时间:2023-07-13 16:29:05
导言:作为写作爱好者,不可错过为您精心挑选的10篇量化投资策略分析,它们将为您的写作提供全新的视角,我们衷心期待您的阅读,并希望这些内容能为您提供灵感和参考。
量化投资是投资者借助计算机信息化建立数学模型,把最新市场数据和相关信息输入到模型中,通过公式计算出投资对象,做出最优投资决策。量化投资不依靠投资者的感觉直觉,不依赖个人判断,而是将其经验利用信息通过模型实现投资理念。同时,投资者期望达到收益和风险的合理配比,利用夏普比率等科学方法控制收益和风险。量化投资者不用每天重复的分析琐碎信息,只需要不断完善这个模型并不断创造新的可以盈利的模型。
二、量化投资策略
(一)量化投资策略分类
量化投资策略,主要包括量化择时策略、统计套利策略、算法交易策略、组合套利策略、高频交易策略等。
(1)量化择时策略是收益率最高的一种交易策略,通过对宏微观指标的量化分析判断未来经济走势并确定买入、卖出或持有,按照高抛低吸原则获得超额收益率。在量化择时策略中,趋势跟踪策略是投资者使用最多的策略。量化择时分析策略包括:趋势跟踪策略、噪音交易策略、理易策略。
(2)统计套利是风险套利的一种,通过对历史数据的统计分析,利用统计学理论,估计相关变量的概率分布,判断规律在未来一段时间内是否继续存在。统计套利策略包括协整策略和配对利差策略、均值回归策略以及多因素回归策略。
(3)算法交易又称为自动交易,主要是研究如何利用各种下单方法,降低冲击成本的交易策略,将一个大额交易通过算法拆分成数个小额交易,以此来减少对市场价格造成冲击,降低交易成本。算法交易策略包括交易量加权平均价格策略、时间加权平均价格策略、盯住盘口测量、执行落差策略、下单路径优选策略。
(4)组合套利策略主要针对期货市场上的跨期、跨市及跨品种套利的交易策略。组合套利策略包括均衡价格策略、套利区间策略、牛市跨期套利、熊市跨期套利等。
(5)高频交易是一种持仓时间短、交易量巨大、交易次数多、单笔收益率低的投资策略,人们从无法利用的极为短暂的市场变化中寻求获利的计算机化交易,依靠快速大量的计算机交易以获取高额稳定的收益。高频交易策略包括流动性回扣交易策略、猎物算法交易策略和自动做市商策略。
如下是量化投资中几种主要的投资交易策略:
(1)趋势跟踪策略。趋势跟踪策略追随大的走势,向上突破重要的压力线可能预示着更大一波的上涨趋势,向下突破重要的支撑线可能预示着更大一波的下跌趋势。趋势跟踪策略试图寻找大趋势的到来,在突破的时候进行相应的建仓或平仓的投资操作来获得超额收益。
趋势型指标进行择时的基本理念是顺势而为,跟踪市场运行趋势。在趋势策略中使用的技术指标是最多的,常用有:移动平均线(MA)、平滑异动移动平均线(MACD)、平均差(DMA)、趋指标(DMI)等。
(2)噪音交易策略。噪声交易是指交易者在缺乏正确信息的情况下进行密集交易的行为。有效市场中噪声只是一个均值为零的随机扰动项,但市场并不总是有效的,市场上有很多异常信息,往往有人能够提前获得这些异常信息,很可能对投资的判断提供重要的价值。噪声交易策略的运用主要是机构投资者通过计算得到市场的噪声交易指数,监测该指数的变化,根据其变化来设计量化交易策略。
(3)协整策略。在统计套利策略中,协整策略是应用最广泛的一种策略。协整套利的主要原理,是找出相关性最好的几组产品,再找出每一组的协整关系,当某一组投资产品的价差偏离到一定程度时建仓,买入被低估的资产、卖出被高估的资产,当价差均衡时获利了结平仓。协整策略包括协整检验、GARCH检验、TARCH检验以及EGARCH检验。
(4)多因素回归策略。多因素回归策略,也是一种被广泛使用的投资策略。这一策略利用影响投资收益的多种选择因素,并根据其与收益的相关性,建立多元回归模型,简化投资组合分析所要求的证券相关系数的输入,这类方法的代表是套利定价模型。
(二)量化投资策略组合
量化投资策略组合综合考虑交易商品、策略类别、策略数量、时间周期因素。量化投资策略组合相比较单一投资策略有以下优势:
(1)策略组合降低了对单一策略的依赖,当单一策略失去竞争力,使用策略组合的方式,可以利用不同产品价格变化、变化幅度、周期等多个方面把握投资机会,在一定程度上保证了稳定的收益率,盈利机会更多;
(2)策略组合可以分散单一策略的交易风险,降低风险,通过策略组合将投资风险分散化,尽可能规避市场风险、策略风险及系统风险等。
三、量化投资资产配置
资产配置是指资产类别选择,即投资组合中各类资产的适当配置及对这些混合资产进行实时管理。量化投资管理打破了传统投资组合的局限,它与量化分析结合,将投资组合作为一个整体,确定组合资产的配置目标和分配比例,深化了资产配置的内涵。
资产配置包括战略资产配置和战术资产配置两大类。战略资产配置是长期资产配置,针对较长时间的市场情况,控制长期投资风险以达到收益最大化。战术性资产配置是依据资产预期收益的短期变化,获取超额收益的机会。因此,战术资产配置是建立在长期战略资产配置过程中的短期分配策略,二者相辅相成。在长期投资活动的战略资产配置下,战术性资产配置利用其积极的灵活的投资机会,适当的配合战略资产配置,获取较高收益。
四、前景展望
在量化投资飞速发展的今天,它己经成为金融市场中不可忽视的一个领域,中国的金融市场在逐步发展及完善,中国的量化投资也会继续发展和前进,随着量化投资方面的加大投入,量化投资的进程加快,中国量化投资的前景无限。
一、引言
证券市场存在分形现象已得到了国内外学者的广泛认可。实务中已开始利用分形现象定性的指导实际投资,并获得了可观的收益。基于分形理论对投资策略进行量化研究更是具有非同寻常的理论意义。一方面,统计套利、算法交易、资产配置等传统量化模型由于忽略了投资者行为、证券价格的长记忆性、证券收益率的“尖峰肥尾”等分形特征而存在刻画不精确、忽视风险等局限。利用分形理论量化研究投资策略可对证券市场中分形现象量身度造,可充分克服传统量化投资模型的不足,从而更好地指导实际投资;另一方面,基于分形现象进行量化投资的理论研究至今仍是空白。因此,在证券市场呈分形现象的背景下,运用分形理论来构建量化投资策略可弥补此理论空白,具有较大的理论与现实意义。然而,利用证券市场的分形现象来量化研究投资策略的前提和基础是理解分形市场中投资策略的相关概念及其分析框架。目前,国内外尚无文献对其系统探讨。鉴于分形市场中投资策略的相关概念及其分析框架的重要性以及研究现状,本文将对其进行系统探讨,以期为构建分形市场中投资策略的量化模型奠定基础。
二、分形市场中投资策略概念体系
( 一 )分形市场的界定 1970年,Fama创造性的将有效市场假设(Efficient Market Hypothesis ,EMH)归纳为公理。EMH为传统资本市场理论(CMT)奠定了基石、提供了分析框架。在EMH下,证劵的价格代表了证劵的真实价值,证劵价格的变动必将遵循随机漫步(Random Walk);从而,寻求价格偏离内在价值的证劵,以及寻找证劵价格的起伏周期和预测模式必将徒劳无功。然而实证表明,证劵市场的运行方式与EMH所描述的情况相差甚远,而是呈现分形特征。Peters(1994)集众人之智、采众家之长,在EMH和协同市场假设(Coherent Market Hypothesis,CMH)的基础上,提出了著名的分形市场假说(Fractal Market Hypothesis,FMH)。 FMH的基本内容:市场由众多投资者组成,不同投资者的投资期限不同;市场信息对不同投资期限的投资者产生不同影响。短期投资者主要注重历史信息,基本遵循技术分析;较长期投资者更加偏重基础信息;市场稳定性主要取决于市场流动性;价格反映了短期技术分析与长期基本分析的结合;如果某项资产与经济周期循环无关,那么将不具有长期趋势。FMH是EMH的有力扩展,FMH强调信息接受程度和投资期限对投资者行为的影响。在FMH下,投资者仅是有限理性的。信息积累和信息滞后对投资者的影响将造成证劵价格的有偏随机游走,表现出长记忆、混沌序等分形特征。投资者的投资期限上的差异将保证市场的流动性和稳定性。在FMH下证劵市场不仅仅是经济和商业形势的映射,更是投资者情绪的晴雨表。樊智、张世英(2002)基于对EMH与FMH两者联系与区别的详尽讨论下,给出了分形市场的一般性描述;分形市场是指具有正反馈机制和非线性结构特性的资本市场,其价格序列波动的表现形式为具有一定维数(Hurst指数 )的分数布朗运动(Fractional Brownian Motion, FBM)。该描述切中了分形市场的反馈机制及结构特性,但稍显片面,同时过于复杂。因此,本文对分形市场作如下简单明了的定义。所谓分形市场是指以FMH作为市场运行机制的市场。
( 二 )分形市场中投资概念的理解 研讨投资策略的前提和基础是理解投资。不同学者关于投资的定义说法各异。投资是指投入资金赚取更多资金;是指投入当前资金或者其他资源以期获取未来收益的行为。尽管说法各异,但对其本质特征的描述却是殊途同归。投资的本质特征就是放弃或牺牲某种现在有价值的东西,期望从未来收益中获得补偿;即期望资产增值,即追寻 是投资活动的核心。基于前文对分形市场的界定,本文对投资进行结构性分解时,主要是针对分形市场中有价证劵的投资。投资是一项经济活动,因此,对投资活动的主体——投资者进行分析是至关重要的。在分形市场中,基于短期与较长期投资者对信息敏感度的差异,不同类别投资者对投资策略的偏好将存在差异。较长期投资者相对于短期投资者对基础信息具有更加敏感,因此,对价值投资更具有倾向性;而短期投资者相对于较长期投资者更注重历史信息,因此,对基于技术分析的投资策略更具有倾向性。同时,由于同一投资者也难保持其投资期限时间一致,因此,同一投资者也难保持其投资策略偏好的恒常性。在分形市场中,千差万别的投资者驱动着证券市场的流动,支撑着证券市场的稳定;形形的投资者形成行影无踪、变化无常的市场动力,驱使着证券市场呈现分形特征。金融工具作为投资活动的客体,是投资者在证券市场中的选择集。金融工具作为资金融通的载体,风险收益组合多样。投资者对金融工具的选择的实质就是对风险收益组合的选择,这依赖于投资者的投资目的、风险偏好等因素。因此,金融工具制约着投资者执行投资策略的可行性。因此,金融工具特征的确定是理解投资的又一关键因素。投资过程,作为投资活动的核心,连接着投资者与金融工具。投资过程主要由两部分工作组成。一部分工作是证券与市场分析;第二部分工作是对最优的资产投资组合进行构建。在投资过程中,投资者对证劵与市场分析的根本目的是寻找出内在价值偏离价格的证劵;基于证劵价格起伏周期预测模式的市场时机选择是构建最优资产组合、优化资产配置的核心。投资过程的本质是通过选择或协调各种金融工具,从而选择与投资者的投资目的相适应的风险收益组合;是投资活动顺利开展的关键保障。因此,投资过程的优劣直接关系到投资活动的成败。
( 三 )分形市场中投资策略的厘定 基于对分形市场的界定以及分形市场中投资概念的厘定,便可对分形市场中投资策略展开详细探讨。所谓投资策略就是指投资者根据自身需求和风险承担能力对投资资产进行安排、配置。确定投资者收益需求和风险厌恶特征是构建其投资策略的前提。随后,投资者设计可实现其目标的投资策略。投资者将根据自身对资产的内在价值、预期收益、风险等因素的推断结果进行投资资产选择、配置。因此,投资者对资产内在价值、预期收益、风险等因素的推断结果是构建投资策略的基础,投资者根据推断结果设计使自身效用最大化的投资策略。在EMH下,由于市场具有竞争性以及投资者具有同质预期,风险收益完全匹配。追求高收益,必然要承担高风险;不接受高风险,便只能接受低收益。在分形市场中,形形的投资者对资产内在价值、预期收益、风险等因素的推断方法千差万别;因此,基于推断结果所设计的投资策略便具有差异。投资策略的差异表现为投资者历史投资行为的差异,最终造成证券收益与风险的分形特征。证券市场存在分形特征,因此,证券收益、风险的时变特征具有复杂性、非线性。从而,分形市场中风险收益不完全匹配;在实际投资中,存在套利机会。因此,优异的投资策略可充分利用风险与收益非完全匹配的特征;从而,可以在减少一定程度的风险的同时并增加一定程度的收益。基于此,分形市场中投资策略的一个直观描述就是指投资者根据自身需求和风险承担能力设计协调和选择风险收益组合以实现自身效用最大化的方案。
