研究[J]. 中国安全科学学报, 2009, (07).

篇5

近年来,静态与动态相结合的风险管理方法得到促进和发展,李忠等}6]考虑多种风险分析方法,把静态风险管理和动态风险管理有效结合,提出更为全面、合理并贴近大断面城市隧道工程实际的风险界定、辨识、估计、评价和控制的静动态风险管理过程架构;周宗青等}7]针对隧道塌方风险,利用模糊层次评价方法开展基于孕险环境的静态风险评估,汲取大气降水、开挖支护措施及监控量测等施工信息,进行隧道施工过程中的动态风险评估,基于动态评估结果提出了风险动态规避方法;苏洁等针对地铁隧道穿越既有桥梁安全开展风险评估及控制研究,建立包含工前检测、工前评估、工中动态控制、工后评估及恢复等四个方面的既有桥梁安全风险评估及控制体系,即识别可能存在的风险,提出地铁施工过程中既有桥梁施工中的控制指标及控制标准,利用信息化手段实现既有桥梁在全过程中的安全性几通过对施工结束后施工数据的分析,对既有桥梁结构进行必要性评估及恢复。上述文献通过动态更新地质、环境等评价指标、增加施工监控量测等施工信息实现动态风险管理,但是对于施工行为的风险评价方法涉及不多,需要开展进一步的研究。    

定性评估方法中主观因素影响太大,由于相关统计数据有限,定量评估方法发展基础明显不足,定性定量相结合的方法成为目前采用的主要风险评估方法。杜修力等将网络分析法应用到地下工程风险评估中,利用专家调查法对地下工程中出现的风险因素进行识别,运用MATLAB对各风险因素的比较判断矩阵及加权超矩阵进行分析和运算;刘保国等通过建立集德尔菲法、模糊综合评判和网络分析法于一体的模糊网络分析法,将其应用于公路山岭隧道施工风险分析,在公路山岭隧道施工全过程分析基础上,建立公路山岭隧道施工风险评价指标体系。汪涛等}川采用贝叶斯网络方法建立风险事件、风险因素之间的关系模型,结合风险贝叶斯网络评估风险事件的发生概率。

2 深长隧道施工风险分析与评估    

近年大量的高风险深长隧道工程正在或即将在地形地质条件极端复杂的岩溶地区或西部山区修建,建设过程中极易遭遇突水突泥、岩爆等重大灾害,针对隧道突水、岩爆、大变形等单个风险事件开展的研究日益增多。李术才、李利平等通过案例统计分析,遴选出突涌水的影响因子,分析了各影响因素与突涌水发生概率和发生次数之间的隶属函数或表征关系,建立岩溶隧道突涌水风险模糊层次评价模型。郝以庆、卢浩等利用概率理论对突水评价指标值的不确定性进行了表征,引入了属性测度扰动区间,推导了单指标属性测度的计算公式以及多指标综合属性测度矩阵的计算方法。董鑫、卢浩等提出基于嫡的风险评估和决策模型,综合考虑了危险性和不确定性因素;并针对隧道突水,基于断裂力学理论,推导出了裂隙压剪破坏与裂隙拉剪破坏的临界水压力值,分析了各影响因素对临界水压力的影响。吴世勇等通过微震实时监测和数值分析等手段,开展TBM施工速度、导洞施工等TBM开挖方案对岩爆风险的影响研究。肖亚勋,冯夏庭等在锦屏II水电站3#引水隧洞极强岩爆段实施了”先半导洞+TBM联合掘进”实验,结合微震实时监测信息对TBM半导洞掘进的岩爆风险开展了研究。温森等针对洞室变形引起的双护盾TBM施工事故开展风险分析,根据后果等级结合发生的概率提出TBM施工变形风险评价矩阵。    

深长隧道中地质因素不确定性大,影响机理复杂,目前风险评估主要侧重于研究地质、施工等因素与风险事件的相关关系,建立初步的风险评价模型,对于多种因素综合影响风险的机理和综合评估模型,还需要进一步的研究。

3 城市地下空间施工风险分析与评估    

随着我国地铁、城市地下空间建设蓬勃发展,围绕深基坑、盾构隧道、过江隧道、地铁穿越建筑物等工程施工开展了风险分析。张驰针对基于模糊数学理论深基坑施工对周边环境影响开展风险分析与评估,提出了风险损失评价指标、风险等级划分以及风险损失计算公式。郑刚等开展盾构机掘进参数对地表沉降影响敏感度的风险分析,分析盾构掘进参数与掘进速度的关系,分析对周围地层沉降的影响规律,以盾构掘进过程中的关键掘进参数为底事件建立风险故障树并进行定量的风险评估。吴世明对泥水盾构穿越堤防的风险源进行系统分析,阐述风险产生的原因、造成的危害及规避和处理措施,并结合杭州庆春路过江隧道泥水盾构穿越钱塘江南岸大堤的工程实例,验证所述风险控制措施的合理性及可行性。王浩开展浅埋大跨隧道下穿建筑物群的施工期安全风险管理,采用数值模拟方法,对施工开挖、支护进行精细化模拟,得出关键施工步序的变形量几结合类似工程经验和规范,制定安全监测的控制标准,以指导监测和施工。石钮锋针对超浅覆大断面暗挖隧道下穿富水河道施工开展风险分析及控制研究,在对可能采用的预加固手段及开挖方案进行初步比选后,采用三维数值模拟手段进一步量化比选。张永刚等针对渤海湾海底隧道工程开展施工风险评估与控制分析,考虑超前地质预报风险、施工工序风险、支护施工风险、防排水风险、超欠挖风险、海域段隧道施工风险、施工对环境影响、洞内环境对人员健康及施工影响8种类型。    

