时间:2023-06-27 15:54:22
导言:作为写作爱好者,不可错过为您精心挑选的10篇人工智能的发展状况,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
一、企业计算的发展状况
1.企业计算的含义
企业计算(Enterprise Computing)主要是指企业信息系统,如ERP软件(企业资源规划)、CRM软件(客户关系管理)、SCM软件(供应链管理、即物流软件),银行证券软件,财务软件,电子商务/政务(包括各种网站),数据仓库,数据挖掘,商务智能等企业信息管理系统。
2.企业计算的发展
回顾IT产业系统的发展脉络。40年前IBM S/360系统的诞生开创了以大型主机为核心的重心计算时代,计算机开始影响人类发展的历程。之后小型机的兴起和网络技术的成熟使分布式计算模式被人们广泛的接收。到了上世纪80年代,IBM发明的个人电脑(PC)更是将客户机/服务器的计算机模式逐渐推向一个高峰。随着互联网的出现,业界进入到了互联网计算时代,IBM在这个时期率先倡导了电子商务理念,使得IT手段首次成为了商业生活中不可缺少的组成部分。进入21世纪,IT业界再次迎来新变革大潮,我们看到以SOA、虚拟化技术为代表的21世纪企业计算模式已经渐露端倪,并成为成就企业创新成功的重要因素。
今天,企业需要通过不断的业务创新来推动自身的发展。越来越多的CIO开始意识到,在企业业务创新中,自身扮演着非常重要的角色。业务的创新离不开先进的IT基础架构支撑,这也对IT基础架构提出了新的要求,这些要求归结起来有如下几个方面:如何满足企业对掌控信息,优化IT的需求;如何帮助企业降低风险、提升员工的效率,支持业务灵活性。要解决以上的问题,建立一个面向创新的IT基架构是行之有效的途径。一个面向创新的IT基础架构的显著特征是以SOA,虚拟化技术为核心,具有安全、可扩展的特性,同时秉承开放标准的思想,有能力协同各方资源。
3.当今企业计算的模式
在当今的企业计算模式下,以下的一些热点正在成为重要的应用趋势:ServerFarm2.0(下一代Server Farm),Server Farm2.0实际上代表了虚拟化技术在客户数据中心的最新应用理念。它以虚拟化的服务器存储设备、系统管理和自动化软件为基础,同时是以一种服务的形式为客户变化的应用需求提供灵活的基础架构资源。应用Server Farm2.0,客户可以缩短应用部署时间、简化硬件系统、大大节省硬件投资,同时管理流程自动化可以提高系统维护人员的效率。
绿色数据中心――gartner公司指出,环境的可持续性正在成为IT组织日益优先关心的问题,并预计到2011年将会超过一半的大型IT环境中实现对环境可持续性发展有益的流程和工具。数据中心日益增加的能源成本及供电、散热和空间方面的管理也正在成为一项重大的挑战。IBM很早认识到数据中心的能源效率是一个涉及到各个方面且相互联系的难题――从硅技术和芯片设计的进步,一直到数据中心的系统规划,以及如何运行这些系统以最大程度地减少能源的使用。
刀片及模块化计算――刀片以及模块化计算架构,以其经济、低功耗和灵活易于扩展的特性越来越受到企业用户,尤其是中小企业的青睐,并逐渐成为网络计算的标准设备。到目前为止,全球50多家风险投资公司为了推动刀片服务器生态环境的发展已经投入了超过10亿美元。
安全和业务弹性――伴随着愈演愈烈的网络侵入、病毒传播,和数据盗窃等问题的发生,安全和业务弹性越来越成为影响企业生存发展的根本问题之一。企业也开始重新思考解决安全问题的根本之道。企业对于安全性方面的需求主要有以下几个方面:系统各个层面的安全、安全快速的在线交易,广泛安全的网络传播、强制性的侵入侦测,协同合作伙伴实施企业范围内的安全保障、集中的密钥管理等。
二、嵌入式系统的发展状况
计算机产业革命的技术基础是集成电路、微处理器、微型计算机,它的计算手段起到了智力替代的作用。通用计算机智力平台的模式,,推动了嵌入式系统的智力嵌入,整个现代计算机形成了两个领域:一个是通用计算机领域,一个是嵌入式领域。
1.通用计算机和嵌入系统的区别
通用计算机提供了智力平台,主要实现软件设计,包括:计算机辅助设计、辅助制造、科学计算、工程设计等,实现了智力替代平台。而在嵌入式计算机领域中,智力嵌入是将嵌入式系统嵌入到对象体系中。这个对象体系包含家用电器、智能仪表、工控单元等多个领域,嵌入是带计算机内核的设备,所以提供了智力平台和智力嵌入模式,这就是计算机革命的两个模式。
嵌入式计算机出现以后,通用计算机和嵌入计算机分道扬镳,出现了两个不同的发展方向。嵌入式系统的发展走向单片机的道路,直到现在单片机仍然是嵌入式系统的重要发展方向。
通用计算机承担智力平台的使命,嵌入式系统承担智力嵌入的使命,这是两个不可兼容的技术发展方向。所以通用计算机承担的任务是高速海量的数字计算,而嵌入式系统主要是满足对象系统的全面智能化要求。现在通用计算机不断地提高速度和存储容量,而嵌入式系统中,位计算机仍然是一个很主要的应用形式。嵌入式系统的发展方向是超小型、超低价位、高可靠性和易耦合。嵌入到对象体系时,原对象系统应该和电子系统具备很好的耦合,包括传感器、传感器接口、驱动器接口、人机界面等。除了物理耦合性,还需要科学的耦合性,研究人员应对所涉及的技术原理深入了解。
2.嵌入式系统的发展
单片机是嵌入式发展的必然道路,通用计算机的体系结构不能替代嵌入式系统,必须建立一个创新的体系结构。英特尔最早提出了嵌入式系统经典的硬件体系,这个体系精简、高效、高可靠,它的指令系统突出控制功能,外部总线易扩展、易配置,提供了在位系统中必须遵循的特殊功能计算机管理模式,不管将来扩展任务电路单元,都遵循归一化的特殊功能管理模式。另外英特尔还带来了原创嵌入式操作系统。早期嵌入式操作系统受通用计算机影响最大,作为原创RTOS实时多任务操作系统,设计时必须考虑实时性、多任务性。
单片机时代也属于嵌入式时代,不过单片机进入电子应用领域,主要面对智能仪表、家用电器、工控单位等领域。在通讯网络遍布的后PC时代,很多计算机人才进入这个领域,形成了嵌入式系统全面发展的新时代,它和单片机时代是衔接的。单片机和嵌入式系统是两个时代概念,但其内涵相同,单片机是嵌入式独立发展的时代,两者之间并没有技术本质的差异,都遵循MCU和SoC道路。
嵌入式系统包含四个支柱学科:微电子学、计算机学科、电子学科和对象学科。四个学科共同促进嵌入式系统发展。其中对象学科和其他三个学科之间差异最大,所有嵌入式产品从对象学科中走出来,无论是计算机学科、微电子学科还是电子技术学科,都为嵌入式应用提供了一个广阔的平台,对象系统在这个平台上实现嵌入式系统的应用。
嵌入式系统新型的产业模式是一个扇形产业结构,和资本经济时代一体化封闭的产业结构有本质的差别。此外,半导体产业中还突显了知识产权产业,嵌入式产业中从百花齐放开始向技术集权方向发展。技术集权方式对整个产业发展很有利,可以做到技术上的高度统一和协调。平台模式的发展日益明显,微电子学科、计算机学科、电子学科都为对象学科构建理想的平台,提供最适合的集成开发环境和操作系统。
1.人工智能的含义
人工智能实际上是一个计算机系统,是模仿职能活动的程序,使之能显示出某些人类智能活动的特性以延伸人类智力的科学,所以可以说人工智能是计算机科学与心理科学相结构而产生的研究成果,是用计算机实现人的智力活动和功能的一门边缘学科。换句话说,它是计算机科学的一个分支,主要研究问题求解中的搜索问题和知识信息的处理问题、涉及计算机科学、心理学、哲学和语言学等多种学科,总的目标是增强人的智力。从实用的观点看,人工智能是一门以知识为研究对象,研究知识的获取、知识的表征方法和知识的使用,设计计算机使之模仿人脑的学习、推理等思维活动,来解决需人类专家才能处理的复杂问题,如医疗诊断、石油钻井、探矿、气象预报等课题。