三、分形市场中投资策略分析框架
( 一 )分形市场中的推断方法 由前文讨论可知,确定投资者收益需求和风险厌恶特征是构建其投资策略的前提,而投资者对资产内在价值、预期收益、风险等因素的推断结果是构建投资策略的基础。因此,准确的推断结果是投资策略有效的先决条件;而推断结果的准确性依赖于投资者所采用的推断方法。在分形市场中,推断方法的设计是设计投资策略的必要步骤。传统资产组合理论、资本资产定价方法等量化投资模型,其推断方法常常基于线性范式,难以追踪分形市场中的分形信号。现有基于人工智能、小波分析、支持向量机等理论的量化投资模型,其推断方法对分形市场中的分形特征也不是量身度造。为克服证券价格、收益、波动中的分形特征对推断方法的干扰,在分形市场中,所设计的推断方法不仅要可充分克服分形噪音的干扰,而且还要能更好的追踪分形信号。因此,在分形市场中,设计投资策略的先决条件便是设计资产内在价值、预期收益、风险等因素的推断方法。
( 二 )分形市场中投资策略的分解 理论上,在分形市场中寻求价格偏离内在价值的证劵、寻找证劵价格的起伏周期和预测模式并非无稽之谈。与此相反,由于分形通常具有精细结构,而证劵价格又往往表现出分形走势;因此,波动的证劵价格蕴藏着许多低买高卖的机会;从而,优质的市场时机选择策略可以让投资者获得盈千累万的资本利得。证劵的内在价值是指证券未来收益的风险调整贴现值。由此可见,证劵的内在价值受证劵未来收益水平和风险调整贴现率的影响。而未来收益水平和风险调整贴现率具有不确定性;因此,证券内在价值也具有波动性。同时,由于激发证券价格和证劵内在价值波动的因素不完全相同;从而,证券价格和证券内在价值的波动往往具有不一致性。因此,根据证券价格和证券内在价值的变动特征,选择内在价值被低估的证劵并非是天方夜谭。基于上述分析,在分形市场中,选择价格偏离价值的证劵和选择基于证券价格预测模式的市场时机均具有可行性;且无论是证劵选择还是市场时机选择都影响着风险收益组合。因此,证劵选择策略和市场时机选择策略是影响投资策略的两个因素。另一方面,基于早期研究可知,投资的业绩可以通过证劵选择能力和市场择时能力这两个角度解释。而投资业绩的好坏是投资策略优劣的外在表现,因此,在分形市场中,可将投资策略分解为证劵选择策略和市场择时策略。其中,证劵选择策略,就是指识别价格偏离内在价值的证劵的策略;市场择时策略就是指掌控证劵价格起伏周期的策略。
( 三 )分形市场中投资策略的分析框架 基于前文对分形市场中投资策略的厘定及分解可知,投资策略的设计可通过证劵选择策略设计和市场择时策略设计实现,构建有效投资策略的关键是分析证劵选择策略和市场择时策略。(1)分形市场中证劵选择策略分析。根据前文的厘定,证劵选择策略,是指识别价格偏离内在价值的证劵的策略。识别价格偏离价值的证券的前提和基础是确定证券的内在价值。证劵的内在价值是指证券未来收益的风险调整贴现值。其中,未来收益是指包括资本利得、红利在内的全部现金回报,风险调整贴现率等于无风险收益率与风险溢金(Risk Premium)之和;风险溢金是指针对投资某项资产时的额外风险所需的额外回报率。在理论上和实务中,未来收益常常基于历史数据、经济形势等因素给出判断;风险溢金的确定取决于投资者对超额风险和额外回报二者间关系的看待,依赖于投资者的风险厌恶程度。投资者常常希望承担低风险并享受高收益,从而常常利用风险资产组合构建或协调风险收益组合。有效前沿或称最小方差边界、有效投资组合、有效边界、最优资产组合等,其上的风险收益组合是约定风险范围内预期收益最高的投资组合,是投资者首选的风险收益组合。因此,优异的证劵选择策略必将在有效前沿上选择风险资产。从而,设计证劵选择策略关键在于设计有效前沿的构建策略。传统有效前沿构建基于Markowitz的资产组合理论和市场完美性假设,在期望收益、方差、风险资产间协方差已知的情况下,便可根据均值——方差准则构建有效前沿。在EMH的假设下,市场具有完美性;然而,实际的市场并不完美,交易成本、资本利得税等因素影响着风险资产组合的构建,从而影响着有效前沿的构建。Jarrow et al.(2007)研究表明,即使很小比例的交易成本也可能严重扭曲无交易成本下的最优资产组合。与此同时,在FMH的理论下和金融市场的现实背景下,较长期投资者和短期投资者对期望收益、方差、风险资产间协方差预期非同质。因此,分形市场中的有效前沿是代表最佳风险收益组合的变动曲线。综上所述,基于投资者投资期限构建动态有效前沿的策略是设计证劵选择策略的关键。(2)分形市场中市场择时策略分析。根据前文的界定,市场择时策略是指掌控证劵价格起伏周期的策略。证劵价格起伏周期的掌控基于对证劵价格趋势的把握。因此,对证劵价格趋势的分析是设计择时策略的重中之重。所谓证劵价格趋势,是指证劵价格朝某方向运行的过程。实操中,常常以某种移动平均线(Moving Average,MV)朝某方向运行的过程作为价格趋势,但确认价格趋势并非易事;同时,以移动平均线作为证券价格趋势会具有一定的滞后性。投资者掌控证券价格趋势的根本目的是希望低买高卖,并顺势而为。因此,设计低买、高卖策略便可掌控证券价格趋势,实现优质市场时机选择。而低买、高卖策略的设计,关键在于捕捉证券价格的低位、高位。所谓证券价格低位或高位,是指在既定的投资时间区间内,相对最低或最高的证券价格。其中,投资时间区间由投资者的投资起点和投资期限确定。在分形市场与真实证券市场中,由于投资者投资起点和投资期限的差异,因此,不同投资者的投资时间区间不尽相同。从而,证券价格的低位与高位只是相对的,紧紧依赖于投资者的投资时间区间。同时,由于信息对不同投资者影响不同,致使不同投资者投资行为不同。短期投资者因受信息扩散缓慢以及对信息反应迟钝的影响,表现出惯,造成证券价格的惯性效应;较长期投资者受此影响不大。投资者对信息反应行为的差异,致使较长的投资时间区间内证券价格分形波动。从而,较短投资时间区间内的证券价格低位、高位混杂在较长投资时间区间内的低位与高位之间;这是是短期投资者惯的结果,也是短期投资者市场择机根本的根本依据。设计低买、高卖策略便可实现优质市场时机选择,因此,设计低买、高卖策略就是设计市场择时策略。对于短期投资者,市场择机的根本依据就是把握惯引致的惯性效应。低买策略和高卖策略并非两种不同的策略,本质上高卖策略和低买策略并无区别,会在证券价格高位卖出证券便会在证券价格低位买入证券。这是因为,当投资者卖出证券时,相当于用股票在买现金。如果投资者能在证券价格高位卖出证券,那么,以证券作为现金价格必然是在价格低位买入了现金。因此,要想在证券价格低位买入证券,只需要在现金价格高位卖出现金。综上,设计市场择时策略关键在于设计高卖策略,在投资者的投资时间区间内捕捉证券价格的高位,掌控短期投资者的惯。(3)有效前沿与惯。证券选择和市场择时二者相互影响,因此,作为两者核心依据的有效前沿与惯也将相互影响。短期投资者严重的惯,将导致证券价格过度的惯性效应,营造出市场情绪潮流。此时,非完全理性的较长期投资者也难以完全摆脱市场情绪的影响。在情绪潮流中,部分较长期投资者将重新衡量预期收益、风险等因素;并根据其重新衡量的结果,做出推理,改变其投资行为。如:舍弃既定投资期限、改变投资风格等。最终,与短期投资者一起致使市场偏离既定的有效前沿。另一方面,基于投资者投资期限构建的有效前沿可反映短期投资者的惯。在分形市场中,市场偏离既定有效前沿伊始,由于较长期投资者更加偏重基础信息,短期投资者更加关注历史信息;因此,此时的市场动力主要源于短期投资者的投资行为。此时,短期投资者的投资行为是对历史信息的反应,表现为惯。综上所述,严重的惯将导致市场偏离既定的有效前沿,基于投资者投资期限构建的既定有效前沿可反映惯。有效前沿与惯分别作为证券选择和市场择时的核心依据,两者相互联系、相互影响。
( 四 )分形市场中投资策略设计的展望 由前文可知,投资策略的设计可通过证劵选择策略设计和市场择时策略设计实现。基于市场择时的资产配置对投资业绩具有绝大部分的贡献,且证券选择本身也依赖于时间因素,因此,本文仅对市场择时策略设计给出一些展望。设计市场择时策略关键在于基于证券价格的惯性效应设计高卖策略。高卖策略即在投资者的投资时间区间内捕捉证券价格的高位。由于证券价格具有分形特征,而分形通常具有自相似性,通常可由一些迭代过程得到。从而,证券价格走势是自相似吸引子或几个自相似吸引子的迭加。基于吸引子定理和拼贴定理,证券价格的这种分形走势可用少量几个压缩映射和生成元产生一个新的分形走势来无限逼近。由于这个新的分形走势由其生成元和迭代函数系唯一确定,因此,其未来走势确定。在证券价格未来走势不会较大偏离此前分形走势的假设下,便可利用这个构建的分形走势寻找证券价格未来走势中的相对高位,进而根据投资者的投资期限做出投资决策。可见,寻找证券价格走势的逼近分形走势是设计高卖策略的方法之一。另一方面,证券价格的分形走势具有标度不变性特征。标度不变性是指在不同时间或空间尺度下证券价格的分布函数间具有幂律关系。由于较短时间间隔观察到的证劵价格相对于较长时间间隔上观察到的证券价格具有更多的数据,因此,也包含着更多的有效信息和信息噪音。利用高频数据和低频数据间的标度不变性特征,可获得较之低频数据更多的有效信息,可免受较之高频数据更少的噪音干扰。从而,更有利于投资者进行投资决策。分形分布(Fractal Distribution)可真实描述证券市场收益序列的“尖峰肥尾”现象,是对真实证券市场收益序列的统计描述,可充分反应证券市场中的标度不变性特征。基于分形分布的市场择时策略可克服基于正态分布的市场择时策略低估风险、过早卖出等不足。从而,利用分形分布可以更加精准的计算出证券价格未来走势的概率,进而可根据概率的大小进行市场择时。然而,分形分布的参数估计具有较大困难,因此,设计分形分布的参数估计方法是设计高卖策略的又一方法。总之,利用证券价格的分形走势设计投资策略关键在于充分利用分形的种种特征,充分利用分形时间序列中的有效信息和尽可能去除分形时间序列中的信息噪音。
四、结论
本文通过对分形市场中投资概念的理解,在投资者协调和选择风险收益组合可行性分析的基础上,将投资策略厘定为投资者根据自身需求和风险承担能力设计协调和选择风险收益组合以实现自身效用最大化的方案。在此基础上,对设计分形市场中投资策略的先决条件——资产预期收益、风险等因素的推断方法进行了分析。在把投资策略分解为证券选择策略和市场择时策略的基础上,提出了分形市场中投资策略的分析框架。在分形市场中,设计基于投资者投资期限的有效前沿和基于投资者投资时间区间的高卖低买策略是构建投资策略的关键路径。而设计高卖低买策略关键在于投资者在投资期限内有效捕捉证券价格的高低位,掌控短期投资者的惯。本文对分形市场中投资策略分析框架的建立,将为进一步构建贴近证券市场分形现象的量化投资策略提供理论基础。