相比深长隧道,城市地铁、地下空间地质环境信息更加完备,目前研究主要侧重于施工因素对于风险事件的影响,为施工动态风险评估和控制提供了依据。

4 盐岩地下储备库施工风险分析与评估    

篇6

〔摘 要〕针对信息系统安全风险评估的准确性问题,提出一种熵权理论与模糊集理论相结合的信息系统安全风险评估方法。该方法通过模糊集理论对信息系统所涉及的风险因素进行分析,构造各因素所对应评判集的隶属度矩阵;然后采用熵权系数法确定风险因素权重以减少主观偏差并输出信息系统安全风险等级。通过实例分析,证明该方法能较准确地量化评估信息系统风险,是一种有效、可行的评估方法。

〔关键词〕熵权;信息系统;风险评估;模糊集合;指标权重

信息系统作为国家信息化建设的重要组成部分,其安全问题涉及国家和信息系统用户的根本利益,然而就在整个信息化程度日益加深、技术进步为大家带来惊喜的同时,信息系统所面临的安全风险和威胁亦日趋严重。为保障信息系统安全与正常运行,则须找出可能导致其瘫痪的重大缺陷,而解决该问题的有效途径之一则是对其进行安全风险评估。综合国内外研究文献来看,信息系统风险评估主要依靠层次分析法、模糊综合评判法、BP神经网络法、灰色综合评价法和矩阵分析法等多种方法,目前已取得了一些研究成果[1-4]。信息系统的安全风险评估涉及资产识别、威胁识别、脆弱性识别、风险识别和风险大小的量化等,工作极富艰巨性。其中,风险的量化是非常重要的环节,直接关系到对风险状况的正确认识、安全投入的多少和安全措施部署的优先顺序[5]。由于信息系统风险包含大量模糊的、不确定性的影响因素且相互关联,相应信息不完全,使得运用传统方法评估其安全风险存在很大困难,极易降低评估的准确性。因此,针对该问题,在已有的多种评估方法基础上结合信息论中的熵权理论来对信息系统安全问题进行新视角的定量分析[6]。

1 信息系统安全风险评估基础信息系统的安全风险是客观存在的,其源自自然或人为的威胁利用信息系统存在的脆弱性造成安全事件的发生。风险评估的目的是运用科学的方法和手段系统地分析网络与信息系统所面临的威胁及其存在的脆弱性,评估安全事件一旦发生可能造成的危害程度,提供有针对性的、有效的防护对策和整改措施[7]。根据BS7799标准[8]定义,风险是指威胁主体利用资产的脆弱性对其造成损失或破坏的可能性。信息安全风险R被表示为资产、威胁和脆弱性的函数,即R=g(a,t,v),其中:a为资产影响;t为对系统的威胁频度;v为脆弱性严重程度。GB/T20984-2007将资产影响、威胁频度、脆弱性严重程度均定义为5个等级[9],具体表述为:很高、高、中、低、很低。

篇7

中图分类号:U412文献标识码: A

1.1 BOT项目风险评估的目的及方法

项目风险识别是项目风险管理中的第一步,是基础和重要组成部分。其任务是确定何种风险事件可能影响项目目标,并将这些风险的特性整理成文档。

风险评估就是在风险识别的基础上,分析和评价损失对项目的既定目标的影响程度,通过对由风险识别获得的资料和数据的处理,得到风险后果发生的概率、严重程度和大小,为选择应对措施,进行正确的风险管理决策提供依据。

风险评估的目的是:对项目中各种各样的风险分析、比较,找出主要风险和次要风险;挖掘项目风险间的内在联系;进行项目风险的量化研究,进一步量化已识别的风险发生概率和后果,减少风险发生概率和后果估计中的不确定性,为风险应对提供管理策略。

风险评估是为了确定风险的存在对项目本身造成的影响和后果,风险评估方法一般可以分为定性、定量、定性与定量相结合的三类,而有效的项目风险评估方法一般采用定性与定量相结合的系统方法。常用的项目风险评估方法有:层次分析法、决策树法、主观评分法、模糊风险综合评估法等。