2.人工智能的发展
现代人工智能的先驱者创立了很多的学科,例如维纳的控制论,冯・诺依曼的博弈论以及申农的信息论,它们对人工智能的形成和发展产生了很大的影响。整个60年代是人工智能发展的黄金时期,很多人工智能科学家在人工智能的各个领域做出了奠基性的贡献。
网络技术的发展,特别是世界范围内因特网的普及给新时期人工智能的发展注入了活力。而研究工作的结果给人工智能的信息系统建设以促进作用。人工智能将在未来的网络世界中扮演重要的角色。网络的快速发展,特别是极端丰富的网络资源要求计算机不但能用文本、图形,还能通过语音、动作姿势等与用户进行交互。这种交互应该是有目标导向的、合作式的,同时应该是自适应的,并为用户提供沉浸感。
中图分类号:F407文献标识码: A
0.引言
随着社会不断的发展进步,对于生产力的要求也相应的有所提高,而提高生产力最有效的办法就是将科学技术运用到生产当中。如果将人工智能技术运用到企业生产过程中,不仅可以提高生产效率,而且可以减少生产成本,所以,许多企业对人工智能技术产生了浓厚的兴趣。作为一门实践应用性学科,电气自动化的主要任务是就是针对电气系统进行研究,从而促进生产力的发展。在现代生产力的发展过程中,电气自动化发挥了非常重要的作用,所以必须要注重对其的研究与创新。将人工智能技术运用到电气控制系统中,是电气自动化领域的一项重大的改革创新之举。在电气自动化领域中运用人工智能技术,不仅可以减少安全事故的发生,而且可以有效的提高工作效率,从而促进企业的发展。本文通过分析当前人工智能技术的发展状况,结合其自身特点,研究人工智能技术在电气控制系统中的运用。
1.人工智能技术的内容及特点
对于人工智能技术而言,其不仅包括对人类智能相关理论的探索,还包括在此基础上对人类智能相关理论的进一步深入研究,如模拟、延伸和拓展等。人工智能技术是计算机技术的一个重要组成部分,对人工智能技术进行研究,不仅可以对人类智能出现的相关理论进行探讨,还可以在此基础上进行相应的模拟研究,将生产过程智能化。人工智能化技术涉及到多门学科,例如心理学和逻辑学等等,但是,作为人工智能技术的基础,计算机科学对其有着十分重要的影响。一般而言,人工智能技术的相关研究主要针对一些复杂问题,并希望这些复杂的工作是由智能机器来完成的。作为一种非常精密的机器,人脑的思考是可以被模仿的,例如智能机的编程过程便是如此。因此,大部分企业都采用了模拟人脑的方法来实现自动化。
人工智能技术最突出段特点就是与人一样,能够完成复杂的脑力劳动,可以自动采集信息并作出相应的处理。人工智能机拥有精确的计算能力,如果在电气自动化控制中运用人工智能机,不仅可以优化生产和交换等过程,而且可以将生产过程自动化,这样就可以让企业缩减成本,同时,还能提高生产效率。所以,为了优化产业结构,应该在电气自动化控制行业运用人工智能技术。
2.人工智能技术在电气自动化控制行业中运用的现状
(1)在完善电气设备设计的过程中,不仅设计到相关的电路和电磁场理论知识,而且还要求设计人员拥有相关的实践经验。在传统的设计方法中,普遍采取手工设计的方式,这种方式主要依赖于以往的设计经验,所以难以选出最佳的设计方案。但是,社会经济的发展使得计算机技术有了很大的提高,这就改变了电气产品的设计方式,让手工设计开始向计算机设计转变,这对于电气产品而言,很大程度的缩短了其研发周期。在电气自动化控制中,运用人工智能技术可以促进CAD技术的发展,从而提高了产品设计的总有效率,同时确保了产品的质量。
(2)实现智能控制功能。首先,要采集并整理数据,这就需要实时采集所有的开关量以及模拟量,在进行处理和储存的过程当中,应该根据需要来进行;其次,实现监视和事件报警功能。在进行实时智能监视的过程中,需要根据各种主要设备的模拟量数值和开关量状态来进行,一旦发现事故报警越限和状态变化事件报警情况,就会出现事故处理提示和自动处理功能,从而实现语音、电话和图像等报警功能;然后,实现操作控制功能。通过键盘或鼠标就能实现对断路器及电动隔离开关的控制、励磁电流的调整。运行人员可按顺控程序进行同期并网带负荷或停机操作。另外,为了能够与值班管理相互适应,系统还应该限制运行人员的操作权限。最后,实现故障录波功能,例如波形捕捉、开关量的变位和顺序记录等功能。
3.电气自动化控制中人工智能技术的应用
3.1 在电气设备中运用人工智能技术
根据实践经验发现,在电气自动化化领域中,要想让电气化系统运行正常不是一项简单的工作,这其中涉及的知识面非常广泛,因此,必须任用高素质人才控制电气化系统的运行。除此之外,任用控制电气化系统运行人员时,还必须选择责任心强的工作人员,只有这样才能在最大程度上保证设备可以正常运行。但是,如果选择人工智能技术来控制电气化系统的运行,只要通过编写程序并进行相关的网络操作,就可以很好完成这项工作,让电气设备无需人为干涉,就可以自动运作,这样不仅可以为企业节省人力资源的成本,而且可以更加完美的完成工作。
3.2 在电气控制过程中运用人工智能技术
在电气领域中,电气控制有着举足轻重的的作用,如果可以将电气控制的过程全面自动化,不仅可以帮助企业提高生产效率,缩减资金投入,而且可以为企业节省人力资源成本。在电气自动化领域中运用人工智能技术,其最突出的体现除了神经网络控制和模糊控制之外,还有专家系统控制。
3.3 在平常操作中运用人工智能技术
在我们的日常生活中,常常会遇到与电气行业相关的问题,因此,我们应该通过改进传统的操作方法,让电气系统的操作更加简单有效,使其能够更好的在我们日常生活中发挥作用。只要将人工智能技术运用到电气系统操作过程中,就能够化繁为简,这样就可以在任何地点通过电脑控制完成相关操作,达到远程控制的目的。除此之外,通过对界面进行优化设计,对信息进行分类保存,这样以后需要查询时就可以迅速准确的找到想要的信息。不仅如此,通过运用人工智能技术,还可以自动生成报表,这不仅可以为企业节省时间和人力资源成本,还可以提高工作效率。
3.4 在电气事故和故障诊断过程中运用人工智能技术
在电气事故和故障诊断过程中运用人工智能技术,主要是通过模糊理论、神经网络以及专家系统进行诊断,这是非十分有效的一种方法。由于电气行业自身的特点,常常会有电气事故和故障发生,如果不能及时的发现电气事故和故障发生的原因,将会为企业带来重大的损失。传统的事故和故障诊断方式不仅复杂,而且其诊断的准确率较低。例如传统方式诊断变压器故障时,首先要收集变压器油液中排出的废气,然后对其进行分析,最后才能根据分析结果判断导致故障的原因。这种方法不仅耗时长,效率低,需要经过很长时间才能得出诊断结果,而且不能确保得出准确的诊断结果。与此同时,在排除故障时,传统的方法也不简单。所以,必须对传统的故障诊断方法进行改进,这样才能减少故障带来的损失,如果在电气事故和故障诊断中运用人工智能技术,就可以很好的解决这个问题,不仅如此,这种诊断方法的准确率也更高,且排除故障的效率同样更高。
4.结束语
综上所述,在电气自动化控制中运用人工智能技术,不仅可以将电气控制的过程全面自动化,帮助企业提高生产效率,而且可以为企业节省人力资源成本和资金投入,对于电气自动化领域的发展有着重大意义。
【参考文献】
[1]翟辉.人工智能在电气自动化控制中应用[J].科技创新导报,2011(27).