*本文系教育部高等学校博士点专项科研基金项目“分形市场环境下开放式基金业绩持续性之关键因素挖掘研究”(项目编号:20120172120050);教育部人文社会科学研究青年基金项目“明星效应下基金家族价值偏爱及家族造星策略有效性研究”(项目编号:13YJC790150);中央高校基本科研业务费专项资金“分形条件下基金投资风格漂移与股票市场波动效应量化研究”(项目编号: 2013ZB0016)及国家社会科学青年基金“开放式基金投资风格漂移及风格资产轮换策略有效性研究”(项目编号:12CJY006)的阶段性成果
参考文献:
[1]丁鹏:《量化投资——策略与技术(修订版),电子工业出版社2012年版。
[2]许林:《基于分形市场理论的基金投资风格漂移及其风险测度研究》,《华南理工大学博士学位论文集》(2011年)。
[3]苑莹、庄新田、金秀:《多重分形理论在资本市场中应用研究综述》,《管理学报》2010年第9期。
[4]黄怡蓉:《中国股市的分形结构:理论与实证》,中山大学出版社2006年版。
[5]樊智、张世英:《金融市场的效率与分形市场理论》,《系统工程理论与实践》2002年第3期。
[6]马慧明:《英汉证劵投资词典》,商务印书馆2007年版。
[7]B B Mandelbrot,Richard L Hudson著,张新等译:《市场的(错误)行为:风险、破产与收益的分形观点》,中国人民大学出版社2009年版。
[8]Kenneth Falconer著,曾文曲译:《分形几何的数学基础及其应用(第二版)》,人民邮电大学出版社2007年版。
[9][美]加里·加斯蒂尼,马克·克里茨曼著,谌季强等译:《金融风险管理词典》,华夏出版社2007年版。
[10][美]加里·加斯蒂尼,马克·克里茨曼著,谌季强等译:《金融风险管理词典》,华夏出版社2007年版。
[11][美]R A贾罗,V马斯科西莫维,W T津巴编,吴文峰、仲黎明、冯芸译:《金融经济学手册》,上海人民出版社2007年版。
[12][美]维克多·斯波朗迪著,俞济群、真如译:《专业投机原理》,机械工业出版社2008年版。
[13]蒋晓全、丁秀英:《我国证券投资基金资产配置效率研究》,《金融研究》2007年第2期。
[14]王征:《资产配置对基金收益率的贡献度分析——来自中国市场的经验数据》,《经济科学》2005年第4期。
[15]苑莹、庄新田:《基于多重分形的金融市场复杂特性分析及应用:以中国股票市场为研究对象》,中国经济出版社2012年版。
[16]Kyoung Eun Lee , Jae Woo Lee. Scaling and Multiscaling Properties in the Korean Stock Market.Journal of the Korean Physical Society,2007.
[17]Yudong Wang,Li Liu,Rongbao Gu.Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis.International Review of Financial Analysis,2009.
[18]A Ganchuk, V Derbentsev, V Soloviev. Multifractal Properties of the Ukraine Stock Market.Workingpaper, 2006.
[19]Justine Gregory Williams, Bill M Williams.Trading Chaos-Maximize Profits with Proven Technical Techniques (2nd Edition).New Jersey:John Wiley&Sons, Inc.2004.
[20]Daniel O Cajueiro,Benjamin M Tabak.Multifractality and herding behavior in the Japanese stock market.Chaos,Solitons&Fractals,2009.
[21]Jozef Barunik,Tomaso Aste,T.Di Matteo,Ruipeng Liu.Understanding the source of multifractality in financial markets. Physica A,2012.
[22]Edgar E Peters.Fractal Market Analysis:Applying Chaos Theory to Investment and Economics.New York:John Wiley&Sons, Inc. 1994.
[23]Zvi Bodie, Alex Kane, Alan J Marcus. Investments(8th Edition).New York: McGraw-Hill,2009.
[24]Andrew Pole. Statistical Arbitrage: Algorithmic Trading Insights and Techniques.New York: John Wiley&Sons,Inc.2007.
[25]Luciano Zunino, Alejandra Figliola,Benjamin M. Tabak et al. Multifractal structure in Latin-American market indices.Chaos, Solitons and Fractals,2009.
[26]Man-Ying Bai, Hai-Bo Zhu.Power law and multiscaling properties of the Chinese stock market. Physica A,2010.
[27]Roger G Ibbotson, Paul D Kaplan. Does Asset Allocation Policy Explain 40, 90 or 100 Percent of Performance.Financial Analyst Journal,2000.
[28]Gary P Brinson, Brian D Singer, Gilbert L Beebower. Determinants of Portfolio Performance II: An update. Financial Analyst Journal,1991.
[29]William Forbes. Behavioural Finance. New York: John Wiley&Sons,Inc.2009.
[30]Jerome Chave,Simon Levin.Scale and Scaling in Ecological and Economic Systems.Environmentaland Resourmics,2003.
证券投资基金是一种特殊的投资方式,在实际的投资过程中,采用的是共同进行风险承担以及利益共享的方式,这一基金类型也被称为“证券基金”。证券投资基金作为一种投资工具,进入门槛低,服务专业,且积累性强,即使投资成本较低,也可将投资分散于不同证券,这样就极大的分散了投资风险。因此,正确投资基金得到了人们的广泛关注。
1 积极开发130/30等数量化投资模型
对国内从事证券基金投资业的基金公司等及时顺应金融形势,尽早开始研发130/30等科学有效的数量化投资产品,从而满足公司旗下众多投资者的投资需求。为了追赶世界先进的潮流,加快中国金融创新,从根本上增强国内基金业的企业竞争实力,研发130/30空头扩展模型等证券投资基金数量化投资模型势在必行。随着国内经济形势高速发展,金融市场形势亦是日新月异。目前,中国证券基金投资业中的卖空改革已经在逐渐开启,在此形势下,相关资产福利业也应抓紧时间,抓住机会,积极开发出符合中国国情和投资者实际需求的基金产品,抓紧研发空头扩展模型等数量化投资模型,以更好的顺应金融市场的发展趋势和实际需求。在数量化投资模型开发过程中,应该注意“拿来主义”,不能一味的照抄国外数量化投资模型,开发时首先要考虑实事求是,符合中国的相关法律法规以及中国金融市场的实际情况,做到既学习了外国的先进经验,又兼顾国内市场现实。从而开发出符合中国实际的数量化投资模型。现实中,130/30数量化投资模型只是众多数量化投资模型中的一种。
2 合理应用数量化投资策略
投资者及受理委托基金公司等资产管理者应用正确数量化投资策略进行投资,可分散减小风险,增加收益。并基于此进行更加科学高效拟合金融市场实际收益率模型和数量化投资策略的开发。基于数量化投资策略不断创新发觉全新投资策略的特点,伴随广大投资者针对这一投资机会的广泛追捧开发,此动量策略的存在的情况会逐渐消失,弱势有效这一中国股市缺失的状况会逐渐改变。数量化投资策略模型只是理想状况下的数字模型,在实际投资中投资者及基金管理者还应注意定期检验,不能生搬硬套模型及应用公式,应根据市场形势,谨慎研究确定投资策略,才能在金融趋势改变时有效规避风险,增加收益。在金融市场中,基金公司应根据市场环境及现实情况,基于相应合理化科学化的数量投资策略,基于数字化投资的有效性制定相应的投资策略,才能有效提高证券市场投资效率,规避风险,增强投资收益。同时应注意听取专业人员根据经验所得出的合理人工判断,拒绝照搬模型公式的错误做法,杜绝全部投资由模型决策,密切注意规避数量化投资策略的趋势改变、相似性及肥尾性。
3 开放卖空政策
国家政策对金融市场存在巨大影响。为了从根本上提高中国证券金融市场效率,对金融市场发展起到积极意义,国家政策要给予支持,譬如对卖空政策采取加大开放政策。如此才能逐渐改善中国证券市场卖空限制大,除指数基金外,其他投资者参与卖空所受禁锢较多,公募基金甚至不能参与卖空,信息表达不充分,远远没有达到弱势有效等诸多限制中国证券市场有效性的不完善方面政策开放属社会实验,对政策所针对方面的影响不言而喻。在政策制定方面目前国内的相应管理层做的还是很好的。譬如,根据当前形势,相应管理层便会制定并开始试行各种转融通业务。在这样的政策环境下,对广大证券金融公司而言,便可以通过相互之间的内部交流与合作的方式,将自身原有的或者通过各种合法途径募集而来的证券和资金进行出借,为需求方提供所需的资金和证券,帮助其更好的开展各种经营活动。 对广大证券基金类公司而言,可以通过此类活动,可有效整合金融市场资源,解决眼下难题。通过复杂严禁的实施设计方案,保证市场的良好发展。
4 降低融券费率
为了提高中国金融证券市场效率,缩短相应价格恢复平衡所需时间,提高中国金融资本市场的有效性,建议相关管理层采取积极措施,譬如对券商降低融券率的政策持鼓励态度。但在一定的条件下,130/30组合的收益率会出现极大的改变。例如,在融券费率处于10%和5%水平的时候,融券率会对130/30组合的收益率产生十分显著的影响。为了避免对中国证券市场的发展产生不好影响,相关管理层在制定政策时要注意规避券商间通过不顾成本盲目降低融券费率等不良手段抢占市场的恶意竞争。鼓励科学的正当竞争。目前国内金融市场中,各证券公司的融资利率基本相同,截至2013年3月19日,业务遍布全国的较大证券公司中,国信、国泰君安、广发、海通这四家公司年融券率和融资利率均为8.6%,相比之下,华安、上海、江海、华泰四家的融资利率虽然也达到同样的水平,但在融券率方面,却呈现出显著高于大证券公司的情况,达到10.6%。综上所述,小证券公司采用较高档,融券费率规模大的公司则采用相同的较低档,相比之下,大证券公司具备较大优势。若小证券公司要在激烈的金融市场竞争中站稳脚跟,建议其利用融券费率存在较大降低空间的优势制定相关政策。