在高速公路BOT项目运营中,可能遭遇的风险带有很大的模糊性,本文结合风险的这一特性,采用模糊数学中的模糊综合评判方法对高速公路BOT项目运营中业主风险进行量化分析评估。

1.2 BOT高速公路项目运营中业主风险评估指标体系

1.2.1 BOT高速公路项目运营中的业主风险因素

通过对高速公路BOT项目运营中业主的风险进行分析,作为业主高速公路BOT项目运营中的风险与其他阶段存在同样多的风险,通过一系列的资料收集和分析,依据广泛性、代表性、准确性相结合的原则,把高速公路BOT项目运营中存在的各种风险因素归纳如下表:

1.1 BOT高速公路项目运营中业主常见风险

环境风险

气候自然灾害风险

政策风险

法律风险

金融风险

外汇风险

利率风险

通货膨胀风险

市场风险

价格风险

交通量转移风险

管理维护风险

管理风险

维护风险

1.2 业主风险模糊综合评估模型的建立

在基于各参与方的高速公路BOT项目运营中业主风险评价指标体系中,由于各指标的影响因素各不相同,除少数可以通过统计方法获得,大量的指标则只能采用专家评分法。对于这样的评价问题,运用模糊数学的方法,即模糊综合评估法(Fuzzy Comprehensive Evaluation,简称FCE)可以得到较好的解决[1]。

模糊评估方法[2]是把模糊数学应用到判别事物和系统优劣领域的新方法,根据给出的评估标准和实测值,经过模糊变换后对事物或系统作出综合评价。

模糊评估方法的特点主要表现在:

(1)模糊评估方法可以不直接依赖于某一项指标,也不过分地依赖于绝对指标,而是采取比较的方法,这样可以避免一般数学评价方法中,由于标准选用不尽合理而导致的评价结果的偏差。

(2)评估指标的重要程度通过权数加以体现,但允许在权数选择上有一定的出入,而不至于改变最终的评估结果。另外,在技术处理上,有效地避免了累积误差的影响。

(3)模糊评估中算子的选择和隶属函数关系的确立,使各项参与评价的非量化指标间建立了有机联系,使评估结果能够更好地反映评估对象的整体特征和一般趋势[12]。

由于高速公路BOT项目运营中业主风险因素多,仅采用单级模糊综合评判,当因素众多时权重难以恰当分配,因素的层次也难以考虑,故本文采用二级模糊综合评判数学模型。

为了能够准确、有效、综合地评估高速公路BOT项目运营中业主风险,使评估结果能够为各项目参与方提供谈判、决策参考,根据本文对高速公路BOT项目运营中业主风险评估指标的划分,用模糊数学综合评判法对高速公路BOT项目运营中业主风险进行评估的内容步骤如下:

① 确定影响因素及其层次,建立评估因素集

本文将高速公路BOT项目运营中业主风险作为因素集,按其属性将风险分成4类,分别是环境、金融、市场和管理维护风险,记为U={U1,U2,U3 ,U4}。Ui中又含有n个子因素,记为Ui={Ui1,Ui2, …,Uin},(i=1,2, 3,4) 如图4-1所示

② 建立评估集

评估集是对评判对象可能作出的各种评估结果组成的集合,不论因素层次有多少,

评估集只有一个。这个评估集适用于全部BOT风险因素。通过评估集给定评价的基准,表示为

V={V1,V2,…,Vp}(4-1)

其中VK(K=1,2,…,P)为总评判的第K个可能的结果。

选择因素集和评估集的原则是:既要全面又要抓住主要矛盾。这样既可以更好的模拟人们的思维,又可以避免一些不必要的麻烦。

按照评估集的原则,把BOT的业主风险程度划分为5个等级:低风险V1;较低风险V2; 一般风险V3; 较高风险V4; 高风险V5 。

③ 建立评估因素的权重集,并修正指标的权重

在我国目前,采用BOT法对于风险评估中,应用专家评估居多,但若直接请专家给出各项指标的权值,结果可能受专家们的主观因素影响太大,从而影响科学性。权重是因素重要程度的定量表示,其合理性直接影响到评价结果的准确性,为了弱化主观因素的影响,本文采用层次分析法(AHP)确定专家给定的指标权重值。

层次分析法[3](Analytic Hierarchy Process,简称AHP)是美国运筹学家萨蒂(T.L.Saaty)于20世纪80年代提出的,是一种定性与定量分析相结合的多目标决策分析方法。它可以将无法量化的风险按照大小排出顺序,把它们彼此区别开来。其步骤为:构建递阶层次结构;按表4.2根据知识、经验和判断,从第一个准则层开始向下,逐步确定各层诸因素相对于上一层各因素的重要性权数,建立的两两比较矩阵:以表4.3所示为准,检验矩阵的一致性。