中图分类号:F470.6 文献标识码:A
一、对人工智能理论的具体分析
人工智能研究了自然科学和社会科学,所涉及的知识面非常广,不仅包括哲学、计算机科学、数学,除此之外,还包括控制学、心理学和不定性论等。我们由此可以看出,对于这种技术的研究,内容是较为复杂的。但是这种主要在遗传编程、智能控制和机器人学等领域中有所运用。而在电气自动化控制中的应用则没有很好地开展。因而我们要进行持续的探索,让这门技术在电气领域得到广泛应用,促进电气领域的发展。
二、人工智能控制器的特点
在以往的电气自动化实践中中,我们应用大多数是人工智能控制器,其中主要利用的是是非线性函数近似器,如:神经算法、模糊理论、模糊神经算法和遗传算法等。目前较先进的是采用AI函数近似器拥有比常规函数估计器更多优良的特点,例如:
1.在进行人工智能电气设计时不需要得到实际控制对象精确的动态模型,也不需要知道参数变化、非线性等具体因素;
2.人工智能控制器拥有良好的一致性,即使在输入新的未知数据时也能得到很好的预测结果;
3.人工智能控制器可以应用语言和响应时间进行设计,且调节更容易,对数据和信息的适应性更好,易于扩展和修改,抗干扰性能好,并且便于实现。
三、人工智能在电气自动化中的应用
1.人工智能在电气设备设计中的应用。
在实践中我们都知道,电气设备的设计是一个复杂过程,其中会涉及到电气自动化专业中电路、电机、变压器、电力电子技术、电磁场等多门学科内容;对设计者的实际工作经验要求很高,需要大量的人力、物力和财力。而借助于人工智能技术,可以解决很多人脑难以快速解决的繁琐计算和模拟过程,大大地提高了设计中的工作效率和精度。电气设备设计中应该注意不同的算法使用与不同的实际情况,要进行高效率、高质量的设计工作,要求工作人员具有高水平的人工智能软件应用能力和丰富的工作经验。
2.人工智能在电气控制中的应用。
在我们的生产生活中,提高自动化水平,就能够减少人力、物力、财力投入,提高系统的运作效率和质量。人工智能技术在电气设备控制中的应用主要包括模糊控制、专家系统控制和神经网络控制。在实际应用中,用得最多的是模糊控制。下面以人工智能控制在电气传动控制中的应用为例进行介绍。
在电气传动控制中,模糊控制的应用主要分为在直流传动和交流传动中的应用。直流传动控制中模糊逻辑控制主要应用于模糊控制器中,包括Mamdani和Sugeno。Mamdani用于调速控制,其规则库是一个if-then模糊规则集;而Sugeno控制器实际上是Mamdani控制器的特例,其典型的规则是:如果x隶属于A,且y隶属于B,则Z=f(x,y)。
这里,A和B是两个模糊集。在交流传动控制中模糊控制器主要用于取代常规的PI或者PID控制器,另外最新研究中,还将模糊神经控制器用于各种全数字的高动态性能传动系统中,得到了一些新的研究成果。
3.人工智能在电力系统中的应用。
在实际生产中,人工智能技术在电力系统中的应用主要有4个方面——其中包括了专家系统、神经网络、模糊集理论和启发式搜索。专家系统ES是一个集大量规则、经验和专业知识于一身的复杂程序系统,该系统主要是依靠某个特定领域的专家的经验和知识,进行推理判断,并模拟专家的决策过程,对各种需要专家进行决策的难题进行处理。专家系统由6个部分组成,即知识库、数据库、推理机、咨询解释、知识获取和人机接口。
除此之外,现有许多种神经网络和训练算法在电力系统中得到广泛应用。神经网络具有灵活的学习方式和完全分布式的存储方式,在大规模信息处理中得到广泛应用;并且其识别能力和复杂状态分类能力都很强大。在电力系统的短期负荷预测中,BP神经网路能够在足够的驯良样本中,对模型急怒攻心合理分类,对输入进行选择,构建不同季节的周预测和日预测模型;将元件关联分析和人工神经网络相结合进行复杂电力系统故障诊断,采用ANN面向元件的模型,可以对每类元件进行故障报警和定位操作,还可以对同一跳闸区域中的不同故障进行识别。模糊理论在电力系统的潮流计算、系统规划和模糊控制等方面的应用得到了飞速发展,因为模糊逻辑能够完成高难度的数学近似计算,对负荷变化和电力生产等不确定因素建立隶属函数,以构建电力系统的最优化潮流模型。
4.人工智能在故障诊断中的应用。
人工智能技术中的模糊理论、专家系统和神经网络在电气设备故障诊断中应用较广泛,特别是在变压器故障诊断、发电机和电动机故障诊断中。传统的故障诊断方法无法针对设备故障的不确定性、非线性和复杂性等特点进行诊断,诊断效率较低。而人工智能方法的应用提高了诊断准确率。人工智能技术主要使用模糊逻辑、神经网络和专家系统三种故障诊断方法。如在电动机和发动机的故障诊断中使用人工智能化的故障诊断技术,结合了神经网络和模糊理论,实现了故障诊断知识模糊性与较强的神经网络共同的诊断,相对提高了故障的针对准确率。
5.人工智能对日常操作的影响。
电力系统不仅影响着电力系统建设的自动化水平,对日常的管理工作的影响也十分重大。人工智能技术应用于日常操作中,可以帮助实现以家用电脑操作进行系统操作,简化电流调整、设备操作界面,并且可自动进行日志生成和储存、报表自动生成等功能。电气系统日常操作中引进人工智能技术,不仅能够简化各种操作、规范各种文件样式和规格,并且能够实现操作的简便性和可视性。人工智能化技术在电气自动化控制中的应用,大大提高了工作效率和工作准确率。它已经成为我国未来电气自动化的主要发展方向,是我国电气产业的一大改革和进步
四、总结:
从目前的科技发展水平看来,以前需要通过人控制机器去完成的重大任务,到现在位置完全可以交由人工智能来完成。人工只能通过计算机来模拟人类智能活动的方式,不但是理论研究上的突破,还能够极大地节省人力、物力、财力,获得很高的经济效益和社会效益。总之,人工智能在电气自动化方面具有极大地潜力,我们应当不断地推动其完善和前进。
参考文献:
[1]王瑛,王宇.自动化控制系统网络的发展[J].科技信息(科学教研).2008(18).
[2]毛毅.人工智能研究热点及其发展方向[J].技术与市场.2008(03).
[3]石磊,李国栋.电气自动化控制系统及设计[J].黑龙江科技信息.2011(20).
[4]彭启琮.DSP技术[M].北京:电子科技大学出版社,2007.
[5]张培铭.展望21世纪电器发展方向一人工智能电器[J].电工技术杂志.2006(4).
[6]陈洪峰.国内电气自动化发展状况与趋势[J].科技创新导报,2009,1:12.
[7]陆伟民.人工智能技术及应用[M].上海:同济大学出版社,1998(6).
[8]彭启琮.DSP技术成都[M]:电子科技大学出版社,1997(2).
[9]张培铭.展望21世纪电器发展方向一人工智能电器[j],电工技术,2006(11).
[10]陈洪峰.国内电气自动化发展状况与趋势[J].科技创新导报,2009(5).
一、人工智能的定义
“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。
人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。
二、人工智能的应用领域
1.在管理系统中的应用
(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。
(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。
2.在工程领域的应用
(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist 2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。
(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。
3.在技术研究中的应用
(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。
(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。
三、人工智能的发展方向
1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。
2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。
3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。
参考文献:
[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.
[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.
[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).
[4]周明正.人工智能在医学专家系统中的应用[J].科技信息, 2007.
[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).