5 结束语
综上所述,研究证券投资基金数量化投资战略决策,可帮助大家进一步提高对证券投资基金以及数量化投资相关问题的理解水平,了解130/30策略对基金业绩的影响,具有一定实践意义。
参考文献:
1量化投资简介
1.1基本概念
量化投资是一种借助于计算机高效计算程序进行复杂运算,以金融产品未来收益与风险为研究对象的新型投资方式。量化投资的基础是以股票价格、日成交额等大数据库数据为参考样本数据并建立数学模型,运用仿真分析及迭代方法不断修正数学模型,直到数学模型可以用来预测指导投资交易。任何一个投资的方案或者设想,都可以为它设计一个数学模型,然后借助大数据库的现有数据进行迭代法测试分析,以此来判别数学模型的有效性。传统投资方式基本上是对传统的技术分析和公司的经营状态基本分析,存在一定的局限性;相比之下量化投资分析是基于对大数据市场数据的,数据样本空间容量足够大,而且可以快速进行运算并排除投资者个人心理因素的主观影响,科学性和时效性更强。此外,量化投资是一种主动性的投资方式,在进行数学模型选择、自变量选取、数学模型的验算迭代都是投资行为的主动部分。
1.2交易内容及方法
量化投资交易的内容主要是量化策略以及交易策略,在制定交易策略时必须立足于投资市场、投资产品以及分配在内等。具体交易平台则是靠以计算机计算程序为基础的线上交易平台系统。进行量化投资交易时通常会遇到各种较为复杂的情况,但是基本前提都是要依据现有的既定的大量数据库数据,灵活采用各种方法来判断投资对象是否值得投资。总体来说,量化投资有估值法、资金法和趋势法三种。
2量化投资现状
从理论上来说,每个量化投资者的决策行为可以被同化为理性预期、风险规避、严格效用基本一致的理想化模型。然而现实情况中每个人的心理活动、出发点、知识水平等都存在差异,进行量化投资时人们作出的决策也存在差异。人的非理性行为与理性行为都是客观存在的,而且非理性行为对理性行为也存在着一定的影响,因此投资人在进行投资决策时并不能完全理性地进行选择。综上所述,非理性人的客观存在使投资人在进行投资决策时不能完全忽视个人的心理因素。既然个人的心理因素无法排除,那么在建立决策分析数学模型时,就应该把个人的心理因素考虑在内。当前我国国内量化投资有以下几个特点:(1)个人投资者占总投资者的比例很高。上文已经提到投资者个人的非理性客观存在且不可避免,那么众多量化投资者的非理性因素间接影响我国量化投资市场。(2)我国的量化投资市场虽然发展迅速但仍不成熟。与美国及欧洲发达国家相比,我国量化投资市场只能是一个新兴的市场,直接表现在各方面的信息不完整且难以搜集,一些基础数据我们只能自己想方设法地去开发获取。(3)量化投资行业的企业构成比较复杂。目前我国量化投资行业的企业种类比较多,跨越众多不同的领域。加上我国量化投资市场还处于新生期,市场不稳定信息变化较快,因此量化投资行业的可用层面指标数目非常少且指标数值经常变化。当前我国量化投资者正是依据当前行业的特点,从不同的层面和角度验证分析,建立泡沫型数学分析模型,才能获得巨大的利润。(4)量化投资策略研究落后。通过把我国量化投资策略与美国及西方发达国家的量化投资策略进行对比,发现我国现有的量化投资策略严重落后。国外的量化策略研究是在大量的事件、数据积累分析的基础上,脚踏实地潜心研究总结出来的。现阶段我国量化策略研究多是借用国外的策略,结合国内的量化投资行业的实际现状进行修正得来的。当前我们还缺少指导量化投资行业的专家、指导著作,为此我国国内的一些高等院校开始着手量化投资策略的研究并取得了初步的成效。
3量化投资优势
量化投资是在定性投资基础上进行继承和延伸的一种主动投资工具。定性投资的核心是对宏观经济和市场基本面进行深入的分析,再加上实地调研上市公司以及与上市公司的管理层进行经验交流,最终把调研结果整理成专题报告,把报告作为决策依据。不难看出定性投资带有很大的个人主观判断性,它完全依赖于投资经理个人经验以及对市场的认知。量化投资在调研层面与定性投资相同,区别在于量化投资更加注重数据库大数据,运用各种方法发现运用大数据所体现出来的有用信息,寻找更优化的投资方式以获得大额收益,完全避免了投资经理个人的主观臆断和心理因素,更加科学合理。综上所述,与定性投资相比,量化投资具有以下优势。
3.1投资方式更加理性
量化投资是采用统计数学与计算机建模分析技术,以行业大数据库为参考,取代了个人主观判断和心理因素的科学客观投资方法。很明显,行业大数据的样本容量已远远高于有限的对上市公司调研所形成的样本容量;在进行投资决策时,把决策过程科学化数量化可以最大程度的减少投资者决策时个人情感等心理因素对决策结果的影响,从而避免了错误的选择方向。
3.2覆盖范围大效率高
得益于因特网的广泛实施应用,与各行各业的运行数据都可以录入大数据系统形成体量巨大的数据库;得益于计算机行业云时代到来对计算分析速度的革命性变革,在极短的时间内就可以得到多种量化投资的投资方法。定性投资方式进行决策时,由于决策人的精力和专业水平都存在一定的局限性,自然其考虑投资的范围要远远低于电脑决策,二者根本没有可比性。综上所述,虽然与定性投资相比,量化投资具有明显的优势,但是二者的目的是相同的,都以获得最大收益为目的,多少情况量化投资与定型投资可以互相补充,搭配使用会起到意想不到的效果。
4量化投资的劣势
上文已经提到量化投资的决策过程依赖于大数据库以及计算机分析系统的科学决策,因此只要投资思想正确量化投资就不会出现错误。然而即使是投资思想及决策过程都没有问题,也不意味着量化投资完美无缺。量化投资本质上是对某一特定基准面的分析,事实上基准面有时范围过小,纵然决策过程合理化、无偏差,量化投资也存在一定的局限性。量化投资的另一特点是进行考察决策时覆盖的市场面非常广泛,在当前国民经济快速发展的时代,人们对市场的认知难免出现盲区或者对某一个局部了解不充分的现象,此种情况下量化投资的正确性就很难保证。
4.1形成交易的一致性
基于量化投资的低风险特性,人们更多地依赖于采用大数据云分析平台进行决策,如此大家对某一行业的市场认知以及投资决策水平就处在同一认知层次上,当遇到极端的市场行情时,人们作出的交易决策往往一致,即容易达成交易的一致性。例如期货行业以及股票行业,在市场行情动荡的特殊时期,人们往往选择在同一时机抛出股票或者期货,这种大规模的一次性抛盘则会造成在预期抛售价格基础上的剧烈波动,导致投资者的实际收益在一定程度上低于预期收益。此种情形下又会引起新一轮投资恐慌,不利于市场的稳定发展。
4.2指标钝化和失效
一、引言
量化投资在国外的实践已经有了40多年的发展,我国的量化投资起步较晚,从2004年开始出现量化投资的产品,由于缺乏有效的对冲手段,直到2010年4月沪深300股指期货上市之后才能算是真正意义上开始涉足量化投资。[1]
2015年的中国股市跌宕起伏,杠杆配资引发了大幅上涨和断崖式下跌,股市出现罕见的千股涨停、千股跌停、千股停牌的奇观,众多机构投资者和散户蒙受了巨大的损失。但其中少数量化投资基金在大幅波动的市场中却表现相对稳定。量化投资基金和量化对冲策略的稳健,很快引起了全市场的关注,也成为近期银行、券商、信托等机构追捧的新的产品模式。
在此背景下,作者在本文中对于量化投资的概念、特点、策略、理论基础和发展做一个总结,希望为量化投资研究和实践做一些参考。
二、量化投资解读
(一)量化投资的定义
量化投资在学术界并没有严格统一的定义,现有的定义对于量化投资的定义的侧重点各有不同。本文对于量化投资的定义为:
量化投资是指将投资者的投资思想或理念转化为数学模型,或者利用模型对于真实世界的情况进行模拟进而判断市场行为或趋势,并交由计算机进行具体的投资决策和实施的过程。
(二)量化投资的特点
1.投资决策中能够客观理性,克服人类心理对投资决策的影响。传统投资的分析决策,大多数方面都由人工完成,而人并非能做到完全理性,在进行投资决策时,很难不受市场情绪的影响。[2]量化投资运用模型对历史和当时市场上的数据进行分析检测,模型一经检验合格投入正式运行后,投资决策将交由计算机处理,一般情况下拒绝人为的干预,这样在进行投资决策时受人的情绪化的影响将很小,投资过程可以做到理性客观。
2.能够通过海量信息的大数据处理,提高投资决策效率。我国股票市场上有近3000只股票,与上市公司相关的各种信息纷繁复杂,包括政策、国内外经济指标、公司公告、研究报告等,投资者靠自己手工的筛选根本就是力不从心。量化投资的出现为这个问题的解决带来了希望。量化投资运用计算机技术快速处理大量数据,对其进行辨别、分析、找出数据之间的关联并做出投资决策,大大减少了人工的工作量,提高了投资决策效率。
3.能够实现精准投资。传统的投资方法中认为投资是一门艺术,投资决策需要的是投资者的经验和技术,投资者的主观评价起到决定作用。而量化投资有所不同,尤其是在套利策略中,它能做到精准投资。例如在股指期货套利的过程中,现货与股指期货如果存在较大的差异时就能进行套利,量化投资策略和交易技术会抓住精确的捕捉机会,进行套利交易来获利。另外,在控制头寸规模方面,传统的投资方法只能凭感觉,并没有具体的测算和界定,而量化投资必须要设定严格精确的标准。[3]
4.能够快速反应和决策,把握市场稍纵即逝的机会。量化投资往往利用高速计算机进行程序化交易,与人脑相比它能够迅速发现市场存在的信息并进行相应的处理,具有反应快速、把握市场稍纵即逝的机会的特点。量化投资在速度上最出色的运用就是高频交易,与低频交易相对,高频交易是通过高速计算机,在极短的时间内对市场的变化做出迅速的反应并完成交易。[4]
5.能够有效地控制风险,获取较为稳定的收益。与传统投资方式不同的是,量化投资在获得较高超额收益的同时能够更好地控制风险,业绩也更为稳定。相关研究显示,1996年至2005年期间,量化投资基金与以所有传统主动型投资基金和偏重于风险控制的传统主动型投资基金的信息比率对比情况中,量化投资基金的信息比率都是最高,说明量化投资相对于传统投资,能够在获得更高的超额收益的同时,有效地控制风险。
三、量化投资的策略
一般的量化投资的策略指的是用来实现投资理念或模拟市场行为判断趋势从而获取收益的模型。量化投资需要权衡收益、风险、交易成本、具体的执行等各个方面,一般情况下这些方面会形成相对独立的模块。有时候量化投资策略模型也会将风险、成本等方面融合在模型中。
(一)国外量化投资策略的分类
国外习惯上将量化投资的策略分成两大类,一类是阿尔法导向的策略,另一类是贝塔导向的策略。阿尔法策略(alpha strategy)是通过量化择时和调整投资组合中不同资产的头寸大小来获取收益的策略;贝塔策略(beta strategy)是通过量化的手段复制指数或者稍微的超出指数收益的策略。[6]相比而言,量化指数的贝塔策略相对更容易,所以一般情况下所说的量化投资的策略指的是阿尔法策略(alpha strategy)。
阿尔法策略主要有两种类型,分别为理论驱动模型和数据驱动模型。
理论驱动模型是比较常见的类型,这些策略是运用已经存在的经济、金融学的理论,构建策略模型,进行投资决策。理论驱动模型根据输入的数据的不同可以进一步分类,主要有基于价格相关数据的策略和基于基本面数据的策略。
数据驱动模型广泛的被运用于股票、期货和外汇市场,因为采用的数学工具更为复杂,相对而言难于理解,目前使用的还不是很多。与理论驱动模型不同,数据驱动模型认为进行投资决策其实是不需要理论的支持,运用数据挖掘技术,可以从数据(例如交易所的价格数据)中识别出某种行为模式或市场趋势,进而进行预测或者解释未来的模式,从中获取收益。