表2.1利用层次分析法进行业主风险比较的1-9级标度描述

标度 定义

1 i因素与j因素同样重要

3 i因素比j因素略重要

5 i因素比j因素较重要

7 i因素比j因素非常重要

9 i因素比j因素绝对重要

2、4、6、8 上述两判断级的中间值

倒数 若i因素与j因素比较,得到判断值为aji=1/aij, aii=1

表2.2一致性指标

N 1 2 3 4 5 6 7 8 9

RI 0.00 0.00 0.58 0.96 1.12 1.24 1.32 1.41 1.45

根据每1层次中各个影响因素的重要程度,分别赋予相应的权数。

第1层次评估指标的权重集W={W1,W2,W3,W4},且满足:

(4-2)

第2层次评估指标的权重集:Wi中n个子因素,记为A={ai1,ai2,…ain},{i=1,2,3,4},且满足:

(4-3)

为了使专家意见的筛选更为科学,从而使指权重确定的更为合理,对多个专家所分配的权重进行聚类分析与权重修订,过程如下:

用层次分析法处理得出来的权重矩阵如下,其中Wij指第i位专家对第j个指标判断后经层次分析法处理后得到的权重和重要程度.m表示专家的人数,n表示指标的个数.

W= (4-4)

为了判断矩阵中各专家所得权重的离散程度,故需计算各权重间的相似系数并由此组成相似系数矩阵。相似系数Rij和相似矩阵R如下:

(4-5)

(4-6)

其中Rij指专家i与专家j权重结果的相似程度:由式(4-4)可知,Rij越小,则相似程度越小。n表示指标权重的维数,亦即所评价指数的个数。m表示专家意见的总数,即参加权重评估的专家总人数;显然,Rij=1,Rij=Rji 。

在剔除离异点集中离异程度大的权重时,本文根据聚类分析的原理采用了一种简化的方法,它与现有的方法具有相同的精度,但计算简单、原理直观,更适合在实践领域内应用:

(4-7)

(4-8)

其中,Pi表示相似系数矩阵中每一行之和,它表示第i个专家判断所得出的权重意见与其他专家群体评估所得权重意见的偏离程度,相似系数之和越小,则此专家意见距离其他专家意见越“远”,偏离程度越大。P表示相似系数对行求和形成的一列。

通常来说,聚类分析所要解决的问题是把很多的元素按照相似原则划分为若干小集合,目的在于分类而不是淘汰某个集合[4]。本文的聚类分析则侧重于找出偏离专家群体综合意见程度最大的“离异”专家意见。

最后用偏离程度的量化指标来衡量各个专家意见,通过公式(4-8)确定偏离程度。也就是说,当Di大于某一阀值时,这个意见应该被排除掉。

%(4-9)

式中:Di―第i个专家的相似系数与最大相似系数的偏离程度。

Pmax―相似系数矩阵中的最大值。

在BOT项目风险评估的实践中,淘汰的专家太多,就失去了群体决策评估的作用。淘汰专家太少,则又使个别与群体评估权重偏离程度大的专家意见影响评价结果。根据经验,应用聚类分析淘汰专家的比例应在20%-30%为好[5]。

④ 确立隶属关系,获得模糊评判矩阵。

请专家或相关管理人员组成的风险评估小组,根据给定的评价基准对项目风险进行评价。这种评价是一种模糊映射,即使对同一个风险的评定,由于不同评价人员可以作出不同的评定,所以评价结果只能用对第i个因素做出第j评价尺度的可能程度的大小来表示。这种可能程度称为隶属度[6],记作rij。

由此得到模糊评估矩阵

(4-10)

Rij―对因素Ui中第i个评价子因素作出第j级评价Vp的隶属度,j=1,2,…,n;

P=1,2,…,m 。

⑤ 模糊综合评估

根据模糊评估矩阵,模糊综合评判集为:

(4-11)

B为U中所有因素的综合评判结果,它表示评判对象按所有因素评判时,对评判集中第K级的隶属度。再由最大隶属度原则或加权平均法定出最终结论。

⑥确定评估等级。按照已经制定的评估尺度,进行计算,这种评定是一种模糊映射。

将评估等级取成列矩阵V,风险评估结果最后数值结果为:

S=B×V (4-12)

参考文献

[1]傅鸿源. BOT项目风险评价方法的研究[J]. 系统工程理论与实践, 1995, (10): 55-58

篇8

[中图分类号] P694 [文献码] B [文章编号] 1000-405X(2013)-2-276-2

1 地质灾害风险评估研究的意义

①地质灾害风险评估是制定防灾救灾和具体安排防灾减灾措施的基础,是政府有关部门组织安排灾后救援和分派救援物资的依据;②我国地域辽阔,自然灾害种类繁多,进行地质灾害风险评估对国民经济发展布局的调整具有参考价值,促进国民经济协调发展;③研究建立一套科学的灾害评估指标体系、标准和模式,有利于防灾减灾和灾后重建的科学化,给政府和各级救灾部门、灾后恢复重建工作的正确决策和规划提供科技支持,有利于政府和人民正确认识灾害、了解灾情、提高灾害意识,从而推动社会减灾事业的发展,构建和谐社会。