一、研究背景及意义
现阶段,计算机在我国各行各业中都扮演着重要角色,计算机技术的发展为各行业的生产运行提供了坚实有效的保障。与此同时,人工智能技术也取得了惊人的进步,为我国航空航天行业发展做出了巨大贡献。改革开放以来,在我国市场经济不断发展,综合国力不断提升的背景下,民航业发展迅猛,乘坐飞机出行从以前的高不可攀变成如今的大众化出行方式,只用了40年的时间。在这40年里,我国航班架次大幅增涨,现有的空域资源也日趋紧张,在这关键时刻,人工智能技术的出现,为航空事业快速高效的发展带来了新的曙光。空中交通管理的主要目的是防止航空器与航空器相撞以及航空器与障碍物相撞,维护和加快空中交通的有序流动[1],因此,飞行流量管理和飞行冲突探测、解脱便成了空中交通管理中至关重要的任务。一方面,在空中交通流量接近或达到空中交通管制能力上限时,适时地进行调整,保证空中交通量最佳地流入或通过相应区域,尽可能提高机场、空域可用容量的利用率[1]。另一方面,飞行冲突的探测,能够帮助管制员及早发出指令,使用许可和信息防止航空器相撞,保障空中交通顺畅或控制空域内各航班的间隔,从而保证飞行安全[1]。空中交通管理人工智能辅助系统的运用,不仅能够加速空中交通流量,提高空域利用率,而且能够进行飞行冲突的判断、解除,最大程度的提高航班运行的安全性,为管制员节省大量的时间和精力监控运行,降低工作负荷,提高综合管制服务水平。
二、人工智能与空中交通管理人工智能辅助系统概述
(一)人工智能概述
人工智能(ArtificialIntelligence),英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学[2]。人工智能技术通俗的讲,就是使机器模拟人的智能行为,代替人从事那些人为操作容易出错、速度慢、效率低或者超出能力范围的复杂工作的新技术。它通过研究人类智能活动的规律,构造具有一定智能的人工系统,指导计算机去完成以往需要、甚至超越人的智能才能胜任的工作[2]。当前,全球科技革命和产业革命方兴未艾,新技术行业融合创新不断,在移动互联网、大数据、云计算、物联网等新理论新技术以及社会发展相关的强烈需求的共同驱动下,人工智能加速发展,逐渐成为了产业革命和行业融合的关键技术。人工智能可以通过对数据的采集、分析和挖掘,形成有价值的信息和知识模型,实现对人类智力智能行为的模拟,具备一定环境下的自适应特性和学习能力[3]。现阶段,人工智能经成为与计算机科学,控制论,信息论,心理学,语言学等多种学科相互渗透的一门新兴学科,在许多领域有着广泛的运用,变得和我们的生活息息相关[4]。
(二)空中交通管理人工智能辅助系统概述
人工智能技术在空中交通管理中的应用主要依靠人工智能辅数据分析和决策系统实现。利用人工智能技术,可以建立智能化流量管理模块系统,科学判断空中交通存在的问题,全面监控空中交通流量并对其进行智能化管理,提高空域的利用率,以及建立智能冲突探测和解脱模块系统,进行飞行冲突的探测,通过引导飞行员采取速度控制、高度调整、航向改变等措施实现避让,解除可能的飞行冲突,实现安全飞行的目标。借助空中交通管理人工智能辅助系统,全面提升空中交通管理水平[5]。
三、人工智能技术在空中交通管理中的具体应用及建议
(一)人工智能技术在飞行流量管理中的应用及建议
空中交通流量管理的目标是根据气象条件、航路结构、扇区容量等限制条件和资源的统筹规划,使航班流量尽可能达到最优状态,从而在保障安全的前提下,提高运行效率。在引入人工智能辅助系统后,可以形成天气预测,流量预测,限制建议和超容告警等模块,通过气象条件探测,各航路各时段航班量预测和生成航班间隔调整预案等方法,为流量管理者在短时间内提供有效的决策参考,从而大大降低流量管理者的工作负荷。其中,气象条件的探测需要民航气象部门提供气象数据源接口,利用计算机模拟技术预测未来各时段的气象变化情况及其对各航线的影响程度。各航路的航班量预测需要接入综合电报处理系统,利用飞行动态电报来判断在未来各时段各航路的航班架次以及航路交汇点可能存在的飞行冲突。得到这些数据信息之后,需要对航班进行排序,合理安排并确定尚未起飞航班的离港时间,从而达到各管制扇区容流匹配,空域资源最优化利用。除此之外,航班排序还要依据接收到的外区限制,并结合专机、要客等优先级信息做出合理安排,对外区限制较大的航路可给出改航建议,并模拟、计算改航后各条航路的流量和交汇点冲突情况,进行进一步优化。对优先级高的航班可自动豁免并给出直飞建议,对确实需要延误的航班,同时模拟航班取消后的损失情况给出合理化延误建议,通过人工智能技术做出合理化安排。完善、及时的数据库信息维护可以保证飞行数据和气象数据的及时、准确,保证流量信息等数据的完整性和可靠性,对于人工智能辅助系统做出正确、有效的建议有着重要而直接的影响,进而对各航路、各扇区的流量管理方案的有效性产生关键影响。因此,人工智能辅助系统的管理人员应及时维护数据库,尽量避免由于数据不完整、不及时而导致的决策错误,减少因航班延误对社会生产生活带来的负面影响。
(二)人工智能技术在飞行冲突探测及解决上的应用及建议
在解决航班飞行冲突上,人工智能技术主要是通过分析航班存在冲突的概率及可能的状况,根据飞行动态信息做出合理化冲突解脱建议,并且在这一过程中找到最有效,最经济和最安全的确定方案。另外,在最终方案选择中,通过对管制员选择结果的智能学习,建立系统自己的飞行冲突处置预案库,利用最短路径算法和偏好路由算法,在数据库系统中精确查找解决方案,并根据最终实施情况进行反馈,实现闭环处理。为了在工作中放心的依照人工智能系统提供的方案,及时发现潜在冲突,解决安全隐患,人工智能辅助系统管制员需要做好数据库维护工作。对于典型的飞行冲突处置案例,如果系统学习有偏差,可人工校正,并及时更新,最大限度的帮助系统提高推理的效率和能力。此外,管制员在实践中可以及时发现人工智能决策系统提供决策能力的不足和尚需改进之处,针对这个问题,他们可以从以下两个方面入手,一是思考什么样的冲突解决方案是最优化的,并提炼出所需遵循的原则,并将这些原则告知人工智能辅助系统的管理人员并协助他们进行完善系统。二是在实践中发现系统的问题和不足并及时反馈给系统管理人员,协助管理人员查找问题根源,更进一步提升系统可靠性。
四、结语
如今,人工智能辅助下的流量管理、飞行冲突调配和系统智能学习技术已经进入三期实验阶段。因此通过建立空中交通管理辅助系统,不断完善人工智能技术,解决系统自动学习的偏差和失误,达成系统学习能力多维度、多层次,才能推动我国航空业得到繁荣发展。综上所述,本文主要围绕着人工智能技术概念、空中交通管理人工智能辅助系统构成、人工智能技术在空气交通管理中的具体应用及建议三个方面展开了论述与探讨。目的是希望通过人工智能技术的加入,提高空管自动化系统的智能化水平和安全性,进一步增强系统的可靠性和建议合理性,切实减轻管制员的工作负荷,为我国民航事业的发展提供技术支持,推动空中交通管理工作不断向安全、高效的方向迈进,推动我国由民航大国向民航强国转变。
【参考文献】
[1]潘卫军.空中交通管理系列教材:空中交通管理基础[M].西安:西南交通大学出版社,2013:367.