(二)我国量化投资策略的分类
国内比较常见的量化投资策略主要有两种分类方式,一种是按投资标的所在市场分类区分的量化投资策略,分为现货市场和衍生品市场量化投资策略。现货市场包括股票市场、ETF市场和债券市场,衍生品市场包括商品期货市场、股指期货市场、国债期货市场、外汇市场和期权与其他衍生品市场,国内运用较多的是投资于商品期货和股指期货等期货市场。
另一种分类方式是分为两大类:判断趋势的单边投机策略和判断波动率的套利交易策略。[7]单边投机策略主要包括量化选股和量化择时,套利交易策略主要包括股指期货套利、商品期货套利、统计套利、期权套利、另类套利策略等,目前国内普遍采用的是这种分类方式。
四、量化投资理论的发展
(一)投资理论的发展
量化投资的理论基础最早可以追溯到上个世纪50年代,Markowitz(1952)[8]第一次把数理工具引入到金融研究领域,提出了均值――方差模型和风险报酬与有效前沿的相关概念,这是量化投资接受的最早的严肃的学术成果。Sharpe(1964)[9]、Litner(1965)[10]、Mossin(1966)[11]在马克维茨研究的基础上得出了资本资产定价模型(CAPM),这是如今度量证券风险的基本的量化模型。
20世纪60年代,Samuelson(1965)与Fama(1965)[12]提出了有效市场假说(Efficient Markets Hypothesis,EMH),这为后来在新闻量化交易等方面提供了思路和理论支持。20世纪70年代,金融衍生品不断涌现,对于衍生品的定价成为当时研究的重点。Black和Scholes(1973)[13]将数学方法引入金融定价,他们建立了期权定价模型(B-S模型),为量化投资中对衍生品的定价奠定了理论基础。在该理论之后,Ross(1976)[14]根据无套利原则提出了套利定价理论(APT),该理论是资本资产定价模型(CAPM)的完善和发展,为量化投资中的多因素定价(选股)模型提供了基础,这也是Alpha套利的思想基础。
20世纪80年代,期权定价理论倒向微分方程求解;“金融工程”概念得以产生,金融工程着力于研究量化投资和量化交易。同期,学者们从有效市场理论的最基本假设着手,放宽了假设条件,形成了金融学的另一个重要的分支――行为金融学。
20世纪90年代,金融学家更加注重对于金融风险的管理,产生了诸多的数量化模型,其中最为著名的风险管理数量模型是VaR(Value at Risk)模型,这是量化投资对于风险控制的重要理论基础。[15]
20世纪末,数理金融对于数学工具的引入更加的迅速,其中最为重大的突破无疑是非线性科学在数理金融上的运用,非线性科学的出现为金融科学量化手段和方法论的研究提供了强有力的研究工具[16],尤其在混合多种阿尔法模型而建立混合模型时是非常有效的一种技术。
(二)量化投资的数学和计算基础
量化投资策略模型的建立需要运用大量的数学和计算机方面的技术,主要有随机过程、人工智能、分形理论、小波分析、支持向量机等。[17]随机过程可以用于金融时序数列的预测,在现实中经常用于预测股市大盘,在投资组合模型构建的过程中,可以优化投资组合;人工智能的很多技术,例如专家系统、机器学习、神经网络、遗传算法等,可以运用于量化投资;分形理论用于时间序列进行预测分析;小波分析主要用于波型的处理,从而预测未来的走势;数据挖掘技术可以运用于数据驱动模型,还可以运用于设置模型的细节;支持向量机可以分析数据,识别模式,用于分类和回归分析。
五、国内外量化投资实践的发展
(一)国外量化投资实践的发展
本文认为量化投资在国外的发展已经经历了四个发展阶段:
1.第一阶段从1949年至1968年:对冲阶段。该阶段是量化投资的萌芽阶段,该阶段具体的量化投资实践很少,主要是为量化投资提供的理论基础和技术准备,量化投资脱胎于传统投资,对抗市场波动,通过对冲稳定Alpha收益,但收益率低了。
2.第二阶段从1969年至1974年:杠杆阶段。在该阶段,量化投资从理论走入了实践。在投资思路上,因为原本的Alpha策略收益有限,通过放杠杆扩大第一阶段的稳定收益。实践方面,1969年,前美国麻省理工学院数学系教授爱德华・索普(Ed Thorp)开办了第一个量化对冲基金,进行可转债套利,他是最早的量化投资的者使用者。1971年,巴莱克国际投资公司(BGI)发行了世界上第一只被动量化基金,标志着量化投资的真正开始。
3.第三阶段从1975年至2000年:多策略阶段。在这一阶段,虽有一定的挫折,但总体上量化投资得到了平稳的发展。在投资思路上,由于上一阶段通过杠杆放大收益的副作用产生,放大以后的波动率又增大,从而转向继续追求策略的稳定收益,具体的手段是采用多策略稳定收益。实践方面,1977年,美国的富国银行指数化跟踪了纽约交易所的1500只股票,成立了一只指数化基金,开启了数量化投资的新纪元。[18]1998年,据统计共有21只量化投资基金管理着80亿美元规模的资产。[19]
4.第四阶段从2000年至今:量化投资阶段。这一阶段,量化投资得到了迅猛的发展,并且发展的速度越来越快。投资思路上,运用量化工具,策略模型化,注重风险管理。在实践方面,在2008年全球金融危机以前,全球对冲基金的规模由2000年的3350亿美元在短短的7年时间内上升至危机发生前的1.95万亿美元,受美国次贷危机的影响全球对冲基金规模有较大的回落,直到2008年之后,在全球经济复苏的大背景下对冲基金规模才开始反弹。
(二)我国量化投资的发展
本文认为,到目前为止,我国量化投资的发展的主要经历了三个阶段:
1.第一阶段从2004年至2010年:起步阶段。在这一阶段,由于我国没有足够的金融工具,量化投资在我国发展缓慢。2004年8月,光大保德信发行“光大保德信量化股票”,该基金借鉴了外方股东量化投资管理理念,这是我国最早的涉足量化投资的产品。2010年4月16日,准备多年的沪深300股指期货的在中金所的上市,为许多对冲基金的产品提供了对冲工具,从此改变了以前我证券市场只能单边进行做多的情况。
2.第二阶段从2011年至2013年:成长阶段。2011年,被认为是我国量化对冲基金元年,[21]而随着股指期货、融资融券、ETF和分级基金的丰富和发展,券商资管、信托、基金专户和有限合伙制的量化对冲产品的发行不断出现,这个阶段的量化投资真正意义上开始发展,促使该阶段发展的直接原因就是股指期货的出现。[20]
3.第三阶段从2014年至今:迅猛发展阶段。2014年被认为是“值得载入我国私募基金史册的一年”,基金业协会推行私募基金管理人和产品的登记备案制,推动了私募基金的全面阳光化,加速了私募基金产品的发行,其中包括量化对冲型私募产品。2014年称得上我国量化对冲产品增长最迅速的一年,以私募基金为代表的各类机构在量化对冲产品上的规模均有很大的发展,部分金融机构全年销售的量化对冲基金规模超过了百亿。
2015年,上证50ETF期权于2月9日正式推出,这对于对我国的量化投资有着极大的促进作用。4月16日,上证50与中证500两只股指期货新品种的上市给量化投资带来更多的策略的运用,金融衍生品的不断丰富和发展,为量化投资提供更多的丰富对冲手段,也提供了更多的套利机会。
六、总结
量化投资的技术、策略、硬件设施条件都在飞速的发展,与传统的投资方式相比,量化投资有着自身的特点和优势。尤其是量化对冲产品,以其长期稳健的收益特征,成为目前“资产荒”下对信托、理财产品和固定收益产品良好的替代产品。未来随着我国股指期货、融资融券、国债期货、期权等金融产品的不断创新,以及股指期货市场未来逐步恢复正常,量化投资发展前景不可限量。
参考文献
[1]徐莉莉.量化投资在中国的发展现状[R].渤海证券研究所:金融工程专题研究报告,2012.
[2]廖佳.揭开量化基金的神秘面纱[J].金融博览(财富),2014,(11):66-68.
[3]王力弘.浅议量化投资发展趋势及其对中国的启示[J].中国投资,2013,(02):202.
[4]Durbin,M. All About High-Frequency Trading: The Easy Way To Get Started[M]. McGraw-Hill Press,2010.
[5]蒋瑛现,杨结,吴天宇,等.海外机构数量化投资的发展[R].国泰君安证券研究所:数量化系列研究报告,2008.
[6]Rishi K. Narang. Inside the Black Box: The Simple Truth about Quantitative Trading[M]. Wiley Press,2012.
[7]丁鹏.量化投资――策略与技术[M].北京:电子工业出版社,2014.
[8]Markowitz,H.M.. Portfolio Selection[J].Journal of Finance,1952,2:77-91.
[9]Sharpe,W.F. Capital asset prices: A theory of market equilibrium under conditions of risk[J]. Journal of Finance,1964,19(3):425-442.
[10]Lintner. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets[J].Review of Economics and Statistics,1965,47(1):13-37.
[11]Mossin.Equilibrium in a Capital Asset Market[J]. Econometrica,1966,Vol.34(4):768-783.
[12]Fama,Jensen,and Roll. Investor sentiment and Stock Returns[J]. Journal of Political Economy,1969,(12)34-36.
[13]Black Fischer,and Myron Scholes,1973.The Pricing of Options and Corporate Liabilities[J].Journal of Political Economy,1973,81(3):637-654.
[14]Ross.The arbitrage theory of capital asset pricing[J].Journal of Economic Theory,1976,13(3):341-360.
[15]Jorion,Philippe.Value at Risk:The New Benchmark for Managing Financial Risk (3rd ed.)[M]. McGraw-Hill Press,2006.
[16]戴军,葛新元.数量化投资技术综述[R].国信数量化投资技术系列报告,2008.
[17]丁鹏.量化投资与对冲基金入门[M].北京:电子工业出版社,2014.
[18]郭喜才.量化投资的发展及其监管[J].江西社会科学,2014,(03):58-62.
[19]Ludwig B.,Chincarini. The Crisis of Crowding: Quant Copycats,Ugly Models,and the New Crash Normal[M]. Wiley Press,2013.
[20]曾业.2014年中国量化对冲私募基金年度报告[R].华宝证券:对冲基金专题报告,2015.