2 方法和技术路线

2.1 地质灾害风险评估理论体系研究

本研究首先搜集国内外相关文献,进行归纳、整理、阅读和总结,分析地质灾害风险的国内外研究进展,分析地质灾害风险研究的发展趋势与不足;探讨基于GIS技术的地质灾害风险评估理论与方法;重点研究地质灾害风险评估理论体系,从灾害评估体系的建立、量化,危险性评估建模、易损性分析,到风险评估建模方法,为本次研究提供理论依据。

2.2 地质灾害风险评估系统的研发

基于地质灾害风险评估理论,建立以C#语言和基于AicEngine为开发平台的地质灾害风险评估示范系统,开发利用RS技术获取地质灾害风险评估所需数据、基于GIS技术获取和管理数据的模块,从地质灾害风险评估与制图的流程出发,进行空间数据处理、灾区孕灾环境专题信息提取、地质灾害时空分布专题信息提取和风险评估建模的模块开发,构建以多源数据为核心的灾害风险快速评估应用示范系统。

2.3 示范应用研究

以"4.14",玉树地震为例,对其诱发的地质灾害进行灾害风险评估示范研究,主要包括:

(1)资料收集、整理与分析,研究的资料包括:地震灾区的遥感数据 (TM/ETM+、SPOT、IKONOS、P6,航空影像数据), SRTMDEM数据,1:25万水系数据,《中华人民共和国地貌图集(1:100万)》的地貌数据,《中国地质图1:200万》的地质数据,土地利用数据,降雨数据以及基础地理数据等。

(2)危险性评估指标提取与量化。包括灾区环境地质条件分析,评估指标体系的建立、提取与量化。评估时,综合考虑灾区地震、地质灾害的发生过程、发育环境等因子,建立玉树震区地质灾害危险性评估模型、评估指标体系等。

(3)风险评估。地质灾害风险(Risk)可以表达为危险性(Hazard)和易损性(Vulnerability)乘积。因此,风险评估分三步进行,首先是危险性评价,确定可能发生灾害的概率,其次是易损性分析,进行承灾体的识别与易损性评估,最后进行风险评估。

3 地理信息系统分析

地理信息系统(简称 GIS)和计算机技术的发展无疑为地质灾害区划研究提供了很好的平台和技术支撑。由澳大利亚专家在Caims地区利用GIS技术对滑坡风险进行评估,把斜坡地质灾害的危险性、易损性、风险评价作为一体进行风险区划研究,并讨论了滑坡的危险性、易损性和风险性三个定量指标的确定方法,得出风险等于危险性、易损性和受灾对象的乘积。这一成果代表了滑坡灾害及风险区划制图技术应用的国际最新水平和发展方向。自80年代以来,GIS技术在区域地质灾害评估预测研究中得到广泛的应用,基本形成了基于GIS技术和"多因素综合预测法"进行滑坡危险性分区的研究理念,在方法论上,经历了从定性到定量模型,再发展到非线性学科相结合的过程,提出了各种针对不同地质灾害研究的数学模型,诸如:多元回归法、模糊综合评判法、神经网路、支持向量机等方法对滑坡产生的危险性进行了有益的研究。

基于GIS技术进行的地质灾害区划研究与地质灾害的研究是分不开的。国外对地质灾害区划的研究始于上世纪中期,如:60年代末,美国专家在加里福利亚州,利用"滑坡敏感性预测方法"对该行政区的斜坡进行危险性分区研究(殷坤龙等,2000)。

篇9

doi : 10 . 3969 / j . issn . 1673 - 0194 . 2014 . 01. 038

[中图分类号] F270.7; TP309 [文献标识码] A [文章编号] 1673 - 0194(2014)01- 0074- 03

1 信息安全体系的重要性

随着信息技术不断发展,信息系统已经成为一种不可缺少的信息交换工具,企业对于信息资源的依赖程度也越来越大。然而,由于计算机网络具有开放性、互联性、连接方式的多样性及终端分布的不均匀性等特点,再加上本身存在技术弱点和人为的疏忽,导致信息系统容易受到计算机病毒、黑客或恶意软件的入侵,致使信息被破坏或窃取,使得信息系统比传统的实物资产显得更加脆弱。在这种大环境下,企业必须加强信息安全管理能力。但企业不单面临着信息安全方面问题,同时还面临经营合规方面的问题、系统可用性问题以及业务可持续问题等越来越多的问题。因此,要求我们探索建立一套完善的体系,来有效地保障信息系统的全面安全。

2 信息安全体系建设理论依据

信息安全管理体系(Information Security Management System, ISMS)是企业整体管理体系的一个部分,是企业在整体或特定范围内建立信息安全方针和目标,以及完成这些目标所用方法的体系。基于对业务风险的认识,ISMS包括建立、实施、操作、监视、复查、维护和改进信息安全等一系列的管理活动,并且表现为组织结构、策略方针、计划活动、目标与原则、人员与责任、过程与方法、资源等诸多要素的集合。