[2]百度百科.[DB/OL]网上数据百度百科
随着经济的发展,电气自动化也面临着新的挑战。传统的人工控制已经难以适应当下社会环境。而人工智能技术的引入,促使了电气自动化控制的革新,对电气自动化的发展具有里程碑的意义。这一技术的应用让人们从繁杂的生产环节中解脱出来,大大提高了工作效率。当前,在电气自动化控制中应用人工智能已经成为电气产业的重要转折点。研究该项技术的应用也成为电气产业的重要内容。
1 人工智能技术的含义
人工智能是在经济发展迅速的时代大背景下产生的新技术。它研究了自然科学和社会科学,所涉及的知识面非常广。人工智能技术自然离不开计算机技术的大力支持,大部分的人工智能技术都是以计算机编程为基础实现的。人工智能其实也就是采取一定的计算机编程来做到模仿人的目的,其主要的模仿对象有信息的收集、人的判断能力、数字图像的识别和一些相对来说较为简单的反应等,以这种人工智能技术来代替人类的智慧,就目前来说,主要的人工智能领域包括图像语言识别、自然语言处理、机器人,以及一些较为简单的专家系统等。在这些众多的领域当中,我们可以用在电气自动化控制当中的主要就是专家系统,专家系统应用在电气自动化控制系统当中不仅仅进一步提高了其自动化水平还在其判断的准确性和及时性上有了一定的改善,总之,对于电气自动化控制系统的效率提升起到了至关重要的作用,这也在另一方面节约了人力资源,并且在一定程度上弥补了因为人员的失误造成的一些不良影响,值得我们在今后的工作中大力推广。
2 人工智能技术的基本内容、特点
人工智能是一门新型的技术科学,缩写为AI,它是计算机科学的一个重要分支,它的研究领域十分广泛,包括机器人、语言识别、图像识别。它的任务主要是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术和应用系统。它的一个重要目标就是能够胜任一些复杂的工作。如今,人工智能研究迅速发展,具有很强的实用性和广泛性,主要包括运动控制、工业过程控制、电力电子技术、检测与自动化仪表、电子与计算机技术、信息处理、管理与决策等领域,且更新速度快。人工智能属于自然科学和社会科学的交叉学科,涉及到哲学、数学、心理学、计算机科学等领域。它的研究范畴包括机器人学、智能搜索等,是对人的思维信息过程的模拟。
3 人工智能控制器的优势
人工智能技术在电气自动化控制系统中的应用主要的实现点就在于对于人工智能控制器的应用上,所以说人工智能在电气自动化控制系统应用上的优势也主要体现在人工智能控制器的优势上,人工智能控制器的主要优势就在于它在算法上和其它的控制器存在着很大的差异,人工智能控制器的主要算法包括模糊理论算法、神经算法、遗传算法和模糊神经算法等,这些算法的一个最大优势就是可以设计在没有控制对象的模型上。它的特点在于能够运用不同的方法对电气自动化设备控制进行分类,更好地进行开发,所形成的函数比常规的函数具有以下三种优势:一是它的设计不需要对对象进行模型控制,即使实际控制的对象中具有很多不确定、不稳定因素,甚至难以适应的动态变化的控制对象,都能满足控制需求。二是能够不断进行调整、改善,具有很强的灵活性,相比之前的控制器更易调节,能够适应新数据、新信息的发展变化,能够不受其它驱动器影响,保证计算的准确率。三是能够避免不必要的人力物力支出,设计中不需要专家参与,只要进行数据分析就可,使用方便,适应性好,效率很高,且运算成本低。四是具有很强的抗干扰能力,能够解决常规方法无法解决的问题。
4 人工智能在电气自动化控制中的应用
人工智能在电气自动化控制中的应用主要体现在四个方面:电气设备设计、电气控制、电力系统、故障诊断和数据的控制与优化。
4.1 在电气设备设计中的应用
电气设备的设计并不是一个简单随机的过程,它涉及到很多的学科知识,比如电机、电路、电力电子技术、变压器、电磁场等,并且随着社会的进步,人们对于电气设备设计的要求也正在提高,进行电气设备设计的优化势在必行。原有的电气设备设计主要依赖于经验丰富的设计师,但是就算是最出色的设计师在设计的过程中也会浪费掉大量的不必要的资源,而人工智能的介入就改变了这一现象,人工智能能够简单的计算人脑所不能够计算的一些复杂公式,并且能够进行自主演练,在准确性和及时性上也有了一定的保障,对于工作人员的工作经验也没有了很严格的要求,只要熟悉操作人工智能系统就可以了。
4.2 在电气控制中的应用
电气控制的主要目的就在于要提高电气运行的效率,进而提高生产效率,而要想达到这一目的主要的做法还是要提高电气控制的自动化程度,人工智能应用在电气控制当中就很好的提高了电气控制的自动化,进而到达了提高效率的目的,并且节省了大量的人力物力。当前人工智能应用在电气控制中的主要有三种:专家系统控制、模糊控制和神经网络控制,当然,最为常用的还是模糊控制,其原因主要在于模糊控制的操作较为简单,并且和实际中的电气控制结合较深。
4.3 在电力系统中的应用
电力系统作为我们日常生活和工作中必不可少的一部分其安全性和运行效率极为重要。在该系统中使用人工智能技术将会更加有助于电力系统发挥作用。当前,人工智能技术应用在电力系统中的主要内容有以下几点:神经网络、专家系统和模糊集理论等,其中专家系统是电力系统中应用最为普遍的一种,该系统的主要目的就在于判断电力系统运行中出现的一些主要问题,并且做简单的处理,该系统主要的依据就在于它能够把众多经验丰富的专家的知识和判断经验融合到系统内,然后以此为基础处理各方面的难题。该系统使用原则是我们常用的计算机程序if-then,也就是一旦满足条件就会被执行。该系统在使用过程中有一点需要注意的就是该系统并非是一成不变的,它需要针对新的常见问题进行及时地补充以弥补程序出现的不足。
4.4 在故障诊断中的应用
故障诊断也是当前电气自动化控制系统中极为重要的一环,在该环节中人工智能的作用同样功不可没,主要应用点有专家系统、模糊理论和神经网络等,主要的应用对象包括发电机、变压器和电动机,这些主要电力部件出现问题都能够采用该系统进行必要的诊断以及简要的处理,三种诊断方法相互合作共同维护着电气自动化控制系统的安全运行。
4.5 在数据的控制与优化中的应用
在进行电气自动化控制进程中,首先要做的就是数据的采集与处理,人工智能技术能够对所有的数据进行实时采集,并加以处理、储存,以便不时之需。同样,想了解一项工作的运行过程,就会运用到画面的显示功能,通过人工智能技术的运用,能够真实地显示所运行的设备状态,可以将有关数据加以处理,形成具体的图像,以便直观了解;也可以通过模拟故障来进行记录分析,避免类似状况的发生,其中模糊理论、专家系统和神经网络主要就是应用在电气设备的故障诊断上。
5 结束语
总之,人工智能是电气产业未来的发展方向,是电气产业的一大改革和进步。传统的人工控制由人工智能代替,将会进一步推动电气自动化的发展,确保工作效率,提高企业的经济效益以及社会效益。
参考文献
[1]彭启琮.DSP技术[M].北京:电子科技大学出版社,2007.
[2]张培铭.展望21世纪电器发展方向一人工智能电器[J].电工技术杂志,2006.