在国外,板块轮动一直作为一种投资策略被广泛应用于投资实践。板块轮动的最基本的特征是,在经济周期的不同阶段,可以系统的预测到不同的经济板块(或行业)跑赢(或差于)市场。而且,运用板块轮动策略的投资者们相信这种相对的绩效,即在经济周期的不同阶段从一个板块转向另一个板块所带来的收益。
国外不少的研究文章发现,板块的表现并不一致,或者说提前(滞后)于经济周期阶段。Hou(2007)发现了板块的提前/滞后效应,原因是新信息经济的到来。Hong,Torous和Valkanov(2007),还有Eleswarapu和Tiwari(1996)的研究认为,和经济活动有着密切联系的板块,如零售,金属材料,服务业和石油板块,引领着市场长达两个月之久。Menzly和Ozbas(2004)证明,行业绩效的时机和该行业在生产消费供应链中的位置有着密切的联系,存在于上游和下游行业间的某种稳定的滞后关系。文章结论表明,基础材料板块是经济复苏阶段第一个启动的板块,随后是制造业。Stovall(1996)发现,处于消费末端的消费者相关的行业,如耐用消费品行业,是从衰退到复苏阶段的过程中最后启动的行业。Sassetti和Tani(2003)关于板块基金收益的研究表明,在经济周期中期,板块转换是个成功的策略。然而,他们同样发现,长期的投资者优于市场指数。相对而言,Tiwari和Vijh(2005)就质疑投资者将资金运用于板块间轮动的能力。他们研究是基于一个板块基金数据,从1972年到1999年的数据,结果显示,板块轮动的投资者缺乏选择板块与时点的能力,并且在修正风险与交易费用的情况下,投资者并不能获得超额收益。
当前,国内的文献研究多是从行为金融学的角度对研究投资者行为推动的板块轮动现象进行研究的。何诚颖(2001)认为我国的股票市场的板块轮动现象具有明显的投机性,并可分为个股投机、板块投机和大盘投机三类,然后文章运用现代资本市场理论和行为金融学理论对板块现象分析,引用Shiller(1989)一文中的两类投资者(噪音交易者和知情下注交易者)的假设对板块现象进行了研究分析,并认为板块现象是一种市场投机,而且其形成与中??股市投资者行为特征密切相关。陈梦根、曹凤岐(2005)一文从市场中不同证券之间的价格关系出发研究股票价格间的冲击传导机制,认为在中国这样的转轨经济新兴市场中,投资者受政策预期主导,决策与行为趋同,一定程度上强化了股价冲击传导的动态作用机制,整个市场显著的表现为板块联动、股价齐涨齐跌现象。文章实证研究表明,在上海证券市场中,不同的行业板块在股价冲击传导机制中的重要性不同,也即存在着板块轮动的特征,但是证券市场股价波动的市场性显著地超过了不同行业板块的独立性,不同行业间的组合投资策略的绩效并非最佳。还有少量的文献研究认为存在着其他一些因素如资金流动,庄家炒作等也可以对板块轮动现象做出一定的解释。
可以看出我国股市板块轮动现象的研究,主要集中于板块现象的描述和测量,以及对板块轮动现象进行解释,且目前这些解释还多是停留在定性理解层面,缺乏系统定量的研究。另一方面将板块轮动现象作为投资策略应用于投资实践的研究则相对较少。尽管板块可以多种形式进行分类,然而以行业属性划分板块是最为基础的,也是投资决策应用最广泛的板块概念。
二、动量策略
动量效应也称惯性效应,是指在过去一段时间收益率高的股票,在未来一段时间的收益率仍然会高于过去收益率较低的股票,即股票的表现情况有延续原来运动方向的趋势。反转效应也称反向效应,是指在过去一段时间内收益率高的股票,会在以后的一段时间会表现较差;表现差的股票在以后的一段时间,其收益率会出现逆转趋势。
国外对于动量效应和反转效应的研究始于1985年,DeBondt和Thaler基于1926年至1982年美国证券市场上的股票交易数据,采用相等权重在赢家组合(也称为赢者组合,是指在一段时间内收益率高的股票)和输家组合(也称为输者组合,是指在一段时间内收益率较低的股票)上的方法,结果证实赢者组合的收益显著小于输者组合。然后,金融经济学者开始对动量效应和反转效应做出进一步探索,分别在不同的市场验证其存在与否。Chan(1988)研究发现股票在前期表现的好或者表现不好,这种表现在后期不能一直持续下去的,这与市场风险随时间的变化有密切联系。随着动量效应和反转效应的研究日益增多,其研究方法也趋于成熟。Jegadeesh和Titaman(1993)基于美国证券市场的股票交易数据对动量效应的存在性验证时所设计的动量策略被后来的研究者广为采用,这种经典方法也称为传统的动量策略。后来大量金融经济学家采用Jegadeesh和Titaman设计的策略,针对所研究市场的实际情况,对动量效应和反转效应进行存在性验证。Chang(1995)研究发现日本证券市场的股票价格具有短期的反转效应。Kaul和Conazd(1998)在研究美国证券交易所和纽约证券交易所1926年至1989年间的股票的动量效应和反转效应时,构造8种不同的投资时间期限,发现大约50%的投资策略组合具有显著性超额收益,在具有显著性收益的策略组合里面,动量策略和反转策略所占的比 例基本相等。Rouwenhorst(1998)在研究欧洲地区的证券市场时,选取了十二个国家的股票市场上的股票作为研究对象,发现股票收益在长期上没有明显的持续现象,而在中短期,股票市场的收益有持续现象;另外,在公司资产规模上做了对比,资产规模大或小的公司都具有动量效应,但是规模较小的公司的股票价格的动量效应在统计上表现更为显著。Schiereck(1999)在针对德国股票市场的日交易数据实证分析动量效应和反转效应,结果显示德国股票价格的动量效应表现在中期,反转效应则表现在短期和长期。Ahme和Nusrct(1999)在基于7个国家的股票市场股价的动量效应和反转效应,发现了股票价格在长期的表现均出现反转效应。Hamed和Ting(2000)以马来西亚的证券市场为研究对象,对股票的动量效应和反转效应做实证研究,研究得出马来西亚证券市场和日本的证券市场的反转效应的时间基本一致,表现在短期。
在国内,吴冲锋和朱战宇(2005)研究我国沪深股票市场股票价格行为时,考虑我国市场的卖空限制,在运用重叠抽样方法,在形成期考虑收益率和交易量对股票进行排序,建立动量策略模型,考察动量策略的盈利情况,研究发现我国A股市场不存在动量效应。郝静轩(2006)通过滞后期、加权收益计算等改进的动量策略,考察改进后的交易策略对赢家组合的影响,实证结果显示,在考虑交易成本的情况下,改进的动量策略对赢家组合的收益有明显的提升。东凯(2010)研究动量策略的改进方法中,通过设定月度市盈率作为阂值来调整投资组合的方法显示,改进的动量投资策略的收益表现好于大盘的表现。张荣武,何丽娟和聂慧丽(2013)就我国股市的实际情况,运用HS模型的基础上,将我国股市中的投资者分为套利惯性投资者、动量交易投资者以及消息观察者,从三者的对技术和基本面的不同的关注视角出发,分别研究他们的投资决策对A股价格的不同影响。经验证,套利惯性投资者的一系列行为决策会加剧股市的反转效应,套利惯性投资者和动量交易者的决策行为均可以引发股市的动量效应。王俊杰(2013)对动量交易策略的择时上做了实证研究,研究发现动量策略交易时,在形成期之后,不直接购买,而是经过一定的滞后期再进入持有期,效果优于市场平均收益和传统动量策略方法。
综合国内外学者对动量效应和反转效应的研究,可以看出无论成熟发达的美证券市场,还是处于发展中的中国证券市场,大部分学者的研究支持证券市上存在动量效应和反转效应。就我国A股市场而言,对于动量效应和反转效的存在期的长短上程度上,由于采用的股票样本和研究时间区间不一样,国内者的研究结果存在差异的。
三、基本面策略
在传统资本市场理论中,价值投资并没显著的地位,当时的主流思想为有效市场假说,即市场能够完全准确的反映资产的价值,即投资者无法通过基本面分析、技术分析等手段得到超额收益。但随着二十世纪八十年代起,越来越多的研究发现,有效市场并不真正存在,投资收益并不能完全由风险来解释;市场中股票的价格存在偏离内在价值的情况,通过研究价格的偏差波动,能够实现正的超额收益,从而驳斥了经典EMH假设。基于市场非有效性,BenjaminGraham提出了价值投资的理念,其在《证券分析》中将其定义为:“基于详尽的分析,对本金的安全和满意回报有保证的操作”,通俗而言就是通过基本面的分析,同时考量一定的安全边际的选择投资策略。
在价值投资理念逐渐普及并被接受之后,国外学者针对价值投资的有效性进行了一系列检验。Fama和French于1992年,针对1963年至1990年在NYSE,AMEX,NASDQ上市的股票,将其分别按B/M与E/P指标进行研究。其研究显示:随着B/M及E/P分组标记的组别增加,其月收益率有明显的递增现象,同时,这一现象无法用公司的beta值来解释,这也就说明价值型的股票确实能够较成长型股票带来超额收益。Lakonishok,Shleifer和Vishny(1994)根据1963年至1990年在NYSE与AMEX上市的股票,针对高B/M的公司?^低B/M公司平均收益更高的现象进行了进一步研究。他们发现不仅在根据B/M排名形成公司组合的投资策略存在明显的超额收益,同时在根据C/P、销售增长率和E/P排名形成公司组合的投资策略也存在明显的超额收益。Fama和French于1998年,针对包括美国、EAFE国家成熟市场以及16个新兴市场国家的股票市场再次进行了实证研究。他们根据B/M,C/P,E/P和D/P区分价值股和成长股,从而形成投资组合。在13个成熟市场以及16个新兴市场中,均发现价值组合相较于成长股组合有明显的超额收益。
国内学者也对利用估值指标进行的投资策略进行了检验。王孝德与彭燕(2002)针对中国股票市场进行了实证研究,结果发现与国外成熟市场类似,价值投资策略在中国也能得到较高的超额收益。卢大印、林成栋、杨朝军(2006)根据股价、B/M、S/P以及E/P作为指标确定投资组合,发现价值型的投资组合确实有高于成长型股投资组合的收益率。林树、夏和平、张程(2011)基于B/M、C/P、E/P及GS,针对我国A股市场构造了投资组合,研究表明以单变量构成的组合中,大多价值型投资组合的收益率两年明显高于成长型投资组合;而以双变量构成的投资组合较单变量的显著性更高。即在中国股票市场,基于估值指标的投资策略仍然使用。
量化对冲其实是“量化”和“对冲”的结合。在实际应用中,由于对冲基金往往采用量化模型进行投资决策,两者经常交替使用,但量化基金不完全等同于对冲基金。
量化是指借助统计方法、数学模型来指导投资,其本质是定性投资的数量化实践。量化投资区别于定性投资的鲜明特征就是模型。定性投资和定量投资的具体做法有些差异。定性投资更多地依靠经验和感觉判断,定量投资更多依靠模型判断。
量化投资的最大特点是强调纪律性,即可以克服投资者主观情绪的影响。凡是通过或利用数学公式或数学模型进行投资的策略均可被纳入量化投资策略范畴。在华尔街,量化投资多指与金融工程相关的投资,而在国内多指“多因子模型分析”相关的投资及程式化交易。