在建设信息安全管理体系的方法上,ISO 27001标准为我们提供了指导性建议,即基于PDCA 的持续改进的管理模式。PDCA是一种通用的管理模式,适用于任何管理活动,体现了一种持续改进、维持平衡的思想,但具体到ISMS建立及认证项目上,就显得不够明确和细致,组织必须还要有一套切实可行的方法论,以符合项目过程实施的要求。在这方面,ISMS 实施及认证项目可以借鉴很多成熟的管理体系实施方法,比如IS0 9001,ISO/IEC 2700l, ISO/TS 16949 等,大致上说,这些管理体系都遵循所谓的PROC过程方法。

PROC 过程模型 (Preparation-Realization-Operation-Certification)是对PDCA 管理模式的一种细化,它更富有针对性和实效性,并且更贴近认证审核自身的特点。PROC模型如图1所示。

3 信息安全体系建设过程

根据以往经验,整个信息安全管理体系建设项目可划分成5个阶段,如果每项内容的活动都能很好地完成,最终就能建立起有效的ISMS,实现信息安全建设总体目标,最终通过ISO/IEC 27001认证。

调研阶段: 对业务范围内所有制度包括内部的管理规定或内控相关规定,对公司目前的管理状况进行系统、全面的了解和分析。通过技术人员人工检查和软件检测等方式对组织内部分关键网络、服务器等设备进行抽样漏洞扫描,并形成《漏洞扫描风险评估报告》。

资产识别与风险评估阶段: 针对组织内部人员的实际情况,进行信息安全基础知识的普及和培训工作,让每位员工对信息安全体系建设活动有充分的理解和认识。对内部所有相关信息安全资产进行全面梳理,并且按照ISO/IEC 27001相关的信息资产识别和风险评估的要求,完成《信息资产清单》、《信息资产风险评估表》和《风险评估报告》。

设计策划阶段:通过分组现场讨论、领导访谈等多种方式对各业务部门涉及的信息安全相关内容进行细致研究和讨论。针对现有信息安全问题和潜在信息安全风险建立有效的防范和检查机制,并且形成有持续改进功能的信息安全监督审核管理制度,最终形成严格遵守ISO/IEC 27001认证审核标准的、符合组织业务发展需要的《信息安全管理体系文件》。体系对文件控制、记录控制、内部审核管理、管理评审、纠正预防措施控制、信息安全交流管理、信息资产管理、人力资源安全管理、物理环境安全、通信与操作管理(包括:笔记本电脑管理、变更管理、补丁管理、第三方服务管理、防范病毒及恶意软件管理、机房管理规定、介质管理规定、软件管理规定、数据备份管理、系统监控管理规定、电子邮件管理规定、设备管理规定)、访问控制、信息系统获取开发和维护、信息安全事件管理、业务持续性控制、符合性相关程序进行全面界定和要求。

实施阶段:项目小组要组织相关资源,依据风险评估结果选择控制措施,为实施有效的风险处理做好计划,管理者需要正式ISMS 体系并要求开始实施,通过普遍的培训活动来推广执行。 ISMS 建立起来(体系文件正式实施) 之后,要通过一定时间的试运行来检验其有效性和稳定性。在此阶段,应该培训专门人员,建立起内部审查机制,通过内部审计、管理评审和模拟认证,来检查己建立的ISMS是否符合ISO/IEC 27001标准以及企业规范的要求。

认证阶段:经过一定时间运行,ISMS 达到一个稳定的状态,各项文档和记录已经建立完备,此时,可以提请进行认证。

4 信息安全体系建立的意义

通过建立信息安全管理体系,我们对信息安全事件及风险有了较为清楚的认识,同时掌握了一些规避和处理信息安全风险的方法,更重要的是我们重新梳理了组织内信息安全体系范围,明确了信息安全系统中人员相关职责,对维护范围内的各信息系统进行了全面的风险评估,并且通过风险评估涉及的内容确定了具体的控制目标和控制方式,引入了持续改进的戴明环管理思想,保证了体系运转的有效性。具体效果如下:

(1) 制定了信息安全方针和多层次的安全策略,为各项信息安全管理活动提供指引和支持。

(2) 通过信息风险评估挖掘了组织真实的信息安全需求。

加强了人员安全意识,建立了以预防为主的信息安全理念。

(3) 根据信息安全发展趋势,建立了动态管理和持续改进的思想。

5 决定体系建立的重要因素

5.1 加强人员安全意识是推动体系实施的重要保障

信息安全体系在一个企业的成功建立并运行,需要整个企业从上到下的全体成员都有安全意识,并具备信息安全体系相关理论基础,才能保障信息安全体系各项活动内容顺利开展。为保证信息安全体系相关任务的执行人员能够尽职尽责,组织要确定体系内人员的职责;给予相关人员适当的培训,必要时,需要为特定任务招聘有经验的人员;评估培训效果。组织必须确保相关人员能够意识到其所进行的信息安全活动的重要性,并且清楚各自在实现ISMS 目标过程中参与的方式。