中图分类号:S258 文献标识码:A 文章编号:1009-914X(2015)16-0344-01
引言
近年来,人工智能在电气智能控制方面应用已经越来越广泛、深入[1]。例如:基于人工智能的故障的诊断和预测、电气产品设计优化和保护与控制等领域。电气产品的设计随着计算机技术的发展,逐渐由手工设计向计算机辅助设计不断转变,,尤其是在引进了人工智能技术之后,大大提高了设计产品的质量和效率[2]。人工智能技术在电气设计方面的应用主要包括专家系统和遗传算法。其中的遗传算法是一种优化的先进算法,在产品的设计优化上有举足轻重的作用[3]。因此电气产品的人工智能化设计很多都采用了这种方式进行优化。
本文中,主要以遗传算法在电气智能化控制领域的应用为例,分析基于人工智能的电气智能控制技术。
1 人工智能控制器的优势
人工智能控制的主要优势[4]在于:(1)它们的设计不需要控制对象的模型;(2)通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能;(3)比古典控制器的调节容易;(4)在没有必须专家知识时,通过响应数据也能设计它们;(5)运用语言和响应信息可能设计它们;(6)它们对新数据或新信息具有很好的适应性。
2 人工智能控制技术的主要方法及优化算法
2.1 人工智能控制技术的主要方法
(1)模糊控制
模糊控制系统是以模糊数学、模糊语言形式的知识表示以及模糊逻辑的推理规则为理论基础,采用计算机控制技术构成的一种具有反馈通道的闭环结构的数字控制系统[5]。
(2)专家控制
专家控制是将专家系统的理论技术与控制理论技术相结合,仿效专家的经验,实现对系统控制的一种智能控制。专家控制可以灵活地选取控制率,灵活性高。通过专家规则,系统可以在非线性、大偏差的情况下可靠地工作,鲁棒性强[1]。
(3)神经网络控制
神经网络模拟人脑神经元的活动,利用神经元之间的联结与权值的分布来表示特定的信息,通过不断修正连接的权值进行自我学习,以逼近理论为依据进行神经网络建模,并以直接自校正控制、间接自校正控制、神经网络预测控制等方式实现智能控制[3]。
(4)集成智能控制
智能控制技术的集成包括两方面:一方面是将几种智能控制方法或机理融合在一起,构成高级混合智能控制系统;另一方面是将智能控制技术与传统控制理论结合,形成智能复合型控制器。
2.2 人工智能控制技术常用的优化算法
(1)遗传算法
遗传算法依照所选择的适配值函数,通过遗传中的复制、交叉及变异对个体进行筛选,使适配值高的个体被保留下来,组成新的群体,新群体既继承了上一代的信息,又优于上一代,这样周而复始,群体中个体适应度不断提高,直到满足一定的条件[7]。
(2)蚁群算法
蚁群算法是群体智能的典型实现,是一种基于种群寻优的启发式搜索算法。蚁群算法的基本思想:当一只蚂蚁在给定点进行路径选择时。被先行蚂蚁选择次数越多的路径。被选中的概率越大[6]。
3 电动机控制中的遗传算法PID参数优化
本文以直流电动机系统进行了仿真验证,使用了具有突出寻优能力和计算简单的遗传算法进行参数整定,并通过Matlab编程进行参数寻优,整定出的参数使性能指标达到最优。
(1)参数的确定及表示
首先确定参数范围,该范围一般是由用户给定的,然后由精度的要求,对其进行编码。选取二进制字串表示每一个参数,并建立与参数间的关系。再把二进制串连起来就组成一个长的二进制字串,该字串为遗传算法可以操作的对象。
(2)选取初始种群
因为需要编程来实现各过程,所以采用计算机随机产生初始种群。针对二进制编码而言,先产生0~1之间均匀分布的随机数,然后规定产生的随机数0~0.5之间代表0,0.5~1之间代表1。此外,考虑到计算的复杂程度来规定种群的大小。
(3)适应度函数的确定
在实际应用中会因系统中固有的饱和特性而导致系统不稳定,为了防止控制能量过大,在目标函数中加入控制量。因此为了使控制效果更好,本文给出了包含控制量、误差和上升时间作为约束条件的目标函数。因为适应度函数同目标函数相关,所以目标函数确定后,直接将其倒数作为适应度函数进行参数寻优。最优的控制参数也就是在满足约束条件下使最大时,所对应的控制器参数。
(4)优化步骤
下面就可以编程使用遗传算法对PID参数进行寻优。利用遗传算法优化Kp、Ki、Kd的具体步骤如下:
①确定每个参数的大致范围和编码长度,进行编码;
②随机产生n个个体构成初始种群P(0);
③将种群中各个体解码成对应的参数值,用此参数求代价函数值J 及适应度函数值,;
④应用复制、交叉和变异算子对种群P(t)进行操作,产生下一代种群P(t+1);
⑤重复步骤③和④,直至参数收敛或达到预定的指标。
试验的电机性能参数如下:
La电机电感0.24mH=0.00024H
Ra电机电阻2.32Ω
Cm电动机的转距常数23.2mN・m/A=0.0232N・m/A
Ce为电动势常数
Jm转子以及电动机转轴相连的负载总的转动惯量1.1×10-6kg・m2
Fm粘滞摩擦系数2.2×10-4kg・m2/s
根据被控电动机特性,建立电动机的连续传递函数模型为:
,。
遗传算法中使用的样本个数为30,参数Kp的取值范围为[0,20],Ki 、Kd 的取值范围为[0,1],取wl=0.999,w2=0.001,w3=100,w4=2.000。采用实数编码方式,经过100代进化,获得的优化参数如下:
简单遗传算法
Bestfi=0.1408
BestS=11.12200.03590.1276
Best_J=7.1034
改进遗传算法
Bestfi=0.1358
BestS=8.91780.03050.5474
Best_J=7.2538
代价函数J的优化过程和采用整定后的PID控制阶跃响应。
文章应用遗传算法对电机的PID控制器参数进行了优化设计,得到了优化的PID控制参数,从响应曲线可以看出,应用改进后的遗传算法电机响应速度加快,跟踪性良好,控制效果明显提高。
参考文献
中图分类号: S972.7+4 文献标识码: A 文章编号:
人工智能技术在电气自动化方面的应用已成为近年研究的热点,相对于传统技术,它不仅促进了电器设备的设计与应用,而且大大的节省了人力资本投入,极大地提高了运作效率,解决了许多传统技术很难进行解决的问题。
1 人工智能技术
人工智能技术指的是通过对人类智能的相关理论进行研究,并以此为依据对其进行模拟、延伸和扩展的一门方法和技术。人工智能技术作为一门新兴的学科,其致力于了解人类智能产生的实质,并对其进行模拟,以实现智能机器的生产,其主要研究的内容包括人、机器、专家系统、语言及图像处理系统等等。它不仅包含数学、计算机学等传统学科,也包括了哲学、心理学、伦理学等学科。因此,人工智能技术可以说是全面地模拟人脑,以期达到人脑控制下的行为反应,最终达到在电气自动化操作过程中的人性化、标准化、智能化,实现人机合一。
人工智能技术最为突出的特点即可实现人类复杂脑力劳动的代替,有效进行信息的收集和识别,并进行分析和有效地处理。在这种优势的促进下,复杂的脑力活动将逐渐被计算机的智能运算所代替。通过这种方式,不仅实现了生产、流通、交换以及分配过程的增强,还有效实现了生产环节的自动化,极大的减少人力成本的资源投入,同时提高了工作效率,实现产业结构的优化配置,最终提高生产力的发展水平,提高整个企业的经济效益和自动化水平。
2 人工智能技术的主要作用及手段
2.1人工智能技术的主要作用
目前,人工智能技术已经在电气自动化上进行了大量的实际应用,主要用于以下几个方面:对于各主要设备和系统的运行状态进行实时智能的监测,发生故障时,有事故报警和状态变化事件报警;记录故障并且进行在线分析;通过键盘和鼠标操作对断路器和电动隔离开关进行控制;对于所有开关量、模拟量的实时数据进行采集、存储和处理,可以模拟画面,真实地显示一次设备和系统的实际运行状态,实现电流和电压所有模拟量、计算量、断路器等实时开关状态的显示与监控,并且能够生成历史趋势图。
2.2人工智能技术的主要手段