与其他策略相比,量化投资由于用到了数学理念设计参与,通过捕捉市场的非有效性来获取超额的收益。而中国的市场依然有着非常强的非有效性。对投资者来说,量化投资策略能够有效避免情绪化操作。
风险对冲是对冲基金最重要的特征。投资是以风险换取收益的过程,无风险则无收益。对冲基金是一种可以用确定性的风险去换取确定性收益的基金,对冲基金的卖点就在于其收益的确定性。
与传统高风险高收益的投资理念不同,对冲基金是以最低的风险去获取最高的收益。任何一个多元化的投资组合,其收益与风险主要是来源于市场。可以利用对冲工具对冲一定的市场风险,而通过承担比较确定的风险,获取稳定收益。
作为投资工具,对冲基金比其他投资工具限制少很多。一般投资工具多数甚至不允许“卖空”,而对冲基金则可采用卖空、杠杆以及期权、期货等多种衍生工具。
常见的量化对冲策略包括:股票对冲、事件驱动 、全球宏观、相对价值套利四种,任意一只对冲基金既可采取其中某一策略也可同时采取多种投资策略,目前全球使用占比最高的策略是股票多空策略,占比达32.5%。
目前私募已发行的量化对冲产品中,主要包括Alpha策略基金、量化套利基金、量化CTA基金以及宏观对冲基金四类。公募对冲基金持有的绝大部分是沪深300成分股,套保期货一般会与现货匹配,多采用低频交易CTA高频策略。
JEL分类号:G1 中图分类号:F832 文献标识码:A 文章编号:1006-1428(2011)10-0107-05
一、行为金融理论概述及A股市场投资行为
传统现代金融理论起源于20世纪50年代。在Arrow-Debreu一般均衡理论和Von Neumann&Mor-genstem建立的预期效用函数理论分析范式下,1952年Markwitz提出了资产组合理论,1958年Modigiani&Miller提出了资本结构理论,上世纪八十年代Sharpe、Lintner等人在资产组合理论基础上发展了资本资产定价模型,Ross在1976年提出了套利定价理论,Black&Scholes于1972年发明了期权定价模型.上述理论统一于Fama等在1970年代建立的有效市场假说,它们共同构筑起了近乎完美的现代金融理论大厦,被广泛地应用于金融理论与实务中,定量指导人们的金融投资行为。
然而,上述金融理论模型在现实统计检验中出现了很多异常现象。主要表现为以下两个方面:首先,传统金融理论一般假设投资者是理性的,但是大量的心理学研究表明,人们的实际投资决策行为会出现系统性的偏差,如过度自信、后悔规避、心理账户、锚定效应等,从而导致投资者行为的非理性;其次,传统金融学理论一般认为市场是有效的,价格反映一切,但由于上述投资者行为偏差及一些制度因素,价格经常并不能反映真实信息,市场常常是非有效的。人们开始日益注重投资者行为在金融理论中的特殊作用,从投资者心理和行为关系出发研究金融投资活动,由此开创了行为金融学的研究。
Burrel&Bauman教授在1951年发表的《投资研究实验方法的可能性》中首次明确提出将心理学和金融学研究结合起来,用实验方法来验证投资理论,并认为将行为方法和定量投资模型相结合具有重要意义。1979年,斯坦福大学的Tversky和普林斯顿大学的Kahneman教授提出了著名的前景理论(ProspectTheory),该理论是行为金融理论的核心内容和代表学说.为行为金融理论的发展奠定了理论基础,Kah-neman本人也因此荣获2002年度诺贝尔经济学奖。1985年,Bondt&Thaler发表的《股票市场过度反应了吗?》一文引发了对行为金融理论的关注,开启了行为金融理论研究的新阶段,此后,Shleifer对“噪声交易者”和“套利限制”的研究、Odean对“处置效应”的研究、Shiller对股价异常和股市羊群效应的研究等进一步丰富了其内涵,行为金融理论的影响日渐扩大。
传统金融理论把金融投资过程看作一个动态均衡过程,有效市场假说是传统金融理论的核心。Shleiferf2000)总结有效市场假说建立在三个逐渐弱化的假设上:第一,假设投资者是理性的,可以理性评估资产价值;第二,即使有些投资者不是理性的,由于他们交易的随机性,可以抵消彼此对资产价格的影响;第三,即使投资者的非理并非随机而是具有相关性,市场可以利用“套利”消除其对资产价格的影响。行为金融学以前景理论为基础,针对上述三个假设分别质疑,形成了相对应的三个层次研究:有限理性的投资者个体行为;投资者的群体行为;有限套利的非有效市场。
沪、深证券交易所相继在1990年和1991年成立,标志着我国证券市场开始形成。作为一个新兴资本市场,我国股市存在着严重的非理性投资行为:1、证券投资主要以投机行为为主,股票价格严重偏离股票的基础价值。具体表现为:波动性较大,市盈率过高,换手率过高。2、投资理念不成熟。具体表现为:第一,暴富心理波段操作频繁过度;第二,羊群行为十分明显。3、强烈的政策依赖性。我国股市一直以“政策市”饱受诟病,政治、经济政策及证券市场政策、法规常常直接干预市场,对市场造成巨大影响。4、机构投资者对股市操纵现象时有发生,中小投资者存在“跟庄”情结。这些非理都制约了证券市场自身功能的发挥,阻碍了证券市场的健康发展。因此,借鉴行为金融理论,研究适合我国投资者的投资策略显得十分必要。
二、A股市场量化投资策略盈利性研究
根据行为金融理论,由于投资者存在各种认知偏差,容易产生过度反应或反应不足,从而导致非理性的投资行为,而且这种非理会长期存在,证券市场上将出现系统性偏差,资产也会错误定价,可以藉此制定有效的投资策略获取稳定的投资回报,即行为金融投资策略。可将行为金融投资策略分为两大类:一类是积极型的投资策略,即寻求由于投资者系统性的行为和认知偏差所引起的证券定价偏差,在大多数投资者认识到这些偏差之前投资这些证券,并随着大多数投资者意识到这些偏差并投资它们时卖出这些证券。例如:反向投资策略、动量交易策略、小盘股投资策略和ST投资策略等;另一类是保守型的投资策略,即为了尽量规避人们的系统和认知偏差而制定的投资策略,如价值投资策略、资金平均策略和时间分散化策略等。
行为金融投资策略中最典型的是反向投资策略和动量投资策略,两者可能在不同的时间段分别获得正的收益。其盈利性研究方法可分为两类:l、利用股票收益率实证分析,代表性方法是Jegadeesh&Titmanf1993)提出的,他们考察了1962-1989年间美国股市数据,将样本股票按照过去一段时间(即形成期)收益率排序等分为10个组合,排名最差的一组为输家组合,排名最好的一组为赢家组合,然后考察未来一段时间(即持有期1内买入赢家组合和卖出输家组合的超额收益率(与该时期的市场收益率相比较),重复此过程,对上述超额收益率t检验,发现在3-12月的较短时间,存在显著的股票收益动量效应。2、基金投资行为实证分析,Gfinbl~t、Titman&Wermer(fl995)设计了一个基金投资行为衡量指标ITM计算基金重仓股数据,研究了美国155只共同基金10年内的投资策略以及相应的绩效,结果显示76.8%的基金采取“动量”投资策略。
我们参考Jegadeesh&Titman(1993)方法,结合Lakonishok&Shleifer(1996)、Chan、Jegadeesh&Lakonishokfl996)和Lee&Swaminathan(2000)的思想,考虑到投资者对指标使用的习惯性,利用A股数据按股票收益率、换手率(代表交易量)、PE(市盈率)三大最
主流指标在形成期选择大值(赢家)组合和小值(输家)组合,考察其在持有期的超额收益率,分析各种投资策略的盈利性.以期寻找适用于我国A股市场的量化投资策略。具体方法如下:
(1)我国证券市场目前有主板市场、中小板市场、创业板市场三类,考虑到主板市场成立时间较长,投资行为相对较为成熟,对主板市场的研究基本就可以对我国证券市场投资行为全貌有较清晰认识:
(2)选定一个时间长度作为股票业绩评价期.称为股票投资组合的形成期,计算各样本股票在形成期的平均超额收益率:
(3)根据上述收益率对样本股票进行升序和降序排列,其中收益率数值最大的数只股票组成赢家组合,最小的数只股票组成输家组合,选择换手率、PE等指标时作类似处理:
(4)再选一个时间长度作为持有期,计算组合在持有期的平均超额收益率:
(5)移动一个检验周期,连续重复上述步骤.得到一系列持有期超额收益率,取平均值为对应投资策略的超额收益率,并对该结果做t检验:
(6)结合超额收益率和t检验结果,比较不同的投资策略,得到适用的量化投资策略。这K个期间的平均超额收益率;然后再在时刻T+2重复这一过程,一直持续下去,得到平均超额收益率时间序列,求平均值,在股票超额收益率为正态分布假设下进行t检验。
对上述方法说明如下:
(1)由于目前我国A股市场除少量的融券业务外.并不存在完善的股票卖空机制,所以我们不构造卖空股票的组合,尽管也计算赢家和输家组合的收益率之差并进行统计分析,但目的是比较动量投资策略和反向投资策略的相对优劣:
(2)与经典Jegadeesh&Titman(1993)方法不同,我们参考朱战宇等(2003)的方法,以周为检验周期单位,这是因为我国股市交易相比国外频繁得多,月度检验期过长,会遗漏很多相关信息:
(3)根据目标市场的大小,选择投资10、5、3等不同只股票计算平均收益率。
投资者行为是动态变化的过程,太过久远的交易数据对研究新市场环境下的交易策略显然没有多大意义,所以本研究选取样本期间为2009年10月1日至2010年11月30日,研究数据来自天软(nysoft)金融分析软件。考虑到只有14个月数据,我们取形成期和持有期分别为一、二、四、八和十三周。收盘价数据采用比例复权,基准为“最后一个交易日”,保留小数点后两位有效数字,如股票在某个周五没有开市,就依次用本周四、三、二、一的可比收盘价代替。我们用Matlab(R2010b)编程处理数据,超额收益率是指个股收益率减去同期相应的市场收益率,考虑到广大投资者一般将上证综合指数作为判断大盘走势的标准,我们以其为基准计算超额收益率。
主板市场取我国A股市场中所有在2009年10月1日前上市的公司,剔除掉其中的中小企业板、创业板和ST公司,共1156家上市公司,截取2009年9月30日至2010年11月30日的周交易数据,选择投资10只股票,结果如下:
1、以收益率为选股标准。
我们发现,共有5个“买涨”策略的平均超额收益在5%水平下显著,形成期均为1周,且均为正,随着持有期的增加而减少,(1-1)策略超额收益率最大,超过1%:15个“买跌”策略的平均超额收益在5%水平下显著为正,形成期主要集中在8和13周,持有期为2和4周的收益率较大;10个“买涨一卖跌”策略的平均超额收益率在5%水平下显著,且持有期为1和2周时,为正值,持有期为8和13周时,收益率为负值。这说明,选择购买前期较短时期(1周,最多2周)收益率高的股票,或购买前期较长时期(8周或13周)收益率低的股票,持有期较短(1或2周)能取得明显的超额收益。
2、以换手率为选股标准。
共有4个“买高换手率”策略的平均超额收益在5%水平下显著,持有期均为13周,均为正且较小;23个“买低换手率”策略的平均超额收益在5%水平下显著为正,且均在1%以上;19个“买高一卖低”策略的平均超额收益率在5%水平下显著,且为负。这说明,选择购买前期换手率低的股票可获得明显的较高超额收益率。