ISMS 培训工作应该分层次、分阶段、循序渐进地进行。借助培训,组织一方面可以向一般员工宣贯安全策略、提升其安全意识;另一方面,也可以向特定人员传递专业技能(例如风险评估方法、策略制定方法、安全操作技术等)。此外,面向管理人员的培训,能够提升组织整体的信息安全管理水平。通常来讲,组织应该考虑实施的培训内容包括:

(1) 信息安全意识培训。在ISMS实施伊始或最终运行阶段,组织可以为所有人员提供信息安全意识培训,目的在于让所有与ISMS 相关的人员都了解信息安全管理基本要领,理解信息安全策略,知道信息安全问题所在,掌握应对和解决问题的方法和途径。

(2) 信息安全管理基础培训。在ISMS准备阶段,组织可以向ISMS项目实施相关人员 (例如风险评估小组人员、各部门代表等)提供1SO/IEC 27001基础培训,通过短期学习,帮助大家掌握ISO/IEC 27001标准的精髓,理解自身角色和责任,从而在ISMS项目实施过程中起到应有的作用。

(3) ISMS实施培训。组织可以向ISMS项目的核心人员提供ISMS实施方法的培训,包括风险评估方法、策略制定方法等,目的在于协作配合,共同推动ISMS项目有序且顺利地进行。

(4) 信息安全综合技能培训。为了让ISMS能够长期稳定地运行下去,组织可以为相关人员提供信息安全操作技能的培训,目的在于提高其运营ISMS的技术能力,掌握处理问题的思路和方法。

5.2 建立符合企业需求的ISMS,保障体系顺利落地

(1) 根据业务需求明确ISMS范围。范围的界定要从组织的业务出发,通过分析业务流程(尤其是核心业务),找到与此相关的人员、部门和职能,然后确定业务流程所依赖的信息系统和场所环境,最终从逻辑上和物理上对ISMS 的范围予以明确。需要注意的是,组织确定的ISMS 范围,必须是适合内外部客户所需的,且包含了与所有对信息安全具有影响的合作伙伴、供货商和客户的接触关系。为此,组织应该通过合同、服务水平协议 (SLA)、谅解备忘录等方式来说明其在与合作伙伴、供货商以及客户接触时实施了信息安全管理。

(2) 利用客观风险评估工具。风险评估应尽可能采用客观的风险评估工具,保证评估的准确、翔实。有效利用各种工具,可以帮助评估者更准确更全面地采集和分析数据,提升工作的自动化水平,并且最大程度上减少人为失误。当然,风险评估工具并不局限于完全技术性的产品,事实上很多评估工具都是评估者经验积累的成果,如调查问卷、扫描工具、风险评估软件等。

(3) 构建合理的ISMS文件体系。文件首先应该符合业务运作和安全控制的实际情况,应该具有可操作性;不同层次的文件之间应该保持紧密关系并且协调一致,不能存在相互矛盾的地方;编写ISMS文件时,除了依据标准和相关法律法规之外,组织还应该充分考虑现行的策略、程序、制度和规范,有所继承,有所修正。

6 结 论

企业的生存和发展,有赖于企业各项业务、管理活动的健康有序的进行,而信息化是企业一切业务、管理活动所依赖的基础。信息系统是否能够稳定、可靠、有效运作,直接关系到企业各项业务活动是否能够持续。因此,我们要对信息系统的保密性、完整性、可控性、可用性等提出全面具体的要求,建立持续改进的信息安全体系运行机制。在信息安全体系的全面应用过程中,必须重点关注以下重要事项:安全策略、目标和活动应该反映业务目标;实施信息安全的方法应该与组织的文化保持一致;来自高级管理层的明确的支持和承诺;向所有管理者和员工有效地推广安全意识;提供适当的培训和教育。

主要参考文献

篇10

关键词: 风险;定性评价;定量评价;滑坡泥石流;小区域尺度

Key words: risk;qualitative evaluation;the quantitative evaluation;landslide debris flow;small regional scale

中图分类号:P694文献标识码:A文章编号:1006-4311(2010)20-0247-01

1风险性评估回顾

滑坡泥石流灾害在自然灾害中,是最重要灾害类型之一,具有分布地区广、发生频率高、运动速度快、灾害损失严重等特点。国外普遍重视城市滑坡泥石流灾害的评估研究,俄国、日本和美国等国的相关专家、学者、科研院所以及政府机构等均对滑坡、泥石流等地质灾害的风险评估、预测预报等进行了较为系统的研究。涉及各单项评估评价研究文献较多,主要集中于滑坡泥石流灾害的风险分析与制图。自二十世纪八十年代以来,几乎所有受滑坡泥石流影响严重的国家、地区的城市都开展了综合性地质灾害损失预防和管理,其共同特点是选择示范试验区或流域进行风险性评估,这种非工程性措施的减灾效果已普遍得到认可。