在实际控制环节中应该采取实时监控以及搜集信息的方式进行相关数据的整理,并且根据系统要求设定定时处理功能以及定时备份功能,这样可以更加完善整个工作的进展。也可以运用图像生成软件的技术对于电气系统进行模拟运转,可以对电气系统电流、电压和电机设备的运转情况进行直观形象的反应,并且根据实际需要进行设计相关数据分析及图表。这里需要注意的是要考虑到设备的硬件设施条件,因为图像和画面比正常的字符占用的空间更大,这样可以避免运算速度太慢或者资源占用过多的情况发生,导致整个系统失灵的情况发生。
3 人工智能技术在电气自动化中的应用
3.1人工智能技术对于电气设备的优化设计
电气设备在设计时,由于传统的设计方式在前期会有一个漫长的产品试验过程,需通过归纳法得到相关设计经验后再由产品设计师进行手工完成,而这一过程很难达到产品预期的效果,所以这就很难获得最合理的方案。且前期的试验与后期的制作方式都需要投入大量的人力物力与财力,所以,这样的生产方式显然不适用于当今社会科技快速发展的需要。伴随着计算机科学技术的发展,电气产品的设计开始从传统的手工设计向计算机辅助设计方面转型,通过人工智能技术的引进,使得传统的计算机及辅助设计有了新的转变,可以将大量复杂的的计算过程和模拟过程通过计算机软件进行完成,从而极大地提高了设计的效率和设计的精确度,这需要工作人员根据实际情况和应用需求对相关人工智能软件进行科学化的筛选,需要对人工智能软件技术的常用方法具有广泛的了解和实践能力。人工智能技术的加入极大的改善了这种情况,优化了产品的设计过程,因此这一前期的试验周期得到了极大的缩短。
3.2人工智能技术对于电气设备的诊断
电气设备出现故障具有很大的不确定性和非线性,面对电气自动化控制过程中出现的故障与事故,人工智能技术可以及时预防与解决问题。人工智能技术的出现与发展则有效地改善了这种情况,特别是处理在变压器、发动机等问题上,人工智能技术的表现尤为突出。人工智能技术运用到电气设备中以后,对于电气设备故障的诊断,人工智能技术有三种方法:模糊逻辑、专家系统以及神经网络。在诊断发电机以及电动机时,人工智能的诊断技术就发挥了作用,它可以把模糊理论和神经网络进行结合,这样不仅保留了故障诊断知识的模糊性,也能够结合神经网络学习能力强的特点,实现了对于电机故障的全面诊断,极大地提高了诊断故障的准确率。例如对于模糊控制而言,此过程主要是电气传统过程中直流及交流传动的作用而实现的。通常而言,电气直流传动控制过程中模糊逻辑控制主要包括了Mamdani(迈达尼)和Sugeno(高木-关野)。而对于具体应用时,前者多用来进行调速控制,后者则属于前者的例外情况。对于交流传动过程中的应用等相关问题而言,则多以模糊控制器取代常规调速控制器而实现功能的发挥。
3.3人工智能技术对电气自动化流程的控制
电气自动化领域的操作流程非常的繁琐,对于操作的步骤要求也非常严格,一旦出现细微的操作问题,则可能引起严重的机器故障发生,并造成无法估量的损失。如何保证电气设备能够有效稳定的运作,并在控制过程中尽量实现操作的简单化、程序化是每个研究人员关心的难题。人工智能技术的出现与发展有效的解决了这个难题,通过对日常资料的储存与分析,可以在机器发生事故时采取及时有效的措施,最大程度上保证社会的和谐发展。此外,人工智能技术通过对电气设备的远端操控,实现了控制流程的简单化、程序化,方便技术人员对电气设备进行定期的检查与维修,节约时间的同时,也降低运行成本。
3.4 人工智能技术在日常操作过程中的应用分析
对于传统电气领域而言,其操作过程通常要求相当严格,具体操作过程的步骤也相当复杂繁琐,一旦出错就可能引起重大的故障问题,导致重大损失发生。由于电气领域通常同人们的日常生活和工作密切相关,甚至直接关系着社会的稳定和谐,因而如何实现此领域中日常操作过程的简单化,不断提高其操作效率是如今摆在相关研究工作人员面前的一个难题,而人工智能技术的出现有效地解决了这些问题,不仅实现了日常操作过程中操作流程的简化,还实现了对电气系统的远程控制及其操作,通过对界面进行简化界面,可对某些重要信息或资料进行及时地储存,以方便日后进行查阅。此外,通过该技术还可自动进行表报的生成,大大节约了时间。
4 结语
社会的发展进步要求生产力更加先进,计算机技术的发展促进了人工智能技术的不断创新与发展,更多的科研成果开始运用到生产生活中来。在未来的实践过程中,人工智能技术大量应用到电气自动化控制中将会是一个新的发展趋势,电气自动化控制在人工智能技术的支持下将会获得更好的发展。
参考文献
[1] 周超.人工智能技术在电气自动化控制中的运用[J].硅谷,2012.
一研究背景
在发达国家,应用型本科院校一直占有很大的比重。在我国,应用型本科院校也逐渐成为高等教育大众化的主力军,对我国高等教育系统未来发展越来越重要的作用。金陵科技学院作为教育部应用科技大学改革试点战略研究单位、中国应用技术大学(学院)联盟创始单位,也正在积极地去探究相关的应用型专业建设模式。电子信息工程专业作为学校的一门深度涉软专业,也要紧跟南京城市软件建设发展方向,这对应用型电子信息工程专业培养既是机遇又是挑战。随着社会的不断发展和科学技术的不断进步,电子信息工程的应用也越来越广泛,对人们的生活产生了非常大的影响。,不但改变着人们获取信息、存储信息和管理信息的方式,而且为人们进行信息的获取、存储和管理提供了新的途径和方法,目前,各行业大都需要电子信息工程专业人才,而且薪金很高。2015年5月8日,备受瞩目的《中国制造2025》由国务院正式下发,这是我国实施制造强国战略第一个十年的行动纲领。该规划二个突出特点是,将"加快新一代信息通信技术与制造业的深度融合"作为贯彻始终的主题,提出坚持自主研发和开放合作并举,加快建立现代电子信息产业体系,为推动信息化与工业化深度融合、实现制造业由大变强、建设网络强国提供强有力的基础支撑。在今年,随着国家“两会”的盛大召开,人工智能首次被提升到国家发展战略高度,人工智能技术的重大突破将带来新一轮科技革命和产业革命,大力发展人工智能技术是中国经济转型升级的重要动力。电子信息技术的巨大成功和进步,使人工智能可以深层次、多维度地参与到各个行业各个领域中,使科技的进步快速融入到跨界合作中。比如,电子信息技术的成熟,使人工智能可以深度服务于医疗卫生事业、配合甚至取代医生进行精确的手术治疗。在无人驾驶领域,无人驾驶汽车、无人驾驶飞机、无人驾驶舰船都已经陆续投入使用;在军事领域,人工智能的运用更是已经炉火纯青,俄罗斯与美国的人工智能作战部队和相关系统,已经在反恐作战中屡立战功,威力无比,作战效能与性价比远远超越人类士兵。由此可看出,人工智能在电子信息技术大发展的当下,终于在应用层面开始发光发热,现出巨大的生命力和后续无穷无尽的成长潜力,人工智能在各行各业的广泛应用,是国家经济结构战略性调整、产能升级改造、产业结构优化、核心技术创新获得成功的关键。随着BAT、华为、大疆无人机等高科技企业在人工智能应用和开发上的不断探索,刺激更多人才和资本向人工智能商业应用领域涌入。目前,基于人工智能学习背景下,软硬件相关知识过硬的电子信息类专业人才已经成为社会上最为紧缺的人才,薪水待遇很高。
二需要解决的关键问题
作为应用型本科院校,如何将“人工智能”新概念融入到电子信息工程专业建设中,根据社会发展的需求,校企紧密结合,培养出复合型的,应用型的社会紧缺人才,是需要去解决的关键问题。1.像当年互联网的崛起一样,人工智能真正的发展才刚刚兴起,相关的概念及定义还不完全定型,如何把握好未来人工智能的发展方向,有针对性地在传统的电子信息工程课程计划中规划与人工智能息息相关的课程,比如人工智能原理,机器学习,深度学习等课程,将两者有机融合,在人才培养上面临较大的挑战。2.人工智能是一门综合了控制论、信息论、计算机科学、神经生理学、心理学、语言学、哲学等多门学科的崭新概念。如果要将“人工智能”融入到电子信息工程专业建设中,就不仅需要学生学好如模拟电子技术,数字电子技术,数字信号处理,单片机技术,C/C++程序设计等传统的课程,打好基础,还需要加强在数据挖掘,神经网络等以数学为基础的课程方面的建设,扎实学生的数学物理基础。这对学生的学习能力要求更高,老师的教学水平也提出更高的要求。因此,如何加强此方面的师资专业培训,是一个该课题需要解决的关键问题。3.一个专业人才的培养,不仅需要优秀的师资力量以及良好的学风,还需要有相关的硬件实验平台作为支撑。如何根据“人工智能”新概念,针对性地新建一些诸如智能传感器实验室,人体特征识别实验室,机器人实验室等,把电子信息工程专业中的电子器件技术,信号处理技术等应用于人脸识别,智能家居,机器人等热门领域,根据学生的兴趣爱好因材施教,提高学生的动手能力,也是该课题需要去解决的一个关键问题。
三研究内容
本文以“人工智能”新概念下的电子信息工程专业教学及实践模式为研究内容,重点研究如何将人工智能相关的理论及实验课程建设融入到传统的电子信息工程专业培养方案中,做到无缝结合,在培养模式上需要有一定的理论创新,以更好地适应人工智能类的高新电子信息技术企业对相关应用型人才的要求。目前拟以现有电子信息工程专业的课程体系和专业方向为基础,形成以“人工智能”为导向的应用型电子信息工程特色专业建设,在未来的专业发展规划中,逐渐形成物联网、智能家居、机器人,无人机,人脸识别,语音交互,智能驾驶等不同的专业方向,增加学生的就业面,提高学生的就业层次,加强学生的就业竞争力。主要具体体现在以下几个方面:
(一)实践教学的形式多样
可采用以“学生兴趣爱好”为依据的引导式教学实践模式,在扎实学生数学物理等理论的基础上,将最新的人工智能概念贯穿在电子信息工程专业课程体系中,通过不同的应用型实验项目拓宽学生的知识面,提高学生的主动学习能力,动手实践能力,创新能力以及独立开展研究的能力,将课堂教学、校内实验和校外企业实习三者相互结合,鼓励学生参加诸如全国大学生电子设计大赛,全国大学生智能设计竞赛,中美创客大赛等赛事,以确保培养出高素质的应用型专业人才。同时,让学生从大二开始就自选课题、进实验室、根据兴趣爱好组建不同研究方向的实验团队,并为学生按照不同的研究方向配备专业教师,以此让学生融入到教师的科研工作中去,形成所谓的本科生导师制制度,由相应的导师全程指导,开展科学研究,培养学生的科技创新能力和动手实践能力。
(二)注重提高教师的教学及科研水平
在努力提高学生学习能力的同时,注重提高应用型电子信息工程专业教师的教学及科研水平,使其能够很好地将“人工智能”新概念用于电子信息工程专业的教学中,指导学生参加相关的各种竞赛,提高教师团队的实践能力及技术水平。通过海内外招聘和内部强化培养(教师博士化、教师双师化、教师国际化)等举措,加强师资团队建设;通过鼓励教师积极开设MOOC课程,参加教师技能大赛以及国内外教学培训,从多方面提高教师的教学水平。
(三)建立完善的校企合作制度,为学生提供相应的实习基地
企业工程师可以参与相关的人才培养方案修订和部分的教学实践工作。这种合作制度既可以提高教师的科研应用水平,也可以为学生提供就业机会,增强学生的实践创新能力。
(四)注重课程大纲修改,实验室平台建设
以改革传统的电子信息工程专业的培养模式为目标,总结在“人工智能”新概念下教学及实践的相关经验,形成一个有鲜明特色的电子信息工程专业培育模式。应用型本科院校电子信息工程专业人才未来的发展战略和改革方向,应重点考察“人工智能”新概念下专业人才培养模式的优缺点。重点关注“人工智能”新概念下的教学及实践课程大纲修订、教师教学及科研能力培训体系构建、实验室软硬件平台建设、校企合作培养模式探讨及校外实习基金建设等工作。
四结语
本文探讨和研究了“人工智能”新概念下应用型电子信息工程专业培养模式,结合金陵科技学院电子信息工程专业的发展情况,对原有的专业培养模式做了一定的理论创新,引入了“人工智能”新概念,从理论和实践教学,学生学习能力和教师教研技能培养,校企合作办学,实验室建设等方面进行了一系列的探讨。
参考文献
[1]姚俊.电子信息工程专业人才培养模式研究[J].山东社会科学2016(S1):357-358.
1.1机械自动化的概述自动化技术主要是指机器设备在无人干涉的情况下,自动按照设定好的程序来工作,而机械自动化一般是指通过机械的方式来实现制造的自动化控制与管理,它是一个全新的生产过程,不仅能够突破传统的机械制造方式与手段,而且还能够有效提高工作的质量与效率。机械自动化所带来的优点主要有:提高产品质量和生产率、缩短生产周期、降低产品的生产成本、提高经济效益、减少人工成本、带动相关技术等的发展。
1.2机械自动化技术的组成机械自动化技术是一项系统而又复杂的工程,涵盖了很多方面的知识体系,涉及很多学科,是一门综合性强、应用广泛的研究课程。构成机械自动化技术的内容主要有:(1)传感单元,检测系统工作过程的性能和状态,是系统中最基础的一个组成部分。(2)作用单元,是对实现对整个系统的能量施加以及目标定位工作,是整个机械自动化系统当中最前期的一个组成部分。(3)程序单元,是决定系统该做什么和如何做的相关问题,是整个机械自动化系统中最为重要的一个组成部分。(4)控制单元,主要是进行制定并调节作用单元的机构制定单元,对传感单元输送过来的信息进行比较分析,制定和发出指令信号,是整个机械自动化系统中的后勤保障单元,对机械制造中机械自动化应用的顺利开展具有重要作用。(5)制定单元,对传感单元输送过来的信息进行对比分析,制定并发出指令信号是整个机械自动系统中最为关键的核心组成部分。
2自动化技术在机械制造中的应用
2.1高度集成化的应用在当前世界机械制造自动化的发展方向中,集成制造技术可以说是最为重要的发展方向,也是现在机械制造公司和企业不断改革的生产模式。自动化技术在机械制造中的集成化应用,最主要的是借助系统工程理论的有效指导和信息技术对企业的制造流程进行整体上的优化,通过精简机构和过程重组等手段促进适度自动化,并在计算机数据库和信息网络的支持下,将机械制造企业的各种要素以及经营管理活动集成为一个有机整体,从而实现机械制造以人为中心的柔性化生产。例如,企业在实际生产过程中,进行生产和经营管理时的动态集成,可以有效地将其内部所有工作动态集为一体,进而最大程度实现其各项需求的融合。对提高产品生产质量,降低新产品的研发成本,保护生态环境具有十分重要的现实意义。
2.2智能机械制造的应用智能机械制造技术是一个由机械制造技术、自动化技术、系统工程和人工智能等相互交织,相互渗透所形成的一门综合性技术。其在具体的生产和应用过程中,主要由自动化技术、机械制造技术以及人工智能技术等共同组成。该系统在机械制造过程中能进行一些智力活动,如在制造过程中的分析、推理、决策等。也就是说,智能机械制造技术就是把人工智能和机械制造智能进行有效的结合,将人工智能融入到机械制造系统的各个环节中,通过模拟专家的智力,取代或延伸机械制造环境中应由专家完成的那部分活动。在智能机械制造系统中,其系统具有专家般的智力,能自动检测自身的运行状况,随时发现错误或预测即将发生的错误,并且自身含有改进和预防的功能。
2.3柔性自动化应用在机械制造中,柔性自动化主要指的是在进行机械生产的过程中,通过信息技术的作用,能够完美地应对一些外界因素导致的产异性进行适应和转变的能力。随着现代机械制造业的发展,机械使用者对机械制造企业的应变能力、客户需求的快速反应与适应能力都提出了更高的要求,这也就需要企业能够结合市场需求和技术更新等外部条件的变化,实现对机械产品生产结构以及制造种类的合理调整,这时柔性自动化技术的应用就显得尤为重要。例如,在机械设备和装置的实际制造中,如果客户需求突然有变动,企业通过柔性自动化技术的应用,就可有效提高其制造的应变能力,满足客户的不同生产需要。
2.4虚拟化的应用虚拟化主要是结合控制理论以及计算机技术等更多现代化的高端技术,使机械产品在设计的过程和生产的过程中,能够实现模拟,在进行生产时,通过将产品的模拟,进而提高生产的效率和质量。例如,机械制造企业可以通过虚拟化技术的应用,实现对机械制造中一些有可能存在的故障以及问题的提前仿真和模仿,从而有效预防和避免这类问题的产生,可以有效降低生产成本,提高机械的生产效率,缩短生产周期,进而提高产品的质量,为机械制造带来更多的社会经济效益