3、以市盈率为选股标准。
共有19个“买高市盈率”策略的平均超额收益在5%水平下显著,均为正且较小;18个“买低市盈率”策略的平均超额收益在5%水平下显著为正,且形成期越短,收益率越大,1和2周的平均超额收益率基本上在1%以上,和持有期无关;9个“买高一卖低”策略的平均超额收益率在5%水平下显著,有正有负。这说明.选择购买过去短期(1或2周)动态市盈率低的股票。可取得明显的较高超额收益。
三、总结与展望
据悉,青骓投资管理有限公司(后称“青骓投资”)继2012年4月通过华宝信托,发行了信托获批股指期货交易业务资格以来国内第一只阳光私募发行的股票量化全对冲产品之后,再次成立国内首只引入国债期货作为对冲工具的债券对冲管理型产品“青骓1号债券对冲专项资产管理计划”。该产品系青骓投资联手国泰君安期货及某基金公司子公司推出的一款专项资产管理计划,资金已募集完毕并到位,于2013年8月14日正式宣告成立。
值得关注的是,该产品涉及到三方平台,由多个管理人联合操作。基金公司子公司作为资产管理人,青骓投资公司作为投顾主要负责产品的投资策略,国泰君安期货资管部门作为基金专户资产受托人完成国债期货端的交易。
分析人士指出,基金方作为特殊法人单位在期货公司开立资管账户,并引入外部投资顾问参与、主导产品的设计和投资运作,这一合作模式在期货资管领域尚属首例,有望开创机构投资者合作参与期货资管业务的热潮。对于特殊法人单位参与期货资管业务的模式也是全新的尝试。
引入量化对冲策略
一、资金流策略的意义
资金流是一种反映股票供求关系的指标,是指证券价格在约定的时间段中处于上升状态时产生的成交额是推动指数上涨的力量,这部分成交额被定义为资金流入;证券价格在约定的时间段中下跌时的成交额是推动指数下跌的力量,这部分成交额被定义为资金流出;若证券价格在约定的时间段前后没有发生变化,则这段时间中的成交额不计入资金流量。当天资金流入和资金流出的差额可以认为是该证券当天买卖两种力量相抵之后,推动价格变化的净作用量,被定义为当天资金净流量。
有效市场假说的概念是说证券价格已经能够完全反映所有可获得的信息,即在有效的证券市场中,不论选择何种证券,投资者只能获得与证券风险相当的正常收益。然而完美的有效市场存在的可能性是很小的,同样对于中国证券市场而言,市场并不十分有效,并且股价在短期内可能受到某些消息的影响,或者某些市场内在因素的改变从而产生剧烈波动带来的差价投资机会,因而在市场中经常存在交易性机会,从而在量化投资选股方面也有很多种选股策略,根据资金流选股便是其中一种。
资金流策略是指根据资金流这一指标进行选股的一种量化投资策略。该模型使用资金流向主要通过衡量当前市场上的股指或股票的资金流入或者流出的状态,从而进一步去衡量未来股票的涨跌情况:如果是资金流入的股票,则股价在未来一段时间可能会上涨;如果是资金流出的股票,则股价在未来一段时间可能会下跌。这样就可以根据资金流向来构建相应的投资策略。
二、资金流策略具体操作及结果分析
(一)资金流策略指标含义及操作步骤
对于资金流向的判断,根据买卖双方的力量对比来衡量。资金流分为流入流出两个方向,如果当前的成交价格在买方,则认为是卖方出卖股票的意愿较强,资金流出;如果当前的成交价格是在卖方,则认为是买方买股票的意愿较强,资金流入。对于资金流的测算,采取日数据计算,即当日价格上涨全部计算为流入,若当日价格下跌则计算为流出。本文采用的选股指标包括:1. 资金流信息含量IC(资金流中有效信息含量),将资金流向标准化,用当天的资金流净额除以当天的股票成交量,即资金流净额/交易额。2. 资金流强度MFP,资金流净额/流通市值,即标准化资金流的强度。3. 资金流杠杆倍数MFL,流通市值/资金流净额,即衡量资金流的撬动效应。
操作步骤:选股策略基于沪深300指数成分股,并将股票按照各指标进行排序,去除数据计算无效的股票;研究的时间从2014年10月1日到2016年8月31日,共6期;组合调整的日期为4月30日(一季报披露完成)、8月31日(二季报披露完成)、10月31日(三季报披露完成);剔除在组合调整日前后长期停牌的股票;组合构建时为等权重;组合构建时股票的买入卖出价格为组合调整日收盘价,若调整日为非交易日,则向前顺延;在持有期内,若某只成分股被调出沪深300指数,不对组合进行调整;将各成分股的季收益率与其相应指标进行合并,去除无效数据;将已合并好的沪深300成分股按照指标按照从高低的顺序排列;分为6组:排名前10的成分股、排名前20的成分股、排名前50的成分股、排名在50~100的成分股、排名在100~200的成分股、排名在200以后的成分股;计算出各组平均季收益率,将各组平均的季收益率与同期沪深300指数的收益率作对比,考察跑赢概率。在2014年10月1日至2016年8月31日共进行了12期组合的调整,不计交易成本。
(二)资金流信息含量假说及检验
1. 资金流信息含量假说
信息无效――回归拟合优度很差
信息泄露――回归拟合优度很好,资金流系数为正
信息反应过度――回归拟合优度很好,资金流系数为负
R■=MFPt,iβ1,j+MFLt,iβ2,j+R■β3,j+αi
其中,R■表示第t期股票i的超额收益率;R■表示第t+1期股票i的超额收益率;β表示各公示因子的回归系数;MFPt,i表示第t期股票i的标准化资金流;MFLt,i表示资金流杠杆倍数。
2. 对资金流信息含量假说的检验
本文以浦发银行(600000)为例,设第t期为2016年3月10日到20日,则第t+1期为2016年3月20日到30日,对于非交易日顺延并剔除无效数据信息;首先计算出第t期的资金流强度MFP和资金流杠杆倍数MFL;然后计算出第t期和第t+1期浦发银行的超额收益率;最后用Eviews进行多元回归分析检验。检验结果如表1所示。
由表1可知,线性回归系数为0.965963,拟合系数为0.933085,接近于1,说明拟合程度很好,第t期的股票超额收益率、资金流强度和资金流杠杆倍数这三个自变量对于第t+1期的股票超额收益率的解释程度很高。
由表2可知,F值为6.97219,F>F0.01(5.64),即方程极其显著,各自变量对因变量有很显著的影响,方差值很小,比较稳定。
由表3可知,资金流信息含量IC的回归系数为-1.05399,与t+1期超额收益率呈负相关,资金流强度MFP的回归系数为257.5974,与t+1期超额收益率呈正相关,资金流杠杆倍数MFL为-4.6E-07,与t+1期超额收益率呈负相关。从而回归方程为:
R■=257.5974MFPt,i-(4.6E-07)MFLt,i β2,j-2.05606+R■+αi
综上所述,当期的超额收益率、资金流强度、资金流杠杆倍数这三个指标对于下一期的股票有着很好的预测效果。
3. 根据资金流信息含量IC选股策略结果
由表4可知,整体上看,资金流信息含量较低的组合表现较好,其中资金流信息含量排名200之后的成分股构成的组合表现较好,记为组合IC(200)。在2014年10月1 日至2016年8 月31 日间,不考虑交易成本,组合IC(200)年化收益率为8.97%,高于同期沪深300 指数的表现。在6期中,组合IC(200)有5期跑赢了沪深300 指数,跑赢概率为83.33%。
(三)资金流强度MFP
1. 根据资金流强度MFP选股策略结果
2. 根据资金流强度MFP选股策略结论
由表5可知,整体上看,资金流强度较低的组合表现较好,其中资金流强度排名200之后的成分股构成的组合表现较好,记为组合MFP(200)。在2014年10月1 日至2016年8 月31 日间,不考虑交易成本,组合MFP(200)年化收益率为10.62%,高于同期沪深300 指数的表现。在6期中,组合MFP(200)有5期跑赢了沪深300 指数,跑赢概率为83.33%。
(四)资金流杠杆倍数
1. 根据资金流强度MFL选股策略结果
2. 根据资金流强度MFL选股策略结论
由表6可知,整体上看,资金流杠杆倍数较低的组合表现较好,其中资金流强度排名100~200的成分股构成的组合表现较好,记为组合MFL(100,200)。在2014年10月1 日至2016年8 月31 日间,不考虑交易成本,组合MFL(100,200)年化收益率为-2.93%,高于同期沪深300 指数的表现。在6期中,组合MFL(100,200)有4期跑赢了沪深300 指数,跑赢概率为66.67%。
三、各策略比较分析
将根据不同指标所选股的结果放到一起进行比较,时间是从2014年10月1日到2016年8月31日,由进一步的比较分析可知,按照低资金流强度选股的策略表现最好,年化收益率达10.62%,在6期的分析中有5期的收益率超过大盘,跑赢概率为83.33%。
四、资金流策略的有效性分析
正因为中国的A股市场不是特别有效的市场,量化投资策略正好可以发挥其纪律性、系统性、及时性、准确性、分散化的优点而不惑国内市场的各种投资机会。相比定性分析,现阶段A股市场的特点更适合采用客观、公正而理性的量化投资风格。股票市场复杂度和有效性的增加已对传统定性投资基金经理的单兵作战能力提出了挑战。相对于海外成熟市场,A股市场的发展历史较短,有效性偏弱,市场上被错误定价的股票相对较多,留给量化投资策略去发掘市场的无效性、寻找超额收益的潜力和空间也就更大。事实上,尽管在国内发展历程较短,从国内已有的采用了量化投资方法并且已经运作了一段时间的基金来看,量化基金可以被证明是适应中国市场的。
本文采用现代计量经济学的方法研究了从2014年10月1 日到2016年8 月31 日间沪深300成分股的情况,探讨了资金流信息含量的预测作用,研究了根据资金流三个指标进行选股所做策略组合的收益情况。主要涉及资金流信息含量IC、资金流强度MFP、资金流杠杆倍数MFL这三个指标,分别根据每个指标进行选股,观察其组合走势情况,得出的主要结论有:第一,资金流信息含量对下一期的股价走势有一定的预测作用;第二,根据上述的三个指标进行选股所做策略,在一定程度上是可以获得超过大盘的收益率。
作为量化投资的一个组成部分――策略指数基金已经发展起来,其中选股策略就包括本文所论述的资金流策略。不仅能够做到有的放矢,而且可以满足投资者不同风险收益偏好的投资需求。
参考文献:
[1](美)罗伯特・A・哈根.金融学――有效市场的反例[M].清华大学出版社,2002.
[2](美)罗伯特・阿诺德,许仲翔,约翰・韦斯特.基本面指数投资策略[M].社会科学文献出版社,2010.
[3]丁鹏.量化投资――策略与技术[M].电子工业出版社,2012.
[4]朱世武.基于SAS系统的金融计算[M].清华大学出版社,2004.
[5]曹立著.透视无形之手――中国证券市场资本流量运动解析[M].深圳出版发行集团海天出版社,2009.
[6]田存志,王聪.证券市场信息非对称问题的理论与实证研究[M].中国社会科学出版社,2013.
[7]陈威杰,蔡志成.数量化投资指标之资金流策略指标研究[J].时代金融,2013(12).
[8]石建辉,基于资金流的股指期货投资策略[J].中国证券期货,2014(01).