自1994年以来,对自然灾害承灾体易损性研究日益引起国际上的普遍关注,城市综合减灾研究成为跨世纪中国最值得关注的保障技术之一。二十世纪九十年代以来,GIS技术与地质灾害空间预测数学模型方法的结合成为地质灾害研究的热点领域。GIS 技术使泥石流风险评价的空间数据集成化更简便、分析速度更快、精度更高,促进了该领域快速发展,相关研究大量涌现,具有代表性的是意大利学者A. Carrara 系统总结了近年来滑坡(含泥石流) 风险制图的技术方法和存在的问题。目前泥石流风险评价工作关键在于GIS 专家、统计专家和地学工作者共同对相关空间数据获取、处理和分析,开发可靠性强的评价模型。我国开展泥石流风险评价研究起步较晚,例如刘希林讨论了泥石流风险区划的易损度计算方法。

滑坡泥石流经济损失评估日益引起各国政府部门和学术界的广泛关注。伦敦大学皇家学院地理系A.Hansen(1984)教授完成的滑坡危险性分析,成为滑坡泥石流风险评价的重要成果。近几年,许多学者对自然和经济易损性作了深入的研究并对多种灾害的易损性建立了分析体系和评价方法或模型,并将它们用于指导高风险地区的防灾救灾。

2预警研究发展

二十世纪七十年代,前苏联学者弗莱施曼[1]提出泥石流空间预报、时间预报和规模预报的概念,开展了天气气象学方法的泥石流发生预报的试验,编制出泥石流工程预测图等,并于1980年出版专著《泥石流形成规律和预报》。与此同时,日本[2]也于1981年出版《滑坡、崩塌、泥石流预测与对策》专著。

中国在二十世纪八十年代开展了区域泥石流的预测预报方法研究,很多学者和研究机构,基于不同的学科背景和不同的研究视角以及不同的问题领域,对中国的滑坡、泥石流等地质灾害调查评价与监测预警进行了探讨与实践,系统地总结了滑坡泥石流预测预报的基本理论与方法,阐述了新思维,积累了经验。在地质灾害中,滑坡、泥石流特别是降雨型滑坡、泥石流的风险评估及其预测预报,在地质灾害频发的后发达的山区省份中尤其具有特殊意义。针对后发达省区的滑坡、泥石流等地质灾害的风险评估及预警研究,已有学者开展了定性或半定量的研究,他们的研究工作和初步成果成为我们从事此项研究的重要基础。例如谭万沛(1994)出版专著《暴雨泥石流滑坡的区域预测与预报》,唐川(1995)出版《云南省滑坡泥石流重点区域预测预报与评价方法研究》。

此外,近十几年来,“3S”技术应用于滑坡泥石流预报测预等方面的研究成果也很多,如Hergarten et al. (1998),Nagra jan, R. et al.(1998),Aldo Clerici et al.(2000),Mandy LinebackGritzner et al. (2001)等。

3讨论

3.1 由于滑坡泥石流灾害损失评估问题的复杂性和评估对象的多样性,特别是涉及山区城市的特殊性,因此有很必要进一步探讨适合山区城市滑坡泥石流灾害特点的损失评估方法,并在实际应用中不断完善,逐步提高其评估水平和实用性,使这项工作更加规范化、科学化。

3.2 我国学者的研究主要集中在国家和大区一级尺度,对各地区的灾害防控具有一定的宏观指导意义。具体到小尺度区域时,由于地质和环境条件的复杂多样、社会经济的差异以及居民生产生活方式的不同等,造成理论成果与实践的脱节,理论服务实践的初衷无法实现,严重制约特定区域的灾害防治和社会经济的和谐可持续发展。针对小尺度区域的滑坡、泥石流等地质灾害的风险评估与预警研究亟待开拓和系统研究。

3.3 可借鉴钱学森院士创立的“从定性到定量的综合集成法”为方法论工具,关注安全、生态、经济、可持续的风险评价、管理与预警系统研发。在地理信息系统平台上,综合使用系统动力学等各个学科的基本研究方法,进行时间和空间对偶分析,更能准确把握问题的实质,找到问题的根源,从而进行跨多学科和多领域的系统分析和情景分析,提出更具针对性的对策建议。

3.4 滑坡泥石流易损性表示“潜在最大损失”,是时间和空间的复合函数,随时间变化和区域的不同而不同,因此易损性评价应该进一步强调易损性增长率的分析。对于处于经济欠发达阶段以及地质环境条件复杂的区域, 由于城镇人口和经济规模急剧上升,城镇范围不断扩大,地质灾害频发,易损度随着财产和人口的增加而快速增大。因此,滑坡泥石流潜在最大损失中,人员损失的比重很大,财产损失占国内生产总值的比重也很大。

参考文